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Abstract

Natural language (NL) explanations of model
predictions are gaining popularity as a means
to understand and verify decisions made by
large black-box pre-trained models, for tasks
such as Question Answering (QA) and Fact
Verification. Recently, pre-trained sequence to
sequence (seq2seq) models have proven to be
very effective in jointly making predictions, as
well as generating NL explanations. However,
these models have many shortcomings; they
can fabricate explanations even for incorrect
predictions, they are difficult to adapt to long
input documents, and their training requires a
large amount of labeled data. In this paper,
we develop FiD-Ex1, which addresses these
shortcomings for seq2seq models by: 1) intro-
ducing sentence markers to eliminate explana-
tion fabrication by encouraging extractive gen-
eration, 2) using the fusion-in-decoder archi-
tecture to handle long input contexts, and 3)
intermediate fine-tuning on re-structured open
domain QA datasets to improve few-shot per-
formance. FiD-Ex significantly improves over
prior work in terms of explanation metrics and
task accuracy on five tasks from the ERASER
explainability benchmark in both fully super-
vised and few-shot settings.

1 Introduction

While large pre-trained language models (Devlin
et al., 2019; Raffel et al., 2019; Lewis et al., 2020)
with hundreds of millions of parameters have made
super-human performance possible on various NLP
datasets, they lack transparency into their decision
making process, which can adversely affect user
trust in their predictions. Recent works have pro-
posed the use of natural language (NL) rationales
(Lei et al., 2016; DeYoung et al., 2020; Latcinnik
and Berant, 2020) as a means to either obtain an un-
derstanding of the reasoning process of models, or

∗Equal Contribution.
1github.com/facebookresearch/fidex

Q: Is Sanskrit the first language of the world ?

Answer: False
Q: Where does Frodo live ?
Choices: Tunnels, Underground, Somewhere nearby

Answer: Somewhere nearby

The early Jain scholar … of Sanskrit. 
Sanskrit belongs to the Indo - European 
family of languages. It is one of the three 
ancient documented languages that likely 
arose from a common root language now 
referred to as ...

… Tasha oohed in awe. I said, "Frodo's 
been visiting you, eh ?" Malaquez said, 
"Your pet ?" "Hardly. He lives around here 
somewhere. I suppose he was attracted to 
the commotion up the hill." ...

Figure 1: Example questions, answers and correspond-
ing passages from the BoolQ and MultiRC datasets
from the ERASER benchmark (DeYoung et al., 2020).
Annotated rationales are highlighted. Note that ratio-
nales can be multi-sentence and non-contiguous.

as a human-readable snippet for users to verify pre-
dictions (Lipton, 2018). Figure 1 presents examples
of extractive textual rationales for two QA tasks
from the ERASER benchmark (DeYoung et al.,
2020)2. Recently, Narang et al. (2020) show that
sequence to sequence (seq2seq) models outperform
previous methods at generating textual rationales
for various explainability benchmarks. However,
seq2seq models can fabricate rationales even for
wrong predictions, are hard to scale to datasets
involving several, long evidence documents, and,
require large amounts of expensive rationale anno-
tated data for training. In this paper, we introduce
FiD-Ex, to alleviate these problems and enhance
seq2seq models to achieve significant gains in ra-
tionale generation performance.

Camburu et al. (2020) find that models that gen-
erate free-form NL explanations can tailor them to
convincingly justify incorrect model predictions,

2In this work, we use textual rationales and NL explana-
tions interchangeably.

github.com/facebookresearch/fidex
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for example, generating “There is no dog in the
image” to justify an no prediction on the image of
a dog. Although recent seq2seq models (Narang
et al., 2020) obtain state of the art performance on
rationale generation benchmarks, they are vulner-
able to having similar behaviours and can halluci-
nate new facts by tapping into stored world knowl-
edge in the language model parameters. In order to
retain their effectiveness and yet, alleviate the prob-
lem of explanation fabrication, FiD-Ex introduces
the novel use of sentence markers into pre-trained
seq2seq models. Training seq2seq models to de-
code sentence marker tokens instead of explanation
tokens not only guarantees the production of un-
altered rationales but also significantly improves
explanation metrics on five datasets (Section 7).

Fine-tuning pre-trained models on data-rich in-
termediate tasks before fine-tuning on classification
end tasks has recently been shown to improve end-
task performance (Vu et al., 2020; Pruksachatkun
et al., 2020), more so in the few-shot setting. We
find that this method also extends to seq2seq mod-
els, for explanation generation. We fine-tune pre-
trained seq2seq models to extract supporting evi-
dence for existing open-domain QA datasets such
as Natural Questions (Kwiatkowski et al., 2019)
and HotpotQA (Yang et al., 2018), which then im-
proves downstream performance on rationale ex-
traction benchmarks. This approach is motivated
by the similarity of the process of gathering sup-
porting facts for QA, to that of rationale extraction
for classification tasks. While earlier works on ra-
tionale generation (Paranjape et al., 2020; Narang
et al., 2020) are limited by the input passage size of
pre-trained models and resort to input-passage trun-
cation, FiD-Ex uses the Fusion-in Decoder (FiD)
approach (Izacard and Grave, 2020), that separately
encodes chunks of long passages and fuses them in
the decoder, which further improves performance.

We combine these methods described above to
develop FiD-Ex (Extractive Fusion-in-Decoder).
To summarize, FiD-Ex significantly improves upon
the performance and trustworthiness of seq2seq
models for rationale generation by 1) reducing
their ability to fabricate explanations using sen-
tence markers, 2) extending them to very long in-
put passages, and, 3) intermediate fine-tuning on
re-structured existing QA datasets. When applied
to the ERASER datasets (DeYoung et al., 2020), a
popular benchmark for rationale extraction, FiD-
Ex yields significant gains on multiple tasks in

terms of explanation metrics: an absolute token-
F1 gain of 12.7% on Boolean Question Answering
(BoolQ), 33.2% on MovieReviews, 5.3% on Ev-
idence Inference, 2.8% on FEVER, and 2.1% on
MultiRC, along with modest gains in terms of task
accuracy, over prior work.

2 Related Work

Deep learning models typically function as black
boxes offering very little insight into their decision
making mechanics. To expose model understand-
ing at various depths, researchers have proposed
various structural probing (Tenney et al., 2018; He-
witt and Manning, 2019; Lin et al., 2019) and be-
havioral probing methods (McCoy et al., 2020;
Goldberg, 2019; Warstadt et al., 2019; Ettinger,
2020), as well as input saliency maps to highlight
the most important tokens/sentences in the input for
each prediction (Serrano and Smith, 2019; Ribeiro
et al., 2016; Swanson et al., 2020; Tenney et al.,
2019), and input token relationships (Lamm et al.,
2020). Alongside, there is work on producing tex-
tual rationales (Lei et al., 2016), which are snippets
of NL to help explain model predictions. Models
may take a pipelined approach, where rationales
are first selected as the sole inputs to the prediction
stage, either in a supervised (Lehman et al., 2019;
Pruthi et al., 2020) or an unsupervised (Paranjape
et al., 2020; Bastings et al., 2019; Jain et al., 2020)
fashion. Alternatively, rationales can also serve as
post-hoc supporting evidence, produced after the
model prediction, as a snippet to help users ver-
ify the prediction (Yang et al., 2018; Thorne et al.,
2018). In this work, we improve upon seq2seq
models to produce the latter kind of NL explana-
tions, along with model predictions.

In addition to extractive NL rationales obtained
from subsequences of the input text, there is recent
work on generating abstractive textual explanations
for NLP tasks such as commonsense QA (Rajani
et al., 2019) and NLI (Camburu et al., 2018; Ku-
mar and Talukdar, 2020). Latcinnik and Berant
(2020) train language models to transparently out-
put their world knowledge as NL tokens, which is
then consumed by a light-weight classifier. Narang
et al. (2020) use a generative seq2seq T5 model to
produce NL explanations token-by-token for the
extractive ERASER benchmark, in order to take
advantage of multi-task training, i.e., training for
task prediction alone, or jointly with explanations
if available. Unlike strict input attribution based
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Is Sanskrit the first language of the world ?

Answer: False
Explanation: S2, S3

Sn> Other Indo - European languages 
related to Sanskrit include archaic and 
classical Latin ( c. 600 BCE – 100 CE , 
old Italian ) , Gothic ( archaic 
Germanic language , c. 350 CE ) ...

S3 It is one of the three ancient 
documented languages that likely 
arose from a common root 
language now referred to as the 
Proto - Indo - European language 
. 

Question + context 1

Question + context 2

Question + context n

⋮

Encoder

Encoder

Encoder

⋮

Decoder

FiD...
S1 The early Jain scholar 
Namisadhu acknowledged the 
difference , but disagreed that the 
Prakrit language was a corruption 
of Sanskrit . 

S2 Sanskrit belongs to the Indo - 
European family of languages . 

Figure 2: Fusion-in-Decoder architecture for rationale prediction. Each sentence from the passage is marked with
sentence markers S1 ... SN. The passage is broken up into C contexts/chunks, which are passed to the encoder.
The decoder then attends to the C concatenated and encoded passages to generate the output sequence. The output
sequence is the classification token followed by rationale sentence markers.

methods that seldom produce human readable ex-
planations, these models can provide users with
more context, keeping with the style of explana-
tion annotations in standard benchmarks such as
ERASER. However, such models are susceptible
to fabricating explanations to justify even their in-
correct predictions, as identified by Camburu et al.
(2020) and Wiegreffe et al. (2020). We introduce
sentence markers into seq2seq models which alle-
viates this problem and also significantly improves
their rationale extraction performance on sentence-
level ERASER benchmark tasks (see Section 4.2).

Multiple prior works (Paranjape et al., 2020;
Jain et al., 2020; Narang et al., 2020) have ex-
plored methods to improve few-shot rationale gen-
eration, to reduce reliance on expensive rationale
annotations. We fine-tune FiD-Ex on re-structured
intermediate QA datasets to improve its regular
and few-shot performance for rationale extraction.
Fine-tuning large pre-trained models on intermedi-
ate tasks has been shown to be effective by prior
work; Phang et al. (2018) use data-rich intermedi-
ate NLI tasks to improve target classification tasks;
Talmor and Berant (2019) fine-tune on multiple QA
datasets to improve the generalizability of QA mod-
els. Intermediate fine-tuning (IFT) can also hurt
performance (Bingel and Søgaard, 2017). Pruk-
sachatkun et al. (2020) recently present a large-
scale study on fine-tuning a pre-trained RoBERTa
model on 100 intermediate-target task combina-
tions and use 25 probing tasks to understand the
most desirable properties of intermediate tasks and
datasets. Vu et al. (2020) explore transferability
between 33 NLP tasks and using task embeddings
to predict the utility of intermediate tasks, they con-

clude that intermediate tasks requiring high levels
of reasoning and inference abilities are more likely
to help, particularly when task data is scarce. Clos-
est to our method is Kung et al. (2020) who use
Squad 2.0 as an intermediate task to fine-tune a
shared encoder fitted with task-specific classifica-
tion heads, for the downstream BeerReview and
MovieReview rationalization tasks. Our approach
is to strategically restructure large open domain
QA datasets (Natural Questions and HotpotQA) to
make them amenable to IFT of both the encoder
and the decoder of pre-trained seq2seq models.
This enables the use of exactly the same model
architecture for multiple rationale prediction tasks.

3 Modeling

In this section, we develop FiD-Ex, which im-
proves upon seq2seq approaches to jointly produce
NL rationales along with model predictions. We
illustrate our method using the BoolQ dataset from
the ERASER explainability benchmark, which
comprises of questions with passages and boolean
answers (see Figure 1), together with human anno-
tated rationales (details in Section 4).

Formally, given an input query q and an input
passage p comprising sentences p = {sj}Nj=1, our
goal is to produce a prediction y and rationale sen-
tences {ek}Kk=1, ek ∈ p,K � N , that justify y.

Narang et al. (2020) fine-tune the pre-trained T5
(Text-to-Text Transfer Transformer) model (Raf-
fel et al., 2019) to auto-regressively produce the
prediction and the explanation in a token-by-token
fashion. Specifically, their model takes an input of
the form “explain {task-name}: q p”, represented
as a sequence of subword units (Sennrich et al.,
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2016) using SentencePiece (Kudo and Richardson,
2018), and is trained to auto-regressively maximize
the likelihood of an output sequence represented
as “{prediction} explanation: e1 · · · explanation:
eK”. For example, an input from the BoolQ dataset
(Clark et al., 2019) might be represented as “ex-
plain boolq: Is Sanskrit the first language of the
world? <passage-tokens>”, with the output rep-
resented as “False explanation: Sanskrit belongs
to the Indo-European family of languages. expla-
nation: It is one of the three ...” Such a model
can be trained on data, both with and without ex-
planation annotations, by dropping the unavailable
parts of the output sequence. This model achieves
state-of-the-art explanation performance on sev-
eral ERASER tasks and serves as a strong baseline
which we build upon.

3.1 Sentence Markers
Narang et al. (2020), as well as other works (Cam-
buru et al., 2020), point out that seq2seq models can
fabricate reasonable sounding rationales to justify
their incorrect predictions. To alleviate this issue,
we introduce sentence markers into the input and
output to enable the model to learn to generate a ra-
tionale sentence as a single unit. This technique has
the added benefit that the rationales produced by
the model are guaranteed to be strictly extractive at
the sentence level, while retaining the performance
benefits of a seq2seq architecture. Specifically, we
preprocess the input passage p by prefixing each
sentence si with a sentence marker token S{i}.
We also train the decoder to output the special sen-
tence marker tokens, instead of NL tokens. Thus,
the input is represented as “question: q passage: S1
s1 S2 s2 · · · SN sN” and the output as “False ex-
planation: Se1 · · · explanation: SeK”, where SeK

is the marker for eK . The example from BoolQ
would be represented as “explain boolq question:
Is Sanskrit the first language of the world passage:
S1 <Sent-1> ... SN <Sent-N>” and the output as
“False explanation: S2 explanation: S3”. Note that
these markers are injected as NL text, and would
be later split into sub-word units. During inference,
sentence markers are produced and mapped back
to the corresponding sentences from the input.

3.2 Fusion-in-Decoder Approach
Current approaches typically truncate p to 512 or
1,024 tokens, which is particularly limiting for pas-
sages from datasets such as BoolQ, which use very
long input passages (> 3000 tokens). To accommo-

Dataset Train Val Test Toks / Sents

NQ 69, 662 4, 352 - 1, 782 / 66
HotpotQA 180, 894 14, 810 - 1, 649 / 75

BoolQ 6, 363 1, 491 2, 807 3, 391 / 165
Movies 1, 600 200 200 774 / 37
EVI 7, 958 972 959 4, 658 / 153
MultiRC 24, 029 3, 214 4, 848 300 / 14
FEVER 97, 957 6, 122 6, 111 288 / 11

Table 1: Dataset split sizes for our intermediate fine-
tuning (top) datasets and evaluation (bottom) datasets.
We also compare their passage lengths in terms of num-
ber of input tokens and sentences.

date longer input passages, both for intermediate
fine-tuning (see Section 3.3) and target fine-tuning,
we use the Fusion-in-Decoder (FiD) architecture
of Izacard and Grave (2020) as a replacement for
the single encoder-decoder model of Narang et al.
(2020). Using FiD, we break p into smaller chunks
and encode each chunk independently using the pre-
trained T5 encoder (see Figure 2). This expands
the effective input length of the encoder, and at the
same time, keeps computation resources growing
linearly with the number of passages as opposed
to quadratically. These separately encoded rep-
resentations are then fused in the decoder, which
then attends to all passage tokens, when producing
output tokens. For encoding, we concatenate the
query q with each chunk of the input passage p.
Further, we also prefix query and context tokens
with special tokens, “question:” and “passage:” re-
spectively. Making use of additional context from
the passage, without truncation, significantly im-
proves performance on the intermediate fine-tuning
tasks as well as on the BoolQ, Movie Reviews and
Evidence Inference end tasks (see Table 2). If us-
ing sentence markers, they are added to the passage
before subdividing into multiple chunks.

3.3 Intermediate Fine-tuning (IFT)
Since obtaining rationale annotations for datasets
is expensive, we look to fine-tune on existing large
datasets to improve target task performance, par-
ticularly in the few-shot setting. Specifically, we
re-structure open-domain QA (ODQA) datasets
with answer span annotations to follow the same
input-output structure as our target tasks, i.e., we
produce a dataset of (query q, passage p, prediction
y, and extractive rationales e) tuples from exist-
ing ODQA datasets. The datasets, together with
their specific re-structuring methods, are described
in Section 4. We present experiments where we
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first fine-tune FiD-Ex on a combination of multiple
ODQA datasets, and finally, fine-tune on our target
evaluation task, in Section 7.

Alternatively, when multiple annotated datasets
are available, we can possibly train a universal sin-
gle model on the combined datasets, that works for
all evaluation tasks. We explore this in Section 7.2.

4 Datasets

In this section, we discuss the open-domain QA
datasets and our pre-processing steps to prepare
them for IFT, as well as, the ERASER rationalizing
datasets that we use for evaluation. Table 1 presents
the sizes of each dataset split, as well as the average
input passage lengths, in terms of the number of
tokens and sentences, for both types of datasets.

4.1 Intermediate Fine-Tuning Datasets

Natural Questions (NQ) (Kwiatkowski et al.,
2019) comprises real Google search queries with
answer-span annotations from Wikipedia pages.
Following Lee et al. (2019) we use a subset contain-
ing short answers (< 6 tokens). For every question
and answer-span annotation, we use the question
as q, the segmented Wikipedia passage as p, the
answer tokens as the prediction y, and the single
sentence containing the answer span as the ratio-
nale e. We remove all tables and lists from the
Wikipedia passages, but retain section headers.

HotpotQA (Yang et al., 2018) is a multi-hop QA
dataset, where each question and answer annota-
tion is accompanied with supporting fact sentence
annotations from multiple Wikipedia documents.
Similar to NQ, we use the question as q and the
answer tokens as the prediction y. Since there are
multiple Wikipedia evidence pages, we treat each
page as a separate passage p and aggregate the an-
notated rationale sentences from it as the rationales
e. Thus, a single HotpotQA (question, answer) tu-
ple produces as many examples as Wikipedia pages
that are part of its supporting facts.

4.2 Evaluation Data

We evaluate on a subset of the datasets from
the ERASER benchmark (DeYoung et al., 2020),
which comprise an input query and passage, an
output class label, and input sentences annotated as
rationales. We discuss these datasets in this section.

BoolQ (Clark et al., 2019) comprises questions,
whose answer can be either True or False, paired

with long Wikipedia passages (> 3,000 tokens), as
well as sentence-level rationale annotations (pro-
vided by ERASER) that support the answer.

MultiRC (Khashabi et al., 2018) comprises input
passages and questions, with multiple-choice an-
swers, with sentence level rationale annotations. It
is evaluated as a Boolean QA task by concatenating
each answer choice to the question, and assigning
a True label to correct choices and False to the rest.
All choices use the same set of supporting facts.

MovieReviews (Movies) (Zaidan and Eisner,
2008; Pang and Lee, 2004) contains movie reviews
paired with binary positive/negative labels, without
a query q (we set it to “What is the sentiment of this
review?” in our models). While ERASER provides
span-level rationale annotations, we translate these
to sentence level annotations following prior work
(Paranjape et al., 2020). FiD-Ex can also poten-
tially be trained to output extracted input phrase
markers and we leave this to future work.

FEVER (Thorne et al., 2018) The ERASER ver-
sion of FEVER contains input passages along with
claims (q) that must be classified as supported or re-
futed, based on the passage, together with sentence-
level rationale annotations from the input passage.

Evidence Inference (EVI) (Lehman et al., 2019)
comprises (intervention, outcome, comparator)
triples (concatenated as q) together with random-
ized controlled trial articles (> 4,000 tokens), with
the prediction being whether the intervention sig-
nificantly increases, decreases, or has no effect on
the outcome with respect to the comparator of inter-
est. ERASER provides sentence-level supporting
facts on a subset of this dataset.

We do not evaluate on the ERASER datasets
of e-SNLI and CoS-E since they only use single-
sentence input passages.

5 Evaluation Metrics

We report Exact Match Accuracy (EM) in terms of
exact token match between the predicted class label
and the true label, which is equivalent to traditional
classification accuracy. To evaluate the explanation
quality, we report the following:

Rationale F1 (RF1) is an F1 score over the set
of predicted explanation sentences as compared to
the set of gold explanation sentences, computing
set intersection based on exact sentence match.
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Token F1 (TF1) is a token level F1 score be-
tween the predicted explanation sentence tokens
and the gold explanation sentence tokens, in terms
of sets of token positions, by first mapping tokens
to token positions in the input passage. This is
computed exactly as in Narang et al. (2020), us-
ing spaCy for tokenization. When using sentence
markers, we map the markers back to the original
sentences before computing TF1.

Intersection over Union (IOU F1) as described
in DeYoung et al. (2020), is computed by first
matching up each predicted rationale with a gold
rationale, and then computing F1. IOU is similar
to RF1, except that it does not use exact match. A
prediction and gold sentence match if the size of
the overlap of their token positions divided by the
size of the union of the token positions is higher
than a threshold (we use 0.5). For our models, IOU
F1 is very similar in magnitude to RF1.

Other Metrics We do not use human evaluation
scores since Narang et al. (2020) found them to
be much higher than the automated metrics, and
therefore, hard to interpret, in addition to being
expensive and noisy. Also, since we aim to provide
users with evidence for model predictions, causal
faithfulness metrics such as comprehensiveness and
sufficiency (DeYoung et al., 2020), do not apply.

6 Implementation Details

We use the FiD (Izacard and Grave, 2020) model
architecture with T5-base (220M params). We use
1024 input sub-word tokens per context for Mul-
tiRC and 512 for the rest. We use a maximum con-
text size of 10 for BoolQ and EVI, and 6 for Movies.
We use data distributed training on machines with
8 32-GB GPUs with a batch size of 8 per GPU.
We train all models for 20,000 steps using Adam
(Kingma and Ba, 2014), with learning rates chosen
from {1e−4, 1e−5} based on dev performance and
use linear decay. We compute dev metrics every
500 steps and select the model with the best TF1
score. We use greedy decoding for the prediction
and the explanation. The above settings are used,
both for IFT as well as for end-task fine-tuning.
For segmenting Wikipedia passages into sentences
for NQ, we use Punkt (Kiss and Strunk, 2006) for
English from nltk. For our evaluation datasets,
we used the pre-segmented and pre-tokenized input
passages provided by ERASER.

EM RF1 IOU F1 TF1

BoolQ
C=1, No SM 65.2 42.9 46.1 47.0
C=10, No SM 69.4 48.8 51.9 53.3
C=1, With SM 73.6 50.4 50.4 51.1
C=10, With SM 74.6 57.8 57.8 58.3
+ IFT 76.9 59.3 59.3 59.7

C=10, With SM, 25% 71.0 51.6 51.6 52.5
+ IFT 72.9 55.1 55.1 55.7

Universal 76.3 57.9 57.9 58.6
+ IFT 77.3 57.9 57.9 58.3

Movie Reviews
C=1, No SM 90.5 19.8 26.5 29.3
C=6, No SM 98.0 40.9 51.7 56.6
C=1, With SM 89.0 55.5 55.8 57.5
C=6, With SM 97.5 64.3 64.3 65.9
+ IFT 97.0 64.0 64.1 65.5

C=6, With SM, 25% 97.0 61.0 61.1 62.3
+ IFT 96.5 61.5 61.6 63.2

Universal 97.0 64.6 64.6 66.6
+ IFT 98.0 64.6 64.6 66.5

Evidence Inference
C=1, No SM 66.3 14.7 15.1 14.6
C=10, No SM 75.8 27.0 27.4 27.1
C=1, With SM 63.1 29.8 29.8 29.8
C=10, With SM 75.2 50.7 50.7 50.9
+ IFT 74.7 52.0 52.1 52.1

C=10, With SM, 25% 73.0 46.3 46.4 46.4
+ IFT 70.6 47.3 47.3 47.6

Universal 75.3 50.2 50.4 50.1
+ IFT 77.4 51.4 51.5 51.4

MultiRC
C=1, No SM 78.1 67.1 68.0 67.8
C=1, With SM 78.5 72.2 72.2 71.9
+ IFT 79.8 72.4 72.4 72.0

C=1, With SM, 2k 76.4 70.2 70.2 69.8
+ IFT 76.9 69.5 69.5 69.2

Universal 80.0 72.6 72.6 72.1
+ IFT 80.6 72.4 72.4 72.2

FEVER
C=1, No SM 92.9 69.8 70.9 70.7
C=1, With SM 92.9 83.5 83.5 83.4
+ IFT 93.1 84.1 84.1 84.0

C=1, With SM, 2k 88.6 80.9 80.9 80.7
+ IFT 88.2 81.4 81.4 81.2

Universal 94.1 87.9 87.9 87.8
+ IFT 94.4 88.2 88.2 88.0

Table 2: Performance of FiD-Ex using sentence mark-
ers (SM), larger contexts (C), and intermediate fine-
tuning (IFT) on 5 ERASER tasks in the fully super-
vised and low-resource settings, alongwith that of a sin-
gle universal model (trained on all datasets combined).

7 Results and Discussion

We compare the performance of different variants
of our FiD-Ex model using all evaluation met-
rics on five ERASER datasets, in Table 2. The
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Model BoolQ Movie Reviews Evidence Inference

EM IOU F1 Token F1 EM IOU F1 Token F1 EM IOU F1 Token F1
Bert-to-Bert 54.4 5.2 13.4 86.0 7.5 14.5 70.8 45.5 46.8
WT5 Base − − − 98.0 − 32.7 − − −
IB Supervised 63.4 32.3 19.2 85.4 43.4 28.2 46.7 13.3 10.8
FiD-Ex Base 76.9 59.3 59.7 97.5 64.3 65.9 74.7 52.1 52.1

Model MultiRC FEVER

EM IOU F1 Token F1 EM IOU F1 Token F1
Bert-to-Bert 63.3 41.6 41.2 87.7 83.5 81.2
WT5-Base 77.8 − 69.9 − − −
IB Supervised 66.4 54.4 54.0 88.8 66.6 63.9
FiD-Ex 79.8 72.4 72.0 93.1 84.1 84.0

Table 3: Performance of our best FiD-Ex model (multi-context input, sentence markers, and IFT) compared with
prior work. For WT5, we use their base model since we report all our metrics using T5-base. IOU F1 for IB is
reported using a threshold of 0.1 whereas we report all our IOU metrics using a stricter threshold of 0.5.

first row for each dataset can be viewed as our re-
implementation of Narang et al. (2020) i.e., T5 with
a single context, without sentence markers. We use
Token-F1 (TF1) to describe all results, but observe
similar trends for the other rationale metrics. We
report all gains in absolute percentage points.

Sentence Markers The addition of sentence
markers leads to a large improvement in expla-
nation metrics on all datasets as compared to gen-
erating raw tokens, demonstrating the capabilities
of pre-trained seq2seq models to select scattered
input markers; For the single context case, BoolQ
TF1 improves by 4.1%, Movies by 28.2%, EVI by
15.2%, MultiRC by 4.1% and FEVER by 12.7%.
Additionally, it also provides the desirable guaran-
tee of being extractive by eliminating the problem
of fabricated rationales that seq2seq models are sus-
ceptible to (Appendix B presents examples of fab-
rication). Furthermore, while WT5 (Narang et al.,
2020) yielded a TF1 of 0 on MultiRC when trained
on less than 10,000 examples, FiD-Ex obtains a
TF1 of 69.8% with just 2,000 examples owing to
the use of sentence markers.

Increased Passage Size Using FiD’s multiple
context encoders instead of the input truncation
methods of prior work, helps significantly improve
performance. When also using sentence markers,
BoolQ TF1 improves by 7.2%, Movies by 8.4%
and EVI by 21.1%. This is accompanied by task
EM gains of 8.5% in Movies and 12.1% in EVI. In-
put passages in MultiRC and FEVER are not long
enough to benefit significantly from increased pas-
sage size. The gains from increasing passage size
are orthogonal to the gains by sentence markers,

i.e., explanation metrics improve with additional
context with or without using sentence markers
(Table 2). Similarly, sentence markers improve
performance for both single and multi-contexts.

Intermediate Fine-tuning (IFT) and Few-shot
Performance We perform IFT using sentence
markers on a combined dataset of NQ and Hot-
potQA, re-formatted for rationale extraction tasks.
Final fine-tuning on the full training sets of our
evaluation tasks improves TF1 by 1.4% for BoolQ
and 1.2% for EVI. To evaluate IFT in the few-shot
setting, we fine-tune using 25% data for the BoolQ,
Movies, and EVI tasks following Paranjape et al.
(2020) and 2,000 examples for tasks with bigger
datasets, viz., MultiRC and FEVER. We see an
improvement of 3.2% TF1 on BoolQ and 1.2% on
EVI. This is desirable since obtaining labeled ratio-
nale annotations is expensive. We do not observe
any performance improvement for Movies, Mul-
tiRC, and FEVER with IFT. While our few-shot
experiments used 25% data to compare with prior
work, IFT may show more marked improvements
with just 10-100 examples. While IFT on NQ or
HotpotQA alone improves performance, we find
that combining the datasets yields best results.

7.1 Comparison with Prior Work

In Table 3 we compare our best fully supervised
model for each dataset, with prior works that share
the best performance on ERASER tasks:

Bert-to-Bert (B2B) is the supervised pipeline of
DeYoung et al. (2020) that comprises an indepen-
dently trained rationale extractor, and an answer
prediction model on the extracted rationales.
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Error Type % Cases

Overlap and Adequate 36
Overlap and Inadequate 4
Over-Prediction 30
No-overlap and Inadequate 12
No-overlap and Adequate 8
Prediction not in input 4
Input Truncated 6

Table 4: Distribution of error types in 50 randomly sam-
pled examples with a non-perfect RF1 score, from the
dev set of BoolQ, using our best FiD-Ex model.

The Information Bottleneck (IB) approach of
Paranjape et al. (2020), which jointly trains an ex-
plainer that predicts sparse binary masks over input
sentences, and a prediction model on the residual
sentences. Although they only report supervised re-
sults using 25% training data, their model achieves
similar performance even with 100% training data.

WT5-Base is the base version of the seq2seq
model of Narang et al. (2020).

Overall, we outperform prior work on explana-
tion metrics (using TF1) on BoolQ (+40.5% from
IB), Movies (+33.2% from WT5), EVI (+5.3%
from B2B), MultiRC (+2.1% from WT5), and
FEVER (+2.8% from B2B). We also improve Task
Accuracy on BoolQ (+13.5% from IB), EVI (+3.9%
from B2B), MultiRC (+2.0% from WT5), and
FEVER (+4.3% from IB). In summary, FiD-Ex
significantly improves the state-of-the-art on five
ERASER datasets, in fully supervised and few-shot
settings, with each component from Section 3 indi-
vidually contributing to overall performance.

7.2 Universal Model

With the goal of deploying one single model that
can perform all 5 ERASER tasks, we train a model
on their combined training sets, with SM and
C = 10, and evaluate on each test set (see Table
1). Each training example is prefixed with a token
denoting the dataset that it came from as described
in Section 3. Despite the lack of individual fine-
tuning, this universal model outperforms the best
fine-tuned models by 4% on FEVER and is within
±1% of the best model performance on the other
datasets. Training on a large combined dataset of
related tasks, when available, reduces reliance on
IFT to improve performance (which primarily ben-
efits only EVI in this scenario). Overall, this result
highlights a key advantage of the seq2seq format,
that naturally enables effective data sharing among

multiple related tasks (Raffel et al., 2019).

7.3 Error Analysis

We conduct an error analysis on predictions from
our best FiD-Ex model on 50 random examples
from the valid set of BoolQ, which have non-
perfect RF1 score. (Table 4). The two largest
error types are: 1) Overlap and Adequate (36%):
the set of predicted explanations is adequate by it-
self and overlaps with the true explanations, i.e.,
the true explanation set contains redundancies, and
2) Over-prediction (30%): the set of predictions
is a strict superset of the true explanations. Other
sources of errors are Overlap and Inadequate (4%)
- when the predictions are inadequate but overlap
with the true explanations, No-overlap and Ade-
quate/Inadequate - when the predictions have no
overlap with the true explanations and are either
still adequate (8%) or inadequate (12%). Since
ERASER provides only one of the multiple possi-
ble explanation sets, 8% non-overlapping predic-
tions happen to be adequate. Prediction not in
input (4%) - when sentence markers that do not ex-
ist in the input are predicted, and Input Truncated
(6%) - when the true explanation sentences are trun-
cated out of the model input, which still happens
for very long inputs even with a context size of
10. We present illustrative examples of these error
cases in the Appendix. Promising focus areas for
future work include addressing model tendencies
for over-prediction (30% of cases) and inadequate
non-overlapping predictions (12% of cases).

8 Conclusion

In this paper, we develop general methods to im-
prove the performance of large pre-trained seq2seq
models for jointly producing NL rationales and
answer predictions. Specifically, we introduce sen-
tence markers into seq2seq models to tackle ex-
planation fabrication, we enable larger input pas-
sage sizes using the Fusion-in-Decoder architec-
ture, and we infuse knowledge by fine-tuning on
restructured QA datasets. We show that a univer-
sal model can perform favourably compared to the
best task-specific fine-tuned models. Our methods
improve the state of the art on rationale extraction
metrics and task accuracy on multiple ERASER
benchmarks while reducing the extent to which
seq2seq models fabricate explanations to justify
incorrect predictions, thereby improving the relia-
bility and verifiability of the generated rationales.
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A Error Analysis on BoolQ

We present examples for each error type from our error analysis of model predictions using 50 randomly
chosen examples from the dev set of BoolQ to illustrate the cases with a non-perfect Rationale F1 score.
We have preserved the sentence markers (SM) in the document to help locate the gold and predicted
sentences easily The error types are:

1. Overlap and Adequate - Predicted explanations are adequate and overlap with the true explanations

2. Overlap and Inadequate - Predicted explanations are inadequate but overlap with the true explanations

3. Over-prediction - Predicted explanations are a strict superset of the true explanations

4. No overlap and Inadequate - Predicted explanations are inadequate and do not overlap with the true
explanations

5. No overlap and Adequate - Predicted explanations are adequate but do not overlap with the true
explanations

6. Prediction not in input - Predicted explanation sentence markers are not in the input

7. Input Truncated - True explanation sentence markers are not in input

Legend: Sentence Marker (SM), Correctly Predicted SM, Missed SM, Over-predicted SM

Overlap and Adequate

Question: is a woodchuck and a groundhog the same
Gold Answer: True
Predicted Answer: True
Gold Rationales: [’S1’, ’S2’, ’S3’, ’S4’, ’S5’, ’S6’, ’S7’, ’S8’, ’S9’]
Predicted Rationales’: [’S0’, ’S1’, ’S2’, ’S3’]
Document: S0 GROUNDHOG S1 The groundhog ( Marmota monax ) , also known as a
woodchuck , is a rodent of the family Sciuridae , belonging to the group of large ground
squirrels known as marmots . S2 It was first scientifically described by Carl Linnaeus in 1758
. S3 The groundhog is also referred to as a chuck , wood - shock , groundpig , whistlepig ,
whistler , thickwood badger , Canada marmot , monax , moonack , weenusk , red monk and
, among French Canadians in eastern Canada , siffleux . S4 The name " thickwood badger "
was given in the Northwest to distinguish the animal from the prairie badger . S5 Monax (
Móonack ) is an Algonquian name of the woodchuck , which meant " digger " ( cf . S6 Lenape
monachgeu ) . S7 Young groundhogs may be called chucklings . S8 Other marmots , such
as the yellow - bellied and hoary marmots , live in rocky and mountainous areas , but the
groundhog is a lowland creature . S9 It is found through much of the eastern United States
across Canada and into Alaska DESCRIPTION Section::::Description . . . . S159 *Woodchuck
( Groundhog ) , Missouri Conservation Commission * Breeding and Experimental Facility for
Woodchucks
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Overlap and Inadequate

Question: are all mass air flow sensors the same
Gold Answer: False
Predicted Answer: False
Gold Rationales: [’S4’, ’S5’, ’S6’, ’S7’, ’S8’]
Predicted Rationales’: [’S0’, ’S1’, ’S2’, ’S3’, ’S4’]
Document: ’S0 MASS FLOW SENSOR S1 A mass ( air ) flow sensor ( MAF ) is a sensor used
to determine the mass flow rate of air entering a fuel - injected internal combustion engine .
S2 The air mass information is necessary for the engine control unit ( ECU ) to balance and
deliver the correct fuel mass to the engine . S3 Air changes its density with temperature and
pressure . S4 In automotive applications , air density varies with the ambient temperature
, altitude and the use of forced induction , which means that mass flow sensors are more
appropriate than volumetric flow sensors for determining the quantity of intake air in each
cylinder . S5 There are two common types of mass airflow sensors in use on automotive engines
. S6 These are the vane meter and the hot wire . S7 Neither design employs technology that
measures air mass directly . S8 However , with additional sensors and inputs , an engine ś
ECU can determine the mass flow rate of intake air . . . . S103 REFERENCES EXTERNAL
LINKS * A Hot Film sensor with theory of operation * A video example of cleaning a MAF
sensor * An example of how to clean a MAF sensor , S104 3 wire S105 * How To Test a MAF

Over − Prediction

Question: was kentucky a southern state in the civil war
Gold Answer: False
Predicted Answer: False
Gold Rationales: [’S4’, ’S5’, ’S6’, ’S7’]
Predicted Rationales’: [’S0’, ’S1’, ’S2’, ’S3’, ’S4’, ’S5’, ’S6’]
Document: S0 KENTUCKY IN THE AMERICAN CIVIL WAR Kentucky was a border state
of key importance in the American Civil War . S1 President Abraham Lincoln recognized the
importance of the Commonwealth when , in a September 1861 letter to Orville Browning , he
wrote : I think to lose Kentucky is nearly the same as to lose the whole game . S2 Kentucky
gone , we can not hold Missouri , nor Maryland . S3 These all against us , and the job on our
hands is too large for us . S4 We would as well consent to separation at once , including the
surrender of this capitol . S5 Kentucky , being a border state , was among the chief places
where the " Brother against brother " scenario was prevalent . S6 Kentucky officially declared
its neutrality at the beginning of the war , but after a failed attempt by Confederate General
Leonidas Polk to take the state of Kentucky for the Confederacy , the legislature petitioned
the Union Army for assistance . S7 After early 1862 Kentucky came largely under Union
control . . . . S128 Union ironclads routed the Confederate river gunboats on the Mississippi
River during the Battle of Lucas Bend on January 11 , forcing them back to Columbus .
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No overlap and Adequate

Question: is row row row your boat a masonic poem
Gold Answer: False
Predicted Answer: False
Gold Rationales: [’S0’, ’S1’, ’S2’, ’S3’]
Predicted Rationales’: [’S33’, ’S34’, ’S35’, ’S36’, ’S37’]
Document: S0 ROW , ROW , ROW S1 YOUR BOAT " Row , Row , Row Your Boat " is
an English language nursery rhyme and a popular children ’s song . S2 It can also be an "
action " nursery rhyme , whose singers sit opposite one another and " row " forwards and
backwards with joined hands . S3 It has a Roud Folk Song Index number of 19236 . . . . S33
ly , ORIGINS Section::::Origins . S34 It has been suggested that the song may have originally
arisen out of American minstrelsy . S35 The earliest printing of the song is from 1852 , when
the lyrics were published with similar lyrics to those used today , but with a very different
tune . S36 It was reprinted again two years later with the same lyrics and another tune . S37
The modern tune was first recorded with the lyrics in 1881 , mentioning Eliphalet Oram Lyte
in The Franklin Square Song Collection but not making it clear whether he was the composer
or adapter . . . . S42 Don Music , a muppet character in Sesame Street , changed the lyrics to
feature a car instead of a boat . S43 Versions include : And : NOTES AND REFERENCES

No overlap and Inadequate

Question: are there mountains in the state of indiana
Gold Answer: False
Predicted Answer: True
Gold Rationales: [’S107’, ’S108’]
Predicted Rationales’: [’S84’, ’S85’, ’S86’]
Document: S0 GEOGRAPHY OF INDIANA S1 The geography of Indiana comprises the
physical features of the land and relative location of U.S. State of Indiana . . . . S84 Rural
areas in the central portion of the state are typically composed of a patchwork of fields and
forested areas . S85 The geography of Central Indiana consists of gently rolling hills and
sandstone ravines carved out by the retreating glaciers . explain boolq question: are there
mountains in the state of indiana passage: S86 Many of these ravines can be found in west -
central Indiana , specifically along Sugar Creek in Turkey Run State Park and Shades State
Park . . . . S107 PHYSIOGRAPHY Section::::Physiography . S108 Indiana is broken up into
three main physical regions : The Great Lakes Plain in the northern third of the state , the
Tipton Till Plain in the central third , and the Southern Hills and Lowlands region in the
southern third . . . . S136 * Midwestern United States NOTES REFERENCES
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Prediction not in Input

Question: is costa rica part of the ring of fire
Gold Answer: True
Predicted Answer: True
Gold Rationales: [’S121’, ’S122’, ’S123’, ’S124’, ’S125’, ’S126’, ’S127’, ’S128’]
Predicted Rationales’: [’S261’, ’S262’, ’S263’, ’S264’, ’S265’, ’S266’, ’S267’, ’S268’, ’S269’, ’S270’]
Document: S0 RING OF FIRE S1 The Ring of Fire is a major area in the basin of the Pacific
Ocean where many earthquakes and volcanic eruptions occur . . . . S121 AMERICA COSTA
RICA Section::::Central America . S122 Section::::Costa Rica . S123 The Volcanological and
Seismological Observatory of Costa Rica ( OVSICORI ) at the National University of Costa
Rica , in Spanish Observatorio Vulcanológico y Sismológico de Costa Rica ( OVSICORI ) have
a dedicated team in charge of researching and monitoring the volcanoes , earthquakes , and
other tectonic processes in the Central America Volcanic Arc . explain boolq question: is costa
rica part of the ring of fire passage: S124 In 1984 , the OVSICORI - A initiated the operation
of a seismographic network designed to monitor seismic and volcanic activity throughout the
national territory . S125 Currently , the seismographic network has an analog and a digital
registration system . S126 The latter enables online analysis of seismic signals , allowing to
expedite the analysis of signals and the study using modern computerized methods . S127
Poás Volcano is an active stratovolcano located in central Costa Rica ; it has erupted 39
times since 1828 . S128 On February 25 , 2014 , a webcam from the OVSICORI captured the
moment a dark cloud exploded about in the air from a massive crater of the Poás Volcano . . . .
S138 A few other active volcanoes in northern Mexico are related to extensional tectonics of
the Basin and Range Province , which splits the Baja California peninsula from the mainland
.

Input Truncated

Question: did the harry potter movies win any oscars
Gold Answer: False
Predicted Answer: True
Gold Rationales: [’S297’, ’S298’, ’S299’, ’S300’]
Predicted Rationales’: [’S261’, ’S262’, ’S263’, ’S264’, ’S265’]
Document: S0 HARRY POTTER ( FILM SERIES ) S1 Harry Potter is a British - American
film series based on the Harry Potter novels by author J. K. Rowling . S2 The series is
distributed by Warner Bros. and consists of eight fantasy films , beginning with Harry Potter
and the Philosopher ’s Stone ( 2001 ) and culminating with Harry Potter and the Deathly
Hallows – Part 2 ( 2011 ) . . . . S125 CAST AND CREW Section::::Cast and crew . S126
Aside from the three lead actors , other notable cast members include Robbie Coltrane as
Rubeus Hagrid , Tom Felton as Draco Malfoy , Alan Rickman as Severus Snape , and Dame
Maggie Smith as Minerva McGonagall .

B Extent of Explanation Fabrication

We measure the fraction of explanations produced by the WT5 model (Narang et al., 2020) (C=1) that do
not exactly match to any input sentence, for each dataset in Table 5. These are an indication of fabricated
sentences in the output of WT5. In contrast, FiD-Ex, which produces sentence markers, never fabricates
sentences.
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ERASER dataset % Sentences

BoolQ 8%
MultiRC 3.9%
Movies 60%
FEVER 21%
Evidence Inference 69%

Table 5: Fraction of explanation sentences produced by the WT5 model (Narang et al., 2020) that do not exactly
match to any input sentence (with C=1), on five ERASER datasets.

In Table 6, we present an example of an explanation fabricated by WT5. The sentence in the output of
WT5 is fabricated, and an alternate sentence with the same beginning exists in the input passage.

Input Movie Review:

note : some may consider portions of the following text to be spoilers . be forewarned .
"
all the world ’s a stage and all the men and women merely players they have their exits and their
entrances and one man
in his time plays many parts "
- excerpt from as you like it , act ii , scene 7 when william shakespeare penned this passage , he could
not have possibly envisioned a world in which the domestic activites in an abode would be broadcast
across the continent , or where women would install webcams in their apartments in order to convert
voyeurism into cash .
...
for the first time in his life , it is beginning to dawn on truman that things are not what they appear to
be .
...

Output explanations by WT5
... for the first time in his life, truman shows some of the oddest, most upbeat and affectionate attitudes
towards women and men in general ....

Table 6: An example of explanation fabrication by the WT5 model (Narang et al., 2020) on an example from the
MovieReviews dataset.


