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Abstract

Lifelong Learning (LL) black-box models are
dynamic in that they keep learning from new
tasks and constantly update their parameters.
Owing to the need to utilize information from
previously seen tasks, and capture commonal-
ities in potentially diverse data, it is hard for
automatic explanation methods to explain the
outcomes of these models. In addition, exist-
ing explanation methods, e.g., LIME (Ribeiro
et al., 2016), which are computationally expen-
sive when explaining a static black-box model,
are even more inefficient in the LL setting. In
this paper, we propose a novel Lifelong Ex-
planation (LLE) approach that continuously
trains a student explainer under the supervi-
sion of a teacher – an arbitrary explanation al-
gorithm – on different tasks undertaken in LL.
We also leverage the Experience Replay (ER)
mechanism to prevent catastrophic forgetting
in the student explainer. Our experiments com-
paring LLE to three baselines on text classifi-
cation tasks show that LLE can enhance the
stability of the explanations for all seen tasks
and maintain the same level of faithfulness to
the black-box model as the teacher, while be-
ing up to 102 times faster at test time. Our
ablation study shows that the ER mechanism
in our LLE approach enhances the learning ca-
pabilities of the student explainer. Our code is
available at https://github.com/situsnow/LLE.

1 Introduction

Explaining a model’s predictions to practitioners
and end users, especially in the case of a black-
boxmodel, is non-trivial. Recent research on eX-
plainable Artificial Intelligence usually considers
feature attribution as a local explanation, i.e., how
much each feature contributes to the outcome of
the model. Related works include backpropagation-
based methods, where the influence of model out-
come is backpropagated according to gradients
or layer-wise rules (Bach et al., 2015; Sundarara-
jan et al., 2017; Smilkov et al., 2017; Erion et al.,

2021); perturbation-based methods, which observe
changes in model performance after feature per-
turbation (Schwab and Karlen, 2019; Kim et al.,
2020), or approximate the local decision boundary
through perturbed samples (Ribeiro et al., 2016;
Lundberg and Lee, 2017); and model-based meth-
ods, which train an explainer model by optimizing
an explanation-meritorious objective,1 such as ro-
bustness/stability (Lakkaraju et al., 2020; Alvarez-
Melis and Jaakkola, 2018) that requires similar
examples to have similar explanations. All these
methods aim to explain static black-box models,
whereas explaining dynamic ones, as in the life-
long learning (LL) (Silver et al., 2013) setting, is
under-explored.

We propose a Lifelong Explanation (LLE) ap-
proach that learns to explain the outcome of a LL
black-box under the supervision of a teacher ex-
planation algorithm. The key challenge in LL is
to prevent catastrophic forgetting (McCloskey and
Cohen, 1989) of knowledge learnt from preceding
tasks while learning from a new task. To prevent
this, an Experience Replay (ER) mechanism (Li
and Hoiem, 2017) is exploited to replay a small
amount of past data in order to maintain perfor-
mance on all seen tasks. However, the dynamically-
changing black-box model may make the ER of pre-
viously generated explanations sub-optimal. We in-
vestigate an ER mechanism that replays previously
seen examples together with explanations from the
teacher produced in the current step. Specifically,
we incorporate the ER mechanism into the train-
ing of the student explainer, which focuses on the
faithfulness of the generated explanations, i.e., how
well an explanation aligns with the LL black-box
model outcome.

Our empirical results show that the LLE ex-
plainer (i) enhances the stability of explanations,
(ii) is as faithful to the black-box model as the
teacher, and (iii) is faster than the teacher at test

1An objective that maximizes the quality of an explanation.

https://github.com/situsnow/LLE
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time. Our ablation study on ER shows that re-
generating the teacher’s explanations for past ex-
amples significantly improves the faithfulness and
stability of the student explanations.

2 Problem Definition

In this paper, we consider a Lifelong Learning
(LL) setting comprising a sequence of text clas-
sification tasks {T1, T2, ..., TT }. Each task Tt has
its own train/validation/test sets (Dt

tr, D
t
va, D

t
ts),

each of which contains a set of paired examples
{(xxxti, yti)}

nt
i=1, where xxxt is the input (e.g., a docu-

ment), yt ∈ Y t is the true label (e.g., a topic label),
Y t denotes the label set in task Tt, and nt is the
total number of examples in the set. The goal is
to train a classifier fθθθ which continuously learns
and accumulates knowledge from the data in each
task Tt. Specifically, at an arbitrary step t, fθθθ opti-
mizes a loss function:

∑nt
i=1 L(fθθθ(xxx

t
i), y

t
i), on the

training data Dt
tr.

In addition, we require fθθθ to remember the pre-
ceding knowledge at each step t, so as to main-
tain its performance on all previous tasks, i.e.,
T1, T2, ..., Tt−1. In order to achieve this goal, the
classifier fθθθ is usually allowed to access a mem-
ory that stores a limited number of samples from
the previous tasks. The performance measure of
fθθθt at each step t is: 1

t

∑t
j=1 accf,j , where accf,j

denotes the accuracy of fθθθt on task Tj .

Lifelong Explanation. To explain a dynamic
classifier, as in lifelong learning, we consider a
new problem setting, called lifelong explanation,
where at each step t, the input consists of a set of
paired examples {(xxxti, fθθθt(xxxti))}

nt
i=1. The goal is to

output an explanation rrrti that indicates how much
each dimension of xxxti contributes to the outcome
of fθθθt(xxx

t
i). Our approach consists of building an

explainer model gφφφ, i.e., the student, under the su-
pervision of a teacher algorithm, i.e., gφφφ uses the
explanations generated by the teacher as ground
truth.

This approach generalizes to dynamic classifiers
the learning-to-explain approach in (Situ et al.,
2021) for explaining the outcome of static clas-
sifiers. Since fθθθ keeps updating at each step t,
we require the explainer gφφφ to be able to explain
the updated fθθθ, while maintaining its explanation-
meritorious performance, viz faithfulness and sta-
bility, on the data from tasks T1, T2, ..., Tt−1.

(a) The training phase of LLE; the dashed arrows represent
the experience replay from memory.

(b) The testing phase of LLE.

Figure 1: Training and testing for LLE. For clarity of
exposition, we omit the links from data (D or M) to
explanation methods (g or A) — the D orM inputs to
the black-box model f are also inputs to g and A.

3 Lifelong Explanation (LLE)

We now present the training and testing phase
of our LLE algorithm (Figure 1) to explain a
dynamically-changing black-box classifier.

At time step t in the training phase, we are given
a task Tt, its training set Dt

tr and the black-box
model fθθθt (Figure 1a). We first collect the expla-
nations rrrti for each input xxxti in Dt

tr from a teacher
algorithmA. Here, rrrti contains the features (words)
in the input xxxti that are important for the prediction
made by fθθθt(xxx

t
i). We then train our LLE explainer

gφφφt with the set of explanations {rrrti}
nt
i=1 for all in-

puts in Dt
tr according to Algorithm 1 and 2.

Training the LLE differs from training the
generic LL classifier. Firstly, unlike LL, which
predefines task boundaries to determine the mem-
ory saving strategy, LLE can simply reuse the same
set of memorized examples in LL, and thus is in-
sensitive to this setting; we use sparse experience
replay (d’Autume et al., 2019), which replays ex-
amples from the memory randomly. Secondly, the
generic LL algorithm saves the fixed ground-truth
label y in the memory. However, in LLE, for an
input in the memory M, the ground-truth expla-
nation at time step t − 1 may differ from the one
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Algorithm 1 Lifelong Explanation (LLE)

1: fθθθ: underlying LL black-box classifier
2: gφφφ: explainer model
3: A: teacher explanation method
4: K: numbers of randomly selected examples
5: M: training memory
6: procedure EXPLAINERMODEL(fθθθ)
7: M← ∅
8: initialize θθθ0 and φφφ0 randomly
9: for each incoming task Tt do

10: θθθt ← LLTRAIN(θθθt−1, D
t
tr,M) . training of fθθθ

11: φφφt ← RETRAIN(Dt
tr,M,φφφt−1,A, fθθθt)

12: M←M∪ RANDOMSUBSET(Dt
tr,Kt)

13: explain fθθθt(D
1
ts), ..., fθθθt(D

t
ts) using gφφφt

14: end for
15: end procedure

Algorithm 2 Re-training of gφφφ

1: procedure RETRAIN(Dtr,M,φφφ,A, fθθθ)
2: i← 0
3: while a stopping condition is not met do
4: Randomly pick bbb ∈ Dtr , bbb′ ∈M
5: R← consultTeacher(bbb,A, fθθθ) . Appendix A
6: R′ ← consultTeacher(bbb′,A, fθθθ)
7: φφφ← φφφ− ηi

|bbb|+|bbb′|

(
∇φφφL(bbb,R,φφφ)+∇φφφL(bbb′,R′,φφφ)

)
8: i← i+ 1
9: end while

10: return φφφ
11: end procedure

at time step t, since the black-box fθθθ is constantly
being updated. Hence, when we train gφφφ at time
step t (Algorithm 1, line 11), we need to consult
the teacher again for the latest explanation (Algo-
rithm 2, lines 5-6). This ‘experience replay’ ap-
proach ensures that gφφφ can maintain its explanatory
performance on previous examples while learning
from new examples. To mitigate catastrophic for-
getting, we randomly select a subset of size Kt
from the current training input Dt

tr and add it to
the memoryM (Algorithm 1, line 12).

In the testing phase (Figure 1b), we no longer re-
quire the teacher algorithm A as the LLE explainer
gφφφ has already learnt how to produce explanations
for unseen examples at each time step t.

4 Experiment

4.1 Dataset and Black-Box Model (fθθθ)

We randomly select ten tasks from the Amazon
Customer Review dataset2 and fine-tune a pre-
trained distilled BERT (Sanh et al., 2019) on these
tasks, achieving a 97% test accuracy. Details of
the dataset, training of fθθθ and accuracies appear in
Appendices B.1 and B.2.

2We use the datasets provided by HuggingFace datasets
API https://huggingface.co/datasets/amazon_us_reviews.

4.2 Teacher Explanation Methods (A)

We chose two existing explanation algorithms,
LRP (Bach et al., 2015) and LIME (Ribeiro et al.,
2016), as the teachers A in our experiments3 —
experiments in (Montavon et al., 2018) and (Situ
et al., 2021) have shown LRP and LIME to be reli-
able explanation methods in terms of faithfulness
and stability. In terms of efficiency, LRP requires
one backpropagation pass through the underlying
black-box model, and LIME needs to train a linear
surrogate model using examples sampled from the
neighbourhood of the instance of interest. LPR is
time-consuming when the black-box model is large,
and LIME is time consuming when the sample size
is large. For LIME, we include two baselines, one
with sample size 100 (denoted LIMEs) and another
with sample size 1000 (denoted LIMEl), to under-
stand how sample size affects its performance.

4.3 Lifelong Explainer (gφφφ)

Following the sequence labeling formulation
in (Situ et al., 2021), our explainer gφφφ takes as input
a documentxxx and the outcome predicted by fθθθ, and
outputs a sequence of labels – a label represents
the discretized contribution (positive or negative)
of a word in xxx to the outcome.

When gφφφ learns from LRP, denoted LLElrp, the
ground-truth explanations from LRP are all pos-
itive and categorized into high/medium/low posi-
tive based on the thresholds of mean ± standard
deviation of all attributions of input xxx. When gφφφ
learns from LIME, the ground-truth explanations
from LIME can be greater, equal or lower than
zero. Hence, the categories are taken to be positive,
neutral and negative respectively.

We use the Fairseq framework (Ott et al., 2019)
to implement the explainer model gφφφ. Specifically,
gφφφ is a Transformer encoder (Vaswani et al., 2017)
(4 attention heads, 4 blocks) trained with a Stochas-
tic Gradient Descent optimizer and a fixed learning
rate (1e-4). For experience replay during training,
we randomly select 8 samples from the memory
M on top of the existing mini-batch (size 8). We
train the LLE models with three random seeds for
50 epochs each and report the average results with
the best checkpoints on the validation set.

3We use the implementations by Wu and Ong (2021)
and Ribeiro et al. (2016) for LRP and LIME respectively.

https://huggingface.co/datasets/amazon_us_reviews
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4.4 Performance Metrics
Similarly to (Situ et al., 2021), we compare the
faithfulness and stability of explanations produced
by our LLE with those produced by the teacher
explanation methods A; we also compare the effi-
ciency of the methods.

We measure faithfulness in terms of the
∆log-odds values after masking either the positive
or negative contribution words. For an input docu-
ment xxx at time step t, ∆log-odds is given by:

log-odds(p(ŷ|fθθθt(xxx)))− log-odds(p(ŷ|fθθθt(x̃xx)))

where ŷ = maxy∈Y t fθθθt(xxx), x̃xx is obtained by mask-
ing the positive or negative important words in xxx,
and log-odds(p) = log p

1−p .
To measure stability, we first select N (set to 3)

most similar test documents to the current test doc-
ument xxx based on pairwise ngram similarity. We
then compute the Intersection over Union (IoU)
according to the positive and negative important
words in xxx and in each of the similar documents xxx′:

1

|N (xxx)|
∑

xxx′∈N (xxx)

∑
`∈L |vvv

`
xxx ∩ vvv`xxx′ |∑

`∈L |vvv`xxx ∪ vvv
`
xxx′ |

where L is the discretized label set. If the teacher
is LRP, L = {high, low}, and if the teacher is
LIME, L = {positive, negative}; vvv`xxx is the set of
words with output label ` according to the student
explainer gφφφt or the corresponding teacher A at
time step t.

Efficiency is measured by the average time it
takes to produce explanations.

These three metrics are computed for all test sets
of tasks seen so far at step t; we report the average
values per test sample.

4.5 Results
Figures 2 and 3 respectively display the positive
∆log-odds, measured by masking words with posi-
tive attributions, and IoU per test document (higher
is better) for all tasks seen so far at each time
step (the negative ∆log-odds are shown in Ap-
pendix C.1). To evaluate faithfulness, we also in-
clude a Random baseline, which is the ∆log-odds
value obtained by randomly selecting k words in
each test sample.4 When LIME is the teacher, we
report the LLE model under the supervision of
LIMEl only, denoted LLElime.

4We omit the Random baseline for stability because the
stability of an unfaithful explanation is irrelevant, as shown in
Figure 2 and in Figure 6, Appendix C.1.
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Figure 2: Positive ∆log-odds (higher is better).
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Figure 3: IoU (higher is better).

Faithfulness. As seen in Figure 2, student LLElrp

and its teacher LRP are almost identically faithful,
while LLElime never performs significantly worse
than LIMEl,5 and performs marginally better than
LIMEs. We also observe that all methods behave
significantly better than the Random baseline. It is
worth noting that the LIME family (teacher and stu-
dent) is consistently and significantly more faithful
than the LRP family. In addition, all methods ex-
cept Random show similar fluctuations in all steps.
We hypothesize that both LRP and LIME (and their
students) can capture the confidence changes of
the underlying black-box fθθθ on the examples from
tasks seen so far. However, the sampling process
in LIME helps capture a smoother local decision
boundary than LRP, thus helping it better target the
most important features, and thus showing a higher
level of faithfulness.

Stability. As shown in Figure 3, students LLElrp

and LLElime achieve higher stability than their teach-
ers LRP and LIMEl respectively. Further, the LRP

5We use paired t-test with Holm-Bonferroni correc-
tion (Holm, 1979) in all our significance tests, with α < 0.05.
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Figure 4: Inference time per test document from all ten
tasks (note the log-scale on y-axis).

family outperforms the LIME family, which is in
contrast to the trend for faithfulness (Figure 2).
However, LLElime performs comparably with LRP
in most steps, even though its teacher is signifi-
cantly worse than LRP. This shows that our LLE
approach can generate more stable explanations
than the teachers while maintaining faithfulness.

Efficiency. Figure 4 shows the processing time
of all methods obtained with the same hardware
configuration.6 The size of the black-box model fθθθ
and the LLE model gφφφ are approximately 270MB
and 135MB respectively. Given that LRP requires
a backward relevance computation per layer in fθθθ,
and LIME requires multiple forward passes (based
on sample size), while LLE requires only one for-
ward pass in gφφφ, it is self evident that LLE is signif-
icantly faster than all three baselines.

Experience Replay on LLE. We perform an ab-
lation study to understand the significance of ER in
LLE. Specifically, for a particular teacher, we train
two other LLE models: (i) without ER during train-
ing (denoted LLE-No ER), and (ii) using the expla-
nations generated by the teacher algorithm when
the black-box model first sees a task (denoted LLE-
Old ER; involves removing line 6 in Algorithm 2).
Table 1 shows the ∆log-odds results after mask-
ing positive attribution words from these two LLE
models and the vanilla LLE, all with LRP as the
teacher. The faithfulness of the model with the up-
dated teacher explanations (LLElrp) is significantly
higher than that of the other two LLE variants. Sim-
ilar observations are obtained in other faithfulness
and stability comparisons (Appendix C.2).

6Intel Xeon Silver 4214R, Quadro RTX 6000, 24GB RAM.

Positive ∆log-odds ↑
TtTtTt LLElrp-No ER LLElrp-Old ER LLElrp
1 3.8±0.1 3.81±0.1 3.81±0.1
2 3.4±0.07 3.4±0.07 3.55±0.07
3 3.82±0.06 3.8±0.06 3.96±0.06
4 2.66±0.05 2.68±0.05 2.85±0.05
5 2.38±0.04 2.39±0.04 2.56±0.04
6 3.17±0.05 3.15±0.05 3.34±0.04
7 2.91±0.04 2.9±0.04 3.1±0.04
8 3.42±0.04 3.4±0.04 3.64±0.04
9 3.03±0.03 3.05±0.03 3.18±0.03
10 3.65±0.04 3.63±0.04 3.98±0.04

Table 1: Positive ∆log-odds per test document from
all seen tasks at each time step; bold means the LLE
model (learns from teacher LRP) is significantly better
than the other two.

5 Conclusion and Future Work

We have proposed a Lifelong Explanation (LLE)
method that learns from a teacher and leverages an
ER mechanism to explain a constantly-changing
black-box. Our experimental results show that LLE
can improve the stability of a teacher’s explanation,
and maintain a comparable level of faithfulness,
while performing up to two order of magnitudes
faster. Our ablation study has shown the effective-
ness of ER using most recently generated explana-
tions.

The performance of LLE in LL settings con-
sisting of problems other than classification, e.g.,
relation extraction, is still under-explored. The
evaluation of LLE based on other merits of expla-
nations, such as simulatability (Hase and Bansal,
2020), can also be an interesting research direction.
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Appendix A Collecting Teacher
Explanations

We present the details of collecting the teacher ex-
planations in Algorithm 3.

Algorithm 3 Collecting teacher explanations

1: procedure CONSULTTEACHER(bbb,A, fθθθ)
2: R← ∅
3: for each xxx in bbb do
4: ŷ ← fθθθ(xxx)
5: R← R∪A(xxx, ŷ)
6: end for
7: returnR
8: end procedure

Appendix B Setup

B.1 Dataset
The Amazon Product Review dataset consists of
customer comments on multiple categories of prod-
ucts. We extract the ‘review body’ and ‘star rat-
ing’ as the input/output for training the classifier.
Further, we combine the positive ratings (4 and
5) and negative ratings (1 and 2) to form a bi-
nary classification problem. We select the tasks of
Home, Outdoors, Wireless, Music, Books, Office
products, Luggage, Sports, Jewellery and Video
games from this dataset and use them in this or-
der in all experiments. To ensure the classifier
learns balanced information from each task, we
randomly select 20,000/2,000/2,000 examples as
the train/validation/test set, respectively for each of
the ten tasks.

B.2 Training of black-box fθθθ

We train the black-box model fθθθ using an Adam op-
timizer (Loshchilov and Hutter, 2019) (0.1 weight
decay and 1e-5 learning rate) for one epoch. To
prevent catastrophic forgetting, we randomly save
training examples of each task into memory M.
We maintain a fixed memory size (64 examples)
for each task. We randomly replay 64 examples
fromM after every 800 mini-batches which gives
us 1% replay rate. The average test accuracy at
each time step, as shown in Figure 5, demonstrates
that fθθθ maintains the performance on seen tasks
while learning from new task.

Appendix C Results

C.1 Negative ∆log-odds
Figure 6 compares the ∆log-odds after masking the
same k number of words with negative attributions
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Figure 5: The average test accuracy of the lifelong
learning classifier at each time step.
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Figure 6: Negative ∆log-odds (lower is better).

for each of the LIME-based models. We can see
that LLElime performs very similar to its teacher
LIMEl and becomes better than LIMEs after seven
tasks. We do not compare LRP-based methods here,
as LRP considers all words contribute positively to
the final prediction.

C.2 Experience Replay on LLE
The effect of using ER is measured using
∆log-odds and IoU in Tables 2 to 5. These exper-
imental results prove that LLE is able to generate
better explanations in terms of faithfulness and sta-
bility by leveraging the most recent ground-truth
(teacher explanations) in ER.
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Positive ∆log-odds ↑
TtTtTt LLElime-No ER LLElime-Old ER LLElime
1 4.92±0.09 4.92±0.09 4.92±0.09
2 4.44±0.06 4.53±0.06 4.92±0.06
3 5.62±0.05 5.66±0.05 5.76±0.05
4 4.13±0.04 4.1±0.04 4.25±0.04
5 4.15±0.04 4.03±0.04 4.19±0.04
6 5.12±0.04 5.02±0.04 5.15±0.04
7 4.96±0.03 4.97±0.03 4.94±0.03
8 5.01±0.04 5.29±0.04 5.64±0.03
9 4.57±0.03 4.58±0.03 4.89±0.03
10 5.71±0.04 5.66±0.04 5.77±0.04

Table 2: Positive ∆log-odds per test document from
all seen tasks at each time step; bold means the LLE
model (learns from teacher LIMEl) is significantly bet-
ter than the other two.

Negative ∆log-odds ↓
TtTtTt LLElime-No ER LLElime-Old ER LLElime
1 0.72±0.07 0.72±0.07 0.72±0.07
2 0.25±0.04 0.27±0.04 0.25±0.04
3 0.17±0.03 0.15±0.03 0.19±0.03
4 0.0±0.02 -0.0±0.02 -0.01±0.02
5 -0.11±0.02 -0.11±0.02 -0.13±0.02
6 -0.13±0.02 -0.12±0.02 -0.14±0.02
7 -0.16±0.02 -0.15±0.02 -0.18±0.02
8 -0.17±0.02 -0.13±0.02 -0.17±0.02
9 -0.12±0.01 -0.11±0.01 -0.16±0.02
10 -0.04±0.01 -0.03±0.02 -0.03±0.02

Table 3: Negative ∆log-odds per test document from
all seen tasks at each time step; bold means the LLE
model (learns from teacher LIMEl) is significantly bet-
ter than the other two.

IoU
TtTtTt LLElrp-No ER LLElrp-Old ER LLElrp
1 21.43±0.63 21.43±0.63 21.43±0.63
2 20.8±0.56 20.91±0.6 21.15±0.63
3 20.19±0.49 19.74±0.5 19.86±0.5
4 22.35±0.6 22.51±0.63 22.52±0.63
5 24.72±0.89 24.54±0.86 25.44±0.88
6 22.26±0.66 21.96±0.67 22.53±0.69
7 24.31±0.82 24.16±0.81 24.6±0.82
8 23.03±0.59 22.77±0.6 22.98±0.6
9 22.11±0.65 22.38±0.64 22.51±0.66
10 25.67±0.69 25.54±0.71 26.08±0.72

Table 4: IoU per test document from all seen tasks at
each time step; bold means the LLE model (learns from
teacher LRP) is significantly better than the other two.

IoU
TtTtTt LLElime-No ER LLElime-Old ER LLElime
1 22.66±0.66 22.66±0.66 22.66±0.66
2 19.28±0.7 18.87±0.72 19.71±0.7
3 18.2±0.59 18.0±0.6 18.44±0.59
4 20.81±0.73 20.18±0.75 20.79±0.74
5 24.12±0.97 24.05±0.97 24.18±0.96
6 20.09±0.78 19.9±0.79 20.35±0.79
7 23.43±0.91 23.07±0.92 24.07±0.9
8 19.26±0.71 19.72±0.7 19.95±0.71
9 20.7±0.76 20.52±0.76 21.47±0.74
10 25.09±0.86 25.28±0.85 25.72±0.84

Table 5: IoU per test document from all seen tasks at
each time step; bold means the LLE model (learns from
teacher LIMEl) is significantly better than the other
two.


