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Abstract

Recent studies have demonstrated that pre-
trained cross-lingual models achieve impres-
sive performance in downstream cross-lingual
tasks. This improvement benefits from learn-
ing a large amount of monolingual and par-
allel corpora. Although it is generally ac-
knowledged that parallel corpora are critical
for improving the model performance, ex-
isting methods are often constrained by the
size of parallel corpora, especially for low-
resource languages. In this paper, we pro-
pose ERNIE-M, a new training method that
encourages the model to align the representa-
tion of multiple languages with monolingual
corpora, to overcome the constraint that the
parallel corpus size places on the model per-
formance. Our key insight is to integrate
back-translation into the pre-training process.
We generate pseudo-parallel sentence pairs on
a monolingual corpus to enable the learning
of semantic alignments between different lan-
guages, thereby enhancing the semantic mod-
eling of cross-lingual models. Experimental
results show that ERNIE-M outperforms ex-
isting cross-lingual models and delivers new
state-of-the-art results in various cross-lingual
downstream tasks.1

1 Introduction

Recent studies have demonstrated that the pre-
training of cross-lingual language models can
significantly improve their performance in cross-
lingual natural language processing tasks (Devlin
et al., 2018; Lample and Conneau, 2019; Con-
neau et al., 2019; Liu et al., 2020). Existing pre-
training methods include multilingual masked lan-
guage modeling (MMLM; Devlin et al. 2018) and
translation language modeling (TLM; Lample and
Conneau 2019), of which the key point is to learn
a shared language-invariant feature space among

1Code and models are available at https://github.
com/PaddlePaddle/ERNIE

multiple languages. MMLM implicitly models
the semantic representation of each language in
a unified feature space by learning them separately.
TLM is an extension of MMLM that is trained with
a parallel corpus and captures semantic alignment
by learning a pair of parallel sentences simultane-
ously. This study shows that the use of parallel cor-
pora can significantly improve the performance in
downstream cross-lingual understanding and gener-
ation tasks. However, the sizes of parallel corpora
are limited (Tran et al., 2020), restricting the per-
formance of the cross-lingual language model.

To overcome the constraint of the parallel corpus
size on the model performance, we propose ERNIE-
M, a novel cross-lingual pre-training method to
learn semantic alignment among multiple lan-
guages on monolingual corpora. Specifically, we
propose cross-attention masked language model-
ing (CAMLM) to improve the cross-lingual trans-
ferability of the model on parallel corpora, and it
trains the model to predict the tokens of one lan-
guage by using another language. Then, we utilize
the transferability learned from parallel corpora
to enhance multilingual representation. We pro-
pose back-translation masked language modeling
(BTMLM) to train the model, and this helps the
model to learn sentence alignment from monolin-
gual corpora. In BTMLM, a part of the tokens in
the input monolingual sentences is predicted into
the tokens of another language. We then concate-
nate the predicted tokens and the input sentences as
pseudo-parallel sentences to train the model. In this
way, the model can learn sentence alignment with
only monolingual corpora and overcome the con-
straint of the parallel corpus size while improving
the model performance.

ERNIE-M is implemented on the basis of XLM-
R (Conneau et al., 2019), and we evaluate its per-
formance on five widely used cross-lingual bench-
marks: XNLI (Conneau et al., 2018) for cross-
lingual natural language inference, MLQA (Lewis

https://github.com/PaddlePaddle/ERNIE
https://github.com/PaddlePaddle/ERNIE
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et al., 2019) for cross-lingual question answering,
CoNLL (Sang and De Meulder, 2003) for named
entity recognition, cross-lingual paraphrase adver-
saries from word scrambling (PAWS-X) (Hu et al.,
2020) for cross-lingual paraphrase identification,
and Tatoeba (Hu et al., 2020) for cross-lingual re-
trieval. The experimental results demonstrate that
ERNIE-M outperforms existing cross-lingual mod-
els and achieves new state-of-the-art (SoTA) re-
sults.

2 Related Work

2.1 Multilingual Language Models

Existing multilingual language models can be clas-
sified into two main categories: (1) discriminative
models; (2) generative models.

In the first category, a multilingual bidirectional
encoder representation from transformers (mBERT;
Devlin et al. 2018) is pre-trained using MMLM
on a monolingual corpus, which learns a shared
language-invariant feature space among multiple
languages. The evaluation results show that the
mBERT achieves significant performance in down-
stream tasks (Wu and Dredze, 2019). XLM (Lam-
ple and Conneau, 2019) is extended on the basis of
mBERT using TLM, which enables the model to
learn cross-lingual token alignment from parallel
corpora. XLM-R (Conneau et al., 2019) demon-
strates the effects of models when trained on a
large-scale corpus. It used 2.5T data extracted from
Common Crawl (Wenzek et al., 2019) that involves
100 languages for MMLM training. The results
show that a large-scale training corpus can signifi-
cantly improve the performance of the cross-lingual
model. Unicoder (Huang et al., 2019) achieves
gains on downstream tasks by employing a multi-
task learning framework to learn cross-lingual se-
mantic representations with monolingual and par-
allel corpora. ALM (Yang et al., 2020) improves
the model’s transferability by enabling the model
to learn cross-lingual code-switch sentences. IN-
FOXLM (Chi et al., 2020b) adds a contrastive learn-
ing task for cross-lingual model training. HICTL

(Wei et al., 2020) learns cross-lingual semantic rep-
resentation from multiple facets (at word-levels
and sentence-levels) to improve the performance
of cross-lingual models. VECO (Luo et al., 2020)
presents a variable encoder-decoder framework to
unify the understanding and generation tasks and
achieves significant improvement in both down-
stream tasks.

The second category includes MASS (Song et al.,
2019), mBART (Liu et al., 2020), XNLG (Chi
et al., 2020a) and mT5 (Xue et al., 2020). MASS
(Vaswani et al., 2017) proposed a training objective
for restore the input sentences in which succes-
sive token fragments are masked which improved
the model’s performance on machine translation.
Similar to MASS, mBART pre-trains a denoised
sequence-to-sequence model and uses an autore-
gressive task to train the model. XNLG focuses
on multilingual question generation and abstractive
summarization and updates the parameters of the
encoder and decoder through auto-encoding and
autoregressive tasks. mT5 uses the same model
structure and pre-training method as T5 (Raffel
et al., 2019), and extends the parameters of the
cross-lingual model to 13B, significantly improv-
ing the performance of the cross-language down-
stream tasks.

2.2 Back Translation and
Non-Autoregressive Neural Machine
Translation

Back translation (BT) is an effective neural-
network-based machine translation method pro-
posed by Sennrich et al. (2015). It can signifi-
cantly improve the performance of both supervised
and unsupervised machine translation via augment
the parallel training corpus (Lample et al., 2017;
Edunov et al., 2018). BT has been found to par-
ticularly useful when the parallel corpus is sparse
(Karakanta et al., 2018). Predicting the token of the
target language in one batch can also improve the
speed of non-auto regressive machine translation
(NAT; Gu et al. 2017; Wang et al. 2019a). Our work
is inspired by NAT and BT. We generate the tokens
of another language in batches and then use these
in pre-training to help sentence alignment learning.

3 Methodology

In this section, we first introduce the general work-
flow of ERNIE-M and then present the details of
the model training.

Cross-lingual Semantic Alignment. The key
idea of ERNIE-M is to utilize the transferabil-
ity learned from parallel corpora to enhance the
model’s learning of large-scale monolingual cor-
pora, and thus enhance the multilingual semantic
representation. Based on this idea, we propose two
pre-training objectives, cross-attention masked lan-
guage modeling (CAMLM) and back-translation
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Figure 1: Overview of MMLM, TLM and CAMLM training. The input sentences in sub-figure (a) are monolingual
sentences; x and y represent monolingual input sentences in different languages. The input sentences in sub-
figures (b) and (c) are parallel sentences; x and y denote the source and target sentences of the parallel sentences,
respectively. h indicates the token predicted by the model.

masked language modeling (BTMLM). CAMLM
is to align the cross-lingual semantic representa-
tion on parallel corpora. Then, the transferability
learned from parallel corpora is utilized to enhance
the multilingual representation. Specifically, we
train the ERNIE-M by using BTMLM, enabling
the model to align the semantics of multiple lan-
guages from monolingual corpora and improve
the multilingual representation of the model. The
MMLM and TLM are used by default because
of the strong performance shown in Lample and
Conneau 2019. We combine MMLM, TLM with
CAMLM, BTMLM to train ERNIE-M. In the fol-
lowing sections, we will introduce the details of
each objective.

Cross-attention Masked Language Modeling.
To learn the alignment of cross-lingual semantic
representations in parallel corpora, we propose a
new pre-training objective, CAMLM. We denote a
parallel sentence pair as <source sentence, target
sentence>. In CAMLM, we learn the multilingual
semantic representation by restoring the MASK to-
ken in the input sentences. When the model re-
stores the MASK token in the source sentence, the
model can only rely on the semantics of the target
sentence, which means that the model has to learn
how to represent the source language with the se-
mantics of the target sentence and thus align the
semantics of multiple languages.

Figure 1 (b) and (c) show the differences be-
tween TLM (Lample and Conneau, 2019) and
CAMLM. TLM learns the semantic alignment be-
tween languages with both the source and target
sentences while CAMLM only relies on one side
of the sentence to restore the MASK token. The

advantage of CAMLM is that it avoids the infor-
mation leakage that the model can attend to a
pair of input sentences at the same time, which
makes learning of BTMLM possible. The self-
attention matrix of the example in Figure 1 is
shown in Figure 2. For TLM, the prediction
of the MASK token relies on the input sentence
pair. When the model learns CAMLM, the model
can only predict the MASK token based on the
sentence of its corresponding parallel sentence
and the MASK symbol of this sentence, which
provides the position and language information.
Thus, the probability of the MASK token M2 is
p(x2|M2, y4, y5, y6, y7), p(y5|x1, x2, x3,M5) for
M5, and p(y6|x1, x2, x3,M6) for M6 in CAMLM.
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Figure 2: Self-attention mask matrix in MMLM, TLM
and CAMLM. We use different self-attention masks for
different pre-training objectives.

Given the input in a bilingual corpus Xsrc =
{x1, x2, · · · , xs}, and its corresponding MASK po-
sition, Msrc = {m1,m2, · · · ,mms}, the tar-
get sentence is Xtgt = {xs+1, xs+2, · · · , xs+t},
and its corresponding MASK position is Mtgt =
{mms+1,mms+2, · · · ,mms+mt}. In TLM, the
model can attend to the tokens in the source and tar-
get sentences, so the probability of masked tokens
is

∏
m∈M p(xm|X/M ), where M =Msrc ∪Mtgt.
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X/M denotes all input tokens x in X except x
in M , where X = Xsrc ∪ Xtgt. xm denotes the
token with position m. In CAMLM, the proba-
bility of the MASK token in the source sentence
is

∏
m∈Msrc

p(xm|X/M∪Xsrc), which means that
when predicting the MASK tokens in the source sen-
tence, we only focus on the target sentence. As
for the target sentence, the probability of the MASK
token is

∏
m∈Mtgt

p(xm|X/M∪Xtgt), which means
that the MASK tokens in the target sentence will
be predicted based only on the source sentence.
Therefore, the model must learn to use the corre-
sponding sentence to predict and learn the align-
ment across multiple languages. The pre-training
loss of CAMLM in the source/target sentence is

LCAMLM(src) = −
∑

x∈DB

log
∏

m∈Msrc

p(xm|X/M∪Xsrc)

LCAMLM(tgt) = −
∑

x∈DB

log
∏

m∈Mtgt

p(xm|X/M∪Xtgt)

where DB is the bilingual training corpus. The
CAMLM loss is

LCAMLM = LCAMLM(src) + LCAMLM(tgt)

Back-translation Masked Language Modeling.
To overcome the constraint that the parallel corpus
size places on the model performance, we propose
a novel pre-training objective inspired by NAT (Gu
et al., 2017; Wang et al., 2019a) and BT methods
called BTMLM to align cross-lingual semantics
with the monolingual corpus. We use BTMLM to
train our model, which builds on the transferabil-
ity learned through CAMLM, generating pseudo-
parallel sentences from the monolingual sentences
and the generated pseudo-parallel sentences are
then used as the input of the model to align the
cross-lingual semantics, thus enhancing the mul-
tilingual representation. The training process for
BTMLM is shown in Figure 3.

The learning process for the BTMLM is divided
into two stages. Stage 1 involves the generation of
pseudo-parallel tokens from monolingual corpora.
Specifically, we fill in several placeholder MASK
at the end of the monolingual sentence to indicate
the location and the language we want to gener-
ate, and let the model generate its corresponding
parallel language token based on the original mono-
lingual sentence and the corresponding position of
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Figure 3: Overview of BTMLM training; the left fig-
ure represents the first stage of BTMLM, predicting the
pseudo-tokens. The right figure represents the second
stage of the BTMLM, making predictions based on the
predicted pseudo-tokens and original sentences.

the pseudo-token. In this way, we generate the to-
kens of another language from the monolingual sen-
tence, which will be used in learning cross-lingual
semantic alignment for multiple languages.
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Figure 4: Self-attention matrix of BTMLM Stage 1.

The self-attention matrix for generating pseudo-
tokens in Figure 3 is shown in Figure 4. In
the pseudo-token generating process, the model
can only attend to the source sentence and the
placeholder MASK tokens, which indicate the lan-
guage and position we want to predict by us-
ing language embedding and position embed-
ding. The probability of mask token M5 is
p(y5|x1, x2, x3, x4,M5), p(y6|x1, x2, x3, x4,M6)
for M6 and p(y7|x1, x2, x3, x4,M7) for M7.

Stage 2 uses the pseudo-tokens generated in
Stage 1 to learn the cross-lingual semantics align-
ment. The process in Stage 2 is shown in the right-
hand diagram of Figure 3. In the training process of
Stage 2, the input of the model is the concatenation
of the monolingual sentences and the generated
pseudo-parallel tokens, and the learning objective
is to restore the MASK tokens based on the orig-
inal sentences and the generated pseudo-parallel
tokens. Because the model can rely not only on the
input monolingual sentence but also the generated
pseudo-tokens in the process of inference MASK to-
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kens, the model can explicitly learn the alignment
of the cross-lingual semantic representation from
the monolingual sentences.

The learning process of the BTMLM can be
interpreted as follows: given the input in monolin-
gual corpora X = {x1, x2, · · · , xs}, the positions
of masked tokens M = {m1,m2, · · · ,mm}
and the position of the pseudo-token to be
predicted, Mpseudo = {ms+1,ms+2, · · · ,ms+p},
we first generate pseudo-tokens P =
{hs+1, hs+2, · · · , hs+p}, as described earlier;
we then concatenate the generated pseudo-token
with input monolingual sentence as a new parallel
sentence pair and use it to train our model. Thus,
the probability of the masked tokens in BTMLM
is

∏
m∈M p(xm|X/M , P ), where X/M denotes

all input tokens x in X except x in M . The
pre-training loss of BTMLM is

LBTMLM = −
∑

x∈DM

log
∏

m∈M
p(xm|X/M , P )

where DM is the monolingual training corpus.

4 Experiments

We consider five cross-lingual evaluation bench-
marks: XNLI for cross-lingual natural language in-
ference, MLQA for cross-lingual question answer-
ing, CoNLL for cross-lingual named entity recog-
nition, PAWS-X for cross-lingual paraphrase iden-
tification, and Tatoeba for cross-lingual retrieval.
Next, we first describe the data and pre-training
details and then compare the ERNIE-M with the
existing state-of-the-art models.

4.1 Data and Model
ERNIE-M is trained with monolingual and paral-
lel corpora that involved 96 languages. For the
monolingual corpus, we extract it from CC-100
according to Wenzek et al. (2019); Conneau et al.
(2019). For the bilingual corpus, we use the same
corpus as INFOXLM (Chi et al., 2020b), includ-
ing MultiUN (Ziemski et al., 2016), IIT Bombay
(Kunchukuttan et al., 2017), OPUS (Tiedemann,
2012), and WikiMatrix (Schwenk et al., 2019)

We use a transformer-encoder (Vaswani et al.,
2017) as the backbone of the model. For the
ERNIE-MBASE model, we adopt a structure with
12 layers, 768 hidden units, 12 heads. For
ERNIE-MLARGE model , we adopt a structure with
24 layers, 1024 hidden units, 16 heads. The ac-
tivation function used is GeLU (Hendrycks and

Gimpel, 2016). Following Chi et al. 2020b and
Luo et al. 2020, we initialize the parameters of
ERNIE-M with XLM-R. We use the Adam opti-
mizer (Kingma and Ba, 2014) to train ERNIE-M;
the learning rate is scheduled with a linear decay
with 10K warm-up steps, and the peak learning
rate is 2e − 4 for the base model and 1e − 4 for
the large model. We conduct the pre-training ex-
periments using 64 Nvidia V100-32GB GPUs with
2048 batch size and 512 max length.

4.2 Experimental Evaluation

Cross-lingual Natural Language Inference.
The cross-lingual natural language inference
(XNLI; Conneau et al. 2018) task is a multilingual
language inference task. The goal of XNLI is to de-
termine the relationship between the two input sen-
tences. We evaluate ERNIE-M in (1) cross-lingual
transfer (Conneau et al., 2018) setting: fine-tune
the model with an English training set and evaluate
the foreign language XNLI test and (2) translate-
train-all (Huang et al., 2019) setting: fine-tune the
model on the concatenation of all other languages
and evaluate on each language test set.

Table 1 shows the results of ERNIE-M in XNLI
task. The result shows that ERNIE-M outperforms
all baseline models including XLM (Lample and
Conneau, 2019), Unicoder (Huang et al., 2019),
XLM-R (Conneau et al., 2019), INFOXLM (Chi
et al., 2020b) and VECO (Luo et al., 2020) on both
the evaluation settings on XNLI. The final scores
on the test set are averaged over five runs with
different random seeds. On cross-lingual trans-
fer setting, ERNIE-M achieves 77.3 average ac-
curacy, outperforming INFOXLM by 1.1, ERNIE-
MLARGE achieves 82.0 accuracy, outperforming IN-
FOXLMLARGE by 0.6. ERNIE-M also yields out-
standing performance in low-resource languages,
including 69.5 in Swahili (sw) and 68.8 in Urdu
(ur). In the case of translate-train-all, ERNIE-M
improves the performance and reaches an accuracy
of 80.6, outperforming INFOXLM by 0.9, ERNIE-
MLARGE achieves 84.2 accuracy, a new SoTA for
XNLI, outperforming XLM-RLARGE by 0.6.

Named Entity Recognition. For the named-
entity-recognition task, we evaluate ERNIE-M on
the CoNLL-2002 and CoNLL-2003 datasets (Sang
and De Meulder, 2003), which is a cross-lingual
named-entity-recognition task including English,
Dutch, Spanish and German. We consider ERNIE-
M in the following setting: (1) fine-tune on the
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Model en fr es de el bg ru tr ar vi th zh hi sw ur Avg
Fine-tune cross-lingual model on English training set (Cross-lingual Transfer)

XLM (Lample and Conneau, 2019) 85.0 78.7 78.9 77.8 76.6 77.4 75.3 72.5 73.1 76.1 73.2 76.5 69.6 68.4 67.3 75.1
Unicoder (Huang et al., 2019) 85.1 79.0 79.4 77.8 77.2 77.2 76.3 72.8 73.5 76.4 73.6 76.2 69.4 69.7 66.7 75.4
XLM-R (Conneau et al., 2019) 85.8 79.7 80.7 78.7 77.5 79.6 78.1 74.2 73.8 76.5 74.6 76.7 72.4 66.5 68.3 76.2
INFOXLM (Chi et al., 2020b) 86.4 80.6 80.8 78.9 77.8 78.9 77.6 75.6 74.0 77.0 73.7 76.7 72.0 66.4 67.1 76.2
ERNIE-M 85.5 80.1 81.2 79.2 79.1 80.4 78.1 76.8 76.3 78.3 75.8 77.4 72.9 69.5 68.8 77.3
XLM-RLARGE (Conneau et al., 2019) 89.1 84.1 85.1 83.9 82.9 84.0 81.2 79.6 79.8 80.8 78.1 80.2 76.9 73.9 73.8 80.9
INFOXLMLARGE (Chi et al., 2020b) 89.7 84.5 85.5 84.1 83.4 84.2 81.3 80.9 80.4 80.8 78.9 80.9 77.9 74.8 73.7 81.4
VECOLARGE (Luo et al., 2020) 88.2 79.2 83.1 82.9 81.2 84.2 82.8 76.2 80.3 74.3 77.0 78.4 71.3 80.4 79.1 79.9
ERNIE-MLARGE 89.3 85.1 85.7 84.4 83.7 84.5 82.0 81.2 81.2 81.9 79.2 81.0 78.6 76.2 75.4 82.0
Fine-tune cross-lingual model on all training sets (Translate-Train-All)

XLM (Lample and Conneau, 2019) 85.0 80.8 81.3 80.3 79.1 80.9 78.3 75.6 77.6 78.5 76.0 79.5 72.9 72.8 68.5 77.8
Unicoder (Huang et al., 2019) 85.6 81.1 82.3 80.9 79.5 81.4 79.7 76.8 78.2 77.9 77.1 80.5 73.4 73.8 69.6 78.5
XLM-R (Conneau et al., 2019) 85.4 81.4 82.2 80.3 80.4 81.3 79.7 78.6 77.3 79.7 77.9 80.2 76.1 73.1 73.0 79.1
INFOXLM (Chi et al., 2020b) 86.1 82.0 82.8 81.8 80.9 82.0 80.2 79.0 78.8 80.5 78.3 80.5 77.4 73.0 71.6 79.7
ERNIE-M 86.2 82.5 83.8 82.6 82.4 83.4 80.2 80.6 80.5 81.1 79.2 80.5 77.7 75.0 73.3 80.6
XLM-RLARGE (Conneau et al., 2019) 89.1 85.1 86.6 85.7 85.3 85.9 83.5 83.2 83.1 83.7 81.5 83.7 81.6 78.0 78.1 83.6
VECOLARGE (Luo et al., 2020) 88.9 82.4 86.0 84.7 85.3 86.2 85.8 80.1 83.0 77.2 80.9 82.8 75.3 83.1 83.0 83.0
ERNIE-MLARGE 89.5 86.5 86.9 86.1 86.0 86.8 84.1 83.8 84.1 84.5 82.1 83.5 81.1 79.4 77.9 84.2

Table 1: Evaluation results on XNLI cross-lingual natural language inference. We report the accuracy on each
of the 15 XNLI languages and the average accuracy. Our ERNIE-M results are based on five runs with different
random seeds.

Model en nl es de Avg
Fine-tune on English dataset

mBERT∗ 91.97 77.57 74.96 69.56 78.52
XLM-R† 92.25 78.08 76.53 69.60 79.11
ERNIE-M 92.78 78.01 79.37 68.08 79.56

XLM-R†LARGE 92.92 80.80 78.64 71.40 80.94
ERNIE-MLARGE 93.28 81.45 78.83 72.99 81.64
Fine-tune on all dataset

XLM-R† 91.08 89.09 87.28 83.17 87.66
ERNIE-M 93.04 91.73 88.33 84.20 89.32

XLM-R†LARGE 92.00 91.60 89.52 84.60 89.43
ERNIE-MLARGE 94.01 93.81 89.23 86.20 90.81

Table 2: Evaluation results on CoNLL named entity
recognition. The results of ERNIE-M are averaged over
five runs. Results with “†” and “∗” are from (Conneau
et al., 2019), and (Wu and Dredze, 2019), respectively.

English dataset and evaluate on each cross-lingual
dataset to evaluate cross-lingual transfer and (2)
fine-tune on all training datasets to evaluate cross-
lingual learning. For each setting, we reported the
F1 score for each language.

Table 2 shows the results of ERNIE-M, XLM-R,
and mBERT on CoNLL-2002 and CoNLL-2003.
The results of XLM-R and mBERT are reported
from Conneau et al. (2019). ERNIE-M model
yields SoTA performance on both settings and out-
performs XLM-R by 0.45 F1 when trained on En-
glish and 0.70 F1 when trained on all languages in
the base model. Similar to the performance in the
XNLI task, ERNIE-M shows better performance on
low-resource languages. For large models and fine-
tune in all languages setting, ERNIE-M is 2.21 F1

higher than SoTA in Dutch (nl) and 1.6 F1 higher
than SoTA in German (de).

Cross-lingual Question Answering. For the
question answering task, we use a multilingual
question answering (MLQA) dataset to evaluate
ERNIE-M. MLQA has the same format as SQuAD
v1.1 (Rajpurkar et al., 2016) and is a multilingual
language question answering task composed of
seven languages. We fine-tune ERNIE-M by train-
ing on English data and evaluating on seven cross-
lingual datasets. The fine-tune method is the same
as in Lewis et al. (2019), which concatenates the
question-passage pair as the input.

Table 3 presents a comparison of ERNIE-M and
several baseline models on MLQA. We report the
F1 and extract match (EM) scores based on the av-
erage over five runs. The performance of ERNIE-M
in MLQA is significantly better than the previous
models, and it achieves a SoTA score. We outper-
form INFOXLM 0.8 in F1 and 0.5 in EM.

Cross-lingual Paraphrase Identification. For
cross-lingual paraphrase identification task, we use
the PAWS-X (Hu et al., 2020) dataset to evaluate
our model. The goal of PAWS-X was to determine
whether two sentences were paraphrases. We eval-
uate ERNIE-M on both the cross-lingual transfer
setting and translate-train-all setting.

Table 4 shows a comparison of ERNIE-M and
various baseline models on PAWS-X. We report
the accuracy score on each language test set based
on the average over five runs. The results show that
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Model en es de ar hi vi zh Avg
mBERT (Lewis et al., 2019) 77.7 / 65.2 64.3 / 46.6 57.9 / 44.3 45.7 / 29.8 43.8 / 29.7 57.1 / 38.6 57.5 / 37.3 57.7 / 41.6
XLM (Lewis et al., 2019) 74.9 / 62.4 68.0 / 49.8 62.2 / 47.6 54.8 / 36.3 48.8 / 27.3 61.4 / 41.8 61.1 / 39.6 61.6 / 43.5
XLM-R (Conneau et al., 2019) 77.1 / 64.6 67.4 / 49.6 60.9 / 46.7 54.9 / 36.6 59.4 / 42.9 64.5 / 44.7 61.8 / 39.3 63.7 / 46.3
INFOXLM (Chi et al., 2020b) 81.3 / 68.2 69.9 / 51.9 64.2 / 49.6 60.1 / 40.9 65.0 / 47.5 70.0 / 48.6 64.7 / 41.2 67.9 / 49.7
ERNIE-M 81.6 / 68.5 70.9 / 52.6 65.8 / 50.7 61.8 / 41.9 65.4 / 47.5 70.0 / 49.2 65.6 / 41.0 68.7 / 50.2
XLM-RLARGE (Conneau et al., 2019) 80.6 / 67.8 74.1 / 56.0 68.5 / 53.6 63.1 / 43.5 62.9 / 51.6 71.3 / 50.9 68.0 / 45.4 70.7 / 52.7
INFOXLMLARGE (Chi et al., 2020b) 84.5 / 71.6 75.1 / 57.3 71.2 / 56.2 67.6 / 47.6 72.5 / 54.2 75.2 / 54.1 69.2 / 45.4 73.6 / 55.2
ERNIE-MLARGE 84.4 / 71.5 74.8 / 56.6 70.8 / 55.9 67.4 / 47.2 72.6 / 54.7 75.0 / 53.7 71.1 / 47.5 73.7 / 55.3

Table 3: Evaluation results on MLQA cross-lingual question answering. We report the F1 and exact match (EM)
scores. The results of ERNIE-M are averaged over five runs.

Model en de es fr ja ko zh Avg
Cross-lingual Transfer

mBERT† 94.0 85.7 87.4 87.0 73.0 69.6 77.0 81.9
XLM† 94.0 85.9 88.3 87.4 69.3 64.8 76.5 80.9
MMTE† 93.1 85.1 87.2 86.9 72.0 69.2 75.9 81.3
XLM-R†LARGE 94.7 89.7 90.1 90.4 78.7 79.0 82.3 86.4
VECO∗LARGE 96.2 91.3 91.4 92.0 81.8 82.9 85.1 88.7
ERNIE-MLARGE 96.0 91.9 91.4 92.2 83.9 84.5 86.9 89.5
Translate-Train-All

VECO∗LARGE 96.4 93.0 93.0 93.5 87.2 86.8 87.9 91.1
ERNIE-MLARGE 96.5 93.5 93.3 93.8 87.9 88.4 89.2 91.8

Table 4: Evaluation results on PAWS-X. The results
of ERNIE-M are averaged over five runs. Results with
“†” and “∗” are from (Hu et al., 2020) and (Luo et al.,
2020), respectively.

ERNIE-M outperforms all baseline models on most
languages and achieves a new SoTA.

Cross-lingual Sentence Retrieval. The goal of
the cross-lingual sentence retrieval task was to
extract parallel sentences from bilingual corpora.
We used a subset of the Tatoeba (Hu et al., 2020)
dataset, which contains 36 language pairs to evalu-
ate ERNIE-M. Following Luo et al. 2020, we used
the averaged representation in the middle layer of
the best XNLI model to evaluate the retrieval task.

Table 5 shows the results of ERNIE-M in the
retrieval task; XLM-R results are reported from
Luo et al. 2020. ERNIE-M achieves a score of 87.9
in the Tatoeba dataset, outperforming VECO 1.0
and obtaining new SoTA results.

Model Avg
XLM-RLARGE (Luo et al., 2020) 75.2
VECOLARGE (Luo et al., 2020) 86.9
ERNIE-MLARGE 87.9

ERNIE-M†LARGE 93.3

Table 5: Evaluation results on Tatoeba. “†” indicates
the results after fine-tuning.

To further evaluate the performance of ERNIE-
M in retrieval task, we use hardest negative binary
cross-entropy loss (Wang et al., 2019b; Faghri et al.,
2017) to fine-tune ERNIE-M with the same bilin-
gual corpus in pre-training. Figure 5 shows the
details of accuracy on each language in Tatoeba.

After fine-tuning, ERNIE-M shows a significant
improvement in all languages, with the average
accuracy in all languages increasing from 87.9 to
93.3.
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Figure 5: Tatoeba results for each language. The lan-
guages are sorted according to their size in the pre-
trained corpus from smallest to largest. Fine-tuning
can significantly improve the accuracy of different lan-
guage families in the cross-lingual retrieval task.

4.3 Ablation Study

To understand the effect of aligning semantic rep-
resentations of multiple languages in the training
process of ERNIE-M, we conducted an ablation
study as reported in Table 6. exp0 was directly fine-
tuning XLM-R model on the XNLI and the CoNLL.
We trained (1) only MMLM on the monolingual
corpus, and the purpose of exp1 was to measure
how much performance gain could be achieved by
continuing training based on the XLM-R model, (2)
MMLM on the monolingual corpus, and TLM on
the bilingual corpus, (3) MMLM on the monolin-
gual corpus and CAMLM on the bilingual corpus,
(4) MMLM and BTMLM on the monolingual cor-
pus and CAMLM on the bilingual corpus and (5)
full strategy of ERNIE-M. We use the base model
structure for our experiments, and to speed up the
experiments, we use the XLM-RBASE model to ini-
tialize the parameters of ERNIE-M, all of which
run 50,000 steps with the same hyperparameters
with a batch size of 2048, and the score reported
in the downstream task is the average score of five
runs.

Comparing exp0 and exp1, we can observer that
there is no gain in the performance of the cross-
lingual model by continuing pre-training XLM-
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Index Monolingual Bilingual XNLI CoNLL
exp0 / / 75.7 79.2
exp1 MMLM / 75.8 79.2
exp2 MMLM TLM 76.3 78.3
exp3 MMLM CAMLM 76.1 79.5
exp4 MMLM + BTMLM CAMLM 76.6 79.6
exp5 MMLM + BTMLM CAMLM + TLM 76.9 79.6

Table 6: Ablation study on each task in ERNIE-M.

Model MLQA XNLI Avg
mBERT 23.3 16.9 20.1
XLM-R 17.6 10.4 14.0
INFOXLM 15.7 10.9 13.3
ERNIE-M 15.0 8.8 11.9

Table 7: Cross-lingual transfer gap score, smaller gap
indicates better transferability.

R model. Comparing exp2 exp3 exp4 with exp1,
we find that the learning of cross-lingual seman-
tic alignment on parallel corpora is helpful for the
performance of the model. Experiments that use
the bilingual corpus for training show a significant
improvement in XNLI. However, there are a sur-
prised result that the using of TLM objective hurt
the performance of NER task as exp1 and exp2
shows. Comparing exp2 with exp4, we find that
our proposed BTMLM and CAMLM training ob-
jective are better for capturing the alignment of
cross-lingual semantics. The training model with
CAMLM and BTMLM objective results in a 0.3
improvement on XNLI and a 1.3 improvement on
CoNLL compared to the training model with TLM.
Comparing exp3 to exp4, we find that there is a
0.5 improvement on XNLI and 0.1 improvement
on CoNLL after the model learns BTMLM. This
demonstrates that our proposed BTMLM can learn
cross-lingual semantic alignment and improve the
performance of our model.

To further analyze the effect of our strategy,
we trained the small-sized ERNIE-M model from
scratch. Table 8 shows the results of XNLI and
CoNLL. Both XNLI and CoNLL results are the av-
erage of each languages. We observe that, ERNIE-
MSMALL can outperform XLM-RSMALL by 4.4 in
XNLI and 6.6 in CoNLL. It suggests that our mod-
els can benefit from align cross-lingual semantic
representation.

Table 7 shows the gap scores for English and
other languages in the downstream task. This gap
score is the difference between the English test-
set and the average performance on the testset in
other languages. So, a smaller gap score represents
a better transferability of the model. We can no-

Model CoNLL XNLI
XLM-R 63.2 55.7
XLM-R + TLM 65.6 67.3
XLM-R + CAMLM 66.4 66.9
XLM-R + CAMLM + BTMLM 69.5 68.9
ERNIE-M∗ 69.7 69.9
ERNIE-M 69.8 70.1

Table 8: XNLI and CoNLL accuracy under the cross-
lingual transfer setting. All the models are small-sized
trained from scratch. The small-sized model has the
same hyperparameter as base model except that the
number of layers is 6. ERNIE-M∗ is the result in down-
stream tasks with the same computational overhead as
XLM-R. All the models have the same training steps
except ERNIE-M∗.

tice that the gap scores of ERNIE-M are smaller
compared to XLM-R and INFOXLM in both the
XNLI and MLQA tasks, which indicates a better
transferability of ERNIE-M.
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Figure 6: PPL in BTMLM training with different mask
prob, prob means the proportion of pseudo-tokens gen-
erated in BTMLM Stage 1.

To measure the computation cost of ERNIE-
M, we trained ERNIE-M and XLM-R (MMLM
+ TLM) from scratch. The result shows that
the training speed of ERNIE-M is 1.075x com-
pared with XLM-R, so the overall computational
of ERNIE-M is 1.075x compared with XLM-R.
With the same computational overhead, the perfor-
mance of ERNIE-M is 69.9 in XNLI and 69.7 in
CoNLL, while XLM-R’s performance is 67.3 in
XNLI and 65.6 in CoNLL. The results demonstrate
that ERNIE-M performs better than XLM-R even
with the same computational overhead.

In addition, we explored the effect of the number
of generated pseudo-parallel tokens on the conver-
gence of the model. In particular, we compare
the impact on the convergence speed of the model
when generating a 5%, 10%, 15%, and 20% pro-
portion of pseudo-tokens. As shown in Figure 6,
we can find that the perplexity (PPL) of the model
decreases as the proportion of generated tokens in-
creases, which indicates that the generated pseudo-
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parallel tokens are helpful for model convergence.

5 Conclusion

To overcome the constraint that the parallel cor-
pus size places on the cross-lingual models per-
formance, we propose a new cross-lingual model,
ERNIE-M, which is trained using both monolingual
and parallel corpora. The contribution of ERNIE-
M is to propose two training objectives. The first
objective is to enhance the multilingual represen-
tation on parallel corpora by applying CAMLM,
and the second objective is to help the model to
align cross-lingual semantic representations from
a monolingual corpus by using BTMLM. Experi-
ments show that ERNIE-M achieves SoTA results
in various downstream tasks on the XNLI, MLQA,
CoNLL, PAWS-X, and Tatoeba datasets.
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A Appendix

A.1 Pre-training Data
We follow (Wenzek et al., 2019) to reconstruct CC-
100 data for ERNIE-M training. The monolingual
training corpus contains 96 languages, as shown in
Table 9. Note that several languages have the same
ISO code, e.g., zh represents both Simplified Chi-
nese and Traditional Chinese; ur represents both
Urdu and Urdu Romanized. Table 10 shows the
statistics of the parallel data in each language.

Code Size (GB) Code Size (GB) Code Size (GB)
af 0.1 hi 4.2 or 0.3
am 0.3 hr 1.0 pa 0.6
ar 12.5 hu 6.9 pl 20.2
as 0.1 hy 0.6 ps 0.3
az 0.6 id 11.7 pt 27.4
be 0.4 is 0.4 ro 7.5
bg 5.6 it 32.9 ru 215.6
bn 4.6 ja 78.1 sa 0.1
br 0.1 jv 0.1 sd 0.1
bs 0.1 ka 0.9 si 1.1
ca 2.1 kk 0.5 sk 9.5
cs 10.5 km 0.2 sl 4.3
cy 0.3 kn 0.2 so 0.1
da 4.8 ko 29.4 sq 2.0
de 71.0 ku 0.1 sr 5.5
el 10.5 ky 0.4 su 0.1
en 512.5 la 0.2 sv 42.1
eo 0.4 lo 0.2 sw 0.2
es 62.6 lt 1.7 ta 6.9
et 1.0 lv 0.9 te 2.0
eu 0.7 mg 0.1 th 29.1
fa 14.8 mk 0.5 tl 0.8
fi 4.3 ml 1.2 tr 43.3
fr 61.5 mn 0.3 ug 0.1
fy 0.1 mr 0.4 uk 11.1
ga 0.2 ms 0.5 ur 2.2
gd 0.1 my 0.4 uz 0.1
gl 1.0 ne 0.5 vi 52.0
gu 0.2 nl 17.8 yi 0.2
he 3.3 no 3.8 zh 96.0

Table 9: Statistics of CC-100 used for ERNIE-M pre-
training.

ISO Code Size (GB) ISO Code Size (GB)
ar 9.8 ru 8.3
bg 2.2 sw 0.1
de 10.7 th 3.3
el 4.0 tr 1.1
es 8.8 ur 0.7
fr 13.7 vi 0.8
hi 0.3 zh 5.0

Table 10: Statistics of parallel data used for ERNIE-M
pre-training.

A.2 Hyperparameters for Pre-training
Table 11 lists the hyperparameters for pre-training.
We use the XLM-R model to initialize the parame-
ters of base and large model, for the small model,
we train it from scratch. The vocab of ERNIE-M is
the same as that of XLM-R.

Hyperparameters SMALL BASE LARGE

Layers 6 12 24
Hidden size 768 768 1024
FFN inner hidden size 3,072 3,072 4,096
FFN dropout 0.1 0.1 0.1
Attention heads 12 12 16
Attention dropout 0.1 0.1 0.1
Embedding size 768 768 1024
Training steps 240K 150K 200K
Batch size 1,024 2,048 2,048
Learning rate 3e-4 2e-4 1e-4
Learning rate schedule Linear Linear Linear
Adam ε 1e-6 1e-6 1e-6
Adam β1 0.98 0.98 0.98
Adam β2 0.999 0.999 0.999
Weight decay 0.01 0.01 0.01
Warmup steps 10,000 10,000 10,000

Table 11: Hyperparameters used for pre-training.

A.3 Hyperparameters for Fine-tuning
Tables 12 and 13 list the fine-tuning parameters
on XNLI, MLQA, CoNLL and PAWS-X. For each
task, we select the model with the best performance
on the validation set, and the test set score is the av-
erage of five runs with different random seeds. Ta-
bles 14 list the fine-tuning parameters on Tatoeba.

A.4 Results for 15 languages model
To better evaluate the performance of ERNIE-M,
we train the ERNIE-M-15 model for 15 languages.
The languages of training corpora is the same as
that of HICTL (Wei et al., 2020). We evaluate
ERNIE-M-15 on the XNLI dataset. Table 15 shows
the results of 15 languages models. The ERNIE-M-
15 model outperforms the current best 15-language
cross-lingual model on the XNLI task, achieving
a score of 77.5 in the cross-lingual transfer setting,
outperforming HICTL 0.2 and a score of 80.7 in
the translate-train-all setting, outperforming HICTL

0.7.

A.5 Results for Cross-lingual Retrieval
Table 16 shows the details of accuracy on each
language in the cross-lingual retrieval task. For a
fair comparison with VECO, we use the averaged
representation in the middle layer of best XNLI
model for cross-lingual retrieval task. ERNIE-M
outperforms VECO in most languages and achieves
state-of-the-art results. We also proposed a new
method for cross-lingual retrieval. We use hardest
negative binary cross-entropy loss (Wang et al.,
2019b; Faghri et al., 2017) to fine-tune ERNIE-
M with the same bilingual corpora in pre-training.
Table 16 report the results after fine-tuning, the
average accuracy of Tatoeba improve from 87.9 to
93.3.
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Hyperparameters XNLI XNLI∗ MLQA CoNLL CoNLL∗

Batch size 32 128 32 8 8
Learning rate 5e-5 5e-5 3e-4 4e-4 3e-4
Layerwise LR decay 0.8 0.8 0.8 0.8 0.8
LR schedule Linear Linear Linear Linear Linear
Warmup faction 10% 10% 10% 10% 10%
Weight decay 0 0 0 0.01 0.01
Epoch 5 2 2 10 10

Table 12: Hyperparameters used for ERNIE-MSMALL and ERNIE-MBASE fine-tuning; parameters with “*” are in the
translate-train-all setting, and those without “*” are in the cross-lingual setting.

Hyperparameters XNLI XNLI∗ MLQA CoNLL CoNLL∗ PAWS-X PAWS-X∗

Batch size 32 128 32 8 8 64 64
Learning rate 5e-5 5e-5 8e-5 4e-4 3e-4 5e-5 7e-5
Layerwise LR decay 0.8 0.8 0.9 0.8 0.8 0.9 0.9
LR schedule Linear Linear Linear Linear Linear Linear Linear
Warmup faction 10% 10% 10% 10% 10% 10% 10%
Weight decay 0 0 0 0.01 0.01 0.01 0.01
Epoch 5 1 2 10 10 10 2

Table 13: Hyperparameters used for ERNIE-MLARGE fine-tuning; parameters with “*” are in the translate-train-all
setting, and those without “*” are in the cross-lingual setting.

Hyperparameters LARGE

Training steps 200K
Batch size 32
Learning rate 5e-5
Learning rate schedule Linear
Weight decay 0.0
Warmup faction 10%

Table 14: Hyperparameters used for ERNIE-MLARGE fine-tuneing in Tatoeba.

Model en fr es de el bg ru tr ar vi th zh hi sw ur Avg
Fine-tune cross-lingual model on English training set (Cross-lingual Transfer)

XLM (Lample and Conneau, 2019) 85.0 78.7 78.9 77.8 76.6 77.4 75.3 72.5 73.1 76.1 73.2 76.5 69.6 68.4 67.3 75.1
HICTL (Wei et al., 2020) 86.3 80.5 81.3 79.5 78.9 80.6 79.0 75.4 74.8 77.4 75.7 77.6 73.1 69.9 69.7 77.3
ERNIE-M-15 85.9 80.5 81.3 79.8 79.3 80.7 78.7 76.8 76.8 78.0 76.1 77.4 72.9 68.9 68.9 77.5
Fine-tune cross-lingual model on all training sets (Translate-Train-All)

XLM (Lample and Conneau, 2019) 85.0 80.8 81.3 80.3 79.1 80.9 78.3 75.6 77.6 78.5 76.0 79.5 72.9 72.8 68.5 77.8
HICTL (Wei et al., 2020) 86.5 82.3 83.2 80.8 81.6 82.2 81.3 80.5 78.1 80.4 78.6 80.7 76.7 73.8 73.9 80.0
ERNIE-M-15 86.4 82.4 83.5 82.7 83.1 83.2 81.0 80.6 80.5 80.9 79.2 80.6 77.7 75.8 72.8 80.7

Table 15: Evaluation results on XNLI cross-lingual natural language inference for 15 languages model.

Model af ar bg bn de el es et eu fa fi fr he hi hu id it ja
VECOLARGE (Luo et al., 2020) 80.9 85.1 91.3 78.1 98.5 89.5 97.4 94.8 79.8 93.1 95.4 93.7 85.8 94.2 93.8 93.0 92.2 92.8
ERNIE-MLARGE 88.6 88.9 92.2 84.8 98.8 92.4 96.3 82.4 78.8 92.5 92.2 94.0 86.2 95.4 88.7 91.5 90.3 86.7
ERNIE-M†LARGE 92.6 94.3 96.6 89.2 99.7 96.8 98.8 92.5 87.4 96.0 97.1 96.5 90.1 97.9 95.5 95.7 95.2 96.9

Model jv ka kk ko ml mr nl pt ru sw ta te th tl tr ur vi zh
VECOLARGE (Luo et al., 2020) 35.1 83.0 74.1 88.7 94.8 82.5 95.9 94.6 92.2 69.7 82.4 91.0 94.7 73.0 95.2 63.8 95.1 93.9
ERNIE-MLARGE 48.0 84.2 78.2 85.3 95.2 87.6 96.1 92.6 93.1 59.4 86.9 94.0 95.6 75.4 96.3 90.8 94.5 91.7
ERNIE-M†LARGE 65.2 94.9 88.0 94.1 98.5 90.8 98.1 94.5 95.7 68.4 91.8 97.9 98.4 86.0 98.3 94.9 98.1 96.7

Table 16: Tatoeba results for each language. “†” indicates the results after fine-tuning


