
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 3033–3044
November 7–11, 2021. c©2021 Association for Computational Linguistics

3033

GAML-BERT: Improving BERT Early Exiting by Gradient Aligned
Mutual Learning

Wei Zhu1,2, Xiaoling Wang1∗, Yuan Ni2, Guotong Xie2,3,4

Zhen Guo5, Xiaoming Wu5

1 East China Normal University, Shanghai, China
2 Ping An Health Tech, Beijing/Shanghai, China
3 Ping An Healthcare and Tech, Shanghai, China

4 Ping An International Smart City, Shenzhen, China
5 Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China

Abstract
In this work, we propose a novel framework,
Gradient Aligned Mutual Learning BERT
(GAML-BERT), for improving the early ex-
iting of BERT. GAML-BERT’s contributions
are two-fold. We conduct a set of pilot ex-
periments, which shows that mutual knowl-
edge distillation between a shallow exit and
a deep exit leads to better performances for
both. From this observation, we use mutu-
al learning to improve BERT’s early exiting
performances, that is, we ask each exit of
a multi-exit BERT to distill knowledge from
each other. Second, we propose GA, a nov-
el training method that aligns the gradients
from knowledge distillation to cross-entropy
losses. Extensive experiments are conducted
on the GLUE benchmark, which shows that
our GAML-BERT can significantly outperfor-
m the state-of-the-art (SOTA) BERT early ex-
iting methods.

1 Introduction

Since BERT (Devlin et al., 2018), the pre-trained
language models (PLMs) are dominating the field
of natural language processing (NLP). The recent
years have witnessed the rise of many PLMs, such
as GPT (Radford et al., 2019), XLNet (Yang et al.,
2019), and ALBERT (Lan et al., 2020), and so
forth. These BERT-style models achieved consid-
erable improvements in many Natural Language
Processing (NLP) tasks by pre-training on the un-
labeled corpus and fine-tuning on labeled tasks,
such as text classification natural language infer-
ence (NLI), sequence labeling. However, PLMs
are notorious for being gigantic and slow in both
training and inference. Their significant inference
latencies pose great challenges to deployment in
real-time applications, such as chat-bots and search
engines.

In addition, previous literature (Fan et al., 2020;
Michel et al., 2019; Zhou et al., 2020) find that

∗Corresponding author. Email: xlwang@cs.ecnu.edu.cn.

large PLMs with dozens of Transformer layers are
over-parameterized and suffer from the “overthink-
ing” problem (Kaya et al., 2019). That is, for many
input samples, their shallow representations at a
shallow layer are enough to make a correct classifi-
cation. Moreover, the final layer’s representations
may be too overfitting to generalize.1 The over-
thinking problem leads to not only poor generaliza-
tion but also wasted computation.

Addressing the above two issues, a branch of lit-
erature focuses on making PLMs’ inference more
efficient via network pruning (Zhu and Gupta,
2018; Xu et al., 2020; Fan et al., 2020; Michel
et al., 2019; Zhu et al., 2021; Zhu, 2021c,a), knowl-
edge distillation (Sun et al., 2019b; Sanh et al.,
2019; Jiao et al., 2020), weight quantization (Zhang
et al., 2020; Bai et al., 2020; Kim et al., 2021) and
adaptive inference (Zhou et al., 2020; Xin et al.,
2020; Liu et al., 2020). The adaptive inference has
drawn much attention. The adaptive inference is
designated to process simple examples with only
shallow layers of BERT and predict more difficult
queries with deeper layers, thus significantly speed-
ing up the inference time on average while main-
taining high accuracy. The speed-up ratio can be
controlled with certain hyper-parameters to handle
drastic changes in request traffic. What is more, it
can address the over-thinking problem and improve
the model’s generalization ability.

Early exiting is one of the most important adap-
tive inference methods (Bolukbasi et al., 2017). As
depicted in Figure 1, it implements adaptive infer-
ence by installing an early exit, i.e., an intermediate
prediction layer, at each layer of BERT and early
exiting ”easy” samples to speed up inference. At
the training stage, all the exits are jointly optimized
with BERT’s parameters. At the inference stage,
there are two different settings. First, in budgeted
exiting mode, the model makes a prediction with

1The over-thinking problem is observed on SST-2 and
CoLA. The details can be found in the Appendix.

3034

a fixed exit for all queries. This mode deals with
heavy traffic by assigning a shallower exit for pre-
diction. The other one is dynamic exiting mode.
That is, some strategies for early exiting is designed
to decide whether to exit at each layer given the
currently obtained predictions (from previous and
current layers) (Teerapittayanon et al., 2016; Kaya
et al., 2019; Xin et al., 2020; Zhou et al., 2020). In
this mode, different samples can exit at different
depths.

Knowledge distillation (KD) (Hinton et al.,
2015) is of essential importance for improving early
exiting performances. The traditional belief of KD
is that the teacher model (usually a stronger mod-
el) teaches a lower-capacity student model "dark
knowledge" through providing soft targets. As an
application of this traditional belief, recent studies
by Phuong and Lampert (2019); Liu et al. (2020)
improve the training procedure by incorporate KD
losses, which encourages the early exits to mim-
ic the output distributions of the last exit. Yuan
et al. (2019) challenge the common belief of KD
by revealing that knowledge distillation is actual-
ly a learned label smoothing (LS) regularization
(Szegedy et al., 2016), and a weaker teacher can
also enhance a stronger student’s performance via
knowledge distillation. Zhu (2021b) shows that
asking all the exits to learn from one another (mu-
tual learning) is beneficial for early exiting. Sun
et al. (2019a) introduce dense pairwise knowledge
matching operations at certain intermediate lay-
ers of deep convolutional networks during train-
ing, which are demonstrated to be beneficial for
the whole network’s generalization. However, Zhu
(2021b) propose this mutual learning framework in-
tuitively, and does not fully explore the underlying
motivations. Sun et al. (2019a) focuses on improv-
ing the whole network, and does not investigate
how these mutual learning (or knowledge match-
ing) affects each layer’s exiting performances.

In this work, we first conduct a series of
exploratory experiments called pairwise mutual
learning (PML). PML selects two exits of BERT
and consider the finetuning of these exits with or
without adding different knowledge distillation set-
tings. Our experiments show the following three
approaches can imrpove the shallower exit’s perfor-
mances: (1) adding supervisions to deeper exits; (2)
KD from deeper exits; (3) further asking the deeper
exits to learn from this shallow exits. In addition,
via the above approaches, the deeper exit’s perfor-

Figure 1: An illustration of the mutual learning frame-
work.

mance also improves. Our experimental findings is
consistent with and complement the conclusions of
Szegedy et al. (2016) and Sun et al. (2019a). And
thus we adopt the mutual learning (ML) framework
to enhance the training of early exits. ML asks all
the exits to learn from one another (depicted by
Figure 1), thus fully releasing knowledge transfer
and regularization capabilities of KD.

Further, by analyzing the directions of gradients
from cross-entropy loss and distillation loss (denot-
ed as gCE and gKD), we find that gKD is often in
a conflicting direction with gCE . We hypothesize
that gKD⊥CE , gKD’s part that is orthogonal with
gCE , will extract the model from moving toward
optimum. Thus we propose a novel optimization
mechanism called Gradient Alignment (GA). As
depicted by 2, GA will project gKD onto the di-
rection of gCE . We propose two versions of GA,
GA-soft, and GA-hard, which only differ in how to
deal with gKD when the angle of the two gradients
is larger than 90◦.

We will call our framework Gradient Aligned
Mutual Learning for BERT (GAML-BERT). Ex-
tensive experiments are conducted on the GLUE
benchmark (Wang et al., 2018) and show that
GAML-BERT outperforms existing SOTA BERT
early exiting methods, sometimes by a large mar-
gin. Deeper analysis and ablation studies result
in the following main takeaways: (a) knowledge
distillation among the exits can improve their per-
formances, especially for the shallow ones; (b) our
gradient alignment method can improve the train-
ing procedure and thus improve the model’s gener-
alization performances.

3035

(a) angle <= 90◦

(b) angle > 90◦

Figure 2: Two scenarios of our proposed gradient
alignment method. Note that when the gradients’ an-
gle is larger than 90◦, gP

KD is opposite to gCE .

Our contributions are summarized as follows:

• We conduct exploratory experiments to
demonstrate that the mutual knowledge distil-
lation between two exits of different depth are
benefical for both .

• We propose a novel gradient alignment
method for better optimization.

2 Preliminaries

In this section, we introduce the necessary back-
ground for BERT early exiting. Throughout this
work, we consider the case of multi-class classifi-
cation with samples {(x, y), x ∈ X , y ∈ Y, i =
1, 2, ..., N}, e.g., sentences, and the number of
classes is K.

2.1 Backbone models

In this work, we adopt BERT as backbone mod-
els. BERT is a multi-layer Transformer (Vaswani
et al., 2017) network, which is pre-trained in a self-
supervised manner on a large corpus.

2.2 Early-exiting Architecture
As depicted in Figure 1, early exiting architectures
are networks with exits2 at each transformer layer.
With M exits, M classifiers fm(x; θm) : X → ∆K

(m = 1, 2, ...,M) are designated at M layers of
BERT, each of which maps its input to the proba-
bility simplex ∆K , i.e., the set of probability distri-
butions over the K classes. All the parameters of
the transformer layers and exits are denoted as Θ.

2.2.1 Training
At the training stage, all the exits are jointly op-
timized with a summed loss function. Following
Huang et al. (2017) and Zhou et al. (2020), the
loss function is the weighted average of the cross-
entropy (CE) losses given by

LCE =

∑M
m=1m ∗ LCE

m∑M
m=1m

, (1)

where LCE
m = LCE

m (y, fm(x; θm)) denotes the
cross-entropy loss of the m-th exit. Note that the
weight m corresponds to the relative inference cost
of exit m.

2.2.2 Inference
At inference, the multi-exit BERT can operate in t-
wo different modes, depending on whether the com-
putational budget to classify an example is known
or not.

Budgeted Exiting. If the computational budget
is known, we can directly appoint a suitable exit of
BERT, fM ′(x; θM ′), to predict all queries.

Dynamic Exiting. Under this mode, after re-
ceiving a query input x, the model starts to predict
on the classifiers f1(x; θ1), f2(x; θ2), ..., in turn
in a forward pass, reusing computation where pos-
sible. It will continue to do so until it receives a
signal to stop early at an exit M

′′
< M , or arrives

at the last exit M . At this point, it will output the
final predictions based on the current and previous
predictions. Note that under this early exit setting,
different samples might exit at different layers. 3

3 Pilot Experiment and Analysis

3.1 Pilot experiments
In this section, we examine the effects of mutual
learning among exits by conducting a series of

2Some literature (e.g., DeeBERT (Xin et al., 2020)) also
refers to exits as off-ramps.

3We provide a short review of the dynamic exiting strate-
gies in the Appendix for further reference.

3036

pilot experiments called pairwise mutual learning
(PML). In the PML experiments, we select two
exits (i, j) (i < j, i.e., exit i is shallower than exit
j). We consider the following settings:

• Directly finetuning exit x (x = i, j). In this
setting, we reveal supervision signals to exit x
and finetune it among with the BERT parame-
ters.

• Finetuning exit i and j jointly. That is, we sum
up the losses of exit i and j during training.

• Finetuning exit i and j jointly, and asking exit
i to learn from exit j.

• Finetuning exit i and j jointly, and asking exit
j to learn from exit i.

• Finetuning exit i and j jointly, and asking the
two exits to learn from each other.

We conduct the above PML experiments on Co-
LA and SST-2 datasets in the GLUE benchmark
(Wang et al., 2018). We select two exit pairs, (1,
12) and (6, 12). The performance metrics follow
GLUE. Detailed experimental settings are reported
in the Appendix.

3.2 Result analysis
Table 1 reports the results of our pilot experiments.
From the results we can see that:

• Exit 12 benefis from KD from exit 6, demon-
strating that the last exit, as a strong student,
still obtain performance improvements when
it receives knowledge distillation from a much
weaker teacher. This observation is consistent
with Yuan et al. (2019).

• When a lower exit (1 or 6) is finetuned jointly
with exit 12 (with no KD), both exits’ per-
formances will improve. This observation is
consistent with Sun et al. (2019a). Intuitive-
ly, letting the intermediate layers to receive
supervision signals can improve the lower lay-
ers’ representation capabilities, thus helping
the last exit. For lower layers, receiving the
top layers’ gradient signal is benefical for low-
er layers’s optimization, thus the lower exit’s
performance can also be significantly boosted.

• It is normal for lower exits to improve signifi-
cantly when it receives KD signals from exit
12 since it receives superior knowledge from

- Task SST-2 CoLA
BERT-base - 91.5 54.7

Exit 1 and Exit 12

Exit 1

directly finetuning 56.4 0.0
finetune with exit 12 61.5 0.0

KD from exit 12 74.6 0.0
mutual KD with exit 12 75.8 0.0

Exit 12
directly finetuning 91.5 54.7
finetune with exit 1 91.6 55.0

KD from exit 1 91.3 55.1
mutual KD with exit 1 91.5 55.3

Exit 6 and Exit 12

Exit 6

directly finetuning 88.6 36.4
finetune with exit 12 88.9 39.9

KD from exit 12 89.3 46.5
mutual KD with exit 12 89.6 47.6

Exit 12

directly finetuning 91.5 54.7
finetune with exit 6 91.8 55.4

KD from exit 6 92.0 55.9
mutual KD with exit 92.2 56.7

Table 1: The results of our PML experiments. We
report dev performances on SST-2 and CoLA.

the latter (Hinton et al., 2015). However, we
can see that the lower exits’ performances fur-
ther improve when we introduce mutual KD
between the exit pair. Mutual learning not on-
ly improve the last exit (consistent with Sun
et al. (2019a)) but also the lower exits. We
believe the low exits’ extra performance gains
are from: (a) a better top layer, thus gradient
signals are better; (b) mutual learning drives
the behaviors of the exit pair to be more simi-
lar, which is like a regularization that help to
improve the generalization performances.

4 Mutual learning

In light of the above analysis, and following Zhu
(2021b) and Sun et al. (2019a), we adopt the mutual
learning framework (Figure 1) to explore the poten-
tials of early exits. That is, all the exiting classifiers
learn from one another. The loss terms from this
fully mutual learning framework are added to the
cross-entropy losses in Eq. 1, and the loss objective
becomes

L = (1− α)LCE + αLKD, (2)

where LKD is given by

LKD =

M∑
i=1

∑
j 6=i

LKD
i→j . (3)

3037

Figure 3: The distribution of the gradient angles when
the BERT model is fine-tuned on SST-2 with the mutual
learning training objective.

The ML framework is different from Fast-
BERT (Liu et al., 2020) in two aspects. First, Fast-
BERT employs a two-stage learning mechanism,
where the optimization with KD is separated from
optimization with the cross-entropy loss, and the
BERT backbone is frozen during the optimization
with KD losses. Second, FastBERT only asks the
lower exits to distill knowledge from the last layer.
In the ML framework, each layer receives the regu-
larizations from all other exits, thus fully exploiting
the regularization potentials of knowledge distilla-
tion. In this work, we run FastBERT with the codes
of Liu et al. (2020), and experimental results will
demonstrate that the ML framework outperforms
FastBERT.

5 Gradient alignment

The ML training mechanism can stabilize the train-
ing process and lead to better optimization by im-
plementing rich regularizations over all the exits.
However, during experiments, we still observe that
the weight of the KD loss α has a large impact
on the model performances, and the better perfor-
mances are achieved by setting α to be relatively
small (e.g., 0.1 or 0.2). Our observations are con-
sistent with the experimental observations of Yang
et al. (2020); Sun et al. (2019b). Intuitively, it seem-
s that the KD objective is conflicting with the CE
loss to a certain degree.

To visualize the interactions between cross-
entropy loss and KD loss, we separately compute
the gradients derived from the two loss objectives,
gKD = ∆ΘLKD and gCE = ∆ΘLCE . Their an-

gle is given by

cos γ =
gKD · gCE

|gKD| · |gCE |
,

γ = Argcos(cos γ). (4)

During the BERT model fine-tuning on SST-2 with
the mutual learning training objective, we calcu-
late the angles of the gradients gKD and gCE on
each training step. The distribution of the gradient
angles are plotted in Figure 3. We can see that
about half of the optimization steps γ is larger than
90◦, meaning that they have conflicting directions
for optimization. This observation motivates us to
think that we may obtain better convergences if we
can somehow align the two gradients. Thus, the
above observation naturally leads to the following
hypothesis:

Hypothesis 1 (H1): Dropping off the part of KD’s
gradient that conflicts with CE’s gradient and only
keeps the part aligned with the latter can improve
the trained model’s performances.

Thus, we propose a novel optimization method,
gradient alignment (GA), to align KD’s gradien-
t gKD with CE’s gradient gCE . GA is depicted
in Figure 2. When we project gKD on gCE , the
projected vector is given by

gP
KD =

|gKD| cos θ

|gCE |
gCE . (5)

Denote the final modified gradient as gGA. We
propose two versions of GA, as follows.

GA-soft When the angle θ is larger than 90◦,
gP
KD is also added to gCE . Thus gGA is given by

gGA = (1− α)gCE + αgP
KD. (6)

In GA-soft, when the angle θ is larger than 90◦,
gP
KD is in the opposite direction with gCE , thus

might slow down or reverse this gradient descent
direction.

GA-hard When the angle θ is larger than 90◦,
gP
KD is not added to gCE . Thus gGA is given by

gGA =

{
(1− α)gCE + αgP

KD, if θ ≤ 90◦

gCE , otherwise
(7)

In GA-hard, when the angle θ is larger than 90◦,
we discard gP

KD.
Our proposed method, GA, is intuitively sound.

In GA, the gradient descent direction strictly fol-
lows gCE , and we discard the part of gKD that is

3038

orthogonal to gCE , thus eliminating the conflicting
signals from gKD. What is more, the projected
gradient gP

KD can help to adjust the pace of gradi-
ent descent. When the angle θ is smaller than 90◦,
the projected gradient gP

KD is added to gCE . In
this scenario, the gradients have similar directions.
Thus the optimizer is quite sure of the optimization
direction, and it should move with a larger step.
When the angle θ is larger than 90◦, gP

KD is in
the opposite direction with gCE . On the one hand,
gP
KD can be seen as a regularization to gCE , and

stops gCE from local optimum or jumping away
from optimum. On the other hand, gP

KD might s-
low down the convergences. Thus, we will leave
the selection between GA-soft and GA-hard as a
hyper-parameter.

6 Experiments

6.1 Datasets

We evaluate our proposed approach to the classi-
fication tasks on the GLUE benchmark. We only
exclude the STS-B task since it is a regression task,
and we exclude the WNLI task following previous
work (Devlin et al., 2018; Xu et al., 2020).

6.2 Backbone models

Backbone models. All of the experiments are
built upon the Google BERT (Devlin et al., 2019).
We ensure fair comparison by setting the hyper-
parameters related to the PLM backbones the same
as HuggingFace Transformers (Wolf et al., 2020).

6.3 Baseline methods

We compare with the previous BERT early exiting
methods and compare other methods that speed up
BERT inference.

Directly reducing layers. We experiment with
directly utilizing the first 6 layers of the original
(AL)BERT with a single output layer on the top,
denoted by (AL)BERT-xL (x = 6). This baseline
serves as a lower bound for performance matrics
since it does not employ any additional technique.

Static model compression approaches. For
knowledge distillation, we include DistillBERT
(Sanh et al., 2019) and BERT-PKD (Sun et al.,
2019b).4 For model parameter pruning, we in-
clude the results of LayerDrop (Fan et al., 2020)

4Note that the two methods consider knowledge distillation
on the fine-tuning stage, whereas TinyBERT (Jiao et al., 2020)
and Turc et al. (2019) investigate knowledge distillation during
both the pre-training stage and fine-tuning stage.

and attention head pruning (Michel et al., 2019)
on ALBERT. For module replacing, we include
BERT-of-Theseus (Xu et al., 2020).

Early exiting approaches. We compare our
method with the previous state-of-the-art BERT
early exiting approaches, under both budgeted
exiting mode and dynamic exiting mode. For
dynamic exiting mode, we compare with: (a)
entropy-based method DeeBERT; (b) score-based
method Shallow-deep; and (c) patience-based exit-
ing method PABEE; (d) FastBERT when it adopts
the PABEE’s exiting strategy. For budgeted exiting
mode, we compare with: (a) BERT with Multi-
exits fine-tuned with a loss objective given by E-
quation 1, which DeeBERT and PABEE adopt; (b)
FastBERT.

6.4 Experimental settings

We implement our GAML-BERT and other base-
line methods based on HuggingFace’s Transformer-
s (Wolf et al., 2020). We conduct our experiments
on a single Nvidia V100 16GB GPU.

Training. We add a linear output layer af-
ter each intermediate layer of the pre-trained
BERT/ALBERT model as the internal classifier.
The hyperparameter tuning is done in a cross-
validation fashion on the training set so that the
dev set of GLUE tasks remains blind for model
generalization. We perform grid search over batch
sizes {16, 32, 128}, and learning rates {1e-5, 2e-5,
3e-5, 5e-5} for model parameters Θ, and warm-up
steps of {0.8, 1.0, 1.2} times the number of steps in
an epoch, and values of weight α (from Eq. 2) {0.1,
0.2, 0.3, 0.5, 0.8}. We will adopt the Adam opti-
mizer. We apply an early stopping mechanism with
patience 5 and evaluate the model on the valid set
(from cross-validation) after each epoch. Moreover,
we define the dev performance of our early exiting
architecture as the average performance of all the
exits. We will select the model checkpoint with the
best average performance in cross-validation.

Dynamic exiting mode inference. Following
prior work (Zhou et al., 2020), dynamic exiting
mode inference is on a per-instance basis, i.e., the
batch size for inference is set to 1. We believe
this setting mimics the common latency-sensitive
production scenario when processing individual re-
quests of different difficulties from different users.
We adjust the hyper-parameters for each dynam-
ic exiting method such that the speed-up ratio is
between 1.80x to 2.1x.

3039

Method #Param Speed-up CoLA MNLI MRPC QNLI QQP RTE SST-2
Dev set

BERT-base 109M 1.00x 54.7 83.5 88.2 86.8 88.7 67.1 91.5
BERT-6L 66M 1.96x 36.4 77.1 83.9 80.2 84.8 60.3 88.6

DistillBERT 66M 1.96x 46.5 79.8 85.3 82.2 86.4 63.1 89.3
BERT-PKD 66M 1.96x 47.4 80.6 85.5 82.5 86.8 63.4 89.7
LayerDrop 66M 1.96x 43.2 80.1 85.2 81.7 86.2 62.8 89.1

BERT-of-Theseus 66M 1.96x 44.5 80.7 85.4 82.4 86.5 63.6 89.6
DeeBERT 109M 1.88x 43.4 81.2 85.8 82.5 87.3 63.9 90.0

Shallow-Deep 109M 1.95x 44.5 81.1 85.7 82.6 87.2 64.1 90.1
PABEE 109M 1.91x 45.2 81.5 86.2 83.1 87.5 64.5 90.5

FastBERT 109M 1.93x 48.6 82.1 86.7 83.6 88.1 64.9 90.8
FastBERT-GA (ours) 109M 1.95x 50.4 82.6 87.5 84.7 88.5 66.2 91.4

ML-BERT (ours) 109M 1.96x 49.2 82.7 87.3 84.2 88.6 65.7 91.3
GAML-BERT (ours)

(GA-hard)
109M 1.95x 50.5 83.1 87.6 84.9 88.9 66.3 91.5

GAML-BERT (ours)
(GA-soft)

109M 1.95x 51.1∗ 83.2∗ 88.1∗ 85.1∗ 89.1∗ 66.8∗ 91.9∗

Test set
BERT-base 109M 1.00x 50.6 83.4 87.2 85.7 70.4 64.7 92.7

PABEE 109M 1.89x 44.8 81.6 85.2 82.2 69.2 62.1 91.3
FastBERT 109M 1.95x 45.7 82.0 85.7 82.6 69.8 62.6 91.7

GAML-BERT (ours)
(GA-soft)

109M 1.96x 47.2∗ 83.3∗ 87.2∗ 84.2∗ 70.9∗ 64.3∗ 92.8∗

Table 2: Experimental results of models with BERT backbone on the GLUE’s development set and test set. This
table reports the results under the dynamic exiting mode inference. The mean performance scores of 5 runs are
reported. The speed-up ratio is averaged across seven tasks. Best performances are bolded, "*" indicates the
performance gains by our full model GAML-BERT against the baseline models by the literature are statistically
significant.

Budgeted exiting mode inference. In this set-
ting, a multi-exit model is forced to output its pre-
diction with a given exit. The results under this
mode will be mainly reported in figures depicting
the relation between the depth of the exit and the
performance scores.

6.5 Overall Comparison

Table 2 reports the main results on GLUE with
BERT as the backbone model under the dynamic
exiting inference mode. From Table 2, we can
see that our full model GAML-BERTs, especially
with GA-soft, outperforms all previous methods
to improve inference efficiency while maintaining
good performances, demonstrating the proposed
GAML-BERT framework’s effectiveness. Note
that Table 2 shows that GAML-BERT with GA-
soft outperforms GA-hard consistently and by a
clear margin on CoLA, MRPC, RTE. Thus, we
will refer to GAML-BERT with GA-soft as our
GAML-BERT model.

Although our work mainly works on NLP tasks,
we also show that one can easily apply our GAML-

BERT framework to image classification tasks in
the Appendix.

6.6 Analysis

We now analyze more deeply the main takeaways
from Table 2 and our experiments.

Our GAML-BERT method can improve the
performances of early exiting, especially on
shallow exits. To demonstrate our method’s ef-
fectiveness and how it improves the shallow exits,
we conduct budgeted exiting inference on each task
and plot the relationship between the layer depth
and the performance score in Figure 4. On CoLA,
except that the first four exits have zero scores, all
the exits of GAML-BERT outperform multi-exit
BERT trained with Eq 1. Similar observations can
be made on SST-2. Note that the performance mar-
gins on the shallow exits are more significant than
those on the deep exits, showing that our model
is effective in improving the shallow early exits’
performances.

The ML strategies are beneficial. Table 2 re-
veals that the ML training objective provides the

3040

(a) CoLA

(b) SST-2

Figure 4: The depth-score curves for different early
exiting strategies. The x-axis is the depth of the ex-
it (or the number of layers before entering this exit),
the y-axis is the performance metrics following GLUE
(Wang et al., 2018). We also add the performance of
BERT-base for comparison.

best performances on GLUE in terms of knowl-
edge distillation strategies. ML-BERT consistently
outperforms FastBERT, and GAML-BERT outper-
forms all the baseline models, especially FastBERT
trained with our gradient alignment method. These
experimental results validate our findings in section
3 that mutual learning can help to improve the early
exits to the greatest extend. The ML method impos-
es rich regularizations over all exits, thus improvig
the performances of early exiting.

Our GA algorithm brings performance gain-
s. From Table 2, we can see that our full model
GAML-BERT, consistently outperforms the ML-
BERT, sometimes with a large margin. In addi-
tion, we also combine FastBERT with our GA
method, denoted by FastBERT-GA.5 We can see

5Note that in FastBERT-GA, the KD loss terms are added
to the CE loss terms, and the fine-tuning is done in a single
stage, which is different from FastBERT’s two-stage proce-
dure.

α ML-BERT GAML-BERT
0.1 48.8 50.9
0.3 49.2 51.1
0.5 48.6 50.9
0.8 48.4 50.8

Table 3: The performances of the ML-BERT and
GAML-BERT on CoLA with different values of α.

that FastBERT-GA also consistently outperforms
FastBERT. These ablation results empirically prove
that the hypothesis H1 is true and demonstrate the
effectiveness of our GA method.

Our GA algorithm makes the model less sen-
sitive to α. In this group of experiments, we
show how changes in α (in Eq. 2) affect the per-
formances of early exiting architectures, with or
without our GA method. Table 3 reports the per-
formance comparisons on the CoLA task. We
can clearly see that GAML-BERT’s performance
changes are much more minor than those of ML-
BERT, under different values of α. In addition,
GAML-BERT outperforms ML-BERT under all
values of α, showing that GA can effectively stabi-
lize the training with KD and leads to better opti-
mization.

How our GAML-BERT method affects the
training time costs. Table 4 presents the train-
ing time costs for GAML-BERT compared with
the original BERT and PABEE. Note that we adopt
an early stopping mechanism for training. Thus
the training time costs are measured by the aver-
age number of steps till early stopping. Firstly,
although exits introduce extra parameters and extra
time for training, early exiting architectures actu-
ally can reduce the training time. Intuitively, addi-
tional loss objectives can be regarded as addition-
al parameter updating steps for lower layers, thus
speeding up the model convergence. Secondly, ML-
BERT converges earlier than PABEE, demonstrat-
ing the regularization functionality of KD. Third,
GA further accelerates the convergences of ML-
BERT. Intuitively, GA eliminates the conflicting
factors of KD, and thus leading to faster conver-
gences.

How our GAML-BERT method performs un-
der different dynamic exiting strategies. Note
that the main experimental results in Table 2 are
obtained by adopting the PABEE’s patience-based
dynamic exiting strategies. However, our GAML-
BERT model is off-the-shelf since it can be easily
adapted to other exiting strategies. In Table 5, we

3041

Method #Param Speed-up MNLI MRPC SST-2
With DeeBERT’s entropy-based exiting strategy

DeeBERT 109M 1.86x 81.2 85.8 90.0
GAML-BERT (ours) 109M 1.93x 83.0 87.6 91.3

With Shallow-Deep’s max-prob based exiting strategy
Shallow-Deep 109M 1.91x 81.1 85.7 90.1

GAML-BERT (ours) 109M 1.94x 82.8 87.8 91.4

Table 5: Experimental results of GAML-BERT when using different early exiting strategies.

Method Training time cost
- CoLA SST-2

w/o early exiting 2300 4100
w PABEE 2100 3800

w FastBERT 2000 3300
w GAML-BERT 1800 2900

Table 4: Comparison of training time costs. The train-
ing time cost is measured by the number of steps till
early stopping.

present the results of GAML-BERT under different
dynamic exiting strategies. When inferencing with
entropy-based strategy, GAML-BERT outperforms
DeeBERT on all GLUE tasks. Moreover, similarly,
GAML-BERT outperforms Shallow-Deep when it
adopts the max probability strategy.

7 Conclusion

In this work, we propose GAML-BERT, a nov-
el framework for improving PLMs’ early exiting.
Our contributions are three-fold. Firstly, we con-
duct a series of exploratory experiments, which
shows that mutual knowledge distillation between
a pair of exits can boost the performances of both.
Following this observation, it is natural to apply
mutual learning (ML), that is, asking all the exits to
learn from each other, to enhance the performances
of BERT early exiting. Second, we propose GA,
a novel training method that aligns the gradients
from knowledge distillation to cross-entropy loss-
es. Experiments on the GLUE benchmark datasets
show that our framework can improve PLMs’ early
exiting performances, especially under high latency
requirements. In addition, our framework is off-the-
shelf and can be adapted to various early exiting
strategies.

References
Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing Jin,

Xin Jiang, Qun Liu, Michael R. Lyu, and Irwin K-

ing. 2020. Binarybert: Pushing the limit of BERT
quantization. CoRR, abs/2012.15701.

Tolga Bolukbasi, J. Wang, O. Dekel, and Venkatesh
Saligrama. 2017. Adaptive neural networks for ef-
ficient inference. In ICML.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Angela Fan, E. Grave, and Armand Joulin. 2020. Re-
ducing transformer depth on demand with structured
dropout. ArXiv, abs/1909.11556.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun.
2016. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 770–778.

Geoffrey E. Hinton, Oriol Vinyals, and J. Dean. 2015.
Distilling the knowledge in a neural network. ArXiv,
abs/1503.02531.

Gao Huang, Danlu Chen, T. Li, Felix Wu, L. V. D.
Maaten, and Kilian Q. Weinberger. 2017. Multi-
scale dense convolutional networks for efficient pre-
diction. ArXiv, abs/1703.09844.

Xiaoqi Jiao, Y. Yin, L. Shang, Xin Jiang, X. Chen, Lin-
lin Li, F. Wang, and Qun Liu. 2020. Tinybert: Dis-
tilling bert for natural language understanding. ArX-
iv, abs/1909.10351.

Y. Kaya, Sanghyun Hong, and T. Dumitras. 2019.
Shallow-deep networks: Understanding and mitigat-
ing network overthinking. In ICML.

Se-Hoon Kim, Amir Gholami, Zhewei Yao, M. W. Ma-
honey, and K. Keutzer. 2021. I-bert: Integer-only
bert quantization. ArXiv, abs/2101.01321.

http://arxiv.org/abs/2012.15701
http://arxiv.org/abs/2012.15701
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

3042

Alex. Krizhevsky. 2009. Learning multiple layers of
features from tiny images.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. 2020. Albert: A lite bert for self-supervised
learning of language representations. ArXiv, ab-
s/1909.11942.

Weijie Liu, P. Zhou, Zhe Zhao, Zhiruo Wang, Haotang
Deng, and Q. Ju. 2020. Fastbert: a self-distilling
bert with adaptive inference time. ArXiv, ab-
s/2004.02178.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In NeurIP-
S.

Mary Phuong and Christoph H. Lampert. 2019.
Distillation-based training for multi-exit architec-
tures. 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 1355–1364.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. ArXiv,
abs/1910.01108.

Roy Schwartz, Gabi Stanovsky, Swabha Swayamdipta,
Jesse Dodge, and N. A. Smith. 2020. The right tool
for the job: Matching model and instance complexi-
ties. In ACL.

Dawei Sun, Anbang Yao, Aojun Zhou, and Hao
Zhao. 2019a. Deeply-supervised knowledge syner-
gy. 2019 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 6990–
6999.

S. Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019b.
Patient knowledge distillation for bert model com-
pression. In EMNLP/IJCNLP.

Christian Szegedy, V. Vanhoucke, S. Ioffe, Jonathon
Shlens, and Z. Wojna. 2016. Rethinking the incep-
tion architecture for computer vision. 2016 IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 2818–2826.

Surat Teerapittayanon, Bradley McDanel, and H. T.
Kung. 2016. Branchynet: Fast inference via early
exiting from deep neural networks. 2016 23rd Inter-
national Conference on Pattern Recognition (ICPR),
pages 2464–2469.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristi-
na Toutanova. 2019. Well-read students learn better:
On the importance of pre-training compact models.
arXiv: Computation and Language.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, L. Kaiser,
and Illia Polosukhin. 2017. Attention is all you need.
ArXiv, abs/1706.03762.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018.
Glue: A multi-task benchmark and analysis plat-
form for natural language understanding. In Black-
boxNLP@EMNLP.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy J. Lin. 2020. Deebert: Dynamic early exiting
for accelerating bert inference. In ACL.

Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei,
and M. Zhou. 2020. Bert-of-theseus: Compressing
bert by progressive module replacing. In EMNLP.

Z. Yang, Zihang Dai, Yiming Yang, J. Carbonell,
R. Salakhutdinov, and Quoc V. Le. 2019. Xlnet:
Generalized autoregressive pretraining for language
understanding. In NeurIPS.

Ziqing Yang, Yiming Cui, ZhiPeng Chen, Wanxiang
Che, T. Liu, S. Wang, and Guoping Hu. 2020.
Textbrewer: An open-source knowledge distillation
toolkit for natural language processing. In ACL.

Li Yuan, Francis E. H. Tay, Guilin Li, T. Wang, and
Jiashi Feng. 2019. Revisit knowledge distillation: a
teacher-free framework. ArXiv, abs/1909.11723.

Wei Zhang, Lu Hou, Yichun Yin, Lifeng Shang, Xiao
Chen, Xin Jiang, and Qun Liu. 2020. Ternarybert:
Distillation-aware ultra-low bit bert. In EMNLP.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian M-
cAuley, Ke Xu, and Furu Wei. 2020. Bert loses
patience: Fast and robust inference with early exit.
ArXiv, abs/2006.04152.

Michael Zhu and Suyog Gupta. 2018. To prune, or not
to prune: Exploring the efficacy of pruning for mod-
el compression. In 6th International Conference
on Learning Representations, ICLR 2018, Vancou-
ver, BC, Canada, April 30 - May 3, 2018, Workshop
Track Proceedings. OpenReview.net.

Wei Zhu. 2021a. AutoRC: Improving BERT based re-
lation classification models via architecture search.
In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://openreview.net/forum?id=Sy1iIDkPM
https://openreview.net/forum?id=Sy1iIDkPM
https://openreview.net/forum?id=Sy1iIDkPM
https://doi.org/10.18653/v1/2021.acl-srw.4
https://doi.org/10.18653/v1/2021.acl-srw.4

3043

the 11th International Joint Conference on Natural
Language Processing: Student Research Workshop,
pages 33–43, Online. Association for Computation-
al Linguistics.

Wei Zhu. 2021b. LeeBERT: Learned early exit for
BERT with cross-level optimization. In Proceed-
ings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 2968–2980,
Online. Association for Computational Linguistics.

Wei Zhu. 2021c. MVP-BERT: Multi-vocab pre-
training for Chinese BERT. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Join-
t Conference on Natural Language Processing: S-
tudent Research Workshop, pages 260–269, Online.
Association for Computational Linguistics.

Wei Zhu, Yuan Ni, Xiaoling Wang, and Guotong X-
ie. 2021. Discovering better model architectures
for medical query understanding. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistic-
s: Human Language Technologies: Industry Paper-
s, pages 230–237, Online. Association for Computa-
tional Linguistics.

A The over-thinking problem for BERT

In Figure 5, we demonstrate the over-thinking prob-
lem of BERT on SST-2 and CoLA. To obtain the
performance of BERT-base’s layer i, we insert a
classifier at layer i and fine-tune BERT-base on the
train set. We can see that the last layer does not
obtain the best performances.

B A review of early exiting strategies

There are mainly three dynamic exiting strategies
for BERT dynamic exiting. BranchyNet (Teerapit-
tayanon et al., 2016), FastBERT (Liu et al., 2020),
and DeeBERT (Xin et al., 2020) calculated the en-
tropy of the prediction probability distribution as
a proxy for the confidence of exiting classifiers to
enable dynamic early exiting. Shallow-Deep Nets
(Kaya et al., 2019) and RightTool (Schwartz et al.,
2020) leveraged the softmax scores of predictions
of exiting classifiers. If the score of a particular
class is dominant and large enough, the model will
exit. Recently, PABEE (Zhou et al., 2020) propose
a patience-based dynamic exiting strategy analo-
gous to early stopping model training. That is, if
the exits’ predictions remain unchanged for a pre-
defined number of times (patience), the model will
stop inference and exit. PABEE achieves SOTAs
results for BERT early exiting.

In this work, we mainly adopt the PABEE’s
patience-based early exiting strategy. However,
in ablation studies, we will show that our GAML-
BERT framework can improve the inference per-
formance of other exiting strategies.

C Hyperparameter settings

C.1 Hyperparameters for each task in the
pilot experiments

Table 6 reports the important hyper-parameters of
BERT for each task in the pilot experiments.

C.2 Hyper-parameters for each task in the
main experiments

Table 7 reports the important hyper-parameters of
GAML-BERT for each task. Note that our hyper-
parameter search was done on the training set with
cross-validation so that the GLUE benchmarks’ dev
set information was not revealed during training.

D GAML-BERT are effective for image
classification

To demonstrate the effectiveness of GAML-BERT
on the image classification task, we follow the ex-
perimental settings in Shallow-Deep (Kaya et al.,
2019). We conduct experiments on two image
classification datasets, CIFAR-10 and CIFAR-100
(Krizhevsky, 2009). The ResNet-56 model (He
et al., 2016) serves as the backbone, and we
compare GAML-BERT with PABEE, DBT from
Phuong and Lampert (2019). We place an exiting
classifier at every two convolutional layers. We set
the batch size to 128 and use an SGD optimizer
with a learning rate of 0.1.

Table 8 reports the results. GAML-BERT out-
performs the original ResNet-56 on both tasks even
when it provides 1.3x speed-up. Besides, it outper-
forms PABEE and DBT.

https://doi.org/10.18653/v1/2021.acl-long.231
https://doi.org/10.18653/v1/2021.acl-long.231
https://doi.org/10.18653/v1/2021.acl-srw.27
https://doi.org/10.18653/v1/2021.acl-srw.27
https://doi.org/10.18653/v1/2021.naacl-industry.29
https://doi.org/10.18653/v1/2021.naacl-industry.29

3044

(a) CoLA (b) SST-2

Figure 5: The over-thinking phenomenon of BERT-base on the CoLA and SST-2 task. To obtain the performance
of BERT-base’s layer i, we insert a classifier at layer i and fine-tune BERT-base on the train set. The metric is
MCC for CoLA, and ACC for SST-2. For CoLA, the highest score is obtained by layer 11. For SST-2, the highest
score is obtained by layer 9, and deeper layers have lower performance scores.

Task learning rate
warm-up steps

(/epoch)
batch size α

CoLA 1e-5 1.0 32 0.2
SST-2 2e-5 0.8 128 0.1

Table 6: Hyperparameter settings for the pilot experiments. We mainly tune learning rate, batch size, warm-up
steps, and weight for the knowledge distillation loss term. Note that our hyper-parameter search was done on
the training set with cross-validation so that the GLUE benchmarks’ dev set information was not revealed during
training.

Task learning rate
warm-up steps

(/epoch)
batch size α

CoLA 5e-5 1.2 32 0.3
MNLI 2e-5 0.8 256 0.2
MRPC 2e-5 1.0 16 0.2
QNLI 1e-5 1.0 128 0.5
QQP 1e-5 0.8 256 0.3
RTE 5e-5 1.2 16 0.2

SST-2 5e-5 0.8 128 0.3

Table 7: Hyper-parameter settings for each task in the main experiments.

Method CIFAR-10 CIFAR-100
- speed-up Acc. speed-up Acc.

ResNet-56 1.00x 91.8 1.00x 68.6
PABEE 1.26x 91.8 1.22x 69.1

DBT 1.28 92.1 1.25x 69.3
GAML-BERT 1.30x 92.6 1.27x 69.7

Table 8: Experimental results of GAML-BERT when applied in the image classification tasks.

