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Abstract

Bias is pervasive in NLP models, motivating
the development of automatic debiasing tech-
niques. Evaluation of NLP debiasing methods
has largely been limited to binary attributes
in isolation, e.g., debiasing with respect to bi-
nary gender or race, however many corpora
involve multiple such attributes, possibly with
higher cardinality. In this paper we argue that
a truly fair model must consider ‘gerryman-
dering’ groups which comprise not only sin-
gle attributes, but also intersectional groups.
We evaluate a form of bias-constrained model
which is new to NLP, as well an extension
of the iterative nullspace projection technique
which can handle multiple protected attributes.

1 Introduction

Text data reflects the social and cultural biases
in the world, and NLP models and applications
trained on such data have been shown to reproduce
and amplify those biases. Discrimination has been
identified across diverse sensitive attributes includ-
ing gender, disability, race, and religion (Caliskan
et al., 2017; May et al., 2019; Garimella et al.,
2019; Nangia et al., 2020; Li et al., 2020). While
early work focused on debiasing typically binarized
protected attributes in isolation (e.g., age, gender,
or race; Caliskan et al. (2017)), more recent work
has adopted a more realistic scenario with multiple
sensitive attributes (Li et al., 2018) or attributes
covering several classes (Manzini et al., 2019).

In the context of multiple protected attributes,
gerrymandering refers to the phenomenon where
an attempt to make a model fairer towards some
group results in increased unfairness towards an-
other group (Buolamwini and Gebru, 2018; Kearns
et al., 2018; Yang et al., 2020). Notably, algorithms
can be fair towards independent groups, but not
towards all intersectional groups. Despite this, de-
biasing approaches within NLP have so far been
evaluated only using independent group fairness

white person (W) person of colour (¬W)[ ]
A B male (M)

C D female (F)

Figure 1: Group intersection and gerrymandering:
A=white male, B=male person of colour, C=white fe-
male, D=female person of colour.

when modelling datasets with multiple attributes,
disregarding intersectional subgroups defined by
combinations of sensitive attributes (see Figure 1).

The primary goal of this work is to evaluate in-
dependent and intersectional identity debiasing ap-
proaches in relation to fairness gerrymandering for
text classification tasks. To this end, we evalu-
ate bias-constrained models (Cotter et al., 2019b)
and iterative nullspace projection (INLP; Ravfogel
et al. (2020)), a post-hoc debiasing method which
we extend to handle intersectional groups. The
constrained model jointly optimizes model perfor-
mance and model fairness, while INLP seeks to
learn a hidden representation which is independent
of the protected attributes. INLP does not consider
the trade-off between accuracy and fairness, but
rather it iteratively maximizes fairness in an uncon-
strained fashion.

In this work, we address the following questions:
• Are debiasing approaches based on indepen-

dent groups more prone to fairness gerry-
mandering than methods using intersectional
groups?

• How do INLP and bias-constrained ap-
proaches, and their extensions to handle in-
tersectional groups, fare compare in terms of
both predictive accuracy and fairness?

2 Background

Debiasing with respect to more than a single pro-
tected attribute (|Z| > 1) requires grouping data

shivashankarrs@gmail.com
xudongh1@student.unimelb.edu.au
{tbaldwin, t.cohn, lfrermann}@unimelb.edu.au


2493

points according to their associated protected val-
ues. In this work, debiasing approaches are trained
wrt the three settings detailed below (Kearns et al.,
2018; Yang et al., 2020), evaluated based on aggre-
gated violations over GGERRY, which is a commonly
used evaluation strategy for intersectional identities
(Yang et al., 2020).

Independent groups (GINDEP) Each private at-
tribute is treated as an independent group. In the
case of all binary attributes, this gives 2|Z| groups.
As illustrated in Figure 1, for binary gender and
race,1 F , M, W , and ¬W are four independent
groups, which are overlapping, e.g., with F refer-
ring to both white females and female persons of
colour (C and D).

Intersectional groups (GINTER) Non-
overlapping, exhaustive combinations of groups,
which in the binary attribute case gives 2|Z|

combinations. For our example in Figure 1, the
intersectional groups are A, B, C and D.

Gerrymandering intersectional groups (GGERRY)
Overlapping subgroups are defined by group in-
tersections of any subset of private attributes (3|Z|

for binary attributes, where the 3rd value denotes a
wildcard). For the example in Figure 1, the GGERRY

groups are F ,M,W , ¬W , A, B, C, and D.

3 Proposed Approaches

We aim to learn a model to predict main task labels
(e.g., sentiment) from input data X (e.g., reviews)
by means of a learnt hidden representation Xh. Xh

will generally encode implicit biases, and our goal
is to predict the output without the influence of
social identities encoded in Xh. We assume access
to the protected attributes for each instance. Below,
we detail the two primary models targeted in this
work: INLP, and the bias-constrained model.

3.1 INLP

INLP is applied to frozen hidden representations,
where we first learn a linear classifier W using
Xh as the independent variables to predict a pro-
tected attribute (binary- or multi-valued). Next,
Xh is projected onto the nullspace of W (denoted
PN(W)Xh) to remove the protected information,
which forms the input for learning a classifier of the
main task label. In real-world scenarios, bias may
arise due to a combination of multiple protected at-
tributes, hence we extend the single attribute setting

1Higher cardinality attributes are also supported.

of Ravfogel et al. (2020) to this situation. Assum-
ing k protected attributes, and classifiers trained
to predict those denoted as {Wi}ki=1, we compute
the intersection of nullspaces (Strang, 2014) across
identities,

k⋂
i=1

N(Wi) = N



W1

W2

...
Wk


 . (1)

No special properties are imposed over Wi (e.g.,
orthogonality), which allows for parallel training.

Even after debiasing by projecting Xh onto the
nullspace of classifiers, hidden representations can
still retain protected information (Ravfogel et al.,
2020). Hence we follow Ravfogel et al. (2020) and
resort to iteratively removing bias, rather than do-
ing it in a single step. Nullspace projection will
reduce the rank of data rapidly with intersectional
identities2 (see Figure 2). To circumvent this is-
sue, we project onto the nullspace of the principal
component of the bias subspace (Np). This is equiv-
alent to projecting onto the nullspace of some of
the intersectional identities in each iteration; simi-
lar strategies have been employed for multi-class
supervised principal component analysis (Piironen
and Vehtari, 2018).

Following Ravfogel et al. (2020), while incor-
porating our principal component-based nullspace
projection as described above, the intersection of
nullspaces across iterations is computed as

m⋂
i=0

Np(Wi) = N

 m∑
i=0

PR′(Wi)

 , (2)

where Np denotes the nullspace based on the prin-
cipal component of the bias subspace, Wi is the
set of classifiers trained in each iteration to pre-
dict the protected attributes, and R′ is the principal
component of the rowspace computed by stacking
classifier weight vectors across multiple protected
attributes. Unlike Eq (1), the formulation in Eq (2)
requires orthogonality of subspaces across each
iteration.

2The rank reduces by 1 for each protected attribute.
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3.2 Bias-constrained Model
A bias-constrained model combines the main task
objective and fairness constraints,

min
θ

`(F(x, θ), y)

s.t. ∀g ∈ [G] γg|φg − φ| ≤ ν,

where `(F(x, θ), y) denotes the primary objective
(e.g., error rate); G are the groups defined in Sec-
tion 2; φg denotes the group-wise performance;
and φ denotes overall performance of the model
(e.g., TPR). ν is a slack variable, which controls the
maximum deviation allowed. γg is the inverse pro-
portion of positive examples in each group, |g|

|gy=1| ,
meaning that the more underrepresented a group is
wrt some target class (say toxicity), the smaller its
accepted deviation from the overall performance.

Each group-wise constraint is denoted as ψg.
The constraints involve a linear combination of
indicator variables, which is not differentiable wrt
θ. A common approach to handle this constrained
optimization problems is using the Lagrangian,

L(θ, λ) = `(F(x, θ), y) +
|G|∑
g=1

λgψg , (3)

which is minimized over θ and maximized over
λ. Similar formulations have been used for learn-
ing fair models with structured data (Cotter et al.,
2019b; Yang et al., 2020; Zafar et al., 2019). In
this work, we apply this method to NLP tasks and
use the two-player zero-sum game approach for
optimization, where the first player chooses θ to
minimize L(θ, λ), and the second player enforces
fairness constraints by maximizing λ (Kearns et al.,
2018; Cotter et al., 2019b; Yang et al., 2020).
Specifically we use the implementations available
in TensorFlow constrained optimization (Cotter
et al., 2019a,b).3

The approach iterates over T iterations, where
the primal player updates θ with a fixed λ, and dual
player updates λ with a fixed θ. This results in
multiple models, {θ1, θ2, ...θT} and {λ1, λ2, ...λT},
which trade off performance and fairness. We use
the Adam optimizer (Kingma and Ba, 2014) with
learning rate 10−3.

4 Experimental Results

We evaluate using two binary classification
datasets: (1) Twitter hate speech detection; and

3https://github.com/google-research/
tensorflow_constrained_optimization
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Figure 2: F-score vs. fairness results for INLP (hate-
speech dev set). Projecting onto the null space of the
principal bias component (dotted line and stars) results
in a better trade-off than directly projecting onto the
nullspace of the entire bias sub-space (dashed line).

(2) occupation classification using biography text.
For INLP we use logistic regression to construct
W. All the approaches have hyperparameters con-
trolling the performance–fairness trade-off, and as
no choice of hyperparameter will optimize both
objectives simultaneously, we adopt the concept of
Pareto optimality (Godfrey et al., 2007).

4.1 Settings

For INLP we consider different definitions of the
bias subspace, which we illustrate wrt Figure 1:
(a) two linear classifiers, trained to discriminate
between independent groups GINDEP: F andM,W
and ¬W; (b) four linear classifiers to discriminate
between intersectional groups GINTER: A, B, C, and
D (one vs. rest); and (c) eight linear classifiers to
discriminate between GGERRY groups. We refer to
the three approaches as INLPINDEP, INLPINTER, and
INLPGERRY respectively. For the constrained model,
constraints capturing the performance deviation
of GINDEP, GINTER, and GGERRY are used in Eq (3),
which we refer to as CONINDEP, CONINTER, and
CONGERRY, respectively.

Metrics We assess a model’s predictive per-
formance using F-score, and fairness based on
average-violations (Yang et al., 2020) of true pos-
itive rate (equality of opportunity), across all the
GGERRY groups: 1

|GGERRY|
∑GGERRY

g=1 |tprg − tpr|.

4.2 Hate speech detection

We use the English Twitter hate speech detection
dataset of Huang et al. (2020), where each tweet is
labeled with a binary hate speech label, as well as
binary demographic group identity indicators for

https://github.com/google-research/tensorflow_constrained_optimization
https://github.com/google-research/tensorflow_constrained_optimization
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(a) Hatespeech detection
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(b) Occupation classification

Figure 3: Pareto frontier model test results for the trade-off between F1 score and fairness, measured as 1− the
average TPR violation across all GGERRY groups. The top-right represents ideal performance.

the tweet authors: gender (f or m), age (≤ or >
median), location (US or not US), and race (white
or other). We use the data splits from Huang et al.
(2020), but further filter each partition to the subset
of tweets for which all demographic author labels
are available, resulting in 23K (train), 5K (dev),
and 5K (test) tweets.

We use a biGRU as our base model, following
Huang et al. (2020). In Figure 2, we show the ben-
efits of our proposed INLP approach for debiasing
gerrymandering intersectional identities, compared
to the naive extension of INLP for multiple pro-
tected attributes (which projects onto the entire
bias subspace). With 80 GGERRY groups, the naive
extension leads to a drastic drop in performance
after 4 iterations (the dashed blue line), as in each
iteration the rank is reduced by 80. On the other
hand, the proposed approach achieves a much more
nuanced trade-off between accuracy and fairness
(the blue and yellow dotted line + stars, resp.).

We present the Pareto frontier for the different
models on the test-set in Figure 3a, by varying the
hyper-parameters of the approaches4 each under of
the three different debiasing settings, i.e. GINDEP,
GINTER, and GGERRY. From the results, for F-score
close to the base biGRU (= biased model), the in-
dependent model provides the best trade-off, while
debiasing for intersectional identities provides a
better trade-off overall, and constrained models
perform better than INLP.

4.3 Occupation classification

For our second experiment, we use the occupation
classification dataset of De-Arteaga et al. (2019).

4For INLP, # iterations = 1 to dim(Xh); for the constrained
models, # iterations (T) = 1 to 100, ν = 1e-4 to 1, γg = 1 or

|g|
|gy=1|

.

This comprises short web biographies, annotated
by gender and profession. We augment the dataset
with economic status (wealthy vs. rest, using World
Bank data) based on the country the individual is
based in, labelled based on the first sentence of
each bio, which we perform entity linking on using
AIDA-light (Nguyen et al., 2014), and map loca-
tions and institutions to countries based on their
Wikipedia articles. We computed the accuracy of
the economic status mapping by manually analyz-
ing the output of over 200 biographies, resulting in
a 93% accuracy and 90% agreement (Jaccard coef-
ficient) between three annotators. We use a subset
of two highly stereotyped classes of the dataset —
nurse vs. surgeon — resulting in 13K/1.7K/5.4K
instances in train/dev/test.5

We use the BERT (base uncased) (Devlin et al.,
2019) [CLS]-encoding followed by an MLP (300-
d with ReLU activations) for classification. The
Pareto results6 on the test set are shown in Fig-
ure 3b. INLPINTER and INLPGERRY perform bet-
ter than INLPINDEP, and the constrained models
once again perform best overall, with intersec-
tional identities providing no significant gains over
CONINDEP. Even in a highly stereotyped setting,
constrained models achieve high predictive perfor-
mance, in contrast to INLP which improves fair-
ness but greatly reduces predictive performance,
consistent with the single protected attribute results
in Ravfogel et al. (2020).

4.4 Constrained analysis

In addition to Pareto curves (Figure 3), we compare
the fairest models under a minimum performance

590% of surgeons are male and 87% of nurses are female;
97.5% of nurses are from wealthy economies.

6Constrained models are run for T = 1 to 500 iterations.
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Trade-off 5% Trade-off 10%

Approach F1 Max violation Avg violation F1 Max violation Avg violation

INLPINDEP 0.763 0.333 0.079 0.732 0.242 0.076
INLPINTER 0.785 0.312 0.083 0.736 0.258 0.064
INLPGERRY 0.778 0.453 0.086 0.737 0.199 0.054
CONINDEP 0.777 0.230 0.048 0.724 0.274 0.031
CONINTER 0.772 0.254 0.063 0.746 0.172 0.043
CONGERRY 0.759 0.135 0.059 0.715 0.150 0.047

Biased model 0.806 0.338 0.102 0.806 0.338 0.102

(a) Hatespeech classification

Trade-off 5% Trade-off 10%

Approach F1 Max violation Avg violation F1 Max violation Avg violation

INLPINDEP 0.949 0.291 0.087 0.949 0.291 0.087
INLPINTER 0.956 0.313 0.090 0.956 0.313 0.090
INLPGERRY 0.917 0.242 0.090 0.904 0.224 0.088
CONINDEP 0.953 0.134 0.041 0.940 0.102 0.028
CONINTER 0.949 0.225 0.065 0.908 0.110 0.028
CONGERRY 0.951 0.170 0.049 0.905 0.137 0.035

Biased model 0.955 0.350 0.100 0.955 0.350 0.100

(b) Occupation classification

Table 1: Test performance of salient models on hatespeech and occupation classification. Least biased models
within a given performance tradeoff thresholds are chosen from development set.

constraint, where the most fair models (based on
average violations) which exceed a performance
threshold on the development set are chosen, and
evaluated on the test set. This allows us to measure
the generalizability of models occupying optimal
Pareto region for the development set, to an unseen
test set. We provide results under two constrained
scenarios — models with least bias on development
set trading off 5% and 10% of predictive perfor-
mances. In addition to average violation, we also
report maximum violation as max

g∈GGERRY

|tprg − tpr|,
which measures the upper bound of unfairness to-
wards any subgroup (Yang et al., 2020).

For hatespeech classification, results are pro-
vided in Table 1a. With a slack of up to 10% trade-
off in predictive performance, INLPGERRY shows
better predictive performance and less violations
than both INLPINTER and INLPINDEP. For the closer
5% tradeoff, INLPINTER has higher F-score with
a slightly worse avg violation and better max vi-
olation. The constrained models debiasing for
GGERRY are fairest (lowest max and avg violation).
Similarly, for occupation classification (Table 1b),
INLPGERRY achieves lowest maximum violation
among INLP models, while overall the constrained
models, specifically CONINDEP, perform best. This
confirms the conclusion based on Pareto plots that
adding intersectional identities for INLP-based de-

biasing is beneficial, whereas for constrained mod-
els which directly regulate the expected perfor-
mance wrt different subgroups, they only provide
mild gains.

5 Conclusion and Future Work

We examined the impact of independent vs. inter-
sectional groups on classifier fairness. We pro-
posed an extended version of INLP, which we com-
pared against bias-constrained models. INLP is a
post-hoc debiasing method, while the constrained
model requires full joint training. Debiasing in
INLP happens in an unconstrained way, where sen-
sitive information is removed from the latent repre-
sentations independent of predictive performances,
leading to fairer models at the cost of overall ac-
curacy (Han et al., 2021). From a practical per-
spective, post-hoc debiasing may be the only op-
tion if it is impossible or undesirable to re-train a
model from scratch with a regularized objective.
Our paper shows that lighter-weight post-hoc debi-
asing is indeed possible in the case of overlapping
groups, and quantifies the additional advantage of
joint training and debiasing in the context of two
data sets. The constrained models especially are
more robust to stereotyped settings, and using in-
tersectional identities benefits INLP in particular.
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