
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 257–268
November 7–11, 2021. c©2021 Association for Computational Linguistics

257

Progressive Self-Training with Discriminator for Aspect Term Extraction

Qianlong Wang1, Zhiyuan Wen1, Qin Zhao1, Min Yang2, Ruifeng Xu1,3∗

1Harbin Institute of Technology (Shenzhen), China
2Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences

3Peng Cheng Laboratory, Shenzhen, China
qlwang15@outlook.com, wenzhiyuan2012@gmail.com

zhaoqin@hit.edu.cn
min.yang@siat.ac.cn, xuruifeng@hit.edu.cn

Abstract

Aspect term extraction aims to extract aspect
terms from a review sentence that users have
expressed opinions on. One of the remain-
ing challenges for aspect term extraction re-
sides in the lack of sufficient annotated data.
While self-training is potentially an effective
method to address this issue, the pseudo-labels
it yields on unlabeled data could induce noise.
In this paper, we use two means to alleviate
the noise in the pseudo-labels. One is that in-
spired by the curriculum learning, we refine
the conventional self-training to progressive
self-training. Specifically, the base model in-
fers pseudo-labels on a progressive subset at
each iteration, where samples in the subset be-
come harder and more numerous as the iter-
ation proceeds. The other is that we use a
discriminator to filter the noisy pseudo-labels.
Experimental results on four SemEval datasets
show that our model significantly outperforms
the previous baselines and achieves state-of-
the-art performance.

1 Introduction

Aspect term extraction (ATE) is a crucial task in
aspect-level sentiment analysis, aiming to extract
all aspect terms present in the sentence (Pontiki
et al., 2014). For example, given a restaurant re-
view "I looove their eggplant pizza, as well as their
pastas!", ATE system aims to extract "eggplant
pizza" and "pastas".

Many researchers typically formulated ATE as a
sequence labeling problem or a token-level classi-
fication problem. The current state-of-the-art neu-
ral models can be classified into two categories.
One designs the sophisticated model with a variety
of techniques, such as history attention (Li et al.,
2018), sequence to sequence (Ma et al., 2019), and
constituency lattice (Yang et al., 2020). Although
these models achieve satisfactory performance, its
sufficient condition is the availability of sufficient

∗ Corresponding author.

training data. However, labeling a large amount of
aspect data may not be practical due to its cost.

The other aims at addressing the data insuffi-
ciency issue from a different perspective. For ex-
ample, Li et al. (2020) generated the reviews while
preserving the original aspects via formulating the
data augmentation as a conditional generation task.
However, varying only a small number of consec-
utive non-aspect words in the reviews would limit
the semantic diversity of the sample. Chen and
Qian (2020) tackled long-tail distributions problem
of aspect terms and context words in the training
sets with soft prototypes. Nevertheless, the way
that the soft template implicitly uses external data
discounts the usefulness of external data.

Different from previous approaches, in this pa-
per, we use self-training (Scudder, 1965) to allevi-
ate the labeled data insufficiency. In self-training,
a base model trained on the labeled data is used to
infer pseudo-labels on the unlabeled data, and then
a new base model is trained to optimize the loss
on human labels and pseudo-labels jointly. We can
iterate this algorithm a few times by using new base
model to relabel the unlabeled data and retraining
a new base. Hence, we can supplement the labeled
data with some pseudo-labeled data.

However, the approaches relying on self-training
typically suffer from noise induced by pseudo-
labels. In this paper, we use two means to mitigate
the negative effects of pseudo-labels. One is to
refine the conventional self-training to progressive
self-training. Here, we use a progressive subset at
each iteration instead of the entire unlabeled data
set. During the iterative process, the unlabeled
samples in the subset become harder and more nu-
merous. Our motivation stems from curriculum
learning (Bengio et al., 2009), where we expect to
infer pseudo-labels for unlabeled data in the order
of easy to hard and few to many. In this process,
easy unlabeled data will bring in little noise, and
model that have been previously learned will be

258

better and thus generate less noise at later stages.
The other is to use a discriminator to filter out

as much noise as possible from the pseudo-labels.
Inspired Mao et al. (2021), we construct a question
sequence based on sentence and a pseudo-label as-
pect term in sentence that is fed to the discriminator
to make true-false prediction. To train the discrim-
inator, we fabricate several positive and negative
samples from the training set. Here, the negative
samples are constructed based on the left and right
boundary errors of aspect terms and the errors of
non-aspect terms with the same POS tag as aspect
terms. A pseudo-labeled sentence is used to train
the new base model only if its all aspect terms are
true; otherwise, it is filtered out. Moreover, we can
also apply self-training method to train the discrim-
inator to enhance its discriminatory power.

Our method follows multiple steps. Step 1: train
a base model on the labeled data; Step 2: divide the
unlabeled data into progressive subsets for curricu-
lum learning based on the difficultness and quan-
tity; Step 3: synthesize positive and negative sam-
ples on the train set to train a discriminator; Step 4:
use the base model to infer the pseudo-labels of the
samples in current unlabeled subset, and then filter
the noisy pseudo-labels with discriminator; Step 5:
retrain a new base model (discriminator) using the
labeled data and the filtered pseudo-labeled data.
Steps 4 and 5 are repeated until the progressive
subsets are exhausted (i.e., the curriculum learning
is completed).

Overall, we make the following contributions:
(a) To the best of our knowledge, we are the first to
use self-training to address the problem of insuffi-
cient labeled data in ATE; (b) To mitigate the noise
introduced by self-training, we refine the general
self-training to progressive self-training and bring
in a discriminator to filter the noisy pseudo-labels;
(c) Experimental results on four ATE datasets show
that our method outperforms the baselines and
achieves the state-of-the-art performance. Further-
more, we conduct extensive experiments to verify
its effectiveness and generalization.

2 Related Work

Aspect Term Extraction Earlier research en-
deavors focused on exploiting pre-defined rules
(Hu and Liu, 2004; Wu et al., 2009), hand-craft fea-
tures (Liu et al., 2012), or prior knowledge (Chen
et al., 2014) to solve ATE. Recently, researchers
employed some deep learning and parse techniques

to ATE, such as LSTM (Liu et al., 2015), CNN
(Xu et al., 2018), Attention (Li et al., 2018), BERT
(Xu et al., 2019), and constituency parsing (Yang
et al., 2020). A recent trend is towards the unified
framework (Li et al., 2019; Mao et al., 2021). So
far, one of the remaining challenges for ATE is the
insufficient of annotated data, especially as neural
models become more large and more complex. To
address this issue, Li et al. (2020) presented a con-
ditional data augmentation approach for ATE. In
addition, to solve the data sparsity problem, Chen
and Qian (2020) introduced soft prototypes trained
by internal or external data. In this paper, we focus
on the the insufficient of labeled data scenario, and
alleviate it via self-training and unlabeled data.

Self-training The self-training proposed by
Scudder (1965) is a semi-supervised approach that
leverages unlabeled data to create better models.
Self-training first trains a base model on a small
amount of labeled data; then utilizes it to pseudo-
label unlabeled data, and uses pseudo-labels data
to augment the labeled data; finally iteratively re-
trains the model. Recently, it yields state-of-the-art
performance on machine learning tasks like im-
age classification (Zoph et al., 2020), few-shot text
classification (Mukherjee and Awadallah, 2020),
and neural machine translation (He et al., 2019).
The error propagation (Wang et al., 2021) from
noisy pseudo-labels is an obvious problem in self-
training. In this paper, we alleviate noisy in the
pseudo-labels by using progressive subsets (i.e.,
curriculum learning) and a discriminator.

Curriculum Learning Learning from easier
samples first and harder samples later is a com-
mon strategy in curriculum learning (Bengio et al.,
2009). Our progressive self-training method fo-
cuses on easier samples in the early stage, and
uses hard samples in the later stage. Our aim is to
reduce the noise in the pseudo-labels: the pseudo-
labels for easy examples are less prone to errors,
and model that have been previously learned could
yield more accurate pseudo-labels at later stage.

3 Method

3.1 Problem Formulation

Given a token sequence x = {x1, x2,, xn}
of length n, the ATE task can be characterized
as a token-level classification problem. The ATE
model takes x as input and outputs a label sequence
y = {y1, y2,, yn}, where yi ∈ {B, I,O} is

259

Train ATE model

with labeled

dataset 𝐷

Train discriminator

with labeled dataset 𝐷
and filtered pseudo-

labeled data

Dividing unlabeled dataset 𝐷𝑢

into progressive subsets {𝐷𝑢/𝑖}𝑖
for curriculum learning

Infer pseudo-labels

on unlabeled data 𝐷𝑢/𝑖

Use discriminator to

filter noisy pseudo-

labels

Re-train ATE model

with 𝐷 and filtered

pseudo-labeled data

Figure 1: An illustration of our method. “filtered
pseudo-labeled data” indicate that they are unavailable
when the iteration is not started. The progressive sub-
sets means that the samples in the subset are becoming
harder and more numerous for curriculum learning.

used to indicate if the corresponding token is at
the beginning, inside or outside of an aspect term.
Given a labeled dataset D = {(xi, yi)}i and a
unlabeled dataset Du = {x̃i}i, our method aims to
yield a competitive ATE model.

3.2 Overview

Figure 1 provides an illustration of our method.
We first train a base model via the standard cross-
entropy loss using the labeled dataset. We then use
the base model to estimate the difficultness of the
unlabeled samples. Thus, we can divide them into
progressive subsets for curriculum learning, where
the subsets keep the difficultness increment and the
sample amount increment. Meanwhile, we synthe-
size the training data of the discriminator, and train
a discriminator. We then utilize the base model to
infer pseudo-labels on the current unlabeled sub-
set. Intuitively, easy unlabeled data is less prone to
noise, and previously learned model will be better
and thus generate less noise at later stages. In addi-
tion, to reduce noise as much as possible, we apply
a discriminator to filter noisy pseudo-labels where
the filtered pseudo-labeled data can be used to train
better discriminator. We then train a new base
model by pretraining on the filtered pseudo-labeled
data and finetuning on the labeled data. Finally,
we iterate this process by using new base model to
infer pseudo-labels on the next unlabeled subset.

3.3 Aspect Term Extraction Model

We formulate ATE as a token-level classification
task, where for each token xi in the sentence, our
ATE model assigns a label yi. Our ATE model uses
BiLSTM (Hochreiter and Schmidhuber, 1997) or
BERT (Devlin et al., 2019) as encoder. The encoder
takes a sequence of tokens as input, and produces
a sequence of contextual hidden states. To obtain

the logits, we attach a linear layer to the end of the
encoder. During the training phase, the encoder
and the linear layer are trained by minimizing the
cross-entropy loss:

`(x, y) =
1

n

n∑
i

CE(fATE(xi, θATE), yi) (1)

where CE is the cross-entropy loss function, fATE

denotes our ATE model parameterized by θATE ,
and n is the length of the token sequence.

In the inference phase, the ATE model predicts
the sequence of labels with the following equation:

ŷi = argmax
ŷi

softmax(fATE(xi, θATE)) (2)

3.4 Progressive Subsets

The conventional self-training performs inference
on all unlabeled data, which undoubtedly leads to
much noise. Inspired by the curriculum learning
(Bengio et al., 2009), we refine the conventional
self-training into the progressive self-training. We
assume that in the early stages, easy unlabeled sam-
ples are not prone to induce noise, and in the late
stages, the learned model has been better and will
reduce noise generation on hard unlabeled sam-
ples. To divide the unlabeled data into progressive
subsets, we define the difficultness of the samples
based on the average logit of the tokens. We con-
sider that the larger the logit, the more information
it contains and the more confident the predictions
of the model will be, and hence the easier the unla-
beled sample.

gi = fATE(xi, θATE) degree =
1

n

n∑
i

gi[ŷi]

(3)
where gi ∈ R3 is the logit vector of the token xi,
and gi[ŷi] is a logit value corresponding to predic-
tion ŷi. degree indicates the difficultness of the
sample, and the larger the value the easier the sam-
ple is. In addition, we find that the progressive
subset size is kept incremental in favor of perfor-
mance improvement.

3.5 Discriminator

Intuitively, filtering out all the noise in the pseudo-
labels accurately and automatically is not quite
realistic. We can only filter the noise as much as
possible, and to this end, a discriminator is intro-
duced. It makes a true-false determination for each
of the inferred aspect terms based on the corre-
sponding contextual. Subsequently, we evaluate

260

whether the sample is suitable for re-training the
base model based on the discrimination results of
all aspect terms in the sample.

Inspired Mao et al. (2021), we formulate this
identification task as a question answering problem,
where for each sentence we ask in turn whether the
inferred aspect term is true and we expect the re-
sponse to be affirmative or negative. To derive a
suitable input, we pack sentence and custom ques-
tion as an input sequence. The input sequence is
obtained as follows: a [CLS] token is added to the
token sequence at the beginning, and two [SEP]
tokens are inserted at the end of both the sentence
and the custom question, respectively. For instance,
we can derive an input sequence based on the above
review: [CLS] I looove their eggplant pizza , as
well as their pastas ! [SEP] Is " pastas " an aspect
term in the sentence ? [SEP]

For simplicity, the encoder of the discriminator
is identical to that of the ATE model. Here, the
final hidden state corresponding to [CLS] token
is used as the aggregate sequence representation
and fed into the classifier. Suppose the dataset
Dd = {(xi, ai, yi)}i where x is a sentence, a is an
aspect term in x, and y ∈ {0, 1} is the label of a,
we can optimize the discriminator by the following
equation:

`(x, a, y) = BCE(fdis(x, a, θdis), y) (4)
where BCE is the binary cross-entropy loss func-
tion and fdis is a discriminator parameterized by
θdis. Subsequently, the trained discriminator is
used to do true-false determination for each in-
ferred aspect term ã to filter the noisy pseudo-
labels.
ỹ = INT(sigmoidfdis(x̃, ã, θdis) >= 0.5) (5)

where INT maps true and false to 0 and 1, respec-
tively.

However, we can only obtain positive samples in
Dd from the ATE dataset, but not negative samples.
We observe that the wrong aspect terms tend to be
boundary errors and non-aspect term errors. In-
spired by this observation, we synthesize negative
samples based on left and right boundary errors
and the errors of non-aspect terms with the same
POS tag1 as aspect terms. Table 1 gives examples
of wrong aspect terms.

3.6 Training

We first train a base model on labeled data and use
the average logit from the base model to partition

1We use NLTK to derive the POS tag of each token.

Correct Aspect Term Wrong Aspect Term Error Type

black keyboard
keyboard E1

black E2
notebook E3

Table 1: Examples of different error types. E1, E2 and
E3 denote left-boundary errors, right-boundary errors
and non-aspect term errors, respectively. In the sen-
tence "the newer black keyboard took a little bit, but it
is still a great notebook!", notebook and black keyboard
have the identical POS tag.

the unlabeled data into progressive subsets; second,
train a discriminator on the synthetic dataset; third,
infer pseudo-labels on the current unlabeled subset
and filter noisy aspect terms with discriminator;
then train a new base model and discriminator us-
ing both labeled data and filtered pseudo-labeled
data; and finally, apply this new base model to the
next unlabeled subset. To understand our method
clearly, Algorithm 1 procedure is presented.

Algorithm 1 progressive self-training with discrim-
inator
INPUT: labeled data D = {(xi, yi)}i; unlabeled data Du =

{x̃i}i; empty set Dfu = {}
OUTPUT: base model fATE

1: train a base model fATE using D via Eq. 1
2: divide Du into progressive subsets {Du/i}T1 via Eq. 3

where ||Du/i+1|| > ||Du/i|| . || · || is difficultness and quantity.

3: construct Dd = {(xi, ai, yi)}i by synthesizing positive
and negative samples from D

4: train a discriminator fdis using Dd via Eq. 4
5: for each subset Du/i in Du do
6: use fATE to infer pseudo-labels on Du/i via Eq. 2,

thus Du/i = {(x̃i, ŷi)}i
7: use fdis to filter the noise in the pseudo-labels via

Eq. 5, and obtain D
′

u/i ∈ Du/i

8: Dfu += D
′

u/i

9: Dd += {(x̃i, ãi, ỹi)}i by synthesizing positive and
negative samples from D

′

u/i

10: train a new base model fATE by pre-training on Dfu

and fine-tuning on D via Eq. 1
11: retrain fdis using Dd via Eq. 4
12: end for
13: return fATE

4 Experiments

4.1 Datasets
We conduct experiments on four datasets from Se-
mEval 2014 Task 4 (Pontiki et al., 2014), SemEval
2015 Task 12 (Pontiki et al., 2015), and SemEval
2016 Task 5 (Pontiki et al., 2016). Statistics of the
datasets are presented in Table 2. In addition, as
Xu et al. (2018) did, we randomly hold out 150
examples from the train set as the validation set for
tuning hyper-parameters. We employ the F1 metric
to evaluate the performance of the models.

261

Lap14 Res14 Res15 Res16
train test train test train test train test

#Sent 3045 800 3041 800 1315 685 2000 676
#Aspect 2342 650 3686 1134 1209 547 1757 622

Table 2: Statistics of datasets. #Sent and #Aspect de-
note the number of sentence and aspect, respectively.

We select the first 2,754 and 6,754 samples from
Amazon Cell Phones and Accessories dataset2 (He
and McAuley, 2016) and Yelp Review dataset3

(Zhang et al., 2015), respectively. The former
is treated as unlabeled data in the laptop domain,
while the latter is considered as unlabeled data in
the restaurant domain. After these samples are
preprocessed4, we can obtain 10k unlabeled data.

4.2 Implementation Details
We choose two representative encoders (BiLSTM
and BERT) as the backbone to implement our
method5. For BiLSTM encoder, the word embed-
dings are initialized with GloVe-840B-300d (Pen-
nington et al., 2014). The hidden size is set to 300,
and we use Adam (Kingma and Ba, 2014) with
the learning rate of 1e-4 to optimize parameters.
For BERT encoder, we use the BERTbase with 12
attention heads, 12 hidden layers and the hidden
size of 768, resulting into 110M pretrained param-
eters. During the fine-tuning process, we employ
AdamW (Loshchilov and Hutter, 2018) to optimize
parameters. The learning rates are 3e-5 and 3e-4
for the pre-trained parameters and the added param-
eters, respectively. In addition, we set batch size to
48 and dropout rate to 0.1. For the progressive set
{Du/i}Ti=1, we set T to 4; and for each subset size,
we set |Du/i| = i ∗ 1k. We run all experiments in
a single Tesla V100S GPU.

4.3 Baselines
To evaluate the effectiveness of our method, we
compare it with four groups of baselines. The first
group of baselines are the SemEval winners. IHS-
RD (Chernyshevich, 2014), DLIREC (Toh and
Wang, 2014), EliXa (San Vicente et al., 2015) and
NLANGP (Toh and Su, 2016) are the winners for
Lap14, Res14, Res15, and Res16 datasets, respec-
tively. The second group of baselines generally
employs neural networks with complex structures

2https://jmcauley.ucsd.edu/data/amazon
3https://www.yelp.com/dataset
4It mainly consists of dividing clauses based on symbols

(e.g., periods, question marks, and exclamation points), and
word completions (e.g., replacing cant with can’t).

5Our code is available at: https://github.com/
qlwang25/progressive_self_training

to solve ATE, such as MIN (Li and Lam, 2017),
HAST (Li et al., 2018), Seq2Seq4ATE (Ma et al.,
2019), DECNN (Xu et al., 2018), and CLATE
(Yang et al., 2020). The third group of baselines
aims to tackle the problem of insufficient annotated
data, such as conditional data augmentation (CDA)
(Li et al., 2020) and soft prototype trained on exter-
nal data (SoftProtoE) (Chen and Qian, 2020). The
last group of baselines is our customized model for
clear comparison. BiLSTM(BERT, BERT-PT)-
TC uses the BiLSTM (pre-trained BERT, post-
trained BERT-PT (Xu et al., 2019)) with a linear
layer for token classification. BERT-RC (Mao
et al., 2021) treats ATE as a reading comprehension
task.

Lap14 Res14 Res15 Res16
IHS-RD 74.55 79.62 - -
DLIREC 73.78 84.01 - -
EliXa - - 70.04 -
NLANGP - - 67.12 72.34
MIN 77.58 - - 73.44
HAST 79.52 85.61 71.46 73.61
Seq2Seq4ATE♠ 79.02 84.08 69.89 72.82
DECNN♠ 81.39 86.04 71.18 74.39
CDA� 81.58 - - 75.19
SoftProtoE♠ 83.19 87.39 73.27 76.98
BiLSTM 72.16 81.23 63.58 66.10

+CDA� 74.28 - - 71.44
+SoftProtoE♠ 74.75 84.27 66.06 69.65
+our method 74.86 84.86 65.13 70.32

CLATEBERT
♥ 80.45 - - 74.32

BERT-TC 80.32 84.45 69.24 74.04
+CDA� 81.14 - - 75.89

+our method 84.17† 87.63† 72.81 77.09†

BERT-RC 81.84 85.27 70.16 75.47
+our method 85.01† 88.15† 72.98† 77.51†

CLATEBERT-PT
♣ 85.61 - - 81.14

BERT-PT 84.23 86.32 73.85 78.32
+SoftProtoE♥ 85.01 87.10 73.99 78.85

+CDA� 85.33 - - 80.29
+our method 86.91† 88.75† 75.82† 82.56†

Table 3: F1-score (%) obtained on the test set for all
methods. Results for the first six methods are taken
from Li et al. (2018); ♠: results from Chen and Qian
(2020); �: results from Li et al. (2020);♣: results from
Yang et al. (2020); ♥: results from our reproduction;
Other results are the average scores of three runs with
random initialization. + denotes the method combined
with the benchmark model; † indicates that the score
is significantly better than that of the customized base-
line at significance level p < 0.01. The scores of best
baselines are italicized, and the best scores are in bold.

4.4 Main Results
The main experimental results on four datasets are
reported in Table 3. We can draw the following
conclusions from the table. First, our method sub-

https://jmcauley.ucsd.edu/data/amazon
https://www.yelp.com/dataset
https://github.com/qlwang25/progressive_self_training
https://github.com/qlwang25/progressive_self_training

262

stantially enhances our custom baselines. For ex-
ample, although BERT-TC achieves competitive
performance among baselines, our method further
achieves 3.85%, 3.18%, 3.57%, and 3.05% abso-
lute gains on four datasets. Second, compared to
BiLSTM, the performance of the baselines based
on the pre-trained models is more significantly im-
proved when combined with our method. We at-
tribute this phenomenon that the pre-trained models
could better alleviate the noise in the pseudo-labels.
This also proves the result of Du et al. (2020) that
the combination of pre-training and self-training
can further improve performance. Third, BERT-
PT exceeds most existing ATE models by a great
margin, confirming the power of domain-specific
post-training. Surprisingly, BERT-PT can be fur-
ther improved significantly (2.68%, 2.43%, 1.97%,
4.23%) and reach a new state-of-the-art when com-
bined with our method. Finally, our method is
obviously more effective than SoftProtoE and CDA
in alleviating the insufficient labeled data, and it is
also notable that we use less unlabeled data (2,754
vs. 100,000).

Lap14 Res14 Res15 Res16
BERT-TC 80.32 84.45 69.24 74.04

+ST 81.65 85.72 70.01 75.65
+ST&Dis 83.13 87.11 71.93 76.08

+PST 83.21 86.73 71.91 76.13
+our model 84.17 87.63 72.81 77.09

Table 4: Ablation studies (F1 scores) on the compo-
nents of our method. ST: conventional self-training;
ST&Dis: conventional self-training method with dis-
criminator (remove line 2 and for loop several times
until convergence); PST: progressive self-training
method without discriminator (remove line 3, 4, 7, 9,
11, and D

′

u/i = Du/i). Our method is equivalent to the
combination of PST and Dis.

4.5 Ablation Studies

Compared to conventional self-training, our
method differs in two aspects: based on the average
logit of tokens, the unlabeled samples are divided
into progressive subsets for curriculum learning,
and a discriminator is used to filter as much noise
as possible from the pseudo-labels. To verify the
validity of these two points, we create three vari-
ants for conducting ablation studies. As shown in
Table 4, all variants exceed the baseline, suggesting
that the use of unlabeled data is helpful, even when
strong language model is encountered. In addition,
a modest gain (1.48%, 1.39%, 1.92%, 0.43%) over
the peer is observed when self-training combined

with discriminator, which shows that the discrimi-
nator improves the quality of pseudo-labeled data
and thus the model performance by reducing noise.
Among the three variants, progressive self-training
is the best overall, suggesting that the quality of
pseudo-labels can be effectively improved through
the curriculum learning idea. Combining progres-
sive self-training with discriminator can further
improve performance, showing that both can com-
plement each other in promoting the quality of
pseudo-labeled data.

Lap14 Res14
Acc. F1 Acc. F1

E1 72.52 70.64 74.42 72.16
E2 75.19 73.12 76.19 75.85

E1&E2 88.21 87.18 88.52 87.44
E1&E3 85.54 84.21 85.28 84.16
E2&E3 85.77 83.82 85.15 84.01

E1&E2&E3 90.26 90.12 91.27 91.10

Table 5: Ablation studies (accuracy and F1 scores) on
the error rules. E1, E2, and E3 denote left-boundary
errors, right-boundary errors, and non-aspect term er-
rors with the same POS tag, respectively. The best
scores are in bold and the second-best scores are in ital-
ics. Note that we apply three error rules to synthesize
negative samples in the test set.

To train the discriminator, we synthetic negative
samples from labeled data under three error rules
(Table 1). To verify the effectiveness of each rule,
we conduct relevant ablation studies. As shown
in Table 5, the discriminator achieves substantial
gains on the combination of E1 and E2. This indi-
cates that negative samples of the boundary error
type play an essential role in training the discrim-
inator. Additionally, the addition of E3 can im-
proves the performance a bit more, showing that
the error type of non-aspect terms is useful and
reasonable.

4.6 Discussion

Performance on Different Amounts of Labeled
Data To investigate the performance of our
method when lack of labeled data, we intention-
ally control the amount of reviews in labeled data
and run evaluations with the new training set. As
shown in Figure 2, we observe that our method
can significantly improve the scores compared to
using only a small amount of labeled data (4.41%
vs. 54.39% on Lap14 dataset, 57.03% vs. 70.4%
on Res14 dataset). Moreover, our method substan-
tially outperforms the conventional self-training
method. In particular, our method shows a strong

263

superiority when the proportion of original labeled
data is less than 10% (39.1% vs. 54.39% on Lap14
dataset, 40.92% vs. 60.11% on Res14 dataset).

0

10

20

30

40

50

60

70

80

90

1% 5% 10% 20% 30% 50%

BERT-TC BERT-TC+ST BERT-TC+our method

(a) on Lap14 dataset

0

10

20

30

40

50

60

70

80

90

1% 5% 10% 20% 30% 50%

BERT-TC BERT-TC+ST BERT-TC+our method

(b) on Res14 dataset

Figure 2: Comparison of our method with conventional
self-training (ST) on different amounts of labeled data.
The x-axis represents the proportion of the original la-
beled data, and the y-axis is the F1 scores.

Effect of Progressive Subsets on Performance
Inspired by curriculum learning (Bengio et al.,
2009), in this paper, we refine the self-training to
the progressive self-training. We expect that in the
early stages, easy unlabeled data induce less noise,
while in the later stages, the model has become
better after learning and can generate less noise on
hard unlabeled data. To this end, we divide the
unlabeled data into progressive subsets according
to the order of increasing difficultness and quantity.
To examine our motivation, we conduct relevant
comparative experiments. As shown in Table 6,
we observe that using harder and more unlabeled
data in the early stages can have a discount on
performance. The underlying reason may be the in-
troduction of much noise, which makes the model
difficult to learn. Moreover, this verifies the rea-
sonable and effectiveness of the progressive subset
from the side.

Effect of Retraining Way on Performance In
our algorithm, we first pre-train the model on
pseudo-labeled data and then finetune it on labeled
data (line 10). Here, we compare with an alter-
native way which trains the model with labeled

Lap14 Res14
BERT-base 80.32 84.45

difficultness
easy→hard 84.15 87.64

random sampling 83.21 86.72
hard→easy 82.19 86.02

quantity
less→more 84.18 87.63

average 83.15 87.13
more→less 82.01 86.56

Table 6: Comparison (F1 scores) of progressive sub-
sets with different settings. →: use the order of un-
labeled data. The difficultness of the unlabeled data
is evaluated by the average logit of tokens; The quan-
tity denotes the size of the subset, and Du/i=i ∗ 1k,
Du/i=2.5k, and Du/i=(5 − i) ∗ 1k corresponds to its
three settings respectively.

data and pseudo-labeled data jointly. From Table
7, we can find that the combination of pretraining
and finetuning slightly exceeds the joint training
(84.19% vs. 83.41%). We observe that pre-training
only on the pseudo-labeled data leads to lower
F1 scores than training only on the labeled data
(75.37% vs. 80.32%), suggesting that the distribu-
tion of the unlabeled data differs from that of the
labeled data. In this case, pre-training first and then
fine-tuning can relieve the effect of different data
distributions.

Lap14 Res14
BERT-TC 80.32 84.45

ST
pretraining 73.49 82.91

joint training 81.44 86.20
pretraining + finetuning 81.89 86.47

our method
pretraining 75.37 83.59

joint training 83.41 86.92
pretraining + finetuning 84.19 87.61

Table 7: Comparison (F1 scores) of different re-
training ways. ST: conventional self-training method.

Effect of Pre-trained Models of Different Power
on Performance As can be seen from Table 3,
the combination of self-training and pre-trained
models may create more sparks. For further ex-
ploration and validation, we conduct comparative
experiments using pre-trained models of different
power as the backbone. We observe a significant in-
crease in improvement from BERTmini to BERTbase
in Table 8, but the improvement seems to saturate
when going from BERTbase to BERTlarge. There-
fore, we can conclude that the self-training method
can create more gains when combined with a more
capable pre-trained model, but the gains do not al-
ways increase as the power of the pre-trained model
increases.

Effect of Unlabeled Data Size on Performance
We conduct experiments to understand the impact

264

Lap14 Res14
BERTmini 72.82 76.61

+ST 73.35(0.53↑) 77.95(1.34↑)
+our method 74.21(1.39↑) 78.27(1.66↑)

BERTmedium 80.11 84.13
+ST 81.75(1.64↑) 85.56(1.43↑)

+our method 82.07(1.96↑) 86.19(2.06↑)

BERTbase 80.32 84.45
+ST 81.89(1.67↑) 86.47(2.02↑)

+our method 84.11(3.79↑) 87.61(3.16↑)

BERTlarge 82.24 84.91
+ST 83.77(1.53↑) 87.32(2.41↑)

+our method 84.97(2.73↑) 88.12(3.21↑)

Table 8: Results (F1 scores) of the combination of self-
training method and different pre-training models. ST:
conventional self-training. The numbers in parentheses
are the improvement after using self-training.

of using different amounts of unlabeled data. We
start with no unlabeled data, and then gradually
increase the amount of unlabeled data. As shown
in Figure 3, the performance increases significantly
until the amount of unlabeled data is 10k, and then
increases slowly. Thus, we can conclude that using
a large amount of unlabeled data can facilitate the
performance improvement, but the improvement
slows down gradually.

79

82

85

88

0k 1k 3k 6k 10k 15k 21k 28k 36k

Lap14(our method) Lap14(ST) Res14(our method) Res14(ST)

Res14

Lap14

Figure 3: Comparison of different unlabeled data sizes.
ST: conventional self-training method; The x-axis is
the unlabeled data size and the y-axis is the F1 score.

Case Study We present the predictions of the
models on three random examples in Table 9. We
can see that our method indeed corrects the pre-
dictions of the baseline. In addition, we discover
that over-correction (e.g., staff person→staff) and
under-correction (e.g., pie company→pie) prob-
lems occur with the conventional self-training
method, which we attribute to the introduction of
too much noise. The cases on pseudo-labeled data
are available from Table 14 in Appendix.

Error Analysis We examine the log files and
classify the error predictions into three categories
(under-prediction, over-prediction, and boundary
errors). We show examples of each category in
Table 10 for better understanding. After reviewing

Label BERT-TC +ST +our model

RAM memory
RAM memory

8MB
4MB

RAM memory RAM memory

win8 win8 – win8

staff person
fork

staff person
fork

pie company

staff
fork
pie

staff person
fork

Table 9: Case study. ST: the conventional self-training;
Red word: incorrect prediction outcome. Sentence 1:
the RAM memory is good but should have splurged for 8MB
instead of 4MB.; Sentence 2: but I do not like win8.; Sen-
tence 3: I had to flag down a third staff person for a fork so
now it’s goodbye little rude pie company.

these files, we find that two methods yield some
similar errors, suggesting that hard samples are in-
deed difficult to predict. In addition, we observe a
higher percentage of over-prediction than that of
the other two types, which may be the underlying
reason for the higher recall than precision (91.06%
vs. 84.43%).

Label BERT-TC+ST BERT-TC+our model
E1 works – –

E2 external mics external mics
iM

external mics
iMac

E3 portions of the food portions
food

portions
food

Table 10: Error cases. ST: the conventional self-
training method; Red word: incorrect prediction out-
come; E1: under-prediction; E2: over-prediction; E3:
boundary errors. Sentence 1: super light, super sexy and
everything just works.; Sentence 2: I never tried any external
mics with that iMac.; Sentence 3: the portions of the food
that came out were mediocre.

Furthermore, we have the following discussion
in Appendix:

• Effect of the Number of Progressive Subsets
on Performance

• Effect of Different Incremental Magnitude on
Performance

• Fine-grained Named Entity Recognition Ex-
periments

• Comparison of the Parameter Amount and the
Computational Complexity

5 Conclusion

In this paper, we focus on the problem of insuffi-
cient labeled data in ATE, and try to solve it via self-
training. To mitigate the noise in pseudo-labels,
we make two efforts. (i) motivated by curriculum
learning, we refine the conventional self-training to
progressive self-training, expecting to reduce the

265

generation of noisy pseudo-labels; (ii) we introduce
a discriminator to filter the noisy pseudo-labels. Ex-
perimental results show that our method beats the
baselines and achieves SoTA performance. More-
over, we verify its effectiveness and generalization
through extensive experiments.

Acknowledgements

This work was partially supported by the
National Natural Science Foundation of
China (61632011, 61876053, 62006062,
62176076), the Guangdong Province Covid-
19 Pandemic Control Research Funding
(2020KZDZX1224), the Shenzhen Foundational
Research Funding (JCYJ20180507183527919 and
JCYJ20200109113441941), China Postdoctoral
Science Foundation (2020M670912), Joint Lab
of HITSZ and China Merchants Securities,
Youth Innovation Promotion Association of CAS
China (No. 2020357), and Shenzhen Science
and Technology Innovation Program (Grant No.
KQTD20190929172835662).

References
Yoshua Bengio, Jérôme Louradour, Ronan Collobert,

and Jason Weston. 2009. Curriculum learning. In
ICML, pages 41–48.

Zhiyuan Chen, Arjun Mukherjee, and Bing Liu. 2014.
Aspect extraction with automated prior knowledge
learning. In ACL (Volume 1: Long Papers), pages
347–358.

Zhuang Chen and Tieyun Qian. 2020. Enhancing
aspect term extraction with soft prototypes. In
EMNLP, pages 2107–2117.

Maryna Chernyshevich. 2014. Ihs r&d belarus: Cross-
domain extraction of product features using condi-
tional random fields. SemEval, page 309.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 4171–
4186.

Jingfei Du, Edouard Grave, Beliz Gunel, Vishrav
Chaudhary, Onur Celebi, Michael Auli, Ves Stoy-
anov, and Alexis Conneau. 2020. Self-training im-
proves pre-training for natural language understand-
ing. arXiv preprint arXiv:2010.02194.

Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio
Ranzato. 2019. Revisiting self-training for neural
sequence generation. In ICLR.

Ruining He and Julian McAuley. 2016. Ups and downs:
Modeling the visual evolution of fashion trends with
one-class collaborative filtering. In WWW, pages
507–517.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In SIGKDD, pages 168–
177.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. ICLR.

Kun Li, Chengbo Chen, Xiaojun Quan, Qing Ling,
and Yan Song. 2020. Conditional augmentation
for aspect term extraction via masked sequence-to-
sequence generation. In ACL, pages 7056–7066.

Xin Li, Lidong Bing, Piji Li, and Wai Lam. 2019. A
unified model for opinion target extraction and target
sentiment prediction. In AAAI, volume 33, pages
6714–6721.

Xin Li, Lidong Bing, Piji Li, Wai Lam, and Zhimou
Yang. 2018. Aspect term extraction with history
attention and selective transformation. In IJCAL,
pages 4194–4200.

Xin Li and Wai Lam. 2017. Deep multi-task learning
for aspect term extraction with memory interaction.
In EMNLP, pages 2886–2892.

Kang Liu, Liheng Xu, and Jun Zhao. 2012. Opinion
target extraction using word-based translation model.
In EMNLP, pages 1346–1356.

Pengfei Liu, Shafiq Joty, and Helen Meng. 2015. Fine-
grained opinion mining with recurrent neural net-
works and word embeddings. In EMNLP, pages
1433–1443.

Ilya Loshchilov and Frank Hutter. 2018. Fixing weight
decay regularization in adam. In ICLR.

Dehong Ma, Sujian Li, Fangzhao Wu, Xing Xie,
and Houfeng Wang. 2019. Exploring sequence-to-
sequence learning in aspect term extraction. In ACL,
pages 3538–3547.

Yue Mao, Yi Shen, Chao Yu, and Longjun Cai.
2021. A joint training dual-mrc framework for
aspect based sentiment analysis. arXiv preprint
arXiv:2101.00816.

Subhabrata Mukherjee and Ahmed Awadallah. 2020.
Uncertainty-aware self-training for few-shot text
classification. NIPS, 33.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In EMNLP, pages 1532–1543.

https://dl.acm.org/doi/10.1145/1553374.1553380
https://www.aclweb.org/anthology/P14-1033.pdf
https://www.aclweb.org/anthology/P14-1033.pdf
https://www.aclweb.org/anthology/2020.emnlp-main.164.pdf
https://www.aclweb.org/anthology/2020.emnlp-main.164.pdf
https://www.aclweb.org/anthology/S14-2.pdf#page=329
https://www.aclweb.org/anthology/S14-2.pdf#page=329
https://www.aclweb.org/anthology/S14-2.pdf#page=329
https://www.aclweb.org/anthology/N19-1423.pdf
https://www.aclweb.org/anthology/N19-1423.pdf
https://www.aclweb.org/anthology/N19-1423.pdf
https://arxiv.org/abs/2010.02194
https://arxiv.org/abs/2010.02194
https://arxiv.org/abs/2010.02194
https://openreview.net/forum?id=SJgdnAVKDH
https://openreview.net/forum?id=SJgdnAVKDH
https://dl.acm.org/doi/abs/10.1145/2872427.2883037
https://dl.acm.org/doi/abs/10.1145/2872427.2883037
https://dl.acm.org/doi/abs/10.1145/2872427.2883037
https://dl.acm.org/doi/abs/10.1162/neco.1997.9.8.1735
https://dl.acm.org/doi/abs/10.1145/1014052.1014073
https://dl.acm.org/doi/abs/10.1145/1014052.1014073
https://openreview.net/forum?id=8gmWwjFyLj
https://openreview.net/forum?id=8gmWwjFyLj
https://www.aclweb.org/anthology/2020.acl-main.631/
https://www.aclweb.org/anthology/2020.acl-main.631/
https://www.aclweb.org/anthology/2020.acl-main.631/
https://ojs.aaai.org/index.php/AAAI/article/view/4643
https://ojs.aaai.org/index.php/AAAI/article/view/4643
https://ojs.aaai.org/index.php/AAAI/article/view/4643
https://dl.acm.org/doi/abs/10.5555/3304222.3304353
https://dl.acm.org/doi/abs/10.5555/3304222.3304353
https://www.aclweb.org/anthology/D17-1310.pdf
https://www.aclweb.org/anthology/D17-1310.pdf
https://www.aclweb.org/anthology/D12-1123.pdf
https://www.aclweb.org/anthology/D12-1123.pdf
https://www.aclweb.org/anthology/D15-1168.pdf
https://www.aclweb.org/anthology/D15-1168.pdf
https://www.aclweb.org/anthology/D15-1168.pdf
https://openreview.net/forum?id=rk6qdGgCZ
https://openreview.net/forum?id=rk6qdGgCZ
https://www.aclweb.org/anthology/P19-1344.pdf
https://www.aclweb.org/anthology/P19-1344.pdf
https://arxiv.org/abs/2101.00816
https://arxiv.org/abs/2101.00816
https://proceedings.neurips.cc/paper/2020/hash/f23d125da1e29e34c552f448610ff25f-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f23d125da1e29e34c552f448610ff25f-Abstract.html
https://www.aclweb.org/anthology/D14-1162
https://www.aclweb.org/anthology/D14-1162

266

Maria Pontiki, Dimitrios Galanis, Harris Papageor-
giou, Ion Androutsopoulos, Suresh Manandhar, AL-
Smadi Mohammad, Mahmoud Al-Ayyoub, Yanyan
Zhao, Bing Qin, Orphee De Clercq, et al. 2016.
Semeval-2016 task 5: Aspect based sentiment anal-
ysis. In SemEval, pages 19–30.

Maria Pontiki, Dimitrios Galanis, Harris Papageorgiou,
Suresh Manandhar, and Ion Androutsopoulos. 2015.
Semeval-2015 task 12: Aspect based sentiment anal-
ysis. In SemEval, pages 486–495.

Maria Pontiki, Dimitrios Galanis, John Pavlopoulos,
Harris Papageorgiou, Ion Androutsopoulos, and
Suresh Manandhar. 2014. Semeval-2014 task 4: As-
pect based sentiment analysis. In SemEval, pages
27–35.

Inaki San Vicente, Xabier Saralegi, Rodrigo Agerri,
and Donostia-San Sebastián. 2015. Elixa: A mod-
ular and flexible absa platform. SemEval, page 748.

Henry Scudder. 1965. Probability of error of some
adaptive pattern-recognition machines. IEEE Trans-
actions on Information Theory, 11(3):363–371.

Zhiqiang Toh and Jian Su. 2016. Nlangp at semeval-
2016 task 5: Improving aspect based sentiment anal-
ysis using neural network features. In SemEval,
pages 282–288.

Zhiqiang Toh and Wenting Wang. 2014. Dlirec: As-
pect term extraction and term polarity classification
system. SemEval, page 235.

Xinshao Wang, Yang Hua, Elyor Kodirov, David A.
Clifton, and Neil M. Robertson. 2021. Proselflc:
Progressive self label correction for training robust
deep neural networks. In CVPR, pages 752–761.

Yuanbin Wu, Qi Zhang, Xuan-Jing Huang, and Lide
Wu. 2009. Phrase dependency parsing for opinion
mining. In EMNLP, pages 1533–1541.

Hu Xu, Bing Liu, Lei Shu, and S Yu Philip. 2018. Dou-
ble embeddings and cnn-based sequence labeling for
aspect extraction. In ACL (Volume 2: Short Papers),
pages 592–598.

Hu Xu, Bing Liu, Lei Shu, and S Yu Philip. 2019. Bert
post-training for review reading comprehension and
aspect-based sentiment analysis. In NAACL: Hu-
man Language Technologies, Volume 1, pages 2324–
2335.

Liang Xu, Qianqian Dong, Cong Yu, Yin Tian,
Weitang Liu, Lu Li, and Xuanwei Zhang. 2020.
Cluener2020: Fine-grained name entity recognition
for chinese. arXiv preprint arXiv:2001.04351.

Yunyi Yang, Kun Li, Xiaojun Quan, Weizhou Shen,
and Qinliang Su. 2020. Constituency lattice encod-
ing for aspect term extraction. In COLING, pages
844–855.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. NIPS, 28:649–657.

Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui,
Hanxiao Liu, Ekin Dogus Cubuk, and Quoc Le.
2020. Rethinking pre-training and self-training.
NIPS, 33.

https://www.aclweb.org/anthology/S16-1002.pdf
https://www.aclweb.org/anthology/S16-1002.pdf
https://www.aclweb.org/anthology/S15-2082.pdf
https://www.aclweb.org/anthology/S15-2082.pdf
https://www.aclweb.org/anthology/S14-2004.pdf
https://www.aclweb.org/anthology/S14-2004.pdf
https://www.aclweb.org/anthology/S15-2.pdf#page=790
https://www.aclweb.org/anthology/S15-2.pdf#page=790
https://ieeexplore.ieee.org/abstract/document/1053799/
https://ieeexplore.ieee.org/abstract/document/1053799/
https://www.aclweb.org/anthology/S16-1045.pdf
https://www.aclweb.org/anthology/S16-1045.pdf
https://www.aclweb.org/anthology/S16-1045.pdf
https://www.aclweb.org/anthology/S14-2.pdf#page=255
https://www.aclweb.org/anthology/S14-2.pdf#page=255
https://www.aclweb.org/anthology/S14-2.pdf#page=255
https://openaccess.thecvf.com/content/CVPR2021/papers/Wang_ProSelfLC_Progressive_Self_Label_Correction_for_Training_Robust_Deep_Neural_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Wang_ProSelfLC_Progressive_Self_Label_Correction_for_Training_Robust_Deep_Neural_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Wang_ProSelfLC_Progressive_Self_Label_Correction_for_Training_Robust_Deep_Neural_CVPR_2021_paper.pdf
https://www.aclweb.org/anthology/D09-1159.pdf
https://www.aclweb.org/anthology/D09-1159.pdf
https://www.aclweb.org/anthology/P18-2094.pdf
https://www.aclweb.org/anthology/P18-2094.pdf
https://www.aclweb.org/anthology/P18-2094.pdf
https://www.aclweb.org/anthology/N19-1242.pdf
https://www.aclweb.org/anthology/N19-1242.pdf
https://www.aclweb.org/anthology/N19-1242.pdf
https://arxiv.org/ftp/arxiv/papers/2001/2001.04351.pdf
https://arxiv.org/ftp/arxiv/papers/2001/2001.04351.pdf
https://www.aclweb.org/anthology/2020.coling-main.73/
https://www.aclweb.org/anthology/2020.coling-main.73/
https://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classif
https://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classif
https://proceedings.neurips.cc/paper/2020/hash/27e9661e033a73a6ad8cefcde965c54d-Abstract.html

267

A Appendix

Effect of the Number of Progressive Subsets
on Performance In the above experiments, we
split the unlabeled data into four progressive sub-
sets (i.e., T = 4). Then a question may arise
whether the number of progressive subsets has
a significant impact on the method performance.
To probe this question, we divide the unlabeled
data into different number of progressive subsets
for comparison. As shown in Table 11, differ-
ent numbers of progressive subsets makes only a
slight difference to the model performance (e.g.,
83.98%→84.14%→84.07%→84.15%→84.32%).

Lap14 Res14
BERT-TC 80.32 84.45

our method

T = 3 83.98 87.71
T = 4 84.14 87.65
T = 5 84.07 87.60
T = 6 84.15 87.60
T = 7 84.32 87.72

Table 11: Comparison (F1 scores) of different number
of progressive subsets. The value T is the number of
progressive subsets. Note that regardless of the value
of T , we try to keep the size of the unlabeled data (i.e.,
||Du||) consistent for a fair comparison.

Effect of Different Incremental Magnitude on
Performance In this paper, we set the incremen-
tal magnitude to 1k for simplicity, i.e., Du/i =
i ∗ 1k. We assume that an excessive incremental
magnitude should have a positive impact on the
model performance in that the progressive subsets
are not increasing in size once the magnitude drops
to zero. The experimental scores in Table 12 val-
idate our assumptions. Overall, the subset with
larger incremental magnitude boosts the model per-
formance more compared to that with smaller in-
cremental magnitude.

Lap14 Res14
BERT-TC 80.32 84.45

our method
0.75k 83.91 87.16
1k 84.14 87.63

1.25k 84.42 87.76

Table 12: Comparison (F1 scores) of different incre-
mental magnitude. Note that regardless of the magni-
tude of the increment, we try to keep the size of the
unlabeled data (i.e, ||Du||) consistent for a fair compar-
ison.

Fine-grained Named Entity Recognition Exper-
iments To demonstrate our method can be ap-

plied to other sequence labeling tasks, we experi-
ment on the fine-grained named entity recognition
task (Xu et al., 2020). We consider the first 1k
samples in the original training set as labeled data
and the rest of the samples (9,747) as unlabeled
data. Table 13 shows that our method also has ad-
vantages over conventional self-training (71.94%
vs 69.64%) on the fine-grained named entity recog-
nition task, which confirms the generalizability of
our method.

Entities bert bert+ST bert+our bert*
Address 51.25 52.21 55.80 61.11

Book 61.64 64.31 70.83 79.23
Company 68.15 70.67 72.45 78.58

Game 76.82 75.47 77.26 83.44
Government 67.78 67.52 71.59 75.05

Movie 66.86 65.67 69.31 79.73
Person name 82.04 82.54 84.15 85.63
Origanization 65.89 67.62 68.21 73.92

Position 70.30 74.86 74.75 78.38
Scene 56.16 65.60 66.06 65.28

Overall 67.67 69.64 71.94 76.27

Table 13: Comparison (F1 scores) on the fine-grained
named entity recognition task (validation set). Here,
bert refers to Chinese BERTbase; ∗ indicates the use of
all annotated data; ST denotes the conventional self-
training method. The best scores are in bold and the
second-best scores are in italics.

Comparison of the Parameter Amount and
the Computational Complexity The significant
time cost of our method is mainly attributed to
two aspects: ATE model and discriminator need
to be retrained after each subset is used (line 10
and 11 of Algorithm). For clarity of exposition, we
conduct relevant experiments on the Res15 dataset
and 10k unlabeled data. The parameter amounts
for our method and the conventional self-training
(ST) method are 218M and 109M , respectively.
The main reason for this large difference is that
our method includes a discriminator to filter out
noise in the pseudo-labels. In addition, training our
method and ST method requires 56min and 17min
respectively (both have the same hyper-parameters).
We can see that our model takes several times as
many hours as the ST method because of requiring
retraining the baseline several times. However, it
is worth noting that both take the same time during
the inference phase. This is because our method in-
volves only ATE model in practical inference. For
example, both our method and ST method take 4s
to infer Res15 test set (685 samples).

268

Unlabeled Data Sentence

Du

they look good and stick good !
i just do n ’ t like the rounded shape

because i was always bumping it and siri kept popping up and it was irritating .
these stickers work like the review says they do .

however , i ordered these buttons
because they were a great deal and included a free screen protector .

especially having nails , it helps to have an elevated key .
these make using the home button easy .

people ask where i got them from it ’ s great when driving .
battery charges with full battery lasts me a full day .

easy access to all buttons and features ,
without any loss of phone reception .
it is a genuine blackberry charger .

(a) Examples of pseudo-labeled data of the conventional self-training method.
Unlabeled Data Subset Sentence Discriminate

Du/1

the igo bluetooth keyboard works great . 3
good headset , good sound , great price . 3
good headset , good sound , great price . 3
good headset , good sound , great price . 3

Du/2

no issues at all with this battery order . 7
it has loud speakers and eliminates background noises . 3

you can turn the ear piece off then power
on to answer in order to keep your fav ring tone . 3

this thing works good , but its not all fireworks and hotel parties . 7

Du/3

also i have n ’ t had any complaints from other
friends i ’ ve talked to with the headset . 7

i have owned 2 of these and its the best bluetooth i have used . 3
there is a difference in usb cables . 3

it does nothing to improve your signal . 3

Du/4

battery lasts a couple of weeks without recharging . 3
it was comfortable and transmission was good . 3

i never leave home without my ipad and this most useful stylus . 3
this is a nice charger but you can tell it was made cheaply in china . 3

(b) Examples of pseudo-labeled data of our method. The last column is the results of the discriminator.

Table 14: The phrase with color indicates the pseudo-labeled aspect terms; The green and red (manual inspection)
indicate correct and incorrect pseudo-labels respectively.

