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Abstract

As an essential form of knowledge represen-

tation, taxonomies are widely used in vari-

ous downstream natural language processing

tasks. However, with the continuously rising

of new concepts, many existing taxonomies

are unable to maintain coverage by manual ex-

pansion. In this paper, we propose TEMP, a

self-supervised taxonomy expansion method,

which predicts the position of new concepts

by ranking the generated taxonomy-paths. For

the first time, TEMP employs pre-trained con-

textual encoders in taxonomy construction and

hypernym detection problems. Experiments

prove that pre-trained contextual embeddings

are able to capture hypernym-hyponym rela-

tions. To learn more detailed differences be-

tween taxonomy-paths, we train the model

with dynamic margin loss by a novel dynamic

margin function. Extensive evaluations exhibit

that TEMP outperforms prior state-of-the-art

taxonomy expansion approaches by 14.3% in

accuracy and 15.8% in mean reciprocal rank

on three public benchmarks.

1 Introduction

Taxonomies, tree-structured semantic hierarchies

that organize entities by hypernym-hyponym (is-a)

relations, play an important role in many NLP tasks

such as question answering (Yang et al., 2017),

query understanding (Hua et al., 2016) and infor-

mation extraction (Demeester et al., 2016).

Manually curated taxonomies usually face the

limited coverage issue, especially when new con-

cepts arise continuously. A low coverage taxonomy

can largely hurt the performance of downstream

tasks relied on it. Moreover, for maintaining and

expanding existing taxonomies, the curation pro-

cess that requires domain experts is expensive and

time-consuming. Thus, we study the automatic tax-

onomy expansion task (Figure 1): given an existing

taxonomy, a text corpus, and a set of concepts, the
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goal is to expand the taxonomy by inserting con-

cepts into it.

Two common strategies used to study taxonomy

construction and expansion are pattern-based meth-

ods (e.g. the Hearst pattern (Hearst, 1992)) and

distributional methods (Yu et al., 2015). Recent

evidence suggests that the semantic information

or structural features encoding in the representa-

tion is an effective way to solve the task, especially

probability statistics from a large corpus (Mikolov

et al., 2013), semantic information extracted from

text data (Yin and Roth, 2018), and properties of

hypernym-hyponym relations such as strict partial

order (Dash et al., 2020).

Since taxonomies can be formulated as directed

acyclic graphs (DAGs), the graph structure has

been seen as important information for taxonomy

expansion and construction in recent works (Shang

et al., 2020; Shen et al., 2020). However, according

to our observation, the path composed of ancestor

nodes in a taxonomy is a more appropriately en-

coded object in hypernym-hyponym relations. In

a tree-structured taxonomy, all the ancestor nodes

have an is-a relation with the child node. In Figure

1, for example, “Science” - “Systematics” - “Biosys-

tematics” is the taxonomy-path of word “Biosys-

tematics”. “Biosystematics” not only “is-a” “Sys-

tematics” but also “is-a” “Science”. In addition, the

serial structure of taxonomy-path is also more ap-

propriate than the graph structure for transformers

to encode.

As far as we know, there has been no attempt to

take pre-trained contextual encoders (such as BERT

(Devlin et al., 2019)) as the core of taxonomy ex-

pansion or construction model. Pre-trained contex-

tual encoders have been proved powerful in various

NLP tasks such as Question Answer(QA)(Yang

et al., 2019), Information Retrieval (IR) (Nogueira

and Cho, 2019), Document Classification (Ad-

hikari et al., 2019), etc. Compared with previous

encoding approaches, pre-trained contextual en-
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Figure 1: An example of expanding taxonomy. The dash boxes outline two candidates of all possible taxonomy-

paths to be predicted.

coders have two main advantages. First, they are

capable of deeply encoding textual content and cap-

turing long distance dependencies. Second, most

of them have been pre-trained on large text cor-

pora to naturally support tasks using text features.

Our proposed method, TEMP1, is the first to show

that fine-tuned pre-trained contextual encoders are

able to identify hypernym-hyponym relations. To

enhance the understanding of concepts, the model

takes the query concept’s definition as input besides

the taxonomy-path.

The diversity and heterogeneity of hypernym-

hyponym relations is another reason for the dif-

ficulty of expanding taxonomies (Fu et al., 2014;

Manzoor et al., 2020), which makes it hard for the

model to learn the similarities and differences be-

tween relations on limited datasets. Inspired by the

success of ARBORIST (Manzoor et al., 2020), we

train the model with dynamic margin ranking loss

(MRL) to handle this problem. Previous studies

show that margin loss can optimize the model to

learn the discriminative deep features (Lin and Xu,

2019) and that dynamic margins set by handcrafted

rules can lead the model to learn more similarity in-

formation (Feng et al., 2020). Therefore, we design

a margin function to calculate the margin between

taxonomy-paths based on their semantic similarity.

Contributions. In summary, our major contribu-

tions include:

• We propose TEMP, a self-supervised taxon-

omy expansion method, that is the first to take

contextual encoders (such as BERT) as the

core of the model for the taxonomy expansion

problem.

1short for Taxonomy Expansion with Dynamic Margin
Loss through Taxonomy-Paths

• We employ the dynamic margin-based rank-

ing loss with a novel dynamic margin func-

tion in the TEMP to make the model learn the

discriminative difference between taxonomy-

paths.

• We take word definitions and taxonomy-paths

generated in the existing taxonomy as the in-

put of our model, which means that TEMP

doesn’t require large-scale corpora but only

the definitions of concepts.

Experiments on three benchmarks show that

TEMP improves the previous state-of-the-art per-

formance by 14.3% in accuracy and 15.8% in mean

reciprocal rank on average.

2 Related Work

Automatic taxonomy construction has been a long-

term task in literature in the last few decades. Most

existing methods follow the paradigm of construct-

ing taxonomy from scratch. They firstly extract <

Hypernym, Hyponym > pairs from raw resources

(Gupta et al., 2017) and organize them into a noisy

hierarchy to further prune it via constraints like

DAG (Fu et al., 2014; Liang et al., 2017b,a). These

approaches exploit semantic information and struc-

tural features such as lexical-patterns (Hearst, 1992;

Nakashole et al., 2012) or distributional embed-

dings (Yu et al., 2015; Shwartz et al., 2016; Le

et al., 2019; Wang and He, 2020) to automatically

construct taxonomies. However, recent practical

applications have revealed that it is laborious to

construct taxonomies from scratch when facing the

continuously rising of new concepts, so solutions

to the taxonomy expansion task are in urgent need.
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Figure 2: Overview of TEMP structure. Given one node in the existing taxonomy, a pair of positive and negative

taxonomy-paths is generated. Through the generated taxonomy-paths, dynamic margin function returns a margin.

Recently, numerous methods have been pro-

posed to solve the aforementioned problem (Shen

et al., 2018; Mao et al., 2020; Shen et al., 2020;

Yu et al., 2020; Manzoor et al., 2020; Zhang et al.,

2021). For example, Shen et al. (2020) proposes

a position-enhanced graph neural network frame-

work to encode the local structure of an anchor

concept with a noise-robust training objective. Yu

et al. (2020) converts candidate anchor positions

from the whole existing taxonomy to mini-paths, in

which way can better capture and integrate multiple

sources of information via a multi-view co-training

procedure. Manzoor et al. (2020) first designs a

realistic approach to demonstratively model unob-

served and heterogeneous edge semantics. Zhang

et al. (2021) generalizes expansion task to the more

general “one-to-pair” completion task and applies

primal and auxiliary scorers based on the neural

tensor network to rank candidate anchor positions.

As far as we know, all the existing methods at-

tempt to determine the attachment position by scor-

ing between several nodes, we are the first to take

the path as the unit for encoding and calculating

scores. Besides, to the best of our knowledge, few

state-of-the-art expansion approaches encode in-

formation out of supervision information in the

existing taxonomy, we take pre-trained contextual

encoder as core to aggregate more valuable infor-

mation and resources such as word definition to

improve performance.

3 The TEMP Method

In this section, we describe our proposed method

TEMP. First, we introduce taxonomy-path, an im-

portant concept in our method(Section 3.1). Our

model takes concept definitions and taxonomy-

paths as input and relies on the pre-trained con-

textual encoders as its core (Section 3.2). The pa-

rameters of the model are trained by margin rank-

ing loss (MRL) with a dynamic margin function

designed for taxonomy expansion (Section 3.3). Fi-

nally, we discuss how to sample self-supervision

data and fine-tune the model with dynamic margin

loss (Section 3.4).

3.1 Taxonomy Paths

The essence of taxonomy expansion is to attach

a new concept to the correct position in the exist-

ing taxonomy. Therefore, most previous works

(Shen et al., 2020; Manzoor et al., 2020; Shen et al.,

2018) treat this task as finding the optimum hy-

pernym node for the new concept by measuring

the taxonomic relatedness of candidate node-pairs.

However, in taxonomies, not only the directed at-

tached node has a hypernym relation with the new

concept but also every ancestor node of it does. To

preserve more comprehensive information, TEMP

finds the correct position by evaluating the gener-

ated taxonomy-paths.

Taxonomy-Path: A taxonomy-path P = [root,

n1, n2, ..., nD], where D is the depth of of nD,

root is the root node in the taxonomy. ni−1 is the

parent node of ni in the taxonomy.

In a tree-structured taxonomy, each node has its

unique corresponding taxonomy-path. For a new

term, the framework generates the same number of

candidate taxonomy-paths as nodes in the existing

taxonomy. Then, TEMP ranks all the candidate
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Figure 3: The backbone of TEMP

taxonomy-paths by scoring each of them.

3.2 Model Backbone

We use the pre-trained contextual encoder as the

backbone of our model. We exploit the model

to encode the definition of the last node in the

taxonomy-path besides the taxonomy-path such

that the model can capture more semantic infor-

mation of the query term. The text encoding of

TEMP refers to the encoding way in question an-

swering task, with word definition as the question

and taxonomy-path as the passage. Take the Word-

Piece tokenization (Schuster and Nakajima, 2012)

used by BERT as an example, to be in line with

contextual encoders, the words in taxonomy-path

P and the definition sentence S of the last node

are concatenated to form the input string as shown

in Figure 3. Given the input string, the contextual

encoder returns a sequence of vectors:

Encoder(S, P ) = v[CLS], v1, ..., v[SEP], vpd , ..., vroot

where v[CLS] is the represention vector of the spe-

cial [CLS] token. We feed the [CLS] represention

into a multilayer perceptron (MLP) output layer to

evaluate the taxonomy-path.

Compared with the previous methods (Shwartz

and Dagan, 2016; Panchenko et al., 2016; Yu et al.,

2020) that normally designed lexical features like

Ends with, Contains, Suffix match, Occurrence

frequency, and so on, we believe that contextual

encoders are sufficient to obtain the hierarchical

information for the following two reasons: (1)

Contextual encoders use subword algorithms for

text encoding, such as WordPiece (Schuster and

Nakajima, 2012) and Byte-Pair Encoding (Sen-

nrich et al., 2016). So after the taxonomy-path is

tokenized, the substring information among terms

is intuitively showed to the model. (2) Contextual

encoders are pre-trained in large corpora, which

makes them empirically powerful even without ex-

plicit frequency information.

3.3 Dynamic Margin Loss

We train the model with Margin Ranking Loss

(MRL) such that the optimum taxonomy-path is

ranked higher than others. Margin Ranking Loss is

defined as follows:

L =
∑

P∈P+

∑

P ′∈P−

max(0, f(P ′)− f(P ) + γ(P, P ′))

(1)

where P+ is the set of taxonomy-paths in the

taxonomy, P− is the set of negative samples, and

γ(P, P ′) is a function designed for the margin be-

tween positive and negative taxonomy-paths. In

traditional MRL, the output of the margin function

is a constant value, which is manually set via cross-

validation. All the negative taxonomy-paths will be

roughly scored the same, which ignores the subtle

similarity that is proved useful in both face recog-

nition (Feng et al., 2020) and lexical entailment

(Manzoor et al., 2020). To capture the semantic

similarity of different taxonomy-paths, we set a

dynamic margin function based on the semantic

similarity as follows:

γ(P, P ′) = (
|P ∪ P ′|

|P ∩ P ′|
− 1) ∗ k (2)

where k is a parameter used to adjust margins (usu-

ally between 0.1 and 1).

This function is inspired by the word meaning

similarity measure proposed by Wu and Palmer

(1994). In a tree-structured taxonomy, the intersec-

tion of two different taxonomy-paths is the set of

common super-concepts at the beginning of both

paths. Minimizing the loss also minimizes the num-

ber of different nodes between the highest-ranked

prediction and the true taxonomy-path. Therefore,

the training with the margin function encourages

negative taxonomy-paths that are more irrelevant

to the last nodes in them to get a lower score. Such

a design also fits the Wu&P metric which is intro-

duced in Section 4.1.

3.4 Sampling and Training

In this section, we introduce how TEMP learns

using self-supervision from the existing taxonomy.

Sampling. Figure 2 shows an example of gener-

ating self-supervision data. Given one leaf node nq

in the existing taxonomy, we take its corresponding
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taxonomy-path as a positive sample. Then, we ran-

domly select one node nr (except its parent) with

its corresponding taxonomy-path Pr in the taxon-

omy. By adding nq to Pr as its last node, we obtain

a negative taxonomy-path Pn. For each leaf node

in the existing taxonomy, we generate a pair of

positive and negative taxonomy-path. By repeating

the above process (with different random choices)

for each epoch, we obtain the full self-supervision

dataset.

Training. When training, the mini-batch consists

of pairs of samples, which means the positive and

corresponding negative taxonomy-paths must be

fed into the model in the same batch. With the pair

of taxonomy-paths as input, the margin function re-

turns the corresponding margin. Then, we calculate

the margin loss and update the model parameters.

4 Experiments

In this section, we first introduce the experimen-

tal setup (Section 4.1) and report the overall per-

formance compared with baselines (Section 4.2).

Then, we study the effectiveness of the key choices

in TEMP by ablation experiments (Section 4.3).

Furthermore, we discuss the factors that can affect

the performance of TEMP (Section 4.4).

4.1 Experimental Setup

Dataset Environment Science food

|N | 261 429 1486

|L| 201 312 1184

|D| 6 8 8

|∆| 3.78 5.16 5.36

Table 1: Statistics of the taxonomy datasets for eval-

uation. |N | and |L| are the number of nodes and leaf

nodes in the taxonomy. |D| and |∆| indicate the depth

of the taxonomy and the average depth of leaf nodes

respectively.

Datasets. We evaluate TEMP using all the three

English datasets in Semeval-2016 task 13 2 (Bor-

dea et al., 2016) . These datasets correspond to

human-curated concept taxonomies of three differ-

ent domains: environment, science, food (summa-

rized in Table 1). We follow the setup as in Yu et al.

(2020) that uses the randomly-growed taxonomies

for self-supervised learning and the rest 20% leaf

concepts for testing.

2https://alt.qcri.org/semeval2016/task13/

Metrics. When testing, TEMP ranks all candi-

date taxonomy-paths for each test concept. For

the ith node in n testing nodes, We denote the

ground truth taxonomy-path and the highest-ranked

taxonomy-path as yi and ŷi respectively. Following

previous works (Yu et al., 2020; Shen et al., 2020;

Jurgens and Pilehvar, 2016), we use these metrics:

(1) Accuracy (Acc) measures the counting of

the exactly predicted taxonomy-path.

Acc =
1

n

n∑

i=1

(yi = ŷi)

(2) Mean reciprocal rank (MRR) calculates

the average of reciprocal ranks of the true

taxonomy-path.

MRR =
1

n

n∑

i=1

1

rank(yi)

(3) Wu & Palmer similarity (Wu&P) mea-

sures the semantic similarity between the predicted

taxonomy-path and the truth taxonomy-path, calcu-

lated as

Wu&P =
1

n

n∑

i=1

2|yi ∩ ŷi|

|yi|+ |ŷi|

Baseline Methods. We compare with the follow-

ing methods:

• BERT+MLP: A distributional method that

takes terms embeddings from a pre-trained but

not fine-tuned BERT and then feeds them into

a Multi-Layer Perceptron (MLP) to predict

their relations. The experimental results come

from Yu et al. (2020).

• TaxoExpan (Shen et al., 2020): A self-

supervised method for taxonomy expansion

that adopts position-enhanced graph neural

networks (GNNs) to encode local structure

and InfoNCE loss for robust learning.

• STEAM (Yu et al., 2020): One state-of-the

art taxonomy expansion framework which ex-

tracts features for query-anchor pairs from

three views based on mini-path anchor for-

mat and is trained by a multi-view co-training

procedure.

• TMN (Zhang et al., 2021): A one-to-pair

matching model which leverages auxiliary and

primal signals using the base model neural



3859

Dataset Environment Science Food

Metric Acc MRR Wu&P Acc MRR Wu&P Acc MRR Wu&P

BERT+MLP 11.1 21.5 47.9 11.5 15.7 43.6 10.5 14.9 47.0

TaxoExpan 11.1 32.3 54.8 27.8 44.8 57.6 27.6 40.5 54.2

STEAM 36.1 46.9 69.6 36.5 48.3 68.2 34.2 43.4 67.0

TMN 35.0 43.6 54.0 41.9 53.2 75.9 34.7 47.2 65.9

TEMP-BERT 49.0 62.0 75.9 54.4 64.6 84.6 45.2 57.1 78.3

TEMP-ELECTRA 49.2 63.5 77.7 57.8 67.5 85.3 47.6 60.5 81.0

Table 2: Baseline comparison on the three datasets (in %).

Dataset Environment Science Food

Metric Acc MRR Wu&P Acc MRR Wu&P Acc MRR Wu&P

No Definition 48.7 61.9 71.9 34.1 46.7 70.5 32.4 43.7 64.8

BCELoss 10.5 26.6 57.4 16.4 31.4 64.2 8.0 18.0 49.8

Con-Margin 33.3 49.6 68.7 44.4 57.7 80.7 42.5 54.4 74.0

No Path 48.3 62.1 76.5 44.4 58.2 78.9 43.6 55.3 74.8

TEMP-BERT 49.0 62.0 75.9 54.4 64.6 85.3 45.2 57.1 78.3

Table 3: Results of ablation experiments on the three datasets (in %).

tensor network. It regulates concept embed-

ding via the channel-wise gating mechanism

to boost performance.

Implementation Details. The baseline method

experimented by us, TMN, is obtained from the

code published by the original authors3. Because

the implementation of TMN needs validation data

to set the training epochs, we use 10% terms for

validating and 10% for testing. For each bench-

mark, we try various learning rates and report the

best performance. To reduce the randomness, we

evaluated TEMP five times on five differently di-

vided test sets and training sets for each dataset

and report the average performance. The hyperpa-

rameter k in Equation 2 is set to 0.2 on the three

datasets. In the experiments of TEMP, all the pre-

trained contextual encoders are of base size with

12 layers 4. We fine-tune the model with a batch

size of 64 (which means 32 pairs of positive and

negative samples). The optimizer is Adam with

learning rate 2e-5, β1 = 0.9, β2 = 0.999 which is

recommended by the authors of BERT.

The definitions of concepts used in training and

testing are automatically gathered from the corre-

sponding Wikipedia pages. We use the first line on

the page as the word’s definition. For each multi-

word concept without a corresponding Wikipedia

page, the definitions of the words that make the

3https://github.com/JieyuZ2/TMN
4We used https://huggingface.co/transformers

concept up are concatenated as its definition.

4.2 Experimental Results

Table 2 reports the performance of TEMP based on

the most representative contextual encoder, BERT

and the contextual encoder that achieves the best

performance, ELECTRA, and the baseline methods

on the three benchmarks.

We summarize the evaluation results of the ex-

pansion task on the datasets in Table 2. As shown,

TEMP-ELECTRA achieves the best performance

on the three datasets and improves the state-of-the-

art TMN model by 14.3%, 15.8% and 16.1% for

Acc, MRR, Wu&P on average.

4.3 Ablation Studies

We perform ablation studies to analyze the effec-

tiveness of the key choices in TEMP: (1) optimiz-

ing the margin loss by semantic similarity dynamic

margin function; (2) using word definitions for tax-

onomy expansion; and (3) predicting the attach-

ment by encoding taxonomy-paths. Since BERT

is currently the most representative contextual en-

coder, all the experiments in ablation studies are

based on BERT. We design the following experi-

ments and report the results in Table 3.

The Effect of Dynamic Margin Function. We

restrict TEMP to use a constant margin (Con-

Margin). We experiment with different margin

values and report the best performance. In the ex-
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Figure 4: Results for different contextual encoders over three datasets.

perimental results, the dynamic margin function

doesn’t greatly improve the performance in the

food dataset as it does in the other datasets. For this

result, there are two possible reasons: (1) Seman-

tic similarity is more important on a small dataset.

In other words, with large training data, the model

can learn the discriminative features with a constant

margin. (2) The function can’t improve a lot on flat

datasets. The food dataset has the same depth as

the science dataset but its number of nodes is more

than three times the number of nodes in the science

dataset, which means that the food dataset is very

flat.

The Effect of Margin Loss. We modify

TEMP to minimize Binary Cross-Entropy Loss

(BCELoss). We find that the usage of margin loss

is the main reason for the performance of TEMP.

BCELoss =

−
1

n

n∑

i=1

[yilog(ŷi) + (1− yi)log(1− ŷi)]
(3)

The Effect of Definition. We remove the defi-

nition from the input of TEMP (No Definition).

From the results, one can see that the definitions

improve the performance a lot on science and food

datasets but not on the environment dataset. The

poor quality definitions of the environment dataset

may lead to this result. There are more than half of

the words that are multi-words without a Wikipedia

page in the dataset. Besides, the performance of

TEMP without word definitions is also closed to the

performance of prior state-of-the-art methods. It

proves that BERT captures the hypernym-hyponym

relations between terms to a relatively good degree.

The Effect of Encoding Paths. We modify the

input of TEMP from taxonomy paths to the rela-

tion pairs (No Path). The experiments shows that

the effect of encoding the taxonomy-paths is more

significant on the deeper taxonomies.

4.4 Discussions

In this subsection, we discuss the following three

factors that affect the effect of the model: (1) pre-

trained encoders (2) parameter k (3) the number of

sibling nodes of test terms.

Effect of Pre-trained Encoder. Figure 4 shows

the preformance of TEMP on three datasets based

on different pre-trained contextual encoders with

the same experiment setup included ALBERT

(albert-base-v2; Lan et al. (2019)), RoBERTa

(roberta-base; Liu et al. (2019)), BERT (bert-base-

uncased), ELECTRA(electra-base-discriminator).

The performance of different encoders on differ-

ent domain datasets shows consistency, and ELEC-

TRA achieves the best performance on all datasets

among the experimented contextual encoders. An-

other observation is that RoBERTa doesn’t achieve

better performance than BERT like it did on other

tasks. The possible reason for it is that the text

encoding algorithm used by RoBERTa, Byte-Pair

Encoding is weaker in its ability to capture the sub-

string information than WordPiece, the algorithm

used by the other three encoders.

Effect of k . k is the parameter in dynamic margin

function (equation 2). Figure 5 shows the effect of

k on the Science dataset with BERT as the context

encoder. As observed, when 0.1 ≤ k ≤ 1, there is

little difference in performance among various k .

The obtained performance for different k also indi-

cates that TEMP is not sensitive to the parameter

k and has the advantage of robustness. We also try

to use some larger k , experiments show that when

k > 10, the loss doesn’t converge.
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ence dataset when varying k .

Effect of Sibling Nodes. To evaluate the effect

of sibling nodes of test nodes in the self-supervised

training data, we do the experiment in which the

parent node of each test node retains a constant

number of child nodes in the training taxonomy. In

the ’> 5’ experiment, all the parents of test nodes

have more than 5 child nodes in training data. Fig-

ure 6 shows the experimental results on the science

dataset with BERT as the contextual encoder. From

the experimental results, we get the following ob-

servations and conclusions: (1) As the number of

sibling nodes in the training data increases, the

performance of TEMP generally increases, which

means that the sibling nodes in the test data make

the model better learn the hypernym-hyponym re-

lations. (2) When there is no sibling node in the

training data, the performance in Acc and MRR

is very low. However, compared with the other

results with similar performance in Acc and MRR,

it gets a higher score in Wu&P. This means that

in this case, TEMP doesn’t rank the ground-truth

high, but the highest-ranked term is similar to the

ground-truth in the taxonomy, such as the parent

node of the ground-truth.

5 Conclusion

We proposed TEMP, a self-supervised method for

taxonomy expansion, that relies on the pre-trained

contextual encoder as its core. TEMP takes the

definition of the query concept and the generated

taxonomy-path as input to predict the attachment

position. The model is trained by a margin ranking

loss with a novel dynamic margin function to better

capture the semantic similarity between taxonomy-
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Figure 6: The performance of TEMP-BERT on the sci-

ence dataset when varying the number of sibling nodes

of test terms.

paths. Experiments on three datasets from different

domains show that TEMP outperforms state-of-the-

art methods. Further ablation studies show that

our key choices in TEMP have an effect on the

performance in varying degrees especially the use

of margin loss.

For future work, we plan to design sampling

methods for TEMP to improve its performance and

robustness. We also want to do interpretability

studies about the effect of margin loss in model

training.
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