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Abstract

Relative position embedding (RPE) is a suc-
cessful method to explicitly and efficaciously
encode position information into Transformer
models. In this paper, we investigate
the potential problems in Shaw-RPE and
XL-RPE, which are the most representa-
tive and prevalent RPEs, and propose two
novel RPEs called Low-level Fine-grained
High-level Coarse-grained (LFHC) RPE and
Gaussian Cumulative Distribution Function
(GCDF) RPE. LFHC-RPE is an improvement
of Shaw-RPE, which enhances the perception
ability at medium and long relative positions.
GCDF-RPE utilizes the excellent properties of
the Gaussian function to amend the prior en-
coding mechanism in XL-RPE. Experimental
results on nine authoritative datasets demon-
strate the effectiveness of our methods empir-
ically. Furthermore, GCDF-RPE achieves the
best overall performance among five different
RPEs.

1 Introduction

Recently, the fully attention-based Transformer
model (Vaswani et al., 2017) has achieved state-
of-the-art results across a range of natural language
processing (NLP) tasks, including reading compre-
hension (Yu et al., 2018), machine translation (Raf-
fel et al., 2020), natural language inference (Guo
et al., 2019), unsupervised pretraining (Devlin et al.,
2019; Yang et al., 2019; Liu et al., 2019), etc. Since
the self-attention blocks in vanilla Transformer are
entirely invariant to sequence order, which is one
of the most important features of natural language,
how to explicitly encode position information is
crucial for the current Transformer based models.

The original method is to use absolute position
embedding (APE), such as pre-defined sinusoidal
functions (Vaswani et al., 2017) or fully data-driven
learnable parameter embeddings (Devlin et al.,
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2019; Radford et al., 2019), to integrate position in-
formation into contextual representation. Although
APE can significantly help the Transformer model
learn the contextual representation of the tokens at
different positions, Ke et al. (2020) pointed out that
the coupled method in APE is unreasonable. Be-
sides, APE itself also has many defects, such as the
limitation of processing long sequences (Liu et al.,
2020) and the gradual loss of position information
(Al-Rfou et al., 2019).

To address the drawbacks mentioned above of
APE, Shaw et al. (2018); Dai et al. (2019) further
proposed the relative position embedding (RPE),
which incorporates carefully designed temporal
bias term into the self-attention module to encode
the relative distance between any two tokens. RPE
has been proven to be more effective than APE, and
thus it is adopted by many excellent pre-trained lan-
guage models (Yang et al., 2019; Song et al., 2020;
Dai et al., 2020). Despite the success of RPE, the
existing methods are not perfect. Although Huang
et al. (2020) has made improvement to RPE, this
improvement is only focused on the perspective
of interaction rather than the perspective of encod-
ing1. Moreover, to the best of our knowledge, there
is currently no unified and comprehensive evalua-
tion of various RPEs. Since almost every RPE is
proposed for specific tasks, it is unknown whether
these RPEs really have high universality and gener-
alization ability.

In this paper, we focus on the most widely
adopted Shaw-RPE (Shaw et al., 2018) and XL-
RPE (Dai et al., 2019), and improve each of them
from encoding perspective. Concretely, for Shaw-
RPE, to overcome its weak ability to perceive the
relative position at medium and long distance, we
design an ingenious Low-level Fine-grained High-

1Interaction perspective refers to how to calculate the at-
tention weights between query and key. Encoding perspective
refers to how to generate an embedding vector for each relative
position.
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level Coarse-grained (LFHC) embedding strategy
without changing the number of parameters. For
XL-RPE, we recognize the potential problems of
its prior sinusoidal encoding functions under the
relative position setting and propose a more reason-
able encoding mechanism based on the Gaussian
Cumulative Distribution Function (GCDF). We
conduct a unified evaluation of five RPEs on nine
authoritative datasets, including language model-
ing, question generation, and text classification.
The experimental results show that both LFHC-
RPE and GCDF-RPE outperform their respective
baseline, and GCDF-RPE achieves the best overall
performance among the five methods2.
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Figure 1: The illustration of two different pure data-
driven RPEs (k = 2) in self-attention mechanism.

(a) XL-RPE (b) GCDF-RPE

Figure 2: The prior encoding matrix of XL-RPE and
GCDF-RPE. The horizontal axis represents dimension
and the vertical axis represents relative position.

2 Background

2.1 Vanilla Self-attention

The self-attention layer is the core component of
Transformer, which provides a bridge for semantic
interaction between tokens. In this layer, Trans-
former performs scaled dot-product self-attention
over the input sequence by H individual attention
heads and then concatenates the summary output of
each head. For simplicity, we ignore the head index

2The code and training scripts will be released at
https://github.com/menghuanlater/LFHC-GCDF-RPE.

in the following formula. The summary output of
each head is calculated as follows:

Q,K,V = IWq, IWk, IWv (1)

Pi,j =
QiK

T
j√

dhead
(2)

Attention(Q,K,V) = softmax(P)V (3)

where I is the input sequence representations.
Wq,Wk,Wv ∈ Rdmodel×dhead are three indepen-
dent linear transformation matrices, and dhead is
the dimension of each head that satisfies dhead =
dmodel/H .

2.2 Relative Position Embeddings
Shaw-RPE (Shaw et al., 2018) is the earliest pro-
posed RPE method. As shown in Figure 1(a), it
employs fully data-driven embedding to represent
different relative positions and incorporates them
into the attention mechanism. In Shaw-RPE, Eq.
(2) is revised as follows:

clip(x, k) = max(−k,min(k, x)) (4)

Pi,j =
Qi(Kj +wclip(i−j,k))

T

√
dhead

(5)

where k is the maximum absolute value of relative
distance and wi ∈ Rdhead .

XL-RPE (Dai et al., 2019) offers a different
derivation. It utilizes the sinusoidal encoding func-
tions (Vaswani et al., 2017) to generate a prior vec-
tor embedding for each relative position (as shown
in Figure 2(a)). In XL-RPE, Eq. (2) is revised as
follows:

R
(2k)
d = sin(d/100002k/dmodel) (6)

R
(2k+1)
d = cos(d/100002k/dmodel) (7)

Pi,j =
1√
dhead

(QiK
T
j +QiWrRi−j

+ uTKT
j + vTWrRi−j) (8)

where Wr ∈ Rdmodel×dhead and u,v ∈ Rdhead

are trainable parameters.

3 Methodology

3.1 Low-level Fine-grained High-level
Coarse-grained Embedding

In Shaw-RPE, the authors discovered that precise
relative position information is not useful beyond
a certain distance, and this phenomenon has also
been confirmed in subsequent work. Therefore,
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Shaw-RPE sets the maximum relative distance to a
relatively small value. However, this phenomenon
is more likely to be caused by: (1) more indepen-
dent embedding parameters will increase model
optimization difficulty. (2) the greater the rela-
tive embedding distance, the more serious the op-
timization imbalance problem of this embedding
strategy3. Moreover, it is necessary to distinguish
the relative position at medium and long distances
most of the time, especially for learning long-term
dependency.

To improve the model’s ability to perceive
medium and long relative distances without chang-
ing the number of parameters, inspired by the anal-
ysis conclusions of many works (Jawahar et al.,
2019; Ethayarajh, 2019) on Transformer that the
lower layers learn local syntactic features and the
higher layers capture global semantic features, we
propose the LFHC embedding strategy. Concretely,
as shown in Figure 1(b), each embedding repre-
sents a relative position range instead of a single
position. At the low layers, the range is small and
the embedding granularity is fine, which keep the
maximum relative distance consistent with Shaw-
RPE. As the level of layers increases, the range
becomes larger and the embedding granularity be-
comes coarser, which expand the maximum relative
distance gradually. In LFHC-RPE, Eq. (4) in l-th
layer is revised as follows:

clipl(x, k) =


k, x > kl

bx/lc, 0 ≤ x ≤ kl
dx/le, −kl ≤ x < 0

− k, x < −kl

(9)

3.2 Gaussian Cumulative Distribution
Function Encoding

Intuitively and empirically, for RPEs using a prior
encoding mechanism, the following two properties
are important4:

Property 1. For an offset k and two relative
position i and j where 0 <= i < j, the proximity
between the prior encoding vectors satisfies the
following condition:

φ(x, y) = ‖Rx −Ry‖ (10)

φ(i+ k, i) > φ(j + k, j) (11)

3See Appendix A.1 for details
4For simplicity, we only describe these two properties in a

single direction.

Property 2. For two relative position i and j
where 0 <= i < j, the changing trend of the Eu-
clidean distance between the prior encoding vectors
satisfies the following condition:

φ(i, j + 2) > φ(i, j + 1) > φ(i, j) (12)

φ(i, j + 1)− φ(i, j) > φ(i, j + 2)− φ(i, j + 1)
(13)

However, the prior sinusoidal encoding mecha-
nism in XL-RPE does not satisfy either of these
properties, especially for property 15. To design
a prior encoding mechanism that can satisfy the
above properties, we propose the GCDF encoding
mechanism. Specifically, each dimension of all
relative positions is encoded by the GCDF with
different variances. As shown in Figure 2(b), the
higher the dimension, the greater the variance. In
GCDF-RPE, Eq. (6) and Eq. (7) are revised as
follows:

σk = (dmodel)
k/dmodel (14)

Rk
d =

λ

σk
√
2π

∫ d

−∞
exp(− x2

2σ2k
) dx (15)

where λ is the scale factor, and its default value is
46.

4 Experiments

In this section, we evaluate the performance of five
different RPEs (T5 (Raffel et al., 2020)7, Shaw,
LFHC, XL, GCDF) on text classification, question
generation and language modeling.

4.1 Experimental Setup
For text classification, IMDB (Maas et al., 2011),
SNLI (Bowman et al., 2015), and four datasets
(SST-2, QQP, QNLI, MNLI) belonging to GLUE
(Wang et al., 2019) are used. An 8-layers 8-heads
512-dimension Transformer-encoder is used. For
question generation, SQuAD (Rajpurkar et al.,
2018) and CMRC (Cui et al., 2019) are employed.
Pre-trained BERT-base model (Devlin et al., 2019)
is chosen as the encoder, and a 3-layers 12-heads
768-dimension Transformer-decoder is employed
as the decoder. For language modeling, WikiText-
103 (Merity et al., 2017) is adopted. Follow-
ing previous work (Dai et al., 2019), a 16-layers

5See Appendix A.2 for proofs
6In our experiments, the test result is relatively stable when

λ is set to be 4.
7T5-RPE is the simplest form of RPE, which only contains

bias terms.
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IMDB SST-2 SNLI QNLI QQP MNLI
acc acc acc acc avg(acc/f1) avg(m/mm)

T5 88.37±0.08 82.91±0.32 86.09±0.16 80.09±0.53 72.28±0.51 73.54±0.14
Shaw 88.39±0.08 83.03±0.24 86.13±0.11 80.07±0.64 71.68±0.52 73.79±0.19
LFHC 88.78±0.06 83.26±0.29 86.48±0.14 80.62±0.39 72.00±0.43 74.18±0.18
XL 88.45±0.09 84.25±0.35 86.27±0.15 80.16±0.45 71.13±0.48 75.24±0.21
GCDF 88.98±0.04 84.63±0.22 86.52±0.08 81.04±0.36 71.64±0.46 75.83±0.18

Table 1: The performance of five RPEs on text classification tasks. All metrics are consistent with GLUE Bench-
mark. For QQP, the average score of accuracy and f1 is selected as the final evaluation metric. For MNLI, the
average score of matched-accuracy and mismatched-accuracy is selected as the final evaluation metric.

SQuAD CMRC
Rouge-L Rouge-L

T5 47.14±0.11 60.06±0.06
Shaw 47.26±0.06 60.14±0.18
LFHC 47.42±0.08 60.33±0.12
XL 47.21±0.05 60.33±0.10
GCDF 47.55±0.08 60.63±0.09

Table 2: The dev set results of five RPEs on question
generation tasks.

M=150 M=640 Best
T5 25.26 25.02 25.02±0.20
Shaw 25.34 25.67 25.34±0.18
LFHC 24.26 23.72 23.72±0.16
XL 24.43 23.89 23.89±0.25
GCDF 23.87 23.34 23.34±0.22

Table 3: The test perplexity (ppl) of five RPEs on
WikiText-103. M means the memory length during
evaluation.

10-heads 410-dimension Transformer-encoder is
adopted. All our experiments are conducted on
4 RTX2080Ti or single V100 GPU. To eliminate
randomness, we run each experiment ten times and
report the average performance. For more detailed
experimental settings, please see Appendix A.3.

4.2 Main Results

The performance of five RPEs on text classifica-
tion is shown in Table 1. The dev set performance
on question generation is shown in Table 2. Table
3 reports the test perplexity on language model-
ing8. As can be seen from the above experimen-
tal results, both LFHC-RPE and GCDF-RPE out-
perform their respective baseline on all datasets.
On the long-term dependency language modeling
task, LFHC-RPE has a significant improvement
over Shaw-RPE, which fully proves the effective-
ness of the LFHC embedding strategy. Even on

8For Shaw-RPE and LFHC-RPE, the results with different
k are shown in Appendix A.4

datasets with relatively short sentence length, such
as SST-2, SNLI and QQP, LFHC-RPE does not lose
accuracy, but obtains a certain degree of improve-
ment. GCDF-RPE has a stable improvement on
all datasets compared with XL-RPE, and achieves
the best overall performance among the five RPEs,
demonstrating the reasonability of the Gaussian
prior encoding mechanism. Besides, from the over-
all point of view, it is obvious that RPEs based
on prior encoding mechanism are better than pure
data-driven RPEs, especially on SST-2 and MNLI.

4.3 Discussion
From a qualitative point of view, each type of RPE
has its advantages and disadvantages. For pure data-
driven RPEs (e.g., Shaw-RPE, LFHC-RPE), all
their positional embedding parameters are learned
autonomously by the neural network according to
the characteristics of the data, so in theory, their
solution space has a very high degree of freedom
and can be flexibly adapted to different tasks or
datasets. However, in traditional machine learning
and deep learning, a high degree of freedom usually
means that the model easily falls into overfitting
and obtains a local suboptimal solution (the experi-
mental results on SST-2 and MNLI can corroborate
this phenomenon). For RPEs based on prior encod-
ing mechanism (e.g., XL-RPE, GCDF-RPE), their
positional parameter optimization is constrained
by the prior encoding mechanism, which is equiv-
alent to regularize the freedom of the parameter
space implicitly, thus reduce the complexity of the
model space and enhance the generalization of the
obtained model. The overall experimental results
show that RPEs based on prior encoding mecha-
nisms achieve better performance. However, if the
prior hypothesis deviates too much from reality,
adverse effects will appear (e.g., the poor perfor-
mance on QQP dataset).

From a quantitative point of view, it is evident
from the experimental results that there does not



2993

exist any RPE that can perform best on all datasets.
Even for GCDF-RPE, which has the best overall
performance, there still exists a considerable gap
between its performance and the optimal results on
QQP dataset. Therefore, it is still very challenging
and necessary to design an RPE capable of all tasks
for Transformer models. We hope that our LFHC-
RPE and GCDF-RPE will give some impetus to
this direction.

5 Conclusion and Future Work

In this paper, we explore better RPEs from en-
coding perspective for Transformer models. For
pure data-driven RPEs, we propose LFHC-RPE to
strengthen the sensitivity at medium and long rela-
tive positions. For RPEs based on prior encoding
mechanisms, we present GCDF-RPE with stronger
generalization. Extensive experimental results on
nine datasets show the effectiveness of our meth-
ods. We leave adjusting our methods to different
kinds of pre-trained language models as our future
work.
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A Appendices

A.1 Optimization Imbalance Problem

For Shaw-RPE, if truncation is not considered,
which means k is set to the maximum relative
distance in the training set, then for an input to-
ken sequence with length L, when performing self-
attention, as shown in Figure 3, the frequency of
each relative position will gradually decrease when
the absolute value of the distance increases. Since
each relative position embedding parameters are
independent in Shaw-RPE, this frequency decline
phenomenon may lead to inner optimization imbal-
ance problem.

Figure 3: The frequency distribution of different rela-
tive positions when L = 5.

On the other hand, due to the unbalanced dis-
tribution of the input sequence length L itself (as
shown in Figure 4, the length distributions on six
different datasets all show characteristics similar to
the long-tailed distribution), the number of samples
used to optimize the medium and long relative po-
sitions is relatively small, which makes the relevant
parameters easy to fall into overfitting state. We
refer to this phenomenon as internal optimization
imbalance problem.

The above two optimization imbalance problems
have a greater impact on pure data-driven Shaw-
RPE and LFHC-RPE when truncation is not con-
sidered. However, RPEs based on prior encoding
mechanisms hardly suffer from these problems be-
cause the learnable parameters of these RPEs are
shared for all relative positions. Besides, although
T5-RPE is also purely data-driven, it is less affected
because its parameters are only bias scalars. Per-
haps in the future, we can learn from Baevski and
Auli (2019) to combine Shaw-RPE and T5-RPE.

Figure 4: The length distributions of the input token
sequence on six different datasets.

Figure 5: The Euclidean distance change for different
position intervals in XL-RPE.

A.2 Prior Encoding Mechanism

As shown in Section 3.2, a good prior encoding
mechanism should satisfy property 1 and property
2. Property 1 represents the translation attenua-
tion: for the same interval between two relative
positions, the divergence between two relative posi-
tions at a close distance is greater than that at a long
distance. Property 2 means that as the interval in-
creases, the divergence between two different rela-
tive positions will become larger, but the increasing
trend should gradually stabilize. Both properties
are summarized from intuition and various previous
research work on representation learning. The core
of these two properties is that the attention mecha-
nism is more sensitive to relative position changes
at close distances and less sensitive to relative po-
sition changes at long distances. For example, the
discrepancy between R1 and R5 should be higher
than the discrepancy R101 and R105.

In XL-RPE, sinusoidal functions with different
periods are used as the prior encoding matrix. For
an offset k and a relative position i where i >= 0,
the divergence (squared Euclidean distance) be-
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IMDB SST-2 SNLI QNLI QQP MNLI SQuAD CMRC WT103
batch size 64 64 64 64 64 64 32 32 60
FFN size 2048 2048 2048 2048 2048 2048 3072 3072 2100
lr rate 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2.5e-4
dropout 0.15 0.15 0.15 0.15 0.15 0.15 0.10 0.10 0.00
clip norm 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
warmup steps 200 1000 5000 4000 4000 4000 4000 600 0
maximum steps 4000 20000 80000 40000 80000 120000 30000 4500 200000
eval interval 200 500 5000 1000 4000 4000 2000 300 4000

Table 4: The other hyperparameters for different datasets.

IMDB SST-2 SNLI QNLI QQP MNLI
acc k acc k acc k acc k avg(acc/f1) k avg(m/mm) k

Shaw-RPE

88.28 2 82.80 2 85.81 2 79.25 2 71.24 2 73.59 2
88.39 4 83.03 4 85.90 4 80.07 4 71.68 4 73.66 4
88.19 8 82.68 8 86.01 8 79.70 8 71.48 8 73.78 8
88.21 16 - - 86.13 16 79.60 16 71.25 16 73.79 16

LFHC-RPE

88.52 2 83.14 2 86.48 2 80.51 2 71.38 2 73.87 2
88.78 4 83.26 4 86.10 4 80.62 4 72.00 4 73.96 4
88.59 8 83.16 8 86.18 8 80.25 8 71.45 8 74.18 8
88.63 16 - - 86.11 16 80.24 16 71.40 16 73.96 16

Table 5: The performance of Shaw-RPE and LFHC-RPE on text classification tasks with different k. All metrics
are consistent with GLUE Benchmark. For QQP, the average score of accuracy and f1 is selected as the final
evaluation metric. For MNLI, the average score of matched-accuracy and mismatched-accuracy is selected as the
final evaluation metric.

tween Ri and Ri+k is formulated as follows:

wt = (1/10000)2t/dmodel (16)

Rd =



sin(w0d)

cos(w0d)

...

sin(w dmodel
2
−1d)

cos(w dmodel
2
−1d)


(17)

‖Ri+k −Ri‖2 =

dmodel
2
−1∑

j=0

[

sin2(wji) + sin2(wj(i+ k))+

cos2(wji) + cos2(wj(i+ k))−
2sin(wji)sin(wj(i+ k))−
2cos(wji)cos(wj(j + k))]

= dmodel − 2

dmodel
2
−1∑

j=0

cos(k)

(18)

From Eq. 18, it is extremely obvious that the
sinusoidal prior encoding mechanism is translation
invariant, which completely violates property 1.
And according to this equation, we plot the diver-
gence change curve between R0 and other relative

position encoding vertors in Figure 5. Although
the sinusoidal encoding mechanism conforms to
property 2 on the whole, it can be clearly seen that
there are a lot of burrs on the curve, and there is a
serious jitter at the medium and long intervals.

Figure 6: The Euclidean distance change for different
position intervals in GCDF-RPE.

In our GCDF-RPE, Eq. 18 is revised as follows:

‖Ri+k −Ri‖2 =
dmodel∑
j=1

(

λ

σj
√
2π

∫ i+k

i
exp(− x2

2σ2j
) dx)2 (19)

By converting the integral to the area, it can be
easily concluded that GCDF-RPE satisfies property
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1. Similar to Figure 5, we plot the same curve for
GCDF-RPE. As shown in Figure 6, GCDF-RPE
also satisfies property 2.

A.3 Detailed Experimental Setup

For text classification tasks, we utilize Stanford
CoreNLP toolkit (Manning et al., 2014) for word
segmentation, and employ pre-trained GloVe (Pen-
nington et al., 2014) word vectors9 to initialize the
word embedding matrix. Concretly, for words with
a frequency greater than three and occurring in the
GloVe vocabulary, the initial parameters are pre-
trained word vectors, while for other words, we
treat them as unregistered words and mark them
uniformly as [UNK]. For datasets where the input
context is a single sentence, we use the max pool-
ing representation of the output in the last layer
as the classification feature. For datasets where
the input context is composed by two independent
sentences, we adopt the same input construction
method in BERT (Devlin et al., 2019), and the rep-
resentation of the [CLS] token in the last layer is
chosen as the classification feature.

For question generation tasks, we employ the
regular sequence-to-sequence structure (Sutskever
et al., 2014). It should be noted that we test the
performance of different RPEs only in the decoder
part, which means their encoder parts are the same.
For SQuAD dataset, we utilize bert-base10 as the
encoder. For CMRC dataset, we choose roberta-
base-wwm-ext11 as the encoder. Besides, beam
search, copy mechanism (Gu et al., 2016), length
penalty, tri-gram blocking, and token embedding
sharing (Inan et al., 2017) are also been adopted.
We set the beam width to 5 and the length penalty
to 0.6.

For auto-regressive language modeling task,
we keep the same experimental setup as in
Transformer-XL12 (Dai et al., 2019). In training,
the memory length is set to 150. In validation, we
follow Transformer-XL’s strategy to validate the
perplexity when the memory length is 150 and 640,
and the best perplexity is chosen as the final result.

We choose AdamW optimizer (Loshchilov and
Hutter, 2018) for all three tasks. The other hyper-
parameters for different tasks are shown in Table
4.

9https://nlp.stanford.edu/data/wordvecs/glove.840B.300d.zip
10https://huggingface.co/bert-base-cased
11https://github.com/ymcui/Chinese-BERT-wwm
12https://github.com/kimiyoung/transformer-xl

SQuAD CMRC
Rouge-L k Rouge-L k

Shaw-RPE

47.20 2 60.12 2
47.22 4 60.14 4
47.26 8 60.09 8

LFHC-RPE

47.42 2 60.33 2
47.32 4 60.19 4
47.28 8 60.21 8

Table 6: The dev set results on question generation
tasks with different k.

M=150 M=640 Best k

Shaw-RPE

25.83 26.14 25.83 4
25.34 25.67 25.34 8
25.49 25.79 25.49 12
25.45 25.76 25.45 16

LFHC-RPE

24.79 24.57 24.57 4
24.58 24.02 24.02 8
24.48 23.91 23.91 12
24.26 23.72 23.72 16

Table 7: The test perplexity on WikiText-103 with dif-
ferent k.

A.4 Results with Different K
In this section, we report the full results of Shaw-
RPE and LFHC-RPE with different k. Table 5
shows the results on text classification tasks. Table
6 shows the results on question generation tasks.
Table 7 shows the results on language modeling.


