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Abstract

Domain adaption for word segmentation and
POS tagging is a challenging problem for Chi-
nese lexical processing. Self-training is one
promising solution for it, which struggles to
construct a set of high-quality pseudo train-
ing instances for the target domain. Previ-
ous work usually assumes a universal source-
to-target adaption to collect such pseudo cor-
pus, ignoring the different gaps from the tar-
get sentences to the source domain. In this
work, we start from joint word segmentation
and POS tagging, presenting a fine-grained do-
main adaption method to model the gaps ac-
curately. We measure the gaps by one simple
and intuitive metric, and adopt it to develop
a pseudo target domain corpus based on fine-
grained subdomains incrementally. A novel
domain-mixed representation learning model
is proposed accordingly to encode the multi-
ple subdomains effectively. The whole pro-
cess is performed progressively for both cor-
pus construction and model training. Exper-
imental results on a benchmark dataset show
that our method can gain significant improve-
ments over a vary of baselines. Extensive anal-
yses are performed to show the advantages of
our final domain adaption model as well.

1 Introduction

Chinese Word Segmentation (CWS) and Part-Of-
Speech (POS) tagging are two fundamental tasks
for natural language processing (NLP) in Chinese
(Emerson, 2005; Jin and Chen, 2008), serving as
backbones for a number of downstream NLP tasks.
The joint models of the two tasks can lead to bet-
ter performance because they are closely-related
and the pipeline models suffer from the error prop-
agation problem (Ng and Low, 2004; Zhang and
Clark, 2008; Wang et al., 2011; Zeng et al., 2013;
Zhang et al., 2018; Tian et al., 2020a), which can
be alleviated in the joint architecture.
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Figure 1: The idea of fine-grained domain adaption.

Currently, joint CWS and POS tagging has
gained great achievements with BERT inputs (Tian
et al., 2020a,b). Our preliminary results show that
the F1-score of joint POS tagging can be close to
95% when the training and test corpus both belong
to a standard newswire domain. Unfortunately, it
is not always the case in real applications. The
performance might be degraded dramatically when
the source and target domains are highly different.
Taken the ZhuXian (a novel from Internet) as an
example (Zhang et al., 2014), the same model can
only obtain an F1-score of 89% for POS tagging
according to our results.

It is a typical domain adaption problem targeted
to joint CWS and POS tagging. Self-training could
be one promising solution (Inoue et al., 2018; Zou
et al., 2019; Saito et al., 2020) which can accom-
plish the goal in a fully-automatic manner without
any human intervention (Liu and Zhang, 2012). By
using a source model to automatically label a large-
scale raw corpus of the target domain, and then
selecting a set of high-confidence pseudo-labeled
instances as additional training data, we can obtain
boosted performance on the target domain. The
quality of pseudo corpus is the key to success. For
the target sentences which are far from the source
domain, the generated corpus based on them might
be of extremely-low quality (Shu et al., 2018; Zhao
et al., 2019). Thus, these sentences should be either
filtered, resulting in a biased corpus to the target
domain, or be kept with great noises to degrade the
overall target performance.

In this work, we suggest a fine-grained domain
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adaption method to alleviate the above problem
of self-training. We define a simple and intuitive
metric to measure the distance (gap) of a target sen-
tence to the source domain. Based on the metric,
we create a set of high-quality training corpora in-
crementally according to the distances of the target
sentences to the source domain. Figure 1 shows
the main idea. The process is conducted by several
iterations in a progressive manner, where at each
new iteration, we add a small set of high-quality
instances which are not as distant from the previous
iteration. Finally, we arrive at a training corpus cov-
ering the target domain of various distances fully.
At each iteration, we go only a little further by the
distance, thus the quality of the pseudo corpus can
be greatly ensured by the previous model.

By the fine-grained domain adaption, we can
obtain a training corpus of multiple types from dif-
ferent iterations, where each type differs from the
other in both quality and input distribution. Dur-
ing the early iterations, the produced instances are
possible with higher quality and close to the source
domain, while for the later iterations, the quality
might be lower and the distance to the source do-
main is larger. To make full use of the corpus
together with the source training set, we present a
domain-mixed model for sophisticated representa-
tion learning to capture domain-aware and domain-
invariant features (Daumé III, 2007; Ganin et al.,
2016; Tzeng et al., 2017), which is also strength-
ened progressively by the incremental style of the
fine-grained domain adaption.

We conduct experiments on a benchmark ZhuX-
ian dataset (Zhang et al., 2014) to show the ef-
fectiveness of our method. In detail, the Penn
Chinese Treebank version (Xue et al., 2005) 6.0
(CTB6) is used as the source corpus, belonging to
the newswire domain, while the target ZhuXian cor-
pus is from an Internet novel. Experimental results
show that our fine-grained domain adaption is sig-
nificantly better than previous self-training studies.
Moreover, we find that our domain-mixed represen-
tation learning model suits the fine-grained frame-
work perfectly. We also conduct extensive analyses
to understand our model comprehensively. We will
release our codes at github.com/JZX555/FGDA un-
der Apache License 2.0 to help the reproduction.

2 Joint CWS and POS Tagging

This section describes the basic model of our joint
CWS and POS tagging. Concretely, we regard our

joint task as a character-level sequence labeling
problem following Tian et al. (2020a). Given an
input character sequence X = [x1, ..., xn], the out-
put labels Y = [y1, ..., yn] are concatenations of
word boundaries (i.e., BMES) and POS tags for
all sentential characters. We exploit an ADBERT-
BiLSTM-CRF model as our basic model, which is
very strong in performance and highly parameter
efficient. The model includes two parts sequen-
tially: (1) ADBERT for character representation,
(2) BiLSTM-CRF for feature extraction, label in-
ference and training. Below, we introduce the AD-
BERT directly and the BiLSTM-CRF is exactly the
same as Tian et al. (2020a) which can be referred
to in their work for the details.

Adapter ◦ BERT We exploit BERT (Devlin
et al., 2019) to derive character representations for
a given sentence X = [x1, ..., xn], as it brings
state-of-the-art performances for a range of Chi-
nese language processing tasks. In particular, we
patch BERT with adapters (Houlsby et al., 2019)
inside all the included transformer units. By this
way, fine-tuning BERT parameters is no longer nec-
essary across different tasks, and we only need to
tune the adapter parameters. More particularly, we
let all adapters across different transformer units
use a shared set of parameters to reduce the scale
of tunable model parameters of our joint task. Here
we refer to this method as ADBERT:

e1, ..., en = ADBERT(X = [x1, ..., xn]), (1)

where the detailed network of transformer with
adapters is illustrated in our Appendix A.

3 Our Method

The above joint CWS and POS tagging model can
perform well on the standard setting when the test
domain is similar to the training domain (Tian et al.,
2020a,b). However, the performance might be de-
graded dramatically when the test (i.e., target) do-
main differs from the training (i.e., source) domain
significantly. There have two studies for cross-
domain of joint CWS and POS tagging (Liu and
Zhang, 2012; Zhang et al., 2014), both of which
have exploited self-training due to its effectiveness
as well as simplicity for domain adaption. The self-
training aims to produce a set of high-confidence
training instances of the target domain which are
used to train a target model. Here we follow this
line of work, presenting a novel fine-grained do-
main adaption strategy.

https://github.com/JZX555/FGDA
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The fine-grained domain adaption is an exten-
sion of the standard self-training, aiming to pro-
duce a helpful pseudo training corpus of the target
domain. The line of work is essentially orthogo-
nal to the representation learning methods which
aim to learn sophisticated (e.g., domain-aware and
domain-invariant) features for domain adaption.
Thus, we also present a novel domain-mixed model
based on the basic ADBERT-BiLSTM-CRF for
effective exploration of our fine-grained domain
adaption. In the following, we first describe the
fine-grained domain adaption method in detail, and
then introduce our representation learning model.

3.1 Fine-Grained Domain Adaption

The overall flow of self-training includes three
steps: (1) first, we train an initial model by the
source corpus; (2) second, we apply the source
model onto a large-scale raw corpus, obtaining
auto-labeled pseudo instances of the target domain;
(3) finally, we select a set of high-confidence in-
stances from the pseudo corpus which would be
added to train the target model. The flow can be
conducted repeatedly by several iterations, where
the model in step 1 is trained by the progressively
added step-3 instances. However, according to our
preliminary results, the plain iterative self-training
can only achieve very marginal improvement.

The reason may lie in that the above process is
difficult to ensure the quality of the selected in-
stances, especially when the input target sentences
are very distant from the source domain (Sohn et al.,
2020). The step-1 models do not perform well
on these sentences without any specialization. If
these sentences are excluded because of their low
quality, the final target model would be trained on
a biased corpus, while these sentences are added
into the target training corpus, great noises are in-
troduced which would degrade the overall perfor-
mance. Aiming for the problem, we propose a
fine-grained domain adaption strategy to alleviate
the influence of the large gaps during the automatic
corpus construction.

Concretely, we guide the iterative self-training
by a specific explicit distance metric. At each it-
eration, we add a set of high-confidence pseudo
instances whose distances are only a little larger
than the previous iteration. The sentences during
each selection can be regarded as from a special
fine-grained subdomain of the target domain. By
this way, the target model is gradually adapted to

Algorithm 1: Fine-Grained Adaption
Data: Source domain training dataset S

Target domain raw corpus D1

Output: Latest model M
1 Initial training dataset T1 = S
2 for i = 1, 2, 3... until converge do
3 Model training: Mi = Train(Ti)

4 Data auto-labeling: D̂i = Mi(Di)

5 Lexicon: Ltgt = Ltgt ∪ Ltop-K(D̂i)
6 Progress ith auto instances: STi = {}
7 foreach instance (X̂, Ŷ ) in D̂i do
8 Coov: numOOV ≤ i
9 Clex: all oov in Ltgt

10 Cconf: p(Ŷ |X̂) ≥ pthreshold
11 if Coov && Clex && Cconf then
12 STi = STi + {(X̂, Ŷ )}
13 end
14 end
15 Ti+1 = Ti + STi ;
16 Di+1 = Di \ STi.X ;
17 end

the distant sentences far away from the source do-
main, producing a higher-quality corpus of vari-
ous distances. Compared with the direct source-
to-target adaption, we adopt the OOV (i.e., the
newly-generated words which are out of the train-
ing vocabulary) number as the distance measure-
ment, which is highly simple and intuitive. We
construct a set of high-quality automatic corpora
by choosing from the zero/one-number-OOV tar-
get sentences to the large-number-OOV target sen-
tences progressively.

Algorithm 1 shows the pseudo codes of fine-
grained domain adaption. Initially, we set the first-
iteration training dataset by the source corpus S,
and then execute the pseudo codes of lines 3-16
repeatedly. First, we train a model Mi by current-
iteration training dataset Ti, and apply the model
to the remaining raw corpus of the target domain,
resulting in auto-labeled corpus D̂i, as shown by
the codes at lines 3-4. Next, we conduct a lexicon
building process at line 5 which would be used for
quality assurance. At each iteration, we collect a
set of top-K confident word-POS pairs Ltop-K by
their weighted frequencies in D̂i,1 which are added
to the target lexicon Ltgt. Then, the key arrives

1The frequency is discounted by the sentence-level proba-
bility of the best output.
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Figure 2: The structure of the domain-mixed model,
where the four objectives are defined in Equation 4.

at lines 6-15 for new training dataset selection to
obtain STi, which advances the training corpus
to Ti+1. We traverse all instances in D̂i, and add
the instances which satisfy Coov, Clex and Cconf
together, where Coov indicates the OOV number to
control the distance to the source domain, and Clex
and Cconf ensure the instance quality. Finally, at
line 16, we remove the selected instances from the
target domain corpus and start the next iteration.

3.2 Our Domain-Mixed Model

By fine-grained domain adaptation, we can ob-
tain a training corpus of multiple types (i.e., S,
ST1, · · · ,STn (n denotes the last iteration) in Algo-
rithm 1) where each type corresponds to a domain
(i.e., S) or subdomain (i.e., STn). Thus, the ex-
ploration of the training corpus can be regarded as
multi-source domain adaption (Zhang et al., 2015;
Sun et al., 2015). To better explore the corpus,
we propose a novel domain-mixed model to fully
benefit from the fine-grained domain adaptation.

Our domain-mixed model follows a standard
representation learning framework of domain adap-
tion, which attempts to capture effective domain-
aware and domain-invariant features. Figure 2
shows the overall architecture of the model, where
two individual ADBERT-BiLSTM-CRF compo-
nents are included, which are used for domain-
aware and domain-invariant feature learning, re-
spectively. The feature learning modules are both
adapted at the ADBERT, and a shared BiLSTM-
CRF is exploited across the two components. In the
below, we introduce the (sub)domain-aware and
(sub)domain-invariant components, respectively,
and then describe the overall inference and training.

The (Sub)Domain-Aware Component A ma-
jor problem of our basic ADBERT-BiLSTM-CRF
model is that it treats all (sub)domain types of our
final training corpus equally. Here we take the
(sub)domain types as inputs along with the sen-
tences deriving domain-aware features. Concretely,
we follow Jia et al. (2019) and Üstün et al. (2020),
exploiting Parameter Generator Network (PGN)
on the adapter layers to achieve our goal, which
generates (sub)domain-aware parameters for the
adapters inside the ADBERT.

We pack all parameters of the adapter layers
into a single vector V by reshaping and concate-
nation, which can be reverse unpacked perfectly
for adapter calculation. As shown in Figure 2(a),
we refer to ADBERT with PGN as PGN-ADBERT.
Taken the input sentence and (sub)domain type
pair by (X,dt), and the overall calculation of the
(sub)domain-aware character representations is for-
malized as follow:

edm
1 , ..., edm

n = PGN-ADBERT(X,dt)

= ADBERT(X,V = Θedt),
(2)

where Θ is a learnable parameter in this compo-
nent, edt is the (sub)domain type embedding, and
PGN-ADBERT is a special case of ADBERT
with specified module parameters V . The resulted
representations are then fed into BiLSTM-CRF for
our joint task.

The (Sub)Domain-Invariant Component The
domain-invariant features have been extensively in-
vestigated because of their generalization capability
across different domains (Daumé III, 2007). Here
we present a (sub)domain-invariant component to
learn these general features across our source do-
main and fine-grained target subdomains, parallel
to the (sub)domain-aware component. Figure 2(b)
shows the architecture of this part. Firstly, the char-
acter inputs X go through ADBERT, deriving the
domain-invariant features eiv

1 , ..., e
iv
n , and then we

reconstruct the domain-aware features ēdm
1 , ..., ēdm

n

by specifying the input (sub)domain type dt, which
are then fed into BiLSTM-CRF for our joint task
following our basic model.

The domain-invariant features eiv
1 , ..., e

iv
n , are

learned in an adversarial manner (Ganin and Lem-
pitsky, 2015; Ganin et al., 2016) for sentence-
level (sub)domain type classification. We derive
sentence-level representation v by averaged pool-
ing over these features, and then determine the
(sub)domain type of the input sentence by a simple
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linear classifier. Note that we will intentionally
cheat the classifier to make the v domain irrelevant,
aiming to obtain good domain-invariant features.

In natural, the domain-invariant component tries
to reconstruct and approximate the domain-aware
component since they share the same decoding part.
We unite the domain-invariant features eiv

1 , ..., e
iv
n

and the (sub)domain type dt to reconstruct the
domain-aware features, which are then used for
our joint task. The advantages of this manner are
that we can maximize the capacity of the domain-
invariant features and further enhance the inter-
action between the domain-aware and domain-
invariant features.

Concretely, the reconstruction is implemented
by a variational module with reparameteriza-
tion (Kingma and Welling, 2014). Given the
(sub)domain type dt and the character represen-
tation eiv

i (i ∈ [1, n]), the domain-aware representa-
tion can be calculated by:

µi = BiAffinemean(eiv
i , e

dt),

log(σ2
i ) = BiAffinevar(e

iv
i , e

dt),

ēdm
i ∼ N (µi,σ

2
i ),

(3)

where we use BiAffine operations to generate a
Gaussian distribution and then sample the domain-
aware features ēdm

i from the distribution.

3.3 Inference and Training

We regard the (sub)domain-aware component as
our major component, which outputs the final joint
CWS and POS tagging results. The (sub)domain-
invariant component is an auxiliary component to
help the learning of the major one. Intuitively,
through an alignment between the major and aux-
iliary components, the learned features of our ma-
jor component can be naturally decomposed into
domain-aware and domain-invariant features.

Inference For inference, we use the (sub)domain
types of S and STn (i.e., the last fine-grained sub-
domain type) to perform decoding of the source
and target domains, respectively.

Training We exploit four optimization objectives
for training, as shown in Figure 2:

Lmajor(X,Y,dt) =− log pmajor(Y |X,dt),

Laux(X,Y,dt) =− log paux(Y |X,dt),

Ladv(X,dt) = log padv(dt|X),

Lmse(X) = ‖ Edm − Ēdm ‖2,

(4)

Data Set #sents #words #chars

CTB6
Train 23,401 641,372 1,055,586
Devel 2,078 59,929 100,276
Test 2,795 81,579 134,149

ZX
Test 1,394 34,355 48,075
Raw 32,023 N/A 1,417,418

Table 1: Data statistics of CTB6 and ZhuXian.

where the first two are the losses of the two com-
ponents of joint CWS and POS tagging, the third
one is referred to as the adversarial loss to deceive
the (sub)domain type classification, and the last
is to minimize the distance of the domain-aware
features between our two components leading to
highly-resembled (aligned) character representa-
tions from variational reconstruction. Further, we
sum the four objectives together:

L =Lmajor(X,Y,dt) + Laux(X,Y,dt)

+ λ1Ladv(X,dt) + λ2Lmse(X),
(5)

resulting in the final objective of our domain-mixed
model, where λ1 and λ2 are two hyperparameters.

4 Experiment

4.1 Datasets
We use the CTB6 dataset as the source domain
(newswire), splitting the dataset into training, de-
velopment and test sections following Tian et al.
(2020a). To verify the effectiveness of our proposed
domain adaption method, we exploit the ZhuXian
dataset (Zhang et al., 2014) as the target domain,
which belongs to a novel from Internet and is the
only-one benchmark dataset for domain adaption of
joint CWS and POS tagging. We strictly follow un-
supervised domain adaptation where there is only a
test corpus of the target domain. Table 1 shows the
data statistics, where the detailed sentence, word
as well as character numbers are reported. For the
Zhuxian dataset, we use only the raw text and test
corpus, which is available from Zhang et al. (2014).

4.2 Setting
Evaluation We adopt the standard word-level
matching method to evaluate the performance of
CWS and POS tagging. In particular, the joint strat-
egy is used for POS tagging evaluation, considering
word boundaries as well as POS tags as a whole.
We calculate precision (P), recall (R) values, and
use their F1-score as the major evaluation metric.
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Model
CTB6 ZhuXian

CWS POS CWS POS
P R F1 P R F1 P R F1 P R F1

(1) Baseline
Vanilla 97.29 96.85 97.07 94.73 94.30 94.51 94.12 93.61 93.87 89.19 88.70 88.94

(2) Self-Training
Vanilla 97.18 96.76 96.97 94.31 93.91 94.11 94.23 93.94 94.08 89.24 88.96 89.10
+Iterative 97.17 96.85 97.01 94.44 94.13 94.29 94.30 93.89 94.10 89.36 88.96 89.16
+Domain-PGN 97.21 96.84 97.03 94.40 94.04 94.22 94.25 94.03 94.14 89.27 89.06 89.17
+Domain-Mixed 97.29 96.90 97.09 94.55 94.17 94.36 94.45 94.12 94.28 89.61 89.29 89.45

(3) Fine-Grained Domain Adaption
Vanilla 97.17 96.9 97.03 94.51 94.24 94.37 94.44 94.86 94.65 89.67 90.07 89.87
+Domain-PGN 97.33 97.04 97.19 94.57 94.29 94.43 94.74 94.71 94.72 90.07 90.04 90.06
+Domain-Mixed 97.44 97.18 97.31 94.83 94.58 94.71 94.99 95.14 95.07 90.51 90.65 90.58

Table 2: Main results, where the instance selection of self-training is simply implemented by ranking the auto-
labeled sentences according to their output probabilities during the decoding, the Vanilla model refers to as the
ADBERT-BiLSTM-CRF model, Iterative indicates the vanilla model with iterative self-training, and Domain-PGN
indicates the model with only the (sub)domain-aware way.

Considering that there is no development corpus
available for the target domain in a real scenario,
we use the CTB6 development set to select the
best-performing models.

Hyperparameters All hyperparameters are set
empirically according to the previous studies as
well as our preliminary findings (Tian et al.,
2020a,b). Most importantly, our fine-grained do-
main adaption consumes 12 iterations to reach the
peak, and the values for all other hyperparameters
are described in our Appendix B.

4.3 Main Results

Table 2 shows the main results on the test datasets
of both CTB6 and ZhuXian. The CTB6 results
are reported to show whether the domain-adapted
models could handle the source domain as well.
First, we examine the F1 values of the baseline per-
formances. Our vanilla (i.e., ADBERT-BiLSTM-
CRF) model can obtain comparable performances
on both CWS and POS tagging with state-of-the-art
models such as Tian et al. (2020a) 2. We can see
that the model performances can drop significantly
on the ZhuXian domain, resulting in decreases of
97.07 − 93.87 = 3.20 and 94.51 − 88.94 = 5.57
for CWS and POS tagging, respectively. The ob-
servation indicates that domain adaption is very
important for our joint task.

Next, we compare fine-grained domain adaption
with various self-training. Based on the vanilla

2Tian et al. (2020a) report F-score of 97.39 and 94.99 for
CWS and POS tagging, respectively, by using various external
information.

model, the self-training obtains very small perfor-
mance gains (including iterative self-training), i.e.,
only close to 0.2% which is very insignificant. The
result is inconsistent with Zhang et al. (2014) which
shows large improvements by simple self-training.
The main reason might be due to the strong base-
line with the BERT representations.

With fine-grained domain adaption, we can gen-
erate a higher quality pseudo corpus. Therefore, the
gains by the vanilla model are very significant over
the baseline,3 where the improvements are 0.78
and 0.93 for CWS and POS tagging, respectively,
significantly better than the vanilla self-training
systems due to the quality differences of pseudo
corpora. By using the final domain-mixed model,
our fine-grained domain adaption can be improved
further, leading to another improvement of 0.42
and 0.71 for CWS and POS tagging. The observa-
tions indicate that our method is highly effective for
domain adaption of joint CWS and POS tagging.

We can see that our domain-mixed model can
help the normal self-training as well, showing the
effectiveness of the representation learning for do-
main adaption. We also compare our proposed
domain-mixed model with the major component
alone (Domain-PGN for short), where the latter has
been demonstrated to be effective in a different sce-
nario (Jia et al., 2019). According to the results, the
Domain-PGN gives slightly better performances
on CWS and POS tagging for both self-training
and fine-grained domain adaption compared with
the counterpart baseline. Our final domain-mixed

3We regard one model as significantly different from an-
other if the p-value is below 10−4 by pair-wise t-test.
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Model CTB6 ZhuXian Trainable
Params SizeCWS POS CWS POS

Finetuning 97.24 94.74 93.91 88.95 120M
Adapter 97.36 94.81 93.81 88.98 35M
Adapter 97.07 94.51 93.87 88.94 14M(shared)

Table 3: Comparisons between BERT fine-tuning and
ADBERT.

model is much better, leading to significant perfor-
mance increases on both tasks especially in fine-
grained domain adaption.

Interestingly, we find that our final model is ca-
pable of bringing better performances on the source
CTB6 test dataset as well, unlike the observations
as shown in the self-training models which can
hurt the source performance to a certain extent.
The finding indicates that our final model is with
strong practical values, since it enables one model
to perform well on multiple domains.

4.4 Analysis

In this subsection, we conduct detailed experimen-
tal analyses for a comprehensive understanding of
our method in-depth.

The Exploration of BERT Our work exploits
ADBERT instead of the standard exploration of
BERT finetuning. Here we examine the dif-
ferences between them considering both perfor-
mance and the size of trainable model parame-
ters. Since ADBERT freezes all parameters of
BERT, the number of trainable model parame-
ters would be reduced greatly. Table 3 shows the
comparison results, where Finetuning indicates
the standard BERT-CRF model with BERT pa-
rameters tunable, Adapter denotes the ADBERT
model that all adapters own separate parameters,
and Adapter (shared) indicates our final ADBERT
that all adapters across different transformer layers
share the same parameters. As shown, we can see
that our final choice can achieve comparable per-
formance to the others with much fewer number
of trainable parameters, thus our final ADBERT is
highly parameter efficient.

The Instance Selection Strategy As mentioned
in Algorithm 1, we include three conditions for
instance selection at each iteration: Coov, Clex and
Cconf. Here we conduct ablation experiments to
check the necessity of them. Note that when Coov
is excluded, we select at most 2K instances at each

Model P R F1 ∆F1

Final 90.51 90.65 90.58 –
−Coov 90.20 90.16 90.18 −0.40
−Clex 90.39 90.25 90.32 −0.26
−Cconf 90.28 90.38 90.33 −0.25

−Coov − Clex 90.02 89.99 90.00 −0.58
Self-Training 89.61 89.29 89.45 −1.13

Table 4: Ablation study of the instance selection strate-
gies of our final model (F1 values of POS are reported).
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Figure 3: The POS tagging performance with respect
to the number of the pseudo training instances.

iteration by the probabilities from high to low. Ta-
ble 4 shows the results. As shown, we can see
that all conditions are useful, and in addition, all
results outperform the plain iterative self-training
method. In particular, the model −Coov − Clex is
degraded into the self-training with iterative adap-
tion combined with the domain-mixed model. The
comparison further demonstrates the advantage of
our domain-mixed model.

The Size of Pseudo Training Corpus It is very
interesting to compare the fine-grained domain
adaption with (one-iteration) self-training under
the view of the pseudo training dataset size. We
align the iteration of fine-grained domain adap-
tion with self-training by the added training corpus
size of the ZhuXian domain. Figure 3 shows the
comparison results. As shown, the performance
of self-training would be hardly increasing after
3K instances, while our fine-grained method can
give significant improvements continually until it-
eration 12 (consuming 20K corpus). The compar-
ison shows that our fine-grained domain adaption
is much more effective than self-training. How-
ever, our iterative fine-grained domain adaption
needs more time to training than non-iterative self-
training 4.

4The time cost of iterative fine-grained domain adaption
is closely related to the number of iterations. Assuming the
time cost of non-iterative training is C and our raw corpus is
a closed set, the time cost of the iterative training is equal to
0.7 ∗N ∗ C, where N is the iteration number.
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Model P R F1
Baseline Vanilla 93.99 93.55 93.77

Self-Training

Vanilla 94.01 94.08 94.04
+Iterative 94.18 94.06 94.12
+Domain-PGN 94.20 94.01 94.11
+Domain-Mixed 94.47 94.07 94.27

Fine-Grained
Adaption

Vanilla 94.65 94.47 94.51
+Domain-PGN 94.70 94.51 94.60
+Domain-Mixed 95.27 94.64 94.86

Table 5: The results of independent CWS task using
our method on ZhuXian dataset.

The Independent CWS Task Our major goal is
for joint CWS and POS tagging, while it is ex-
pected to examine our method for the CWS task
alone. Here we also use the CTB6 dataset as the
source corpus and the ZhuXian dataset as the tar-
get domain. The basic model can be exactly the
same. Table 5 shows the final results. Our method
can achieve significant improvements on the CWS
alone, resulting in increases of 94.86 - 93.77 = 1.09,
which means that our fine-grained domain adaption
method can be suitable for CWS as well. The other
model tendencies are consistent with the joint task.
Interestingly, we find that the independent CWS
model has a lower improvement in recall. The rea-
son may be that the POS tagging can provide sev-
eral additional features, which let the joint model
prefer more fine-grained segmentation, leading to
a larger recall value.

Domain-Aware v.s. Domain-Invariant It is
interesting to compare our (sub)domain-aware
(PGN) and (sub)domain-invariant (VAR) compo-
nents comprehensively. In fact, the two compo-
nents alone can serve for domain adaption as well
besides our integrated usage. The PGN can be used
directly for inference, while for VAR, we can per-
form decoding by setting ēdm

i = µi in Equation
3. Here we analyze four models, PGN and VAR
alone, and the integrated model inferencing with
PGN (Final-PGN) and VAR (Final-VAR), respec-
tively. All four models are trained on the same and
full training corpus (i.e., S + ST1, ..., S + ST1 +
... + STn, respectively and gradually). Figure 4
shows the results. As shown, we can see that PGN
and VAR are actually comparable to each other, and
in our final model, PGN is slightly better than VAR.
We find that in our integrated model, both PGN and
VAR are much better than using them alone, which
shows the importance of the joint learning by the
carefully-designed Lmse.

Self
Training

Fine-Grained
Adaption

94

94.4

94.8

(a) CWS (F1)

PGN VAR Final-PGN Final-VAR

Self
Training

Fine-Grained
Adaption

89.4

89.8

90.2

90.6

(b) POS (F1)

Figure 4: Comparisons between (sub)domain-aware
(PGN) and (sub)domain-invariant (VAR) components,
where PGN and VAR indicate that they are exploited
separately for representation learning, and Final-PGN
and Final-VAR denote our final model by using
PGN/VAR for decoding, respectively.
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Figure 5: The results of Domain-Mixed model on dif-
ferent OOV distribution test datas use self-training and
fine-grained adaption.

The Sentential OOV Number Our fine-grained
domain adaption is mainly advanced by the sen-
tential OOV numbers with respect to the source
training dataset. Thus, it is meaningful to examine
the model performance on sentences with different
OOV numbers. We divide the ZhuXian test dataset
by four categories according to the OOV number in
sentence, which are respectively [0-1], [2-3], [4-5]
and ≥6. All categories include a sufficient num-
ber of sentences for statistical comparisons. Based
on the division, we compare the performance of
the fine-grained adaption, self-training as well as
baseline models. Figure 5 shows the results. We
can see that with the increase of OOV number, the
model performance can be decreased as a whole,
which is reasonable. In addition, our final model
can significantly improve the model performance
with higher OOV numbers in sentence.

The Subdomain Type of Our Final Inference
For the training of our final model, we have several
fine-grained subdomain types of the target domain,
and we select the last subdomain type for the final
inference, which might be unmatched with the real
subdomain type. Here we analyze the input domain
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Domain
Type

ZhuXian-CWS ZhuXian-POS
P R F1 P R F1

ST1 95.00 95.17 95.08 90.49 90.63 90.56
ST6 94.98 95.16 95.07 90.49 90.65 90.57
ST11 94.99 95.14 95.07 90.51 90.65 90.58

Table 6: The influence of using different domain types.

type selection in depth by comparing the model per-
formance with the first (ST1), median (ST6) and
last (ST11) subdomain types. Table 6 shows the
results. As shown, there is almost no difference be-
tween the three selections for the ZhuXian domain,
indicating that the selection of fine-grained sub-
domain types is not important in our final model.
The observation is reasonable since the test cor-
pus cover a range of the specified subdomains and
fixed selection can face the same issue, thus the
final selection could be totally empirical.

5 Related Work

CWS and POS tagging are closely-related tasks for
Chinese processing, which could be handled either
jointly or in a pipeline way (Ng and Low, 2004;
Shi and Wang, 2007; Zhang and Clark, 2008; Jiang
et al., 2008; Kruengkrai et al., 2009; Jiang et al.,
2009; Sun, 2011). The joint models are able to
obtain better performances, as they can alleviate
the error propagation problem between two tasks
(Ng and Low, 2004; Zhang and Clark, 2008; Jiang
et al., 2009; Wang et al., 2011). Recently, neural
models lead to state-of-the-arts for joint CWS and
POS tagging (Zheng et al., 2013; Shao et al., 2017;
Zeng et al., 2013; Tian et al., 2020a). In particular,
the BERT representations (Devlin et al., 2019) and
the BiLSTM neural network (Graves et al., 2013;
Huang et al., 2015) have shown impressive results
for the joint task (Zhang et al., 2018; Diao et al.,
2019; Tian et al., 2020a,b). In this work, we adopt
both BERT and BiLSTM to reach a strong baseline
for cross-domain adaption.

Domain adaptation has been extensively studied
in both the machine learning and NLP communities
(Daumé III, 2007; Ben-David et al., 2007; Chen
et al., 2011; Søgaard, 2013; Zou et al., 2019; Saito
et al., 2020). The typical methods of domain adap-
tion can be divided into two categories mainly. The
first category aims to create a set of pseudo training
corpora for the target domain, while the second cat-
egory attempts to learn transferable features from
the source domain to the target. Self-training is one
most representative methods of the first category

(McClosky et al., 2006; Yu et al., 2015; Zou et al.,
2019). For the second category, the representation
learning of domain-specific and domain-invariant
features has received the most attention recently
(Glorot et al., 2011; Ganin et al., 2016; Tzeng et al.,
2017; Long et al., 2017; Hoffman et al., 2018).

For the joint CWS and POS tagging task, Liu
and Zhang (2012) and Zhang et al. (2014) inves-
tigate the task under the cross-domain adaption
setting, both of which exploit self-training. In par-
ticular, Zhang et al. (2014) suggest a lexicon-based
type-supervised model for further enhancement,
and meanwhile publish a benchmark dataset which
is publicly available for cross-domain adaption of
joint CWS and POS tagging. Unfortunately, there
is no future work for the joint task since then, while
the majority of studies focus on the cross-domain of
the two individual tasks (Liu et al., 2014; Schnabel
and Schütze, 2014; Peng and Dredze, 2016; Huang
et al., 2017; Zhou et al., 2017; Gui et al., 2017;
Ding et al., 2020). We propose a novel fine-grained
domain adaption method with a domain-mixed rep-
resentation learning model for the joint task.

6 Conclusion

We suggested a novel fine-grained domain adaption
method for joint word segmentation and POS tag-
ging. We started from self-training strategy, which
exploits various transfers to generate pseudo train-
ing instances for the target domain, and argued that
the strategy might lead to low-quality of the auto-
labeled instances when the target sentences are dis-
tant from the source domain. To address the prob-
lem, we proposed fine-grained domain adaption,
regarding the OOV number to the source training
corpus as the main advancing indicator to construct
a higher quality corpus progressively. In addition,
we combined our method with another line of repre-
sentation learning of domain adaption, presenting a
domain-mixed model for full exploration of the pro-
duced training instances. We evaluated our method
on the benchmark ZhuXian dataset by using CTB6
as the source domain. The results showed that our
method is highly effective, and our final model can
achieve significant improvements on the joint task.
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A Transformer with Adapters

Figure 6 illustrates the internal network structure
of the transformer unit in ADBERT. As shown, we
can see that two adapter layers are inserted inside
each transformer unit:

hmid = GELU(W share
1 hin + bshare

1 ),

hout = W share
2 hmid + bshare

2 + hin,
(6)

whereW share
1 ,W share

2 , bshare
1 , bshare

2 are adapter pa-
rameters, which are much smaller than those of
BERT in scale.

Here we further emphasize that when BERT is
powered with adapters, BERT can be regarded as
a static knowledge by freezing all the pretrained
parameters for downstream tasks, since the BERT
parameter values can be shared across these tasks.

B Hyperparameters

For the model part, we set all the hidden sizes of
BiLSTM to 400, and set the hidden sizes of all
shared adapters to 192. We exploit the pretrained
BERT-base-Chinese model for the character rep-
resentations,5 thus the output dimensional size of
character representation is 768. The embedding
of domain type is with a dimensional size of 50.
For fine-grained domain adaption, the number of
high-confidence word-tag pairs in Top-K is set by
1000, the probability threshold pthreshold is 0.8.

For training, we exploit online learning with a
batch size of 16 to update the model parameters,
and use the Adam algorithm with a constant learn-
ing rate 2× 10−5 to optimize the parameters. The
gradient clipping mechanism by a maximum value

5https://github.com/google-research/bert
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Figure 6: The structure of ADBERT.

of 5.0 is adopted to avoid gradient explosion. We
use sequential-level dropout to the character repre-
sentations to avoid overfitting, where the sequen-
tial hidden vectors are randomly set to zeros with
a probability of 0.2. In particular, we have two
hyperparameters λ1 and λ2 in our overall training
objective, which is auto-adjust during the training
from 0 to 1 by exponential annealing in the first
5,000 steps (Bowman et al., 2016).
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