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Abstract
We propose a deep generative model that
performs typography analysis and font re-
construction by learning disentangled man-
ifolds of both font style and character
shape. Our approach enables us to mas-
sively scale up the number of character
types we can effectively model compared
to previous methods. Specifically, we infer
separate latent variables representing char-
acter and font via a pair of inference net-
works which take as input sets of glyphs
that either all share a character type, or be-
long to the same font. This design allows
our model to generalize to characters that
were not observed during training time, an
important task in light of the relative spar-
sity of most fonts. We also put forward
a new loss, adapted from prior work that
measures likelihood using an adaptive dis-
tribution in a projected space, resulting in
more natural images without requiring a
discriminator. We evaluate on the task of
font reconstruction over various datasets
representing character types of many lan-
guages, and compare favorably to modern
style transfer systems according to both au-
tomatic and manually-evaluated metrics.

1 Introduction
The majority of written natural language
comes to us in the form of glyphs, visual repre-
sentations of characters generally rendered in
a font with a contextually appropriate style.
In order to be legible a glyph must be recog-
nizable as its corresponding character from its
underlying shape, but it must also be stylisti-
cally consistent with the other glyphs in that
font. While this labor intensive process is typ-
ically performed manually by human artists,
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Figure 1: Supported glyphs in Google Fonts orga-
nized by character type and font. A blue pixel in-
dicates that column’s font includes that row’s char-
acter. Our proposed model allows font reconstruc-
tion over this large, sparse character set.

the number of character types that a font
may be expected to support is extremely large,
with Unicode 13.0.0 including as many as
143,859 character types (Unicode). As a re-
sult, graphic designers often create glyphs only
for a subset of these characters, which tends to
be determined by their own cultural context.
This can create an accessibility gap for users
seeking to create or read digital content in
languages with less widespread orthographies,
due to the relative lack of available options.
Figure 1 shows that within the Google Fonts
library (Google) there is a long tail of fonts
with a large proportion of missing glyphs.

Font reconstruction is a task that attempts
to solve this problem. The goal is for a model,
given a small set of example glyphs from an
incomplete font, to generate glyphs for the re-
maining characters in a consistent style. Prior
work has approached this in various ways, al-
beit with some limitations. While some ap-
proaches use a variational framework (Srivat-
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san et al., 2019; Lopes et al., 2019), gener-
ally their models only treat the font style
as a latent variable, and not the character
shape. Such methods can therefore only han-
dle a small, fixed, and an a priori known set of
character types. Other work such as that by
by Zhang et al. (2018); Gao et al. (2019) use
discriminative models which dynamically com-
pute both embeddings, allowing them to gen-
eralize to unseen characters. However these
networks typically require a pre-specified num-
ber of observations as input, and their lack of
a probabilistic prior can lead to learning a brit-
tle manifold on datasets with a large number
of infrequently observed characters.
By contrast, our method learns two smooth

manifolds over character shape and font style
in order to better share parameters across
structurally similar characters, letting it scale
to a larger set and more effectively generalize
to characters never seen during training. Our
model treats font reconstruction as a matrix
factorization problem, where we view our cor-
pus as a matrix with rows corresponding to
character type, and columns corresponding to
fonts. Each row and column is assigned a la-
tent variable that determines its structure or
style respectively. A decoder network consist-
ing of transposed convolutional layers parame-
terizes the model’s distribution on each cell in
that matrix, i.e. an image of a glyph, condi-
tioned on the corresponding row and column
embeddings. This approach can be thought of
as a generalization of Srivatsan et al. (2019),
who used a similar factorization framework,
but with only one manifold over font style.

In addition to model structure, the loss
function is also important in font reconstruc-
tion as pixel independent losses like L2 tend
to produce blurry output, reflecting an aver-
aged expectation instead of something realis-
tic. Some have used generative adversarial net-
works (GANs) to mitigate this (Azadi et al.,
2018), but these can suffer from missing modes
and collapse issues. We instead introduce a
novel adaptive loss to font reconstruction that
operates on a wavelet image representation,
while still permitting a well formed likelihood.

Specifically, in this paper we make the fol-
lowing contributions: (1) Propose the “Dual
Manifold” model which treats both style and

structure representations as latent variables
(2) Propose a new adaptive loss function for
synthesizing glyphs, and demonstrate its im-
provements over more common losses (3) Put
forward two datasets that emphasize few-shot
reconstruction, along with a preprocessing
technique to remove near-duplicate fonts re-
sulting in more challenging train/test splits.
We evaluate on the task of few-shot font

reconstruction, reporting the structural sim-
ilarity (SSIM) – a popular metric for image
synthesis better correlated with human judge-
ment than L2 (Snell et al., 2017) – between
reconstructions and a gold reference. These ex-
periments are further split into known charac-
ters, which the model observed in at least one
font at train time, and unknown characters,
which can be thought of as a few-shot task. In
addition we also perform human evaluation us-
ing Amazon Mechanical Turk. Our approach
outperforms various baselines including near-
est neighbor, the single manifold approach we
build on (Srivatsan et al., 2019), and the previ-
ously mentioned discriminative model (Zhang
et al., 2018).

2 Related Work

A variety of style transfer work has focused
specifically on font style, and therefore, font
reconstruction. Some approaches have sought
to model the style aspect as a transformation
on an underlying topological or stroke-based
representation which must be learned for each
character (Campbell and Kautz, 2014; Phan
et al., 2015; Suveeranont and Igarashi, 2010).
However this requires characters to have con-
sistent topologies across fonts. Other work has
learned a font skeleton manifold using Gaus-
sian Process Latent Variable Models (Lian
et al., 2018). One of the more philosophi-
cally similar approaches to ours is the bilin-
ear factorization model of Freeman and Tenen-
baum (Freeman and Tenenbaum, 1997; Tenen-
baum and Freeman, 2000) which also learns
vector representations for each font and char-
acter type, albeit in a non-probabilistic and
linear manner. Some more recent research
has treated font reconstruction as a discrimi-
native task, using modern neural architectures
and techniques from the style transfer litera-
ture (Zhang et al., 2018, 2020; Azadi et al.,
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Figure 2: Overview of our generative factorization model, and important architecture details. Glyphs
in the same row share a latent variable Yi representing character shape, and those in the same column
share Zj representing font style. These variables are inferred by a network that takes in an entire row or
column. Our decoder combines these representations to output a distribution on the glyph image.

2018; Gao et al., 2019). Furthermore the con-
cept of learning manifolds for Chinese charac-
ters based on shared structure has also been
studied (Cao et al., 2018), albeit with different
downstream goals. Lopes et al. (2019) used
VAEs which do not observe font alignment
across glyphs, but condition on the character
type (this work also primarily focuses on gener-
ating vector instead of pixel representations).
Finally, more general-purpose style transfer
methods for images are well explored (Gatys
et al., 2015; Yang et al., 2019; Johnson et al.,
2016; Wang and Gupta, 2016; Kazemi et al.,
2019; Chen et al., 2017; Ulyanov et al., 2016a),
although these largely lack inductive biases
specially suited to typography.

3 Dual Manifold Model

Srivatsan et al. (2019) is the most similar prior
work, as it also builds from a matrix factoriza-
tion framework, and learns a latent manifold
over font embeddings. Our model generalizes
theirs by learning a second manifold over char-
acter shape, letting us massively scale up the
number of characters that can be modeled. In
Section 4 we also describe our novel loss.
Figure 2 depicts our model’s generative pro-

cess. For a corpus consisting of J fonts, each
defined over up to I character types, we char-
acterize each particular glyph image as a com-
bination of properties relating to the style of
that particular font and to the shape of that
character. Our model effectively factorizes the
data by assigning a vector representation to ev-
ery row and column which correspond to char-

acter and font respectively. Therefore, our ap-
proach works by leveraging the fact that all
glyphs of the same character type (i.e. an en-
tire row in our data) share the same underly-
ing structural shape, and all glyphs within the
same font (i.e. an entire column) share the
same stylistic properties. By forming separate
representations over each of these two axes of
variation, we can reconstruct missing glyphs in
our data by separately inferring the relevant
row and column variables, and then pushing
new combinations of those inferred variables
through our generative process. This can be
thought of as a form of matrix completion,
where unobserved entries correspond to char-
acters not supported by particular fonts.

Given a corpus X consisting of I charac-
ters across J fonts, we assign to each observed
glyph Xij a pair of latent variables which
model the properties of that glyph’s charac-
ter type and font style. Specifically we define
these as Yi ∈ R

k and Zj ∈ R
k, which we draw

from a standard Gaussian prior N (0, Ik), with
Y modeling the shape of the character (e.g.
a q or <), and Z modeling the properties of
the font (e.g. Times New Roman or Roboto
Light Italic). Given a particular Yi and Zj , we
combine them via a neural decoder to obtain
a distribution p(Xij |Yi, Zj ; θ) which scores the
corresponding glyph image Xij . This yields
the following likelihood function:

p(X,Y, Z; θ) =
∏

I p(Yi)
∏

J p(Zj)
∏

I,J p(Xij |Yi, Zj ; θ)

Both Y and Z are unobserved, and we must
therefore infer both to train our model and pro-
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duce reconstructions at test time. Note that
by contrast, Srivatsan et al. (2019) represents
characters as fixed parameters, and must only
perform inference over font representations.
We use a pair of encoder networks to perform
amortized inference, as depicted in Figure 3.

3.1 Decoder Architecture
The basic structure of our decoder is largely
identical to the popular U-Net architec-
ture (Ronneberger et al., 2015) which has seen
much success on image generation tasks with
its coarse-to-fine layout of transposed convo-
lutional layers. However, we make a few key
modifications (depicted in Figure 2) in order
to imbue our decoder with stronger inductive
bias for this particular task. Following Srivat-
san et al. (2019), instead of directly param-
eterizing the transposed convolutional layers
that appear within each block of the network,
we allow the weights of each layer to be the
output of an MLP that takes as its input the
font variable Zj . This is effectively a form of
HyperNetwork (Ha et al., 2016), a framework
in which one network is used to produce the
weights of another. In this way, the parame-
ters of the transposed convolutional layers are
dynamically chosen based on the font variable.
By contrast, Yi is the input fed in at the top of
the decoder, to which these filters are applied.
The purpose of this asymmetry is to encourage
Zj to learn properties relating to finer stylis-
tic information, while Yi learns more spatial
information about the characters. In another
manner of speaking, Yi should learn “what” to
write, and Zj should learn “how” to write it.

4 Adaptive Wavelet Loss

Our decoder architecture outputs a grid of val-
ues, but an important decision is what dis-
tribution (and therefore loss) these should fi-
nally parameterize to score actual pixels. Tra-
ditional approaches using variational autoen-
coders have modeled each pixel as an inde-
pendent Normal distribution, which results in
the model minimizing the L2 loss between its
output and gold. This however leads to over-
smoothed images, as it treats adjacent pix-
els as independent despite their strong corre-
lations (Bell and Sejnowski, 1997), and fails
to account for the heavy-tailed distribution of

oriented edges in natural images (Field, 1987).
As a result L2 penalizes the model for gen-
erating images that are realistic but slightly
transposed or otherwise not perfectly aligned
with gold, which encourages models to produce
fuzzy edges in order to be closer on average.
GANs are often employed to force sharper out-
put (Azadi et al., 2018; Gao et al., 2019), but
following recent work we instead use a pro-
jected loss for a similar effect.
At a high level, our approach will first

project images to a feature space, and let the
model’s output parameterize a distribution on
this projection. If that projection is invertible
and volume-preserving, this is equivalent to di-
rectly parameterizing a distribution on pixels,
but allows for more expressivity (Rezende and
Mohamed, 2015; Dinh et al., 2014, 2016). Ide-
ally, such a loss requires a distribution expres-
sive enough to capture the variable frequency
characteristics of natural images, and a repre-
sentation of the image that explicitly reasons
about spatially-localized edges.
A good example of this technique is that

of Srivatsan et al. (2019), which modeled im-
ages by placing a Cauchy distribution on a
2D Discrete Cosine Transform (DCT) repre-
sentation of glyphs. Though this is an im-
provement over the default choice of placing
a Normal distribution on individual pixels as
it both decorrelates pixels and is tolerant of
outliers, this approach is limited in its expres-
siveness and its ability to model spatially lo-
calized edges: Cauchy distributions are exces-
sively heavy-tailed and so have difficulty mod-
eling inliers, and since DCT is a global repre-
sentation it does not allow the model to reason
about where image gradient content is located.

Image

A
DCT

Wavelet

Cauchy

Adaptive
Projection

A

We extend this approach in two ways (as
depicted above): (1) by using a wavelet im-
age representation instead of DCT, and (2) by
using a distribution with an adaptive shape
instead of a Cauchy.
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Representation We opt for a wavelet rep-
resentation, as unlike DCT it jointly encodes
the frequency and spatial location of an image
feature. As might be expected, an image repre-
sentation in which location is directly encoded
is helpful in our task; a stroke has a fundamen-
tally different meaning at the top of a charac-
ter than at the bottom. Barron (2019) quanti-
tatively demonstrated the advantages of specif-
ically the Cohen-Daubechies-Feauveau (CDF)
9/7 wavelet decomposition (Cohen et al.,
1992) for training likelihood-based models of
natural images. Based on their findings that
CDF 9/7 in front of an adaptive loss achieves
better performance than DCT in front of a
Cauchy (the setup of Srivatsan et al. (2019)),
we expect similar performance benefits in the
context of our own model, and our ablations in
Table 1 (Right) support this belief empirically.

Distribution An adaptive distribution lets
the model select between using leptokurtotic
(Cauchy-like) distributions that are well suited
to the high-frequency image edges found at the
finer levels of the wavelet decomposition, or
more platykurtic (Normal-like) distributions
that are better suited to low-frequency DC-
like average image intensities found at the
coarsest levels of the wavelet decomposition.
Specifically, we use the probability distribu-
tion of Barron (2019):

f(x|µ, σ, α) =
exp
(

−
|α−2|

α

(

(

(x−µ)2

σ2|α−2|
+1

)

α/2

−1

))

σZ(α)

where Z(α) is the distribution’s partition
function, and α determines the distribution’s
shape. As α → 0 the distribution approaches
a Cauchy distribution, as α → 2 the distribu-
tion approaches a Normal distribution.
Taken together, these yield a conditional

likelihood function parameterized by the de-
coder of our variational model, which we
now describe. Given an image Xi,j , we first
project it using the CDF 9/7 wavelet decompo-
sition – which we denote as ψ(Xi,j). Because
this decomposition is a biorthogonal volume-
preserving transformation, it can be applied
before the likelihood computation. It further
serves as a whitening transformation, avoiding
the need to learn a covariance matrix for Xi,j .

Our decoder outputs a grid of parameters
X̂i,j , the projection of which serves as the

mean µ of our adaptive distribution for scoring
ψ(Xi,j). For the other distribution parameters
σ and α, rather than using fixed settings we
construct a set of latent variables for both: we
allow each wavelet coefficient to have its own
vector of latent shape parameter ℓα and scale
parameter ℓσ, where the non-latent shape and
scale are parameterized as scaled and shifted
sigmoids and softplus of those latent values:

αk = 2
1+exp(ℓαk )

, σk =
log(1+exp(ℓαk ))

log(2) + ϵ

We initialize ℓ
α = ℓ

σ = 0⃗, thereby initializ-
ing α = σ = 1⃗. These latent variables (ℓα, ℓσ)
are optimized during training using gradient
descent along with all other model parameters
θ, which allows the model to adapt the shape
and scale of each wavelet coefficient’s distribu-
tion during training. Overall, this yields the
following likelihood function:

p(Xi,j |Yi, Zj ; θ) =
∏

k f(ψ(Xi,j)k|ψ(X̂i,j)k, σk, αk)

5 Learning and Inference
We now describe our approach to training this
model. This process mirrors that of previous
variational work, although since we are learn-
ing a dual manifold, our model will require two
separate inference networks. The projected
loss we add (Section 4) will not fundamentally
affect the learning process, but does change
how the reconstruction term is computed.
As our model is generative, we wish to max-

imize the log likelihood of the training data
with respect to the model parameters, which
requires summing out the unobserved vari-
ables Y and Z. However, this integral is in-
tractable and does not permit a closed form
solution. We therefore resort to optimizing
a variational approximation, a strategy which
has seen success in similar settings (Kingma
and Welling, 2014; Srivatsan et al., 2019).
Rather than directly optimize the likelihood
(which we cannot compute the gradient of),
we maximize a lower bound on it known as
the Evidence Lower Bound (ELBO). We com-
pute the ELBO via a function q(Y, Z|X) =
q(Y |X) ∗ q(Z|Y,X) which approximates the
posterior p(Z, Y |X) of the distribution defined
by our decoder network.

ELBO = Eq[log p(X|Z, Y )]−KL(q(Z, Y |X)||p(Z)p(Y ))



3065

Figure 3: Overview of
the inference procedure.
First the character en-
coder infers a represen-
tation of structure over
each row, and then the
font encoder infers a rep-
resentation of style con-
ditioned on a (perhaps
partially observed) col-
umn and the character
embeddings.

We define q(Y |X) and q(Z|Y,X) via a pair
of encoder networks which operate over one
row or column of the matrix respectively. An
encoder passes each glyph in that row or col-
umn through a series of convolutional layers,
and then max pools the output features across
all glyphs, ensuring it can handle a variable
number of observations (See Figure 3). Note
that the method of pooling (e.g. min, max,
avg), as well as the order in which to infer Y
and Z are important choice points that allow
for different inductive biases. The pooled fea-
ture representation is then passed through an
MLP which outputs parameters µ and Σ to de-
fine a Gaussian posterior over Yi or Zj . Given
these, we compute approximate gradients on
the ELBO via the reparameterization trick de-
scribed by Kingma and Welling (2014).

6 Experiments

We evaluate on the task of font reconstruc-
tion, in which given a small random subset of
glyphs from a held out font, models must re-
construct the remaining ones. We separately
report performance on known (i.e. observed
at least once during training) and unknown
character types. During training, we mask
out a randomly chosen 20% of character types
to serve as unknowns. At test time, models
observe examples of previously masked char-
acters to infer their representations for recon-
struction. This can be thought of as a few-shot
task, where models must generate glyphs for
character types they did not observe at train
time based on limited test-time examples.

6.1 Datasets
Capitals64, the dataset used by Azadi et al.
(2018) and Srivatsan et al. (2019), only con-

tains the 26 English capital letters, with no
missing characters, meaning it does not re-
quire learning a manifold over character shape.
We instead evaluate on the following datasets
to best demonstrate our method’s ability to
scale to settings with a large number of char-
acter types and a high degree of sparsity.

Google Fonts Google Fonts is a dataset of
991 font families, which is publicly available1.
Most fonts in the dataset support standard
Latin characters, but many also support spe-
cial symbols, and characters found in Greek,
Cyrillic, Tamil, and several other orthogra-
phies. A visualization of this is shown in Fig-
ure 1. We restrict our work to the 2000 most
frequently supported character types for sim-
plicity. After removing near duplicates (de-
scribed below) we are left with 2017 fonts in
total, split into train, dev, and test in a 3 : 1 : 1
ratio. The data was split by font family rather
than individual fonts, to ensure that there are
no fonts in train with a “sibling” in test.

Chinese Simplified We scraped a list of
the most common 2000 Chinese simplified
characters from the internet as well as a
dataset that labels each character’s radical.
Together, we compile a new dataset that con-
sists of the most common 2000 Chinese charac-
ters along with their radicals for further anal-
ysis on the character embeddings. For each
Chinese character, we scraped over 1524 fonts,
split similarly to Google Fonts. The total font
number shrinks down to 623 after removing
near duplicates, which we now discuss.

Removing near duplicates One major is-
sue with font corpora is that most fonts be-
long to a small handful of modes, within which
there is little stylistic diversity. To ensure

1https://github.com/google/fonts

https://github.com/google/fonts
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that our metrics best measure generalization
to novel fonts unlike those seen in train, we
preprocess out fonts that are extremely sim-
ilar to others in the data. We first perform
agglomerative clustering, and then retain only
the centroid of each cluster. The number of
clusters is determined by cutting the dendro-
gram at a height which eliminates most fonts
that are to a human largely indistinguishable
from their nearest neighbor.

6.2 Baselines
We compare our model – which we refer to
as Dual Manifold – to two baselines and
various ablations. Our primary baseline is
EMD (Zhang et al., 2018), a discriminative
encoder-decoder model that does not share em-
beddings across “rows” and “columns”, but
rather computes style and content representa-
tions for each glyph given a set of provided
examples, and then passes them to a gener-
ator which constructs the final image. This
model is useful for comparison as it has a simi-
lar computation graph and also learns separate
embeddings for font and character shape, but
computes its loss directly in pixel space, and
lacks a probabilistic prior.
We also compare to a naive nearest neigh-

bor (NN) model, which reconstructs fonts at
test time by finding the font in train with the
closest L2 distance over the observed charac-
ters, and outputs that neighbor’s correspond-
ing glyphs for the missing characters. If the
neighbor does not support all missing char-
acters, we pull the remaining from the 2nd
nearest neighbor, and so on. It should be
noted that NN cannot reconstruct any char-
acter that is not present in train.
Similarly to EMD, the first of our ablations,

denoted -KL, does not explicitly model the
character and font embeddings as random vari-
ables. This effectively removes the KL diver-
gence from the loss function, resulting in a
non-probabilistic autoencoder. The next, de-
noted -Dual, is an ablation which treats the
character representations as parameters of the
model, rather than latent variables which must
be inferred. This is essentially the model of Sri-
vatsan et al. (2019) with our architecture*. We
also ablate our adaptive wavelet loss against
the DCT + Cauchy loss used by Srivatsan
et al. (2019), denoted with -Adapt. Finally,

we compare performing Max or Min pooling
over elements of a row/column within the en-
coder network.

6.3 Training Details
We perform stochastic gradient descent using
Adam (Kingma and Ba, 2015), with a step
size of 10−4. Batches contain 10 fonts, each
with only 20 random characters observable
to encourage robustness to the number of in-
puts. However at test time, the model can
infer the character representations Y based
on the the entire training set. We find best
results when both character and style repre-
sentations are k = 256 dimensional. See Ap-
pendix A for a full description of architecture.
Our model trains on one NVIDIA 2080ti GPU
in roughly a week, and is implemented in Py-
Torch (Paszke et al., 2017) version 1.3.1

6.4 Metrics
We measure average SSIM per glyph (Azadi
et al., 2018; Gao et al., 2019), having scaled
pixel intensities to [0, 1]. While the details
of SSIM are beyond the scope of this paper,
it can be thought of as a feature-based met-
ric that does not factor over individual pix-
els, but rather looks at the matches between
higher level features regarding the structure
of the image. SSIM is widely used in image
processing tasks since it measures structural
similarity instead of raw pixel distance, and
has been shown to better correlate with hu-
man judgement than L2 (Snell et al., 2017).
Evaluating models using L2 can reward unre-
alistic reconstructions that split the difference
between many hypotheses as opposed to pick-
ing just one (part of the reason we avoid train-
ing our model on such a loss). Over the course
of individual training runs, we found it was
almost counter correlated with human judge-
ment, with the lowest distance early in train-
ing while output was blurry, becoming larger
as the model converged. We do however in-
clude these numbers in Appendix B, as they
nonetheless support our findings.
We also perform human evaluation using

Amazon Mechanical Turk. For each font in
our test set, 5 turkers were shown 8 example
glyphs, and a sample of reconstructions for the
remaining characters by Dual Manifold and
EMD. Turkers were also shown examples of
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Observations 1 8 16 32 1 8 16 32
Google Fonts: Known Char Google Fonts: Unknown Char

NN 0.755 0.816 0.830 0.839 - - - -
EMD 0.706 0.702 0.539 0.597 0.698 0.695 0.534 0.595

Dual Manifold 0.799 0.828 0.833 0.834 0.801 0.826 0.829 0.830
Chinese Simplified: Known Char Chinese Simplified: Unknown Char

NN 0.428 0.488 0.495 0.499 - - - -
EMD 0.278 0.271 0.291 0.288 0.270 0.266 0.283 0.280

Dual Manifold 0.392 0.405 0.407 0.407 0.375 0.387 0.390 0.390

Observations 1 8 16 32
+Dual, +KL, +Adapt, Min 0.7728 0.8041 0.8083 0.8088

Srivatsan et al. (2019)* 0.713 0.702 0.701 0.698
-Dual, +KL, +Adapt, Max 0.704 0.703 0.701 0.703
+Dual, -KL, +Adapt, Max 0.785 0.817 0.821 0.823
+Dual, +KL, -Adapt, Max 0.795 0.823 0.828 0.829
+Dual, +KL, +Adapt, Max 0.799 0.828 0.833 0.834

Table 1: (Left) SSIM per glyph by number of observed characters for Google Fonts and Chinese Simplified.
(Right) Ablations of our model, showing SSIM results on known characters in Google Fonts.

Figure 4: Generated
glyphs for interpolat-
ing between both char-
acter type (horizontal
axis) and font style
(vertical axis) simulta-
neously.

each character in a neutral style. They were
asked to select which if either reconstruction
was better, and briefly justify their reasoning.

7 Results

7.1 Quantitative Evaluation
We list SSIM results in Table 1 for various
numbers of observed characters. Note that
NN is not capable of reconstructing charac-
ter types not observed at training time. On
Google Fonts, our model performs best overall;
however on Chinese Simplified, we see NN win-
ning on known characters, as well as a marked
drop in SSIM overall. This could be due to the
increased challenge in generating Chinese char-
acters given the relatively higher number of
strokes, leading SSIM to prefer the realism of
NN, or because fonts in this dataset generally
contain most characters, unlike Google Fonts
which is much sparser. Observing more char-
acters taperingly increases similarity, which
matches our intuition that this allows for a bet-
ter understanding of stylistic properties. Per-
formance drops when evaluating on characters
not observed in training. This makes sense as
models may have less support in their mani-
folds for structural forms they were not trained
on, but the drop is small enough to suggest
our model is able to infer meaningful represen-
tations for novel character types at test time.
We see also that EMD has significant issues

Known Unknown

Observed chars: Observed chars:

Known Unknown

Figure 5: Reconstructions of two fonts from our
model, EMD, and NN — shown in black in that
order — for both known and unknown character
types. Green characters show the expected shape
in a neutral font, and blue characters are a sample
of those observed by the models for either font.

at 16 and 32 observed characters (it’s worth
noting that EMD must be separately trained
for each number of observations). Qualita-
tively, we find certain fonts for which EMD
emits the same output for every character in
that font. We suspect this indicates overfit-
ting leading to broken style representations for
some novel fonts when given more observations
than its default of only 10.
Within our ablations, we find that using a

dual latent manifold, as opposed to treating
character embeddings as model parameters,
is responsible for the majority of our gain in
SSIM over prior work. The next largest dif-
ference comes from using either Min pooling
within the autoencoder or Max pooling. We
also see more of a drop in performance from
removing the KL divergence, than we do from
replacing our adaptive wavelet loss with the
DCT + Cauchy loss.

7.2 Human Evaluation
In our AMT experiments, we found that for
48.2% of known character reconstructions,
turkers preferred our model’s output, with
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Others

亻

口

扌

木

氵

Others

心

火

王

纟

马

Others

丨

丿

刂

攵

木

Figure 6: t-SNE plot of Chinese character embeddings from our model for the top 5 radicals (left), and
randomly chosen groups of 5 (middle, right).

42.0% preferring EMD, and 9.8% finding both
equal. For unknown character reconstructions,
50.5% preferred ours, vs 38.7% for EMD, and
10.9% finding no difference. A majority of
turkers agreed 86.3% of the time in the case of
known characters, and 83.2% for unknown.

8 Analysis

8.1 Qualitative Inspection
In Figure 4 we show output from our model
interpolating between a bold font and a light
one, as well as a capital E and a Σ simulta-
neously. This demonstrates the smoothness
of our manifolds and also suggests how they
might offer support for font and character
types not seen during training. Figure 5 shows
examples of reconstructions by models on two
fonts for a variety of both known and unknown
characters. Our approach is more coherent
and faithful than EMD, and NN is realistic
but often stylistically incorrect.

8.2 Chinese Radicals
Figure 6 shows t-SNE projections (Maaten
and Hinton, 2008; Van Der Maaten, 2014) of
learned character embeddings colored by their
radical, a sub-component of Chinese charac-
ters. Radicals like 丨, 丿, and 火 — which
either share forms with others or can occur in
different structures — don’t cluster together,
while unique radicals like 心, 刂, and 攵 do.

9 Conclusion

In this work introduced a generative model
for typography capable of reconstructing char-
acters in a novel font, of a novel shape, or
both, and demonstrated its improvements over
previous approaches on two datasets contain-
ing large numbers of characters. We analyzed

the results qualitatively, and inspected learned
manifolds for smoothness.
In future work, this methodology has poten-

tial value not just to fonts, but to any do-
main which can also be factored over inde-
pendent axes of variation, such as handwrit-
ing by different authors. One could also in-
corporate this model into more complex down-
stream tasks such as OCR. That being said,
these domains also feature complex interac-
tions between physically adjacent glyphs (our
model treats different characters within a font
as conditionally independent), so some further
innovation would likely still be required.
There are also extensions to the model itself

that might be worth exploring in future work,
for instance operating on a stroke-based rep-
resentation in order to perform reconstruction
in the original TTF space instead of raw pixel
space as we do here. This would also likely as-
sist with smoothness of edges and reduce the
incidence of “corroded”output glyphs.

Broader Impact
As our work can be used to augment or even
replace the labor of human artists, it is worth
discussing its potential broader impacts. The
most obvious positive is that this technique
can add value to font designers, by minimizing
the overhead required to design a font that sup-
ports widespread internationalization. Our
model’s ability to interpolate stylistic proper-
ties can also make it easy to automatically gen-
erate completely novel fonts that are roughly
similar to existing ones.
This also benefits speakers of languages that

rely on less common glyphs, as it broadens
their font selection. It can make it easier for
them to both produce and consume digital con-
tent, allowing for better accessibility for demo-
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graphics that currently have fewer options for
orthographies they are most familiar with.
One potential negative impact is on the busi-

ness of some font artists who cater to niche
audiences that have less common glyph needs.
Our model could potentially be used to replace
such workers, and if so could also lead to less
coherent renderings for uncommon orthogra-
phies if those who are not fluent in such scripts
simply employ our system without a thorough
understanding of the types of errors it may
make.
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A Architecture Details
The architectures of our encoder and decoder
are largely identical to that of U-Net (Ron-
neberger et al., 2015) with key differences de-
scribed here. We find significantly improved
results by inserting Instance Normalization
layers (Ulyanov et al., 2016b) after convolu-
tion layers in our decoder. We also replace the
max pool layers within the encoder with blur
pool layers (Zhang, 2019). As stated previ-
ously, we max pool the output of the encoders
across character types or fonts, and then pass
the flattened pooled representation through a
fully connected layer to obtain the approxi-
mate posterior parameters µ and Σ. A simi-
lar fully connected layer projects the charac-
ter representation Yi to the appropriate size
before being passed to the decoder. As noted
earlier, the parameters of the last two trans-
posed convolutional layers in the decoder are
dynamically output by MLPs which take as in-
put the font representation Zj . These consist
of a 256 dimensional fully connected layer, a
ReLU, and then a second fully connected layer
to produce the relevant parameter.
We now provide further details on the spe-

cific layer sizes used in our model and inference
network. The following abbreviations are used
to represent various components:

• Fi : fully connected layer with i hidden
units

• R : ReLU activation

• S : sigmoid activation

• M : batch max pool

• B : 2× 2 spatial blur pool (Zhang, 2019)

• Ci : convolutional layer with i filters of
3× 3, 1 pixel zero-padding, stride of 1

• I : instance normalization

• Ti : transpose convolution with i filters of
2× 2, stride of 2

• Di : transpose convolution with i filters of
2×2, stride of 2, where kernel and bias are
the output of an MLP (described below)

• H : reshape to −1× 256× 8× 8

Our encoder is:
C64 −R−C64 −R−C64 −R−B −C128 −

R−C128−R−B−C256−R−C256−R−B−
C512 −R− C512 −R−B −M − F512

Our decoder is:
F1024×8×8 − T1024 − C512 − I − R − C512 −

I −R− T512 −C256 − I −R−C256 − I −R−
D256 − C128 − I −R− C128 − I −R−D128 −
C64 − I −R− C64 − I −R− C1 − S

MLP to compute transpose convolutional
parameter of size j is:
F256 −R− Fj

B L2 Results
In Table 2 we show results on Google Fonts
and Chinese simplified for our model and base-
lines in terms of L2. Rankings are generally
the same, and see that our approach performs
best by this metric as well as SSIM.We do how-
ever note that in places the L2 numbers and
SSIM numbers are not well correlated, and
attribute this to L2’s propensity for reward-
ing blurry output that minimizes expected dis-
tance over sharp output that may have slightly
misaligned edges.
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Google Fonts: Known Char Google Fonts: Unknown Char
Observations 1 8 16 32 1 8 16 32

NN 405.15 258.11 227.91 207.04 - - - -
EMD 371.06 367.18 658.85 512.26 378.08 375.19 667.66 511.69

Dual Manifold 275.56 202.58 193.34 189.94 276.47 212.76 205.34 202.91
Chinese Simplified: Known Char Chinese Simplified: Unknown Char

NN 1086.58 908.58 883.18 872.52 - - - -
EMD 1013.80 1019.97 1288.32 1287.85 1303.96 1020.89 1303.92 1303.48

Dual Manifold 916.41 879.03 873.48 868.41 917.91 883.60 878.77 875.03

Table 2: L2 per glyph by number of observed characters for Google Fonts and Chinese Simplified.


