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Abstract

Previous works on syntactically controlled
paraphrase generation heavily rely on large-
scale parallel paraphrase data that are not eas-
ily available for many languages and domains.
In this paper, we take this research direc-
tion to the extreme and investigate whether
it is possible to learn syntactically controlled
paraphrase generation with non-parallel data.
We propose a syntactically-informed unsuper-
vised paraphrasing model based on conditional
variational auto-encoder (VAE) which can gen-
erate texts in a specified syntactic structure.
Particularly, we design a two-stage learning
method to effectively train the model using
non-parallel data. The conditional VAE is
trained to reconstruct the input sentence ac-
cording to the given input and its syntactic
structure. Furthermore, to improve the syn-
tactic controllability and semantic consistency
of the pre-trained conditional VAE, we fine-
tune it using syntax controlling and cycle re-
construction learning objectives, and employ
Gumbel-Softmax to combine these new learn-
ing objectives. Experiment results demon-
strate that the proposed model trained only
on non-parallel data is capable of generating
diverse paraphrases with specified structures.
Additionally, we further validate the effective-
ness of our method for generating syntactically
adversarial examples on a sentiment analysis
task. Source codes are available at https:
//github.com/lanse-sir/sup.

1 Introduction

Paraphrases are texts or passages conveying the
same meaning but with different surface realization.
Paraphrase generation (PG) is a key technology of
automatically generating a restatement for a given
text, which has the potential use in many down-
stream tasks, such as question answering (Dong
et al., 2017), machine translation (Zhou et al., 2019)
and text summarization (Zhao et al., 2018).

∗Corresponding Authors.

Recent years have witnessed that learning con-
trollable paraphrase generation (CPG) with spec-
ified styles is attracting intense research interests,
e.g., satisfying particular syntactic templates (Iyyer
et al., 2018) or exemplars (Chen et al., 2019; Ku-
mar et al., 2020). As CPG can produce diverse
paraphrases by exposing syntactic control, it can
be also employed for adversarial example genera-
tion (Iyyer et al., 2018).

Existing syntactically controlled paraphrase net-
works (Iyyer et al., 2018) rely on large paraphrase
parallel data for training. Unfortunately, paraphrase
parallel corpora are not easily available for many
languages, and are expensive to build. Conversely,
non-parallel data is much easier to find, and many
languages with limited parallel data still possess a
huge amount of non-parallel data.

In this paper, we propose a Syntactically-
informed Unsupervised Paraphrasing (SUP) frame-
work based on conditional variational auto-encoder
(VAE) to generate syntactic paraphrases with spec-
ified syntactic skeletons, which does not require
any parallel paraphrase data. The basic assumption
behind SUP is that, given a sentence, there may ex-
ist many valid paraphrases with different syntactic
structures. Specifically, as shown in Figure 1, SUP
runs in two stages. At stage 1, we train a condi-
tional VAE to reconstruct a given input sentence
according to the sentence itself and its syntactic
parse tree. The model trained at this stage is en-
dowed with basic ability to generate texts of desired
syntax structures (similar to a warmup procedure).
At stage 2, to improve the syntactic controllability
and semantic consistency of generated sentences,
we fine-tune the model trained at stage 1 using
carefully-designed objective functions involving
syntax controlling and cycle reconstruction. After
the conditional VAE model is fine-tuned, given an
input sentence and a different syntactic structure,
the model can generate a paraphrase according to
the given structure.

https://github.com/lanse-sir/sup
https://github.com/lanse-sir/sup
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We evaluate SUP on both syntactic paraphrase
generation and adversarial example generation
tasks. Experiments show that SUP outper-
forms previous unsupervised paraphrasing method
SIVAE (Zhang et al., 2019). It is also capable
of generating syntactically adversarial examples
that have a significant impact on the performance
of attacked neural models. We further show that
augmenting training data with such examples can
improve the robustness of target neural models.

In summary, the major contributions of this pa-
per are as follows:

• We propose a syntactically-informed unsu-
pervised paraphrasing model based on condi-
tional VAE framework and use it to generate
syntactically adversarial examples.

• To enable the model to generate syntactically-
controlled paraphrases, we propose a novel
tree encoder to effectively model structure in-
formation and a syntax controlling learning
objective to further improve syntactic control-
lability. Meanwhile, we also introduce a cycle
reconstruction learning objective to preserve
the semantics of the input sentence.

• Experiments show that our model can success-
fully generate syntactically adversarial exam-
ples. By augmenting training data with such
examples, we can improve the robustness of
target neural models.

2 Related Work

Paraphrase Generation The task of paraphrase
generation has recently received significant atten-
tion (Li et al., 2018, 2019; Liu et al., 2020a). Previ-
ous works mainly explore supervised paraphrasing
methods, which require large corpora of parallel
sentences for training. Due to the lack of paral-
lel data, unsupervised paraphrasing has become
an emerging research direction (Miao et al., 2018;
Liu et al., 2020c). However, these methods mainly
rely on lexical changes to generate paraphrases.
Compared to these approaches, our work focus pri-
marily on the syntactically controlled paraphrase
generation, which is able to generate a paraphrase
according to a given syntactic structure.

Controlled Text Generation Recent works on
controlled generation aim at controlling attributes
such as sentiment (Hu et al., 2017; John et al., 2019;
Dai et al., 2019). These works use a categorical

feature as a controlling signal. Different from them,
we use a more complicated, non-categorical syn-
tactic structure as a controlling signal. To ensure
syntactic controllability, we design a tree encoder
and syntax controlling loss to encourage the model
to generate sentences that conform to given syntax.

We have also witnessed other works that attempt
to control structural aspects of the generation, such
as studies using a given syntactic form (Iyyer et al.,
2018; Chen et al., 2019; Liu et al., 2020b). Our
work is closely related to this category, and to
the syntactically-controlled paraphrase networks
(SCPN) proposed by Iyyer et al.(2018) in particu-
lar. They use the attentional seq2seq framework to
build a parse generator and a paraphrase generator.
A two-stage generation process is used. In the first
stage, they generate full parse trees from syntactic
templates, and then produce final generations in the
second stage. Both parse and paraphrase genera-
tor require parallel data for training. Significantly
different from their method, our model based on
conditional VAE is an unsupervised method that
does not require any parallel data for training.

Conditional Variational Autoencoder Our
work is also related to syntax-infused text gen-
eration (Bao et al., 2019; Zhang et al., 2019).
Their models use two variational autoencoders to
introduce two latent variables which are designed
to capture semantic and syntactic information.
The variational autoencoder (VAE) network is
proposed by Kingma and Welling (2014) for image
generation. Bowman et al. (2016) successfully
apply VAE in fluent sentence generation from a
latent space. The conditional VAE is a modification
of VAE to generate diverse images conditioned
on certain attributes, e.g. generating different
human faces given skin color (Sohn et al., 2015;
Yan et al., 2016). Inspired by conditional VAE,
we view the syntactic structure as the conditional
attribute and adopt conditional VAE to generate
syntactic paraphrases. Furthermore, to improve the
syntactic controllability and semantic consistency
of generated sentences, we use syntax controlling
and cycle reconstruction objective functions to
fine-tune the model.

Adversarial Example Generation To generate
adversarial examples for NLP models, most pre-
vious works rely on injecting noise either at the
character level (Ebrahimi et al., 2018; Gao et al.,
2018) or at the word level by adding and deleting
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Figure 1: Architecture of the proposed syntactically-informed unsupervised paraphrasing model. Stage 1: Train-
ing a Conditional VAE model by reconstructing the input sentence given the sentence itself and its syntax structure.
Here we simply take x = {x1, x2} as an example. Stage 2: Fine-tuning the model using novel objective functions.
x, s, s′(different from s), and y denote the input sentence, its syntactic structure, other syntactic structure, and
output sentence, respectively. L∗ denote the loss terms.

Figure 2: The upper part shows a constituency parse
tree. The lower part visualizes the tree encoder that
uses top-down (green line) and left-to-right (blue line)
directions to encode a syntactic template (top three
level).

words (Liang et al., 2017; Garg and Ramakrish-
nan, 2020). In this paper, we generate syntactically
adversarial examples, which still remains an open
challenge, as semantic meaning of these examples
should be preserved despite of their substantial
structural changes.

3 Approach

We use the constituency parse tree to provide syn-
tactic information. Given a set of training instances
D = {(xi, si)}

|D|
i=1, where si is the syntactic parse

tree of the sentence xi, we aim to train a syntac-
tic paraphrasing model which can produce more

diverse paraphrases given arbitrary syntax.
However, using a full parse tree (the whole tree

without leaf nodes) is too specific and poses the
challenge of selecting such a tree for a given input
as syntactic structures of two different sentences
are not easily compatible to each other. Therefore,
we mainly use a general template (the top 3 lay-
ers of a parse tree), as shown in Figure 2, as the
controlling signal which is beneficial to generate
meaningful paraphrases.

Specifically, we employ the conditional varia-
tional autoencoder (VAE) framework which have
proven to be able to generate diverse texts condi-
tioned on certain attributes. In this work, we view
syntax as the conditional attribute. The training
process consists of two stages. In the first stage, we
train the model in an auto-encoding manner, while
in the second stage, we use new objective functions
to fine-tune it, as shown in Figure 1. The two stages
will be described in detail below.

3.1 Stage 1: Training a Conditional VAE

At this stage, we pre-train the conditional VAE
model. The model is required to reconstruct the
input sentence given the sentence itself and its syn-
tactic template. In doing so, the model acquires the
preliminary ability to generate a desired sentence
conditioning on given syntactic template, which
makes the training in the subsequent stage easier.

Sentence Encoding Given a sentence x, we first
obtain the sentence hidden-state hx = [

−→
h |x|;

←−
h1]

by the sentence encoder. For the semantic variable
zx, we compute the mean and variance of q(zx|x)
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from hx as:

µx =W µ
x hx + b

µ
x

logσ2
x =W σ

x hx + b
σ
x

(1)

whereW µ
x , bµx ,W σ

x , bσx are trainable parameters.

Syntax Encoding This encoder provides the nec-
essary syntactic guidance for the generation of
paraphrases. Formally, let syntactic template s =
{V, E}, where V is the set of nodes, E the set of
edges.

As shown in Figure 2, we traverse the given
syntactic template in a top-down (green line) and
left-to-right (blue line) manner to obtain and model
parent-child and sibling relationships, respectively.
For the top-down (TD) direction, we encode each
node in a depth-first manner. Specifically, the rep-
resentation hv of each node v ∈ V with the hidden-
state representation of its parent node pa(v) and its
embedding as follows:

hv = GRU(e(v),hpa(v)) (2)

where e(v) is the embedding of the node v. Al-
though we can obtain TD representations of all
nodes of the syntactic template, only the TD repre-
sentations of leaf nodes will be used for left-to-right
encoding. For the particular example given in Fig-
ure 2, the TD representations of all leaf nodes are
HTD
leaf = [hTDCC ,h

TD
NP ,h

TD
V P ,h

TD
Dot].

For the left-to-right (LR) encoding, the encoder
is a forward GRU network. We take the leaf nodes
sequence Leafseq = {CC,NP, V P,Dot} as in-
put, and compute the LR representations of all leaf
nodes HLR

leaf = [hLRCC ,h
LR
NP ,h

LR
V P ,h

LR
Dot]. Particu-

larly, take the NP node as an example:

hLRNP = GRU(hTDNP ,h
LR
CC) (3)

Then, we use the last hidden state of the syntactic
encoder hLRDot as the final syntax representation hs
for providing the syntactic signal to the decoder.

Decoding in the Training Phase We employ the
reparameterization trick to obtain semantic vari-
ables zx = µx + σx � ε, ε ∈ N (0, I). Then at
each time step, we concatenate the syntactic repre-
sentation hs with the previous word’s embedding
as the input to the decoder and concatenate the se-
mantic variable zx with the hidden-state output by
the decoder for predicting the word at next time
step, as shown in stage 1 in Figure 1. Note that the
initial hidden state of the decoder is set to zero.

Decoding in the Test Phase Giving the same
sentence but with a different syntactic template,
the model can generate a syntactically controlled
paraphrase. We obtain semantic variable zx by the
maximum a posteriori (MAP) inference. In this
way, semantic information from the input sentence
could be preserved as much as possible. After that,
the decoding process is the same as the training
phase.

The Objective Function To train the above
model, we optimize the following objective func-
tion:

L1 =Lcvae + λbowLbow (4)

where Lcvae and Lbow denote the conditional VAE
loss and bag-of-word loss, respectively. λbow is a
hyper-parameters for balancing the two losses. .

Conditional VAE Loss: The loss is used to op-
timize the conditional VAE model by minimizing
the reconstruction loss Lrec, and meanwhile mini-
mizing the KL loss Lkl to encourage the posterior
q(zx|x) to match the prior p(zx):

Lcvae =− λresLrec + λklLkl
=− λres log p(x|zx,hs)

+ λklKL(q(zx|x) ‖ p(zx))
(5)

where p(zx) follows standard normal distribu-
tion N (0, I), q(zx|x) takes the form N (µx,σ

2
x).

Here, µx, σx are computed by Eq. (1). λ∗ are
balancing hyper-parameters.

Bag-of-Word Loss: We introduce the Bag-of-
word loss to enhance content preservation during
paraphrase generation. Specifically, we take zx as
input and predicts the Bag-of-Word distribution:

pb = sigmoid(Wbowzx + bbow) (6)

where Wbow, bbow are trainable parameters. The
bag-of-word loss is computed as follows:

Lbow = −
∑
w∈V

tw log pb(w) (7)

where V denotes the word vocabulary, t is the
bag-of-word ground-truth distribution of the corre-
sponding sentence.

3.2 Stage 2: Fine-tuning the Conditional
VAE Model

During inference, we will give different syntactic
structures for every input sentence to generate para-
phrases. To encourage generalization on different
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syntactic structures, we fine-tune the pre-trained
conditional VAE in a cycle learning manner.

Specifically, as shown in stage 2 in Figure 1,
given an input sentence x, its syntactic template
s, and other syntactic template s′, we feed x and
s′ into the conditional VAE model to generate sen-
tence y (green line). We compute syntax control-
ling (blue line) and cycle reconstruction losses (red
line), and then fine-tune the model to generate a
better sentence that is formed in the syntactic struc-
ture of s′ and preserves the semantic meaning of
x.

Syntax Controlling Loss First, we build a GRU-
based seq2seq neural parser as the evaluator, which
is pre-trained on the above mentioned training data
D, with x as the input and the linearized syntac-
tic template s as the decoding target. For exam-
ple, the linearized syntactic template in Figure 2 is
(ROOT(S(CC)(NP)(VP)(Dot))).

Second, we apply the pre-trained evaluator1 to
predict the linearized syntactic structure of the out-
put sentence y, where parameters of the conditional
VAE are updated to encourage the target syntactic
template s′ to be predicted from the output sen-
tence, i.e., minimizing the following term:

Lsc = − log peval(s
′
l|GS(y)) (8)

where s′l is the linearized s′. GS(y) denotes
a “softly” generated sentence based on Gumbel-
Softmax distribution (Jang et al., 2016), where
the representation of each word is defined as the
weighted sum of word embeddings with the pre-
diction probability at the current timestep. Please
notice that the parameters of the evaluator are not
updated in this step.

Cycle Reconstruction Loss However, only us-
ing the above syntax controlling loss will result in
generating a sentence that conforms to the target
syntactic structure but drifts away from the origi-
nal meaning. To address this issue, we borrow the
cycle reconstruction loss Lcr from style-transfer re-
search (Hu et al., 2017; Dai et al., 2019) to encour-
age the generated sentence to preserve the meaning
in the input sentence.

We feed the generated sentence y and the syn-
tactic template s of x to the conditional VAE and
update the model to reconstruct original input sen-

1On the Quora and ParaNMT test set, the evaluator
achieves 90% parsing accuracy.

tence x by minimizing the following term:

Lcp = − log p(x|GS(y), s) (9)

where GS(y) is is the same as in Eq. (8).

The Objective Function The final loss function
for fine-tuning is defined as follow:

L2 = Lcvae + λscLsc + λcrLcr (10)

In our experiments, we still optimize Lcvae dur-
ing the fine-tuning stage, which helps to stabi-
lize the training process. λ∗ are balancing hyper-
parameters.

4 Experiments

In this section, we will answer the following ques-
tions:

• First, we investigate whether our model can
generate syntactically controlled paraphrases.

• Second, we examine whether our model can
generate syntactically adversarial examples
for sentiment analysis.

4.1 Syntactically-Informed Paraphrase
Generation

Given an input sentence, a syntactically-informed
paraphrase is a sentence with the same meaning
as the input sentence but in a different syntactic
structure defined by a given syntactic structure.

4.1.1 Models for Comparison
We compared with the following unsupervised para-
phrase models: 1) VAE: a vanilla variational au-
toencoder (Bowman et al., 2016) as a simple base-
line; 2) SIVAE: a syntax-infused variational au-
toencoder (Zhang et al., 2019) that dutilizes ad-
ditional syntax information to improve the qual-
ity of sentence generation and paraphrase gener-
ation, where syntax information is provided by a
linearized parse tree.

We also compared against the supervised method
SCPN (Iyyer et al., 2018) which uses an extended
pointer-generator network (See et al., 2017) to en-
code input sentences and linearized parse trees to
generate paraphrases.

4.1.2 Datasets
Quora. The dataset contains 140k pairs of para-
phrase sentences and 260k pairs of non-paraphrase
sentences. In the standard dataset split, there are 3k
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Model
Quora ParaNMT

ESM(↑) i-BLEU(↑) BLEU-ref (↑) BLEU-ori (↓) S-BERT(↑) ESM(↑) i-BLEU(↑) BLEU-ref (↑) BLEU-ori (↓) S-BERT(↑)
Original Sentence 56.5 1.1 31.1 100 0.845 36.9 3.5 18.5 100 0.755
VAE 57.0 5.5 23.4 59.5 0.764 34.6 3.3 10.1 45.4 0.643

Using full parse tree
SCPN-F (supervised) 94.7 56.6 64.3 25.5 0.866 97.0 53.8 56.7 19.0 0.866
SIVAE-F 81.7 23.9 32.6 29.0 0.760 82.6 18.2 21.4 20.9 0.708
Stage1: SUP-F 87.5 33.9 43.7 32.7 0.809 89.2 32.8 33.1 20.7 0.747

Using syntactic template
SCPN-T (supervised) 90.8 12.1 23.74 38.85 0.711 71.6 11.2 18.4 47.5 0.708
SIVAE-T 65.6 3.3 26.9 78.7 0.802 39.3 3.3 16.4 87.4 0.733
Stage1: SUP-T 73.9 7.3 22.46 50.55 0.738 65.9 4.4 9.6 34.3 0.610
Stage2: + Lcvae 73.9 7.1 23.29 53.73 0.753 63.9 5.1 11.0 39.1 0.652
Stage2: + Lcvae + Lsc 80.7 7.4 22.18 49.06 0.728 75.9 4.3 8.9 30.4 0.597
Stage2: + Lcvae + Lsc + Lcr 78.0 7.7 22.93 50.6 0.755 72.9 5.1 10.1 33.0 0.639

Table 1: Performance of syntactic paraphrase generation. The larger↑ (or lower↓), the better. S-BERT indicates
Sentence-BERT. ESM denotes the rate of exact syntactic match. -F, -T means using full parse tree and syntactic
template as controlling signal, respectively.

Model Quora ParaNMT
original is it possible to lose weight without doing exercise? you know anybody who might wan na harm your husband?
reference how can i loose weight naturally without doing exercise? do you know anyone who would want to hurt your husband?
VAE is it possible to lose weight without doing exercise? who might know you ’re gon na kill anybody?
SCPN-F how can i loose weight naturally without doing exercise? do you know anyone who might want to hurt your husband?
SIVAE-F how can i lose weight loss without doing exercise? do you know anyone who might gon na harm your husband?
SUP-F how can i lose weight just without doing exercise? do you know anyone who might want to harm your husband?
SCPN-T how do i reduce weight without doing exercise? do you know who might want to hurt your husband?
SIVAE-T how is it possible lose weight without doing exercise? do you wan who might wan na harm your husband?
SUP-T how can i lose weight without doing exercise? do you know who might harm your husband?

Table 2: Example paraphrases generated by each model.

and 30k paraphrase pairs in the held-out validation
and test set, respectively. We followed the same un-
supervised setting as (Miao et al., 2018; Bao et al.,
2019), using non-paraphrase sentences as training
instances that do not appear in the validation and
test set. For the supervised method SCPN (Iyyer
et al., 2018), we used paraphrase sentences for
training.

ParaNMT. For the unsupervised setting, we ran-
domly selected 5 million reference sentences from
the ParaNMT-50M dataset to train unsupervised
methods. The manually annotated 800 sentence
pairs created by Chen et al. (2019) were used as
our test set, and 500 for the development set. For
the supervised method SCPN (Iyyer et al., 2018),
we used their trained model.2

4.1.3 Evaluation Metrics
We employed original sentences and syntactic tem-
plates (or full parse trees) obtained from references
as input, which is convenient for evaluation. But in
the application scenario, we can give any syntactic
templates to the trained model.

For semantic evaluation, we computed
BLEU (Papineni et al., 2002) scores against
the reference and original sentence, denoted as
BLEU-ref and BLEU-ori, respectively. Addition-

2https://github.com/miyyer/scpn

ally, we used i-BLEU (Sun and Zhou, 2012) to
measure the diversity of expressions. We also
used the embedding-based evaluation method
Sentence-BERT3 (Reimers and Gurevych, 2019)
to evaluate the semantic similarity between the
generated sentence and the reference sentence.

For syntactic evaluation, we evaluated how often
generated paraphrases completely conform to the
target syntactic templates by computing the rate
of exact syntactic match (ESM): a paraphrase g is
deemed as an exact syntactic match to reference
r only if the top three levels of its parse tree pg
exactly matches those of pr. The tuning of all
hyper-parameter was based on the BLEU-ref score
on the validation set.

4.1.4 Implementation Details
We parsed all sentences in the training set, the ref-
erence sentences in the validation and test set using
Stanford CoreNLP (Manning et al., 2014). We used
the Adam optimizer (Kingma and Ba, 2014) for op-
timization. For the training of Stage 1 and Stage
2, we set the learning rate to 5e-4 and 1e-4, respec-
tively. The word embedding layer was initialized
by the publicly available GloVe 300-dimensional

3We used the paraphrase-distilroberta-base-v1, which is
trained on large-scale paraphrase data. Available at: https:
//public.ukp.informatik.tu-darmstadt.de/
reimers/sentence-transformers/v0.2/

https://github.com/miyyer/scpn
https://public.ukp.informatik.tu-darmstadt.de/reimers/sentence-transformers/v0.2/
https://public.ukp.informatik.tu-darmstadt.de/reimers/sentence-transformers/v0.2/
https://public.ukp.informatik.tu-darmstadt.de/reimers/sentence-transformers/v0.2/
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embeddings.4 We adopted the tricks of KL anneal-
ing and word dropout following (Bowman et al.,
2016). We set λres to 5, λbow to 0.5, λsc to 2.5, and
λcr to 1.

We reimplemented VAE and SIVAE, and set the
same KL weights for fair comparison.

4.1.5 Results

As shown in Table 1, results in the first row are
computed over original sentences, which show a
BLEU-ori socre of 100. We can see that all mod-
els achieve strong results when using full parse
trees as syntactic control. This is because full parse
trees contain more fine-grained syntactic informa-
tion which guides the model to correctly substitute
words with equivalents. With the setting of full
parse trees, SUP (stage 1) outperforms the existing
unsupervised methods in all metrics; With syntac-
tic templates, we beat them in ESM and i-BLEU
metrics. VAE and SIVAE-T tend to copy the input
sentence as the output and therefore get low ESM
but high Ori-BLEU scores.

Among our models, the SUP-T obtains an ESM
of 73.9% and 65.9% on Quora and ParaNMT
dataset, respectively. This shows that it can gener-
ate sentences according to the given syntactic tem-
plates (compared to row 1). At the stage 2, adding
the conditional VAE loss leads to improvements
in semantic metrics. Using conditional VAE loss
and syntax controlling loss, we observe that while
the syntactic accuracy has been greatly improved,
the semantic metrics has decreased. Adding all
loss terms leads to gains across both the semantic
and syntactic metric scores. These results demon-
strate the effectiveness of the proposed fine-tuning
methods.

Even without using any parallel data, our model
is competitive to the supervised SCPN trained on
parallel data in some metrics. Especially, SUP-
T (stage 2) achieves a higher S-BERT score than
SCPN on the Quora dataset, a higher ESM score
than SCPN on the ParaNMT Dataset.

Table 2 shows several paraphrases generated by
each model. More generation results are presented
in Appendix A. We can observe that SUP-F can
produce better results than SIVAE-F in terms of
both semantics and syntax. VAE and SIVAE-T tend
to copy the source sentences. SUP-T can generate
paraphrases syntactically similar to the reference.

4https://nlp.stanford.edu/projects/
glove/

Model 2 1 0 ESM-H
SCPN-T 55.0 15.0 30.0 80.0
SIVAE-T 57.3 30.0 12.7 37.3
SUP-T 35.0 30.0 35.0 62.6

Table 3: Human evaluation on the Quora dataset (per-
centages of paraphrases scored 0, 1 and 2). ESM-H
denotes the percentage that generations follow given
syntactic templates.

KL-weight BLEU-ref BLEU-ori ESM S-BERT
Original 31.13 100 56.5 0.845

0.1 22.71 53.89 70.8 0.750
0.3 22.46 50.55 73.9 0.738
0.5 22.37 48.66 75.7 0.731
0.7 22.43 47.07 77.1 0.723
1.0 22.09 44.49 78.3 0.707
1.3 21.87 41.96 79.9 0.691
1.5 21.41 39.29 80.7 0.673

Table 4: BLEU-ref, BLEU-ori, ESM, and S-BERT
score with varying KL weights on the Quora test set.

4.1.6 Human Evaluation
We also conducted human evaluation to measure
paraphrase quality in a blind fashion. Following
previous work (Iyyer et al., 2018; Goyal and Dur-
rett, 2020), Three annotators were asked to evalu-
ate the 100 randomly selected generations from the
Quora test set according to a three-point scale scor-
ing system: 0 denotes that the generated sentence is
not a paraphrase at all; 1 means that the generated
sentence is a paraphrase containing grammatical
errors; 2 indicates that the generated sentence is
a grammatically good paraphrase. Additionally,
we also asked annotators to evaluate syntactic con-
trollability (ESM-H): whether generations follow
given syntactic templates.

Table 3 shows the results of human evaluation
which are somewhat consistent with the automatic
metrics. We notice that the quality of generations
from SIVAE-T is better than that of the SCPN-
T model. The reason is that SIVAE-T tends to
copy input sentences as outputs. It also means that
SIVAE-T cannot generate meaningful paraphrases
(only copying inputs) according to given syntactic
templates. SUP-T obtains comparable results with
the SCPN if we consider paraphrases scored 2 and
1 as meaningful paraphrases. Additionally, most
generations from SUP-T follow given target syntax.

4.1.7 Influence of KL-Weight on Results
We also analyzed the influence of different KL-
weights on the SUP-T (stage 1) model. We can see
in Table 4 that BLEU and ESM are more or less

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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Model Valid(↑) No augmentation With augmentation
Acc(↑) Failure(↑) Acc(↑) Failure(↓)

SCPN 72.2 84.6 29.2 83.3 21.3
SUP 68.0 84.6 28.0 83.3 25.0

Table 5: Performances of adversarial example genera-
tion, which are reported as the mean over three runs.

contradictory to each other. Usually, a smaller KL
weight makes the autoencoder less “variational”
but more “deterministic,” leading to a lower syn-
tactic match but better content preservation. In this
experiment, to trade-off the content preservation
and syntactic controllability, we set the KL weight
to 0.3.

4.2 Adversarial Example Generation
We further examined the utility of controlled para-
phrase generation for adversarial example genera-
tion. Following previous work (Iyyer et al., 2018),
we evaluated our syntactically adversarial exam-
ples on the Stanford Sentiment Treebank Dataset
(SST) (Socher et al., 2013). We generated 10 syn-
tactically different paraphrases for each instance
using the top 10 frequent syntactic templates and
add them to the SST training set. Since we can-
not generate a valid paraphrase for each syntactic
template, we filtered generated paraphrases using a
threshold (BLEU, 1-3gram) to remove nonsensical
outputs. In this experiment, we set the threshold to
0.5.

4.2.1 Evaluation Metrics
We evaluated this task with the following metrics:

1. Dev Failure (Failure). We assume a develop-
ment instance x as a prediction failure if the
original prediction is correct, but the predic-
tion for at least one paraphrase is incorrect.
Dev Failure is the percentage of instances on
the development set, which become prediction
failures after paraphrasing.

2. Validity (Valid). To measure the validity of
our adversarial examples, we perform manual
evaluation on randomly selected 100 adversar-
ial examples. We ask three workers to choose
the appropriate label (e.g., positive or nega-
tive) for a given sentence, and then compare
the worker’s judgment to the original senti-
ment label.

3. Test Accuracy (Acc). It is used to measure
the performance of sentiment classification

models on the test set.

4.2.2 Implementation Details
We first pre-trained our model on preprocessed
2.1M sentences from the One-Billion-Word Cor-
pus5, and then fine-tuned our model on the SST
dataset. For the pre-trained classification mod-
els, we used the bidirectional LSTM baseline in
(Tai et al., 2015). The word embedding layer was
initialized by the publicly available GloVe 300-
dimensional embeddings. We used the Adam op-
timizer (Kingma and Ba, 2014) for optimization,
and set the learning rate to 1e-4.

4.2.3 Results
As shown by Table 5, we obtain a validity score of
68.0 and Dev Failure score of 28.0. By augmenting
the training data with paraphrases generated by our
model, we obtain a lower Dev Failure score of 25.0.
These results suggest that our model could generate
legitimate adversarial examples. We improve the
robustness of models against syntactic adversaries
with little effect on the test accuracy.

We also observe that SCPN obtains strong re-
sults. This is because the model is trained on large-
scale parallel data, and generated paraphrases in-
clude lexical and syntactic variations. However,
these advantages are due to the use of large-scale
parallel corpus. Our unsupervised method could be
very effective for low-resource languages where no
parallel data are available.

4.2.4 Case Study
Table 6 lists some paraphrases generated by SUP
with different syntactic templates. Table 7 shows
adversarial examples generated by our model. We
find that the generated sentences always conform to
the target templates. These generation results show
that our model could generate legitimate adversar-
ial examples. We also observe that the generated
paraphrases have only syntactic variations, not lex-
ical variations. This is because it is difficult for the
model to learn to substitute words with equivalents
only using non-parallel data. We leave enabling
word-level or phrase-level variations in our model
for creating more diverse adversarial examples to
our future work.

5 Conclusions

We have presented an unsupervised syntactically-
informed paraphrasing model based on conditional

5http://www.statmt.org/lm-benchmark/

http://www.statmt.org/lm-benchmark/
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Template Paraphrase
original still, as a visual treat, the film is almost unsurpassed.
( S ( S ) ( , ) ( CC ) ( S ) ) the film is a visual treat, but almost unsurpassed.
( S ( PP ) ( , ) ( NP ) ( VP ) ) as a visual treat, the film is almost unsurpassed.
( S ( ADVP ) ( , ) ( NP ) ( VP ) ) still , the film is almost unsurpassed as a film.
original it proves quite compelling as an intense, brooding character study.
( S ( PP ) ( , ) ( NP ) ( VP ) ( . ) ) as compelling, it proves quite an intense character study.
( S ( NP ) ( ADVP ) ( VP ) ( . ) ) it still proves compelling as an intense character study.
( S ( CC ) ( NP ) ( VP ) ) but it proves compelling as an intense character study.
( S ( ADVP ) ( , ) ( NP ) ( VP ) ( . ) ) however, it proves quite compelling as an intense.

Table 6: Paraphrases generated by SUP with different templates.

Template Paraphrase P
original though only 60 minutes long, the film is packed with information and impressions. !

( S ( NP ) ( VP ) ) the film is only 60 minutes long and packed with information and impressions. #

( S ( S ) ( , ) ( CC ) ( S ) ) only 60 minutes long , and the film is packed with information. #

original this film seems thirsty for reflection , itself taking on adolescent qualities. !

( S ( NP ) ( VP ) ) this film seems thirsty for taking on adolescent qualities. #

( S ( CC ) ( NP ) ( VP ) ) but this film seems thirsty for taking on adolescent qualities. #

Table 7: Adversarial examples generated by our model. !indicates that the prediction of the sentiment classifier
model is correct,#indicates that the prediction is incorrect. NP: Noun Phrase, CC: Coordinating Conjunction.

VAE and two-stage training process. We first train
the conditional VAE model to generate sentences
in desired syntactic structures. To further improve
the syntactic controllability and semantic consis-
tency of generated sentences, we introduce syn-
tax controlling and cycle reconstruction objective
functions to fine-tune the pre-trained model. Ex-
periments show that our model achieves strong
improvements over baselines on unsupervised set-
ting and can generate syntactically controlled para-
phrases. Furthermore, adversarial example gen-
eration experiments also validate that our model
is able to generate syntactically adversarial exam-
ples for sentiment analysis, which can be used to
improve the robustness of the sentiment classifier
model via adversarial training.
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