
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 3425–3436
November 7–11, 2021. c©2021 Association for Computational Linguistics

3425

APIRecX: Cross-Library API Recommendation via Pre-Trained
Language Model

Yuning Kang1, Zan Wang1, Hongyu Zhang2, Junjie Chen1∗, Hanmo You1

1College of Intelligence of and Computing, Tianjin University, Tianjin, China
2The University of Newcastle, Callaghan, Australia

{kangyuning,wangzan,junjiechen,youhanmo}@tju.edu.cn
zhang.hongyu@newcastle.edu.au

Abstract
For programmers, learning the usage of APIs
(Application Programming Interfaces) of a
software library is important yet difficult. API
recommendation tools can help developers use
APIs by recommending which APIs to be
used next given the APIs that have been writ-
ten. Traditionally, language models such as
N-gram are applied to API recommendation.
However, because the software libraries keep
changing and new libraries keep emerging,
new APIs are common. These new APIs can
be seen as OOV (out of vocabulary) words and
cannot be handled well by existing API recom-
mendation approaches due to the lack of train-
ing data. In this paper, we propose APIRecX,
the first cross-library API recommendation ap-
proach, which uses BPE to split each API call
in each API sequence and pre-trains a GPT-
based language model. It then recommends
APIs by fine-tuning the pre-trained model.
APIRecX can migrate the knowledge of ex-
isting libraries to a new library, and can rec-
ommend APIs that are previously regarded as
OOV. We evaluate APIRecX on six libraries
and the results confirm its effectiveness by
comparing with two typical API recommenda-
tion approaches.

1 Introduction

Application Programming Interface (API) is an in-
tegral part of software libraries. Being familiar
with APIs could help improve programming pro-
ductivity. However, a library tends to contain a
large number of APIs and there could be complex
dependencies among APIs, and thus understanding
all APIs in a library is very challenging, especially
for new developers. To facilitate correct and ef-
ficient usage of APIs during programming, many
API recommendation approaches (Zhong et al.,
2009; Nguyen et al., 2016; Xie et al., 2019; Bruch
et al., 2009; Huang et al., 2018) have been pro-
posed. More specifically, API recommendation

∗∗Junjie Chen is the corresponding author.

aims to automatically recommend a correct API
call at the current programming location based on
its preceding part of code information.

As an example, Listing 1 shows a Java code snip-
pet about opening a text file. Assuming a program-
mer forgets what to write in Line 6. API recommen-
dation tool can help the programmer by prompting
the most likely API call to be used next. In this
case, printStackTrace() will be returned. The
API recommendation tools do so by learning API
usage pattern from a large code corpus. Some tools
(Nguyen et al., 2016; Nguyen and Nguyen, 2015)
use probabilistic models to learn API usage pat-
tern , while others (Zhong et al., 2009; Wang et al.,
2013) use data mining methods to find API usage
patterns . Recently, deep learning based language
models are proposed to model the API sequences
and have obtained promising results in recommend-
ing APIs (Raychev et al., 2014; Yan et al., 2018;
White et al., 2015; Nguyen and Nguyen, 2015).

However, the existing API recommendation
tools only focus on improving the performance
of API recommendation when API usage data are
sufficient (i.e., the usage data of the APIs to be
recommended are sufficient in training data). That
is, they mostly ignored the OOV (out of vocabu-
lary) problem, which could have negative impact
on the performance of API recommendation. More
specifically, when some APIs are unseen in train-
ing data, these approaches cannot recommend them
correctly. The OOV problem could be more serious
for a new library, since it is very difficult to collect
sufficient API usage data.

To conduct API recommendation for new li-
braries, cross-library API recommendation is a po-
tentially feasible solution, which aims to recom-
mend APIs in new libraries based on the usage data
of APIs in other libraries, but it is still an open
challenge due to the inherent OOV problem. For
example, as shown in Listing 2, we may rarely (or
even never) see SQLException.printStackTrace()

3426

in the training set, but the usage of Exception is
very common in the training set and the usage of
SQLException and Exception are similar. So if we
use a word segmentation algorithm to split SQLEx-
ception.printStackTrace() into the sequence: SQL-
Exception-.-print-StackTrace(), we can use the Ex-
ception usage pattern learned during the training
process to predict the printStackTrace() method and
finally synthesize SQLException.printStackTrace()
as the recommendation result.� �

1 p u b l i c s t a t i c vo id main (. . .) {
2 F i l e I n p u t S t r e a m i n p u t S t r e a m = n u l l ;
3 t r y {
4 F i l e f i l e = new F i l e (" tmp . t x t ") }
5 c a t c h (E x c e p t i o n e) {
6 e . ____) ; / / To w r i t e a c a t c h b l o c k
7 }
8 }
9 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 API Sequence : F i l e I n p u t S t r e a m . new () −
TRY−TryBlock − F i l e . new (S t r i n g) −
CATCH− E x c e p t i o n . _____ () � �

Listing 1: An Example of API Recommendation� �
1 p u b l i c s t a t i c C o n n e c t i o n
2 g e t C o n n e c t i o n () {
3 C o n n e c t i o n c o n n e c t i o n = n u l l ;
4 t r y {
5 c o n n e c t i o n = Dr ive rmanage r . g e t (URL,
6 username , password) ;
7 } c a t c h (SQLException e) {
8
9 e . p r i n t S t a c k T r a c e () ;

10 }
11 r e t u r n c o n n e c t i o n ;
12 } � �

Listing 2: An OOV Example in API Recommendation

To achieve the goal of cross-library API recom-
mendation, we draw lessons from the area of text
generation in relieving the OOV problem (Sennrich
et al., 2016; Hermann et al., 2021). More specifi-
cally, we design a framework of cross-library API
recommendation, called APIRecX, which consists
of three main components, i.e., API segmentation,
subword language model building, and API synthe-
sis for recommendation. Since the OOV problem
at the API level hampers cross-library API recom-
mendation, APIRecX first incorporates BPE (Byte
Pair Encoding) (Provilkov et al., 2020; Sennrich
et al., 2016), one of the most widely-used word
segmentation methods in text generation, to split
each API call into a sequence of subwords. That
is, the OOV problem at the API level could be
largely relieved at the subword level. Based on
a large number of subword data, APIRecX then

adopts the “pre-training&fine-tuning” mechanism
to build a GPT-based(Generative Pre-Training) pre-
trained language model, which can recommend a
subword in each prediction. Since the recommen-
dation process is conducted at the subword level,
it is necessary to compose a complete API call
for recommendation based on predicted subwords.
Here, APIRecX incorporates beam search for API
synthesis.

To evaluate the performance of APIRecX, we
conducted an extensive study based on 1,711 Java
projects from GitHub involving six libraries in
three domains as subjects for mimicking new li-
braries in the scenario of cross-library API recom-
mendation, and over 14,000 GitHub Java projects
that do not involve the former six libraries as train-
ing corpus. By comparing with two typical API
recommendation approaches, i.e., LSTM-based lan-
guage model(Yan et al., 2018; White et al., 2015)
and N-gram-based language model (Raychev et al.,
2014; Karampatsis and Sutton, 2019; Hindle et al.,
2012), our experimental results demonstrate the
effectiveness of APIRecX for cross-library API
recommendation in terms of recommendation ac-
curacy.

To sum up, this work makes the following major
contributions:

• We propose the first framework for cross-
library API recommendation, consisting of
BPE-based API segmentation, subword lan-
guage model building, and beam-search based
API synthesis.

• We are the first to build a GPT-based language
model in the area of API recommendation,
which is more effective than the existing lan-
guage models.

• We conduct an extensive study to evaluate our
proposed approach, demonstrating its effec-
tiveness in the scenario of cross-library API
recommendation.

2 Approach

In the paper, we propose APIRecX, the first
approach for cross-library API recommendation.
With APIRecX, we can recommend APIs in some
libraries (especially new libraries) by learning from
a large amount of API usage data of some other
libraries.

3427

Original
Libraries

BPE
Segmentation

Fine-tuned
GPT model

API List

Pre-train Language Model

New
Libraries

Cross-library Fine-tune

API Code
Snippet

Beam
SearchRecommend

Developers

API Recommendation

Input

BPE
Segmentation

Pre-trained
GPT Model

Pre-train

Fine-tune

Figure 1: An Overview of APIRecX

2.1 Overview
Achieving the goal of cross-library API recommen-
dation is challenging.

• First, different libraries tend to not contain
APIs with the same names, and thus it is hard
to adopt existing approaches to recommend
APIs that are not seen in training data. That is,
the first challenge is due to the OOV problem
at the API level. To overcome it, APIRecX
aims to recommend APIs at the subword level
through API segmentation. The insight is that
an API call usually consists of a set of rela-
tively commonly-used subwords such as Ex-
ception, print, etc. Therefore, the OOV prob-
lem at the API level can be largely relieved at
the subword level.

• Second, APIRecX recommends each subword
in turn and then composes a complete API call
for recommendation based on predicted sub-
words. That means that an API call can be cor-
rectly recommended only if all the subwords
in the API call are recommended correctly,
which largely aggravates the recommendation
difficulty. To relieve the inaccuracy of API
recommendation caused by inaccurate sub-
word prediction, APIRecX incorporates beam
search to enlarge the search space of API syn-
thesis instead of directly recommending an
API call composed by Top-1 subword in each
prediction.

With the above two insights, we design a novel
GPT-based method in APIRecX to build a subword
language model. Here, APIRecX first pre-trains a

subword language model based on a large number
of API usage data of other libraries in an offline pro-
cess. When new libraries are released, APIRecX
then directly fine-tunes the pre-trained model af-
ter collecting a certain amount of API usage data
of new libraries, which is much more efficient
than retraining based on all API usage data (i.e.,
pre-training data and fine-tuning data). Also, to
make APIRecX a light-weight approach, APIRecX
does not build complex data-flow and control-flow
graphs, but directly represents a method as an API
sequence following the existing work (Gu et al.,
2017; Yan et al., 2018; Nguyen et al., 2017). The
overview of APIRecX is shown in Figure 1.

2.2 BPE-based API Segmentation

APIRecX extracts API sequences following the
practice in the existing work (Gu et al., 2017),
which extracts all API calls (identifier&arguments,
e.g.DriverManager.getConnection(String)), and
control statements with API call in a method to
form an API sequence. Here, all variables in API
sequences are replaced with their types. For exam-
ple, for an API call o.m() where o is an instance
of a class C, APIRecX adds C.m to the API se-
quence.

Although API names tend to be unique, they
usually consists of a set of relatively commonly-
used subwords. That is, different API names may
include common subwords, and thus the OOV prob-
lem at the API level could be largely relieved at the
subword level. With this insight, APIRecX splits
an API call in an API sequence into a sequence of
subwords and conducts follow-up learning and pre-
diction at the subword level, and finally composes

3428

a complete API call for recommendation based on
predicted subwords. In this way, it is possible to
compose an unseen API call in training data with
subwords, which makes cross-library API recom-
mendation become feasible.

Here, APIRecX adopts BPE (Provilkov et al.,
2020; Sennrich et al., 2016; Devlin et al., 2018),
one of the most widely-used word segmentation
methods in text generation, for splitting an API call
to subwords. The reason why choosing BPE is that
it achieves a good balance between effectiveness
and efficiency. More specifically, compared with
character segmentation (Gao et al., 2020) ,whites-
pace segmentation (Tezcan et al., 2020; Mikolov
et al., 2013),and CamelCase segmentation,BPE
is more effective, since character segmentation is
too fine-grained and thus leads to much semantic
loss while whitespace segmentation is too coarse-
grained for API calls and thus cannot effectively
relieve the OOV problem.Although CamelCase seg-
mentation can achieve a relatively appropriate seg-
mentation granularity, compared with BPE,it has
a larger granularity, which will cause more OOV
words.By taking the domain of Swing as an exam-
ple, there are 61.9% common subwords between
training and test data achieved by BPE, while there
are only 50.9% common subwords achieved by
CamelCase.Compared with more advanced meth-
ods (e.g., WordPiece (Devlin et al., 2018) and
ULM (Chen et al., 2005), BPE is more efficient but
not much less effective, since these methods need
to build language models during word segmenta-
tion while BPE is based on frequency. Besides,
APIRecX adds a special subword (/t) to mark
the end of each API call, which helps APIRecX
determine the termination of subword recommen-
dation for an API call. Through this step, APIRecX
obtains a large amount of API usage data at the sub-
word level. As an example, for the code in Listing
1, the API sequence after BPE-based segmenta-
tion is: Connection–.–new()(/t)–TRY(/t)–Driver–
Manager–.–get–Connection()(/t) –CATCH(/t)–
Exception–.–print–StackTrace()(/t).

2.3 Building a Subword Language Model

To build a subword language model, APIRecX
adopts the “pre-training & fine-tuning” mechanism
as presented above. That is, APIRecX first pre-
trains a subword language model based on a large
amount of subword data that do not involve APIs
of new libraries, and then fine-tunes the pre-trained

model by including a small amount of subword
data involving the APIs of the library to be recom-
mended. Besides the efficiency benefit presented
above, fine-tuning has been demonstrated to be
more effective than the strategy of direct training
based on the mixed data of pre-training data and
fine-tuning data (Mao et al., 2015), since the vol-
ume of API usage data of new libraries is signifi-
cantly smaller than that of other libraries, leading
to very difficult to learn usage patterns of the APIs
of new libraries via the latter strategy.

In APIRecX, we design a GPT-based subword
language modeling building method. GPT first
maps an API subword sequence S =a1, ..., at into
a vector matrix through the embedding layer Emb
where t represents the total number of subword
in the API subword sequence , and then we can
get the embedding matrix H0 of the API subword
sequence after adding the position information
through the position embedding matrix Wp.

Hx =

{
Emb(S) +Wp x = 0

Tblock(Hx−1) 1 ≤ x ≤ n
(1)

Then, GPT inputs the obtained embedding ma-
trix into the decoder block of the transformer for
calculation. where x represents the order number
of Transformer layers, and the vector matrix Hn

outputted by the last layer of decoder block rep-
resents the attention weight for each subword in
this sequence. Then, Hn is multiplied by the trans-
pose of embedding layer matrix, and normalized
by softmax to obtain P (S) which represents the
probabilities of all subwords in the vocabulary at
each position in the sequence.

P (S) = Softmax(Hn ∗ EmbT) (2)

In the training phase, we calculate the loss between
ground truth and P (S) through cross-entropy, and
optimize GPT through the Adam optimization al-
gorithm.

2.4 Beam-search based API Synthesis

With a subword language model, APIRecX recom-
mends a subword in each prediction based on a
sequence of subwords before the current position
to be predicted. Given that an API call to be recom-
mended is denoted as Am = {s1m, s2m, . . . , snm

m }
where sjm refers to the jth subword in Am and nm

refers to the number of subwords in Am, API calls
before Am are denoted as {A1, A2, . . . , Am−1}

3429

where Ai = {s1i , s2i , . . . , s
ni
i }. When pre-

dicting at the position of s1m, APIRecX
inputs {s11, . . . , s

n1
1 , . . . , s1m−1, . . . , s

nm−1

m−1 }
to the model, and when predicting at
the position of sjm, APIRecX inputs
{s11, . . . , s

n1
1 , s1m−1, . . . , s

nm−1

m−1 , w1
m, .., wj−1

m },
where wj−1

m is the predicted subword at the
position of sj−1

m and wj−1
m is the same as sj−1

m

if the prediction is correct. That is, the cur-
rently predicted subword is used to predict
subsequent subwords. When the prediction
result ends with (/t), APIRecX outputs the
chain of predicted subwords as the API call
for recommendation. For example, in listing 2,
when the developer enters e. on line 6, APIRecX
inputs {A1, A2, A3, A4, S

1
5 , S

2
5}, where A1 =

{File, Input, Stream, ., new()(/t)}, A2 =
{TRY (/t)}, A3 = {File, ., new(String)(/t)}
, A4 = {CATCH(/t)}, S1

5 = Exception
and S2

5 = .. Then APIRecX predicts the next
subword based on the input. When APIRecX
predicts a subword ending with (/t) such as
{print, StackTrace()(/t)}, it will merge pre-
dicted subwords with S1

5 and S2
5 and return the

result to the developer.

However, subword prediction aggregates the dif-
ficulty of API recommendation, since it is hard to
guarantee the accurate prediction of each subword
in an API call. Especially, when a wrong subword
is predicted in a certain position, the predictions of
all the subsequent subwords could be also affected,
since the wrong subword will be used to predict
subsequent subwords. Actually, each subword is
assigned as a probability in each prediction. By
considering all the subwords in each prediction and
using each subword for subsequent predictions, the
correct chain of subwords (used for composing a
complete API call) cannot be missing, but explor-
ing such enormous combination space is unafford-
able. Therefore, it is still challenging to recom-
mend a complete API call based on subword-level
prediction.

To achieve the balance between the accuracy of
API recommendation and the efficiency, APIRecX
adopts widely-used beam search (Freitag and Al-
Onaizan, 2017; Shu and Nakayama, 2018; Huang
et al., 2017). More specifically, beam search consid-
ers Top-K subwords (K refers to beam size) in each
prediction rather than only Top-1 subword or all the
subwords. For each of Top-K subwords in a predic-
tion, it then produces Top-K subwords and obtains

K2 chains of subwords, and then preserves Top-K
chains according to their chain probabilities for the
next prediction. Following the existing work (Shu
and Nakayama, 2018; Huang et al., 2017; Freitag
and Al-Onaizan, 2017; Karampatsis et al., 2020),
we use Formula 3 to calculate the chain probability
of a chain of subwords:

P (w1
m, ..., wi

m|s11, ..., sn1
1 , ..., s

nm−1
m−1) =

i∏
j=1

p(wj
m) (3)

where, p(wj
m) (which is short for

p(wj
m|s11, . . . , s

n1
1 , . . . , s

nm−1

m−1 , w1
m, . . . , wj−1

m)) is
the probability of the jth subword in the chain of
(w1

m, . . . , wi
m) predicted by the subword model.

To relieve the effectiveness problem caused
by the monotonicity of traditional beam search,
APIRecX preserves the memory of poor-quality
incomplete chains produced during the process
of beam search following the existing work in
text generation (Shu and Nakayama, 2018). More
specifically, APIRecX constructs a candidate pool
that stores the remaining incomplete chains except
Top-K chains among k2 chains produced in each
prediction. When k2 chains produced based on
Top-K chains selected from the last prediction have
smaller chain probabilities than those of chains
in the candidate pool, APIRecX chooses Top-K
chains among the k2 chains produced in the current
prediction and all the chains in the candidate pool
rather than only the current k2 chains. In this way,
APIRecX has a chance to make up wrong choice in
previous predictions. Besides, APIRecX improves
the condition of terminating the beam search pro-
cess following the existing work (Huang et al.,
2017) in text generation, i.e., the searching stops
until the smallest chain probability among all the
produced complete chains is larger than the largest
chain probability among all incomplete chains (in-
cluding incomplete chains in both the candidate
pool and current Top-K chains).

3 Evaluation

3.1 Experimental Setup
3.1.1 Datasets
We used six JDK libraries from three domains to
mimic new libraries in the scenario of cross-library
API recommendation. They are java.sql and
javax.sql in the domain of JDBC (which is the
domain about database operations), java.awt
and javax.swing in the domain of Swing

3430

Domain #API #Project #Sequence
JDBC 909 784 42,298
Swing 10,622 722 63,249
IO 1,192 205 15,356

Table 1: Statistical information on three domains

#Projects 14,807
#LOC 352,312,696
#Methods 15,201,014
#Sequence 5,120,310

Table 2: Statistical information on pre-train corpus

(which is the domain about user interfaces), and
java.io and java.nio in the domain of IO
(which is the domain about stream-based inputs and
outputs), respectively. Based on the three domains,
we conducted three groups of experiments, each of
which uses the two libraries in the corresponding
domain as the new libraries for recommendation.
Table 1 shows the information about the three ex-
periments. where Column “#API” is the number
of APIs in the corresponding domain libraries, Col-
umn “#Project” is the number of Java projects that
are collected from GitHub and use the APIs in the
domain libraries, and Column “#Sequence” is the
number of API sequences that are extracted from
the collected projects.

Besides, we adopted the corpus provided by the
existing work (Allamanis and Sutton, 2013) for pre-
training. The corpus has over 14,000 Java projects
from GitHub after removing the projects involv-
ing the above three domains. From these projects,
we extracted over 5,000,000 API sequences as pre-
training data.Table 2 shows the information about
the pre-train corpus. where Column “#Projects”
is the number of Java projects in pre-train corpus,
Column “#LOC” is the total number of lines of
code, Column “#Methods” is the total number of
java methods, and Column “#Sequence” is the num-
ber of API sequences that are extracted from this
corpus.

3.1.2 Selecting test and fine-tune data
We used 10 projects (splitting domain projects
into 10 groups and then selecting the one with the
largest number of domain API calls in each group)
as test projects, and extract API call sequences from
them.For each sequence of API calls, we produced
a set of API call sequences, each of which contain
a "hole", as test data. Specifically, we produced
them by digging a "hole" from the second API call
in the sequence in turn respectively. Then, for each

API call sequence with a "hole", we used the se-
quence of API calls before the "hole" as input for
predicting the API call in the "hole". After select-
ing the test data, we sample a certain amount of
data from the remained data at 5 different sampling
ratios which are 0.2%, 1%, 10%, 50%, and 100%
as fine-tune data.Then we use these sampled data
to fine-tune the pre-trained model following the
fine-tuning process presented in Section 2.3

3.1.3 Baselines
We adopted traditional LSTM-based API recom-
mendation approach (Yan et al., 2018; White et al.,
2015; Zhang et al., 2019; Chen et al., 2019) and N-
gram based API recommendation approach (Ray-
chev et al., 2014; Karampatsis and Sutton, 2019)
for comparison in order to quantitatively investi-
gate the superiority of APIRecX over traditional
API recommendation approaches. We refer to the
parameter settings in these two works(Yan et al.,
2018; Raychev et al., 2014) to train baseline tools
on the data we collected, and the specific parameter
settings are shown in Table 6.

3.1.4 Parameters
The parameters comprise the model training param-
eters and the beam search parameters in the API
recommendation process. Table 6 lists all the pa-
rameters of APIRecX and baselines. The structure
of original GPT contains a 12-layer transformer
decoder block with 12-head attention, containing
nearly 100 million parameters, which requires an
extremely huge amount of data to support train-
ing. However, compared with collecting text data,
it is harder to collect such a huge amount of API
usage data to support training such a complicated
model, and thus we tailored the structure of the
original GPT to match with the scale of our train-
ing data. Specifically, our tailored GPT uses a 6-
layer transformer decoder block with 8-head atten-
tion. Besides, GPT handles fixed-length sequences,
thus we set the subword-sequence length to be 512.
In our context, the fixed-length sequence refers
to the fixed-length subword sequence processed
from an API call sequence. For the API call se-
quences in our dataset, the average length is 41,
the largest length is 2,280, and the percentage of
subword sequences that are longer than 512 is only
0.4%. Moreover, the longer the sequence is, the
more difficult it is to model. Therefore, our setting
(512) could reach a good trade-off following the
existing study(Devlin et al., 2018). The baseline

3431

model parameters were set according to the previ-
ous work(Yan et al., 2018; Raychev et al., 2014).
We trained the APIRecX for 15 epochs in the pre-
training stage, and then we adopted the early stop
strategy to terminate the fine-tuning process in the
fine-tuning stage. For baseline approaches, we
adopted early stop strategy to terminate the training
process according to the previous work.

Beam search process contains two parameters:
beam size and max iteration. Beam size represents
the width of beam search and max iteration repre-
sents the maximum search epoch. More details of
parameters setting will be shown in the Appendix.

3.1.5 Evaluation Metric
To evaluate the performance of APIRecX, we
adopted Top-N accuracy following the existing
work on API recommendation (Xie et al., 2019;
Nguyen et al., 2016; Nguyen and Nguyen, 2015).
Each API recommendation approach can produce
a ranking list of API calls for recommendation.
Top-N accuracy measures the percentage of the
cases that the correct API call is included in Top-
N results among all the locations in the test set,
and higher Top-N accuracy indicates better perfor-
mance. Following the existing work (Nguyen et al.,
2016; Nguyen and Nguyen, 2015; Xie et al., 2019;
Yan et al., 2018), we set N to be 1, 5, and 10 respec-
tively. Note that We focus on the recommendation
of domain APIs, so we only report the accuracy of
Top-N recommendation of domain APIs.

3.2 Results and Analysis
3.2.1 Overall effectiveness
Table 3 presents the comparison results between
APIRecX and baselines under five sampling ratios
in three domains, respectively.

From this table, APIRecX performs better than
the two baselines under all the studied sampling
ratios in all the three domains in terms of all the
metrics. For example, under the sampling ratio of
0.2% in the domain of IO, APIRecX has achieved
52.9% Top-1 accuracy while the two baselines are
only 30.6% and 16.5%. The improvements are
72.87% and 220.61%, respectively. We also per-
formed a Wilcoxon rank sum test to investigate
whether our approach can significantly outperform
LSTM and N-gram across all the domains respec-
tively. The results show that all the p-values are
smaller than 0.004 (<0.05) regardless of Top-1/Top-
5/Top-10 accuracy, demonstrating the effectiveness
of our approach in statistics.

We then analyzed why APIRecX performs well
as shown in Table 4. In this table, the fast three
rows present the percentage that training data cover
domain APIs in the test set, the percentage that
training data cover subwords from domain APIs
in the test set, percentage of unseen APIs in the
correct recommendation result, and the last rows
present the number of API call types that success-
fully recommended by APIRecX under the sam-
pling ratio of 0.2%.

From Table 4, under the sampling ratio of
0.2%, the API coverage is small (10.9∼49.3%),
only 25.5% APIs are covered by training data
on average, but the subword coverage is large
(61.9∼89.3%) and the average subword coverage
rate reached 77.7%, indicating the power of API
segmentation to handle the OOV problem. Indeed,
APIRecX is able to recommend unseen APIs in
both pre-training and fine-tuning data. For exam-
ple, Among the APIs correctly recommended by
the APIRecX, an average of 28.1%, 131.3 types is
from the unseen APIs,demonstrating its ability for
cross-library API recommendation.

3.2.2 Effectiveness of Beam Search
We compare our beam search strategy in APIRecX
and the traditional beam search (Freitag and Al-
Onaizan, 2017; Shu and Nakayama, 2018) under
different beam sizes. Here, we use the JDBC do-
main with and the sampling ratio of 10% as the rep-
resentative, whose comparison results are shown in
Table 5. From this table, our used beam search per-
forms better than traditional beam search under all
the studied beam sizes in terms of all the metrics,
demonstrating the contribution of the improved
beam search strategy. In the meanwhile, its contri-
bution becomes more obvious in Top-5 accuracy
and Top-10 accuracy than Top-1 accuracy because
the rescued chains of subwords by the improved
beam search are difficult to have larger chain prob-
abilities than Top-1 chain due to the small proba-
bility of certain subword prediction. More specifi-
cally, the probability of a complete API call (e.g.,
printStackTrace() in Line-6 of Listing-1) is the
product of the probabilities of a chain of subwords
(e.g., print, StackTrace, ()). Although the candi-
date pool storage of the improved beam search can
relieve the effectiveness problem caused by the
monotonicity of traditional beam search through
preserving the memory of poor-quality incomplete
chains produced during the beam-search process,
the small probabilities of poor-quality incomplete

3432

Sample Approach JDBC Swing IO
Top-1 Top-5 Top-10 Top-1 Top-5 Top-10 Top-1 Top-5 Top-10

0.2%
APIRecX 37.9 74.7 81.2 25.0 43.8 51.2 52.9 69.5 73.7
LSTM 26.8 52.6 65.9 15.1 31.3 39.1 30.6 53.4 63.3
N-gram 11.9 41.5 56.5 7.9 26.3 31.6 16.5 45.9 57.0

1%
APIRecX 42.8 77.7 83.7 25.3 46.9 54.5 56.4 75.5 79.8
LSTM 31.6 67.4 74.8 17.2 34.3 44.0 36.7 56.5 66.4
N-gram 16.0 40.6 58.5 10.2 28.2 36.7 16.7 45.9 57.8

10%
APIRecX 46.9 79.9 85.7 40.6 67.8 74.5 56.9 75.9 80.5
LSTM 33.7 69.1 75.3 30.6 53.1 60.9 36.1 60.8 70.0
N-gram 18.6 43.8 59.3 16.3 37.5 46.9 18.1 48.3 59.2

50%
APIRecX 56.6 86.3 93.0 48.7 79.0 80.9 60.6 81.9 85.3
LSTM 41.8 73.8 84.7 32.8 56.7 65.0 39.1 64.1 70.9
N-gram 25.4 55.1 63.7 16.3 39.4 48.7 18.6 48.5 62.8

100%
APIRecX 60.0 89.4 94.5 54.8 77.2 83.7 63.9 84.2 88.7
LSTM 43.4 76.2 85.6 36.7 61.1 69.2 40.1 67.1 75.3
N-gram 28.6 56.1 65.5 18.7 41.4 50.7 21.6 52.8 68.8

Table 3: Overall effectiveness of APIRecX

Criterion Domain Avg.JDBC Swing IO
API Coverage 49.3% 10.9% 16.3% 25.5%
Subword Coverage 82.0% 61.9% 89.3% 77.7%
OOV Correct Rate 8.7% 26.4% 49.6% 28.1%
OOV Correct API type 14.7 317.6 61.5 131.3

Table 4: Analysis of the results

Beam size Method Top-1 Top-5 Top-10

10 Ours 45.2 79.4 84.3
Traditional 44.1 69.7 76.1

15 Ours 46.6 78.6 84.6
Traditional 44.5 69.1 75.8

20 Ours 46.9 79.9 85.7
Traditional 44.1 70.1 77.1

25 Ours 46.6 83.1 85.7
Traditional 44.0 72.7 77.2

30 Ours 45.3 80.1 86.7
Traditional 44.3 71.9 78.0

Table 5: The results of different beam search methods
on JDBC

chains could lead to the small probability of the
corresponding complete API call, making it hard to
be ranked as Top-1. Taking Line-6 in Listing-1 as
an example, if “StackTrace” has a small probability,
its small probability could make the probability of
the complete API call small, causing it hard to be
ranked as Top-1. Therefore, the improved beam
search has less apparent improvement in terms of
Top-1 accuracy. Also, APIRecX performs stably
under different beam sizes.

4 Related work

4.1 API recommendation

In the literature, some statistical learning based
(Nguyen and Nguyen, 2015; Liu et al., 2018; Ray-
chev et al., 2014; Xie et al., 2019) and pattern
mining based API recommendation approaches
(Zhong et al., 2009; Wang et al., 2013; Fowkes and
Sutton, 2016; Xie et al., 2019) have been proposed
without dealing with the OOV problem, and thus
all of them cannot be effective in the scenario of
cross-library API recommendation. For example,
Xie et al. (2019) proposed HiRec, which improves
pattern-mining based approaches by utilizing the
hidden information of project-specific code via call
graph in mining API usage patterns. Nguyen and
Nguyen (2015) designed a graph-based statistical
language model by representing source code as
graphs for API recommendation. Different from
them, APIRecX is the first approach for cross-
library API recommendation by handling the OOV
problem via GPT-based pre-trained subword lan-
guage model.

4.2 Pre-trained models across languages

Our approach is inspired by pre-training in the mul-
tilingual scenario (Chi et al., 2020; Huang et al.,
2019; Yang et al., 2020a,b, 2019). For example,
Lample and Conneau (2019) proposed the XLM
model, which processes multiple languages via
BPE so that all the languages can share subword
dictionaries. Ren et al. (2019) proposed the cross-
lingual masked language model, which uses more
explicit cross-lingual information (such as trans-
lation table). More specifically, they used the
monolingual corpus of two languages to train the
monolingual N-gram vector through FastText (Bo-

3433

janowski et al., 2017), and then used the unsuper-
vised cross-lingual word vector method, VecMap,
(Garneau et al., 2020) to obtain the cross-lingual
N-gram vector. The translation table between the
two languages is inferred from the similarity of the
N-gram vectors of the two languages.

Different from them, our work targets the prob-
lem of API recommendation rather than cross-
lingual problems, which have different character-
istics, and APIRecX builds a GPT-based subword
language model for API recommendation. Code-
BERT(Feng et al., 2020) gets a general language
model about programming language by pre-trained
on six different programming languages, and can
be applied to different downstream tasks,It seems
that codebert can be our baseline but the reason
why not use CodeBERT as the baseline for com-
parison is that it needs two-way information and
we regard API recommendation as a one-way text
generation task. When developers use API, they
usually write API calls sequentially (forward) and
the task of API recemmendation is to predict the
future API calls, there is no reverse information
(backward) in practice. Therefore, CodeBERT can-
not be applied to our problem.

5 Conclusions

We propose the first approach APIRecX for cross-
library API recommendation, which can automat-
ically recommend API calls for new libraries.
APIRecX first splits each API call into a sequence
of subwords to relieve the OOV problem at the
API level. It then pre-trains a GPT-based sub-
word language model based on a large number
of API usage data from other libraries. By fine-
tuning the pre-trained model with a sample of
API usage data of new libraries, APIRecX con-
ducts subword prediction and incorporates beam
search to compose a complete API call for recom-
mendation. We conduct an extensive study based
on six libraries of three domains for mimicking
new libraries and 14,000 GitHub Java projects for
pre-training, demonstrating the effectiveness of
APIRecX. However, our work also has certain limi-
tation, which is the generalization of our results and
findings. Although we invested significant time and
effort to prepare datasets, conducted experiments
and analyzed results, our experiments involved only
one program language with three domains. The per-
formance of our neural architecture, and especially
the findings on transfer learning, could be different

with other programming languages or libraries. In
the future, we will try to get rid of this limitation by
applying our approach to more languages/libraries.

The source code of APIRecX and experimen-
tal data can be found in https://github.com/

yuningkang/APIRecX.

6 Acknowledgements

This work was funded by National Natural Science
Foundation of China (Nos. 61872263, 62002256,
20201180), Intelligent Manufacturing Special Fund
of Tianjin. We are also very grateful to reviewers
for their helpful comments.

References
Miltiadis Allamanis and Charles Sutton. 2013. Min-

ing source code repositories at massive scale us-
ing language modeling. In Proceedings of the 10th
Working Conference on Mining Software Reposito-
ries, MSR ’13, San Francisco, CA, USA, May 18-19,
2013, pages 207–216. IEEE Computer Society.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomás Mikolov. 2017. Enriching word vectors with
subword information. Trans. Assoc. Comput. Lin-
guistics, 5:135–146.

Marcel Bruch, Martin Monperrus, and Mira Mezini.
2009. Learning from examples to improve code
completion systems. In Proceedings of the 7th Joint
Meeting of the European Software Engineering Con-
ference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering, ESEC/FSE
’09, page 213–222, New York, NY, USA. Associa-
tion for Computing Machinery.

Aitao Chen, Yiping Zhou, Anne Zhang, and Gordon
Sun. 2005. Unigram language model for chinese
word segmentation. In Proceedings of the Fourth
SIGHAN Workshop on Chinese Language Process-
ing, SIGHAN@IJCNLP 2005, Jeju Island, Korea,
14-15, 2005. ACL.

Chi Chen, Xin Peng, Jun Sun, Zhenchang Xing, Xin
Wang, Yifan Zhao, Hairui Zhang, and Wenyun Zhao.
2019. Generative API usage code recommendation
with parameter concretization. Sci. China Inf. Sci.,
62(9):192103:1–192103:22.

Zewen Chi, Li Dong, Furu Wei, Wenhui Wang, Xian-
Ling Mao, and Heyan Huang. 2020. Cross-lingual
natural language generation via pre-training. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 7570–
7577. AAAI Press.

https://github.com/yuningkang/APIRecX
https://github.com/yuningkang/APIRecX
https://doi.org/10.1109/MSR.2013.6624029
https://doi.org/10.1109/MSR.2013.6624029
https://doi.org/10.1109/MSR.2013.6624029
https://transacl.org/ojs/index.php/tacl/article/view/999
https://transacl.org/ojs/index.php/tacl/article/view/999
https://doi.org/10.1145/1595696.1595728
https://doi.org/10.1145/1595696.1595728
https://www.aclweb.org/anthology/I05-3019/
https://www.aclweb.org/anthology/I05-3019/
https://doi.org/10.1007/s11432-018-9821-9
https://doi.org/10.1007/s11432-018-9821-9
https://aaai.org/ojs/index.php/AAAI/article/view/6256
https://aaai.org/ojs/index.php/AAAI/article/view/6256

3434

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
bert: A pre-trained model for programming and nat-
ural languages. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing: Findings, EMNLP 2020, Online Event,
16-20 November 2020, pages 1536–1547. Associa-
tion for Computational Linguistics.

Jaroslav Fowkes and Charles Sutton. 2016. Parameter-
free probabilistic api mining across github. FSE
2016, page 254–265, New York, NY, USA. Associa-
tion for Computing Machinery.

Markus Freitag and Yaser Al-Onaizan. 2017. Beam
search strategies for neural machine translation. In
Proceedings of the First Workshop on Neural Ma-
chine Translation, NMT@ACL 2017, Vancouver,
Canada, August 4, 2017, pages 56–60. Association
for Computational Linguistics.

Yingqiang Gao, Nikola I. Nikolov, Yuhuang Hu, and
Richard H. R. Hahnloser. 2020. Character-level
translation with self-attention. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2020, Online, July 5-10,
2020, pages 1591–1604. Association for Computa-
tional Linguistics.

Nicolas Garneau, Mathieu Godbout, David Beau-
chemin, Audrey Durand, and Luc Lamontagne.
2020. A robust self-learning method for fully un-
supervised cross-lingual mappings of word embed-
dings: Making the method robustly reproducible as
well. In Proceedings of The 12th Language Re-
sources and Evaluation Conference, LREC 2020,
Marseille, France, May 11-16, 2020, pages 5546–
5554. European Language Resources Association.

Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and
Sunghun Kim. 2017. Deep api learning.

Enno Hermann, Herman Kamper, and Sharon Gold-
water. 2021. Multilingual and unsupervised sub-
word modeling for zero-resource languages. Com-
put. Speech Lang., 65:101098.

Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel,
and Premkumar T. Devanbu. 2012. On the natu-
ralness of software. In 34th International Confer-
ence on Software Engineering, ICSE 2012, June 2-
9, 2012, Zurich, Switzerland, pages 837–847. IEEE
Computer Society.

Haoyang Huang, Yaobo Liang, Nan Duan, Ming Gong,
Linjun Shou, Daxin Jiang, and Ming Zhou. 2019.
Unicoder: A universal language encoder by pre-
training with multiple cross-lingual tasks. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language

Processing, EMNLP-IJCNLP 2019, Hong Kong,
China, November 3-7, 2019, pages 2485–2494. As-
sociation for Computational Linguistics.

Liang Huang, Kai Zhao, and Mingbo Ma. 2017. When
to finish? optimal beam search for neural text gen-
eration (modulo beam size). In Proceedings of the
2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2134–2139, Copen-
hagen, Denmark. Association for Computational
Linguistics.

Qiao Huang, Xin Xia, Zhenchang Xing, David Lo,
and Xinyu Wang. 2018. API method recommenda-
tion without worrying about the task-api knowledge
gap. In Proceedings of the 33rd ACM/IEEE Interna-
tional Conference on Automated Software Engineer-
ing, ASE 2018, Montpellier, France, September 3-7,
2018, pages 293–304. ACM.

Rafael-Michael Karampatsis, Hlib Babii, Romain
Robbes, Charles Sutton, and Andrea Janes. 2020.
Big code != big vocabulary: Open-vocabulary mod-
els for source code. CoRR, abs/2003.07914.

Rafael-Michael Karampatsis and Charles Sutton. 2019.
Maybe deep neural networks are the best choice for
modeling source code. CoRR, abs/1903.05734.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining.

Xiaoyu Liu, LiGuo Huang, and Vincent Ng. 2018. Ef-
fective api recommendation without historical soft-
ware repositories. ASE 2018, page 282–292, New
York, NY, USA. Association for Computing Machin-
ery.

Junhua Mao, Xu Wei, Yi Yang, Jiang Wang, Zhiheng
Huang, and Alan L. Yuille. 2015. Learning like a
child: Fast novel visual concept learning from sen-
tence descriptions of images. In 2015 IEEE Interna-
tional Conference on Computer Vision, ICCV 2015,
Santiago, Chile, December 7-13, 2015, pages 2533–
2541. IEEE Computer Society.

Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In 1st International Con-
ference on Learning Representations, ICLR 2013,
Scottsdale, Arizona, USA, May 2-4, 2013, Workshop
Track Proceedings.

Anh Tuan Nguyen, Michael Hilton, Mihai Codoban,
Hoan Anh Nguyen, Lily Mast, Eli Rademacher,
Tien N. Nguyen, and Danny Dig. 2016. Api code
recommendation using statistical learning from fine-
grained changes. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, FSE 2016, page
511–522, New York, NY, USA. Association for
Computing Machinery.

Anh Tuan Nguyen and Tien N. Nguyen. 2015. Graph-
based statistical language model for code. In Pro-
ceedings of the 37th International Conference on

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.1145/2950290.2950319
https://doi.org/10.1145/2950290.2950319
https://doi.org/10.18653/v1/w17-3207
https://doi.org/10.18653/v1/w17-3207
https://doi.org/10.18653/v1/2020.acl-main.145
https://doi.org/10.18653/v1/2020.acl-main.145
https://www.aclweb.org/anthology/2020.lrec-1.681/
https://www.aclweb.org/anthology/2020.lrec-1.681/
https://www.aclweb.org/anthology/2020.lrec-1.681/
https://www.aclweb.org/anthology/2020.lrec-1.681/
http://arxiv.org/abs/1605.08535
https://doi.org/10.1016/j.csl.2020.101098
https://doi.org/10.1016/j.csl.2020.101098
https://doi.org/10.1109/ICSE.2012.6227135
https://doi.org/10.1109/ICSE.2012.6227135
https://doi.org/10.18653/v1/D19-1252
https://doi.org/10.18653/v1/D19-1252
https://doi.org/10.18653/v1/D17-1227
https://doi.org/10.18653/v1/D17-1227
https://doi.org/10.18653/v1/D17-1227
https://doi.org/10.1145/3238147.3238191
https://doi.org/10.1145/3238147.3238191
https://doi.org/10.1145/3238147.3238191
http://arxiv.org/abs/2003.07914
http://arxiv.org/abs/2003.07914
http://arxiv.org/abs/1903.05734
http://arxiv.org/abs/1903.05734
http://arxiv.org/abs/1901.07291
http://arxiv.org/abs/1901.07291
https://doi.org/10.1145/3238147.3238216
https://doi.org/10.1145/3238147.3238216
https://doi.org/10.1145/3238147.3238216
https://doi.org/10.1109/ICCV.2015.291
https://doi.org/10.1109/ICCV.2015.291
https://doi.org/10.1109/ICCV.2015.291
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.1145/2950290.2950333
https://doi.org/10.1145/2950290.2950333
https://doi.org/10.1145/2950290.2950333

3435

Software Engineering - Volume 1, ICSE ’15, page
858–868. IEEE Press.

Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang
Phan, and Tien N. Nguyen. 2017. Exploring API
embedding for API usages and applications. In Pro-
ceedings of the 39th International Conference on
Software Engineering, ICSE 2017, Buenos Aires, Ar-
gentina, May 20-28, 2017, pages 438–449. IEEE /
ACM.

Ivan Provilkov, Dmitrii Emelianenko, and Elena Voita.
2020. Bpe-dropout: Simple and effective subword
regularization. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2020, Online, July 5-10, 2020, pages
1882–1892. Association for Computational Linguis-
tics.

Veselin Raychev, Martin Vechev, and Eran Yahav. 2014.
Code completion with statistical language models.
49(6):419–428.

Shuo Ren, Yu Wu, Shujie Liu, Ming Zhou, and Shuai
Ma. 2019. Explicit cross-lingual pre-training for un-
supervised machine translation. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019, pages 770–779. Association for Com-
putational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2016, August 7-12, 2016, Berlin, Ger-
many, Volume 1: Long Papers. The Association for
Computer Linguistics.

Raphael Shu and Hideki Nakayama. 2018. Improving
beam search by removing monotonic constraint for
neural machine translation. In Proceedings of the
56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers),
pages 339–344, Melbourne, Australia. Association
for Computational Linguistics.

Arda Tezcan, Véronique Hoste, and Lieve Macken.
2020. Estimating word-level quality of statistical
machine translation output using monolingual infor-
mation alone. Nat. Lang. Eng., 26(1):73–94.

Jue Wang, Yingnong Dang, Hongyu Zhang, Kai Chen,
Tao Xie, and Dongmei Zhang. 2013. Mining suc-
cinct and high-coverage API usage patterns from
source code. In Proceedings of the 10th Working
Conference on Mining Software Repositories, MSR
’13, San Francisco, CA, USA, May 18-19, 2013,
pages 319–328. IEEE Computer Society.

Martin White, Christopher Vendome, Mario Linares-
Vásquez, and Denys Poshyvanyk. 2015. Toward
deep learning software repositories. In Proceedings

of the 12th Working Conference on Mining Software
Repositories, MSR ’15, page 334–345. IEEE Press.

Rensong Xie, Xianglong Kong, Lulu Wang, Ying Zhou,
and Bixin Li. 2019. Hirec: API recommendation us-
ing hierarchical context. In 30th IEEE International
Symposium on Software Reliability Engineering, IS-
SRE 2019, Berlin, Germany, October 28-31, 2019,
pages 369–379. IEEE.

Jinpei Yan, Yong Qi, Qifan Rao, and Hui He. 2018.
Learning API suggestion via single LSTM network
with deterministic negative sampling. In The 30th
International Conference on Software Engineering
and Knowledge Engineering, Hotel Pullman, Red-
wood City, California, USA, July 1-3, 2018, pages
137–136. KSI Research Inc. and Knowledge Sys-
tems Institute Graduate School.

Jian Yang, Shuming Ma, Dongdong Zhang, Shuangzhi
Wu, Zhoujun Li, and Ming Zhou. 2020a. Alternat-
ing language modeling for cross-lingual pre-training.
In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Inno-
vative Applications of Artificial Intelligence Confer-
ence, IAAI 2020, The Tenth AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI
2020, New York, NY, USA, February 7-12, 2020,
pages 9386–9393. AAAI Press.

Jian Yang, Shuming Ma, Dongdong Zhang, Shuangzhi
Wu, Zhoujun Li, and Ming Zhou. 2020b. Alternat-
ing language modeling for cross-lingual pre-training.
In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Inno-
vative Applications of Artificial Intelligence Confer-
ence, IAAI 2020, The Tenth AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI
2020, New York, NY, USA, February 7-12, 2020,
pages 9386–9393. AAAI Press.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. CoRR, abs/1906.08237.

Haoyu Zhang, Jingjing Cai, Jianjun Xu, and Ji Wang.
2019. Pretraining-based natural language genera-
tion for text summarization. In CoNLL, pages 789–
797. Association for Computational Linguistics.

Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong
Mei. 2009. Mapo: Mining and recommending api
usage patterns. In Proceedings of the 23rd European
Conference on ECOOP 2009 — Object-Oriented
Programming, Genoa, page 318–343, Berlin, Hei-
delberg. Springer-Verlag.

https://doi.org/10.1109/ICSE.2017.47
https://doi.org/10.1109/ICSE.2017.47
https://doi.org/10.18653/v1/2020.acl-main.170
https://doi.org/10.18653/v1/2020.acl-main.170
https://doi.org/10.1145/2666356.2594321
https://doi.org/10.18653/v1/D19-1071
https://doi.org/10.18653/v1/D19-1071
https://doi.org/10.18653/v1/p16-1162
https://doi.org/10.18653/v1/p16-1162
https://doi.org/10.18653/v1/P18-2054
https://doi.org/10.18653/v1/P18-2054
https://doi.org/10.18653/v1/P18-2054
https://doi.org/10.1017/S1351324919000111
https://doi.org/10.1017/S1351324919000111
https://doi.org/10.1017/S1351324919000111
https://doi.org/10.1109/MSR.2013.6624045
https://doi.org/10.1109/MSR.2013.6624045
https://doi.org/10.1109/MSR.2013.6624045
https://doi.org/10.1109/ISSRE.2019.00044
https://doi.org/10.1109/ISSRE.2019.00044
https://doi.org/10.18293/SEKE2018-193
https://doi.org/10.18293/SEKE2018-193
https://aaai.org/ojs/index.php/AAAI/article/view/6480
https://aaai.org/ojs/index.php/AAAI/article/view/6480
https://aaai.org/ojs/index.php/AAAI/article/view/6480
https://aaai.org/ojs/index.php/AAAI/article/view/6480
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1906.08237
https://doi.org/10.1007/978-3-642-03013-0_15
https://doi.org/10.1007/978-3-642-03013-0_15

3436

Appendix

A Parameter settings

Section Approach Hyperparameter Value

Model

GPT

ffn_hidden 512
hidden 256
num_head 8
num_layer 6
batch size 32
sequence length 512
learning rate 0.00015
epoch(pre-train) 15
epoch(fine-tune) Early Stop

LSTM

hidden 128
num_layer 2
batch size 128
sequence length 60
learning rate 0.005
epoch Early Stop

N-gram

hidden 300
context size 3
batch size 40000
learning rate 0.005
epoch Early Stop

Beam Search - beam size 20
max iteration 10

Table 6: Parameters of APIRecX and baseline

B Retrain and pre-train

Our experiments shows that the “pre-train&fine-
tune” mechanism is effective and efficient than
the one-step training strategies. Table 8 lists
the domain API recommendation accuracy of the
model trained in three training strategies. “Pre-
train&fine-tune” represents the strategy used in
training APIRecX introduced in Section 2.3, “re-
train” means training APIRecX from scratch us-
ing three different proportions of fine-tuning data
combined with pre-training data in three domains.

Beam size Sample Top-1 Top-5 Top-10
0.2% 38.4 71.3 76.5

10 10% 45.2 79.4 84.3
100% 58.7 88.1 92.7
0.2% 38.2 73.1 79.3

15 10% 46.6 78.6 84.6
100% 58.8 88.1 93.7
0.2% 38.2 74.8 81.2

20 10% 46.9 79.9 85.7
100% 60.0 89.4 94.5
0.2% 38.5 74.1 81.5

25 10% 46.6 83.1 85.7
100% 59.6 88.7 93.1
0.2% 38.4 73.5 81.9

30 10% 45.3 80.1 86.7
100% 58.8 88.2 93.9

Table 7: Different beam size results in JDBC domain

Domain Ratio Strategy Top-1 Top-5 Top-10

JDBC

100%
pre-train&fine-tune 60 89.4 94.5
retrain 54.5 85.6 91.1
scratch 52.9 85.4 91.9

10%
pre-train&fine-tune 46.9 79.9 85.7
retrain 42.1 71.5 79.4
scratch 30.2 56.9 64.7

0.2%
pre-train&fine-tune 37.6 75 81.2
retrain 27.7 50.4 53.1
scratch 13.2 33.2 33.3

Swing

100%
pre-train&fine-tune 54.8 77.2 83.7
retrain 44.4 71.3 77.6
scratch 48.8 75.3 80.8

10%
pre-train&fine-tune 40.6 67.8 74.5
retrain 33.6 57.9 64.2
scratch 25.9 50.7 60.6

0.2%
pre-train&fine-tune 25 43.8 51.2
retrain 23.6 43.1 47.7
scratch 3.2 4.9 8.8

IO

100%
pre-train&fine-tune 63.9 84.2 88.7
retrain 62.7 81.9 87.2
scratch 32.4 62.8 71.4

10%
pre-train&fine-tune 56.9 75.9 80.5
retrain 56.9 74.9 79.1
scratch 0.7 10.2 20.8

0.2%
pre-train&fine-tune 52.9 69.5 73.7
retrain 51.7 68.4 71.3
scratch 0.05 0.05 1.4

Table 8: Pre-train and retrain result

“Scratch” means training APIRecX from scratch us-
ing only three different proportions of fine-tuning
data. As shown in Table 8, the “pre-train&fine-
tune” mechanism is better than the other two one-
step strategy at three sampling ratios, and proves
superiority under low sampling ratios.

C Beam Size evaluation

We evaluate the effectiveness of different beam
size under three different sampling ratios of JDBC
domain to find the suitable beam size. Table 7
lists the average recommendation accuracy rates
achieved in 5 different beam sizes under three dif-
ferent sampling ratios in JDBC domain. Table 7
shows that, as the beam size increases, the dura-
tion and the accuracy both increases. After the
beam size reaches 20, the accuracy increases rather
slowly and remains basically unchanged. To bal-
ance the performance and efficiency of APIRecX,
we set beam size to be 20 as the parameter of other
comparative experiments.

