
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 2469–2480
November 7–11, 2021. c©2021 Association for Computational Linguistics

2469

RankNAS: Efficient Neural Architecture Search by Pairwise Ranking
Chi Hu1, Chenglong Wang1, Xiangnan Ma1, Xia Meng1,
Yinqiao Li1, Tong Xiao1,2∗, Jingbo Zhu1,2 Changliang Li3
1NLP Lab, School of Computer Science and Engineering

Northeastern University, Shenyang, China
2NiuTrans Research, Shenyang, China

3Kingsoft AI Lab, Beijing, China
huchinlp@gmail.com, clwang1119@gmail.com,
{xiaotong,zhujingbo}@mail.neu.edu.cn

Abstract

This paper addresses the efficiency challenge
of Neural Architecture Search (NAS) by for-
mulating the task as a ranking problem. Previ-
ous methods require numerous training exam-
ples to estimate the accurate performance of ar-
chitectures, although the actual goal is to find
the distinction between “good” and “bad” can-
didates. Here we do not resort to performance
predictors. Instead, we propose a performance
ranking method (RankNAS) via pairwise rank-
ing. It enables efficient architecture search us-
ing much fewer training examples. Moreover,
we develop an architecture selection method
to prune the search space and concentrate on
more promising candidates. Extensive exper-
iments on machine translation and language
modeling tasks show that RankNAS can de-
sign high-performance architectures while be-
ing orders of magnitude faster than state-of-
the-art NAS systems.

1 Introduction

Neural Architecture Search (NAS) has advanced
state-of-the-art on various tasks, such as image clas-
sification (Zoph et al., 2018; Pham et al., 2018; Real
et al., 2019; Tan et al., 2019), machine translation
(Fan et al., 2020; So et al., 2019), and language
modeling (Pham et al., 2018; Liu et al., 2019; Jiang
et al., 2019; Li et al., 2020). Despite the remarkable
results, conventional NAS methods are computa-
tionally expensive, requiring training millions of
architectures during search. For instance, obtaining
a state-of-the-art machine translation model with
an evolutionary algorithm requires more than 250
GPU years (So et al., 2019).

Several techniques have been proposed to im-
prove the search efficiency, such as sharing parame-
ters among all architectures (Pham et al., 2018; Cai
et al., 2018; Zhong et al., 2018), predicting the per-
formance instead of full training (Liu et al., 2018;

∗Corresponding author.

0 50 100 150 200 250 300
Time Cost (hours)

HAT

RankNAS*

RankNAS

302.1

47.4

30.2 Search Cost
Training Cost

Figure 1: The time cost of different NAS methods on
the WMT machine translation task. RankNAS* de-
notes the results without search space pruning. Our
method significantly accelerates NAS through pairwise
ranking and search space pruning.

Baker et al., 2018; Wen et al., 2020; Wei et al.,
2020), and searching over a continuous space (Liu
et al., 2019; Jiang et al., 2019; Li et al., 2020). Un-
fortunately, these approaches still suffer from the
high cost of predicting the performance of each can-
didate architecture. An inherent reason for this is
that obtaining accurate performance requires train-
ing numerous neural networks to convergence, as
described in Sec. 2.2. However, it is unnecessary to
predict the model performance as in previous NAS
methods. Rather, all we need is to distinguish archi-
tectures of different quality in NAS, say, ranking
these architectures.

In this paper, we approach the problem by for-
mulating NAS as a ranking task. Here we propose
RankNAS, a ranking model for comparing differ-
ent architectures. One of the key challenges is that
directly ranking all architectures in a large search
space is still computationally infeasible. Therefore,
we adopt the pairwise method (Burges et al., 2005;
Wauthier et al., 2013), where the ranking problem
is reduced to a binary classification problem over
architecture pairs. To speed up RankNAS further,
we develop an architecture selection method that
chooses the most promising architectures for evalu-



2470

ation according to the importance of features, e.g.,
the topology of architectures.

We test RankNAS on well-established machine
translation and language modeling benchmarks.
Experiments show that RankNAS is orders of mag-
nitude faster than standard NAS systems and can
find better architectures. Notably, RankNAS is
generic to different tasks and evaluation metrics.
It achieves competitive results on hardware-aware
NAS tasks and is 10× faster than the HAT baseline
(Wang et al., 2020). It also discovers new architec-
tures that outperform vanilla Transformer by +1.8
BLEU points on the IWSLT’14 De-En data and
+1.5 BLEU points on the WMT’14 En-De data, sur-
passing the Evolved Transformer (So et al., 2019)
with 150,000× less search cost.

2 Preliminaries

NAS generally consists of two steps: 1) sample
architectures from the pre-defined search space,
and 2) estimate the performance of these samples.
This work focuses on the performance estimation
step, which is the efficiency bottleneck of NAS.

2.1 Search Space

The search space contains all possible architec-
tures for the search. In this work, we take the
Transformer architecture for description, but the
discussed problem and solutions are general and
can be applied to other models. Following HAT
(Wang et al., 2020), we represent a Transformer
architecture as a set of features and search for the
optimal model configuration.

An overview of the search space is shown in
Figure 2. It is extended from the HAT’s space and
inspired by manually designed Transformer vari-
ants, including Relative Position Representations
(Shaw et al., 2018) and Deep Transformer (Wang
et al., 2019). The search space can also be repre-
sented as a supernet where each sub-network is
a unique architecture. The search space contains
around 1023 possible architectures, as detailed in
Appendix A.1. It is computationally prohibited
to explore such a large space with an exhaustive
method.

2.2 Performance Estimation

Let A denotes the search space, and each archi-
tecture in it is represented by a feature vector α.
Formally, the goal of NAS is to find the optimal
architecture α∗ with the best performance. The per-

Embedding Dimension

Norm

Self-Attn Heads
t

Head 2Head 1

Norm

Feed-Forward Dimension

Norm

Layer 1

Layer 2

. . .Fixed
Layer Num

Layer m

Encoder

Embedding Dimension

Norm

Self-Attn Heads
t

Head 2Head 1

Norm

En-De Attn Heads Head 1

Norm

Elastic
En-De Attn

Feed-Forward Dimension

Norm

Layer 1

. . .Elastic
Layer Num

Layer n

Decoder

Figure 2: The architecture search space. We search
for the optimal model size, e.g., the number of layers,
and network topology, e.g., connections between differ-
ent layers. The encoder part is ignored in the language
modeling task. Appendix A.1 gives more details about
the design choices for different tasks.

formance can be measured by some metrics, such
as accuracy or latency. The performance estima-
tion process consists of two steps: 1) estimate the
performance of all architectures, and 2) choose the
architecture with the optimal performance.

Without loss of generality, we define S(·) as the
performance evaluated by some metrics. The task
here is to find the most promising architecture with
maximum S(·). Standard NAS methods solve this
problem by learning to estimate the performance
of each architecture. The objective is given by:

α∗ = argmax
α

Sval(w∗, α)

s.t. w∗ = argmax
w

Strain(w,α)
(1)

where w is the weights associated with the archi-
tecture. Sval and Strain are the evaluation results
on the validation set and training set, respectively.

Optimizing Eq. 1 is time-consuming as obtain-
ing the optimal weights for each architecture re-
quires training them to converge. Although we
can share the weights among all architectures to



2471

amortize the cost, performance evaluation is still
nontrivial and requires numerous training steps.

3 NAS as Ranking

As mentioned in Sec. 2.2, the goal of NAS is to
find promising architectures that achieve high per-
formance on unseen data. NAS requires distin-
guishing whether the architectures are “good” or
“bad” rather than predicting accurate performance.
Therefore, it is natural to treat NAS as a ranking
problem, in which the explicit goal is to rank dif-
ferent architectures correctly.

3.1 Pairwise Ranking
Problem Formulation. Given an architecture α,
we define a score s on it by a function r(·):

s = r(α, p) (2)

where p is the parameter of the scoring function.
We implement the scoring function with a gradient
boosting decision tree, as detailed in Sec. 4.1.

We want to optimize p such that s assigns high
scores to good architectures and low scores to bad
architectures. This induces a ranking of the candi-
date architectures in the search space. It is infea-
sible to sort all candidate architectures in a large
search space directly. A solution is to reduce the
listwise ranking problem to the pairwise ranking
problem. Fortunately, the properties of the NAS
task allow us to achieve the goal. As described
in Dudziak et al. (2020), the relation between any
pair of performance is antisymmetric, transitive
and connex. This makes it possible to rank all ar-
chitectures via pairwise comparisons, substantially
reducing the training complexity.

Training Set Construction. In pairwise ranking,
the learning task is framed as a binary classification
of architecture pairs into two categories: correctly
ordered and incorrectly ordered. Given an architec-
ture pair (αi, αj) and the order of performance P̄ij ,
we can construct training examples (αi, αj , P̄ij)
for the classification by comparing the two values.
Note that P̄ij is a 0-1 variable. For example, if
αi is better than αj , we would add (αi, αj , 1) and
(αj , αi, 0) to the training set.

Optimization. Consider a pair of architectures
(αi, αj), scored by si and sj , respectively. The
probability of αi being better than αj is given by
the difference through an activation function g:

Pij = g (si − sj) (3)

Algorithm 1: Training of RankNAS
Input: search space A and ranking model r

1 while r not converged do
2 training example construction:

sample (αi, αj) from A, compute P̄ij
by comparing their performance;

3 classification: compute scores (si, sj);
4 optimization: optimize r w.r.t. Eq. 6.
5 end

We assume that Pij ≥ 0.5 means αi is better than
αj while Pij < 0.5 means αj is better than αi.
Here we use a logistic function to achieve this goal:

Pij =
1

1 + e−(si−sj)
(4)

Similarly, Pji can be induced by:

Pji =
1

1 + e−(sj−si)
= 1− Pij (5)

Denote the gold score of αi being better than αj as
P̄ij . We use the cross-entropy loss function for the
classification. The loss for a pair of inputs is:

Lij = −(P̄ij logPij + P̄ji logPji)

= (1− P̄ij) · (si − sj)+
log (1 + e−(si−sj))

(6)

Compared with Eq. 1, Eq. 6 just requires P̄ij .
In particular, we use the intermediate performance
measured on the validation set during training. It
is much easier than assessing the accurate perfor-
mance of candidate architectures. In this sense, the
ranking model is “easier” to learn and may not need
many training samples as in performance predic-
tion. RankNAS also enables efficient optimization
through gradient methods. Algorithm 1 describes
the complete training process of the ranking model.

3.2 Applying Pairwise Ranking
Although the training time of the ranking model is
heavily reduced, it is still challenging to apply it to
the ranking of all architectures in the search space
A. The challenge is that exploring all architectures
is computationally expensive, even when the task
is a binary classification.

Correlations between Features and Perfor-
mance. We start by analyzing the effect of ar-
chitectural features on estimated performance. Fig-
ure 4 illustrates the impact of the FFN dimension



2472

prune

Raw Space

·
··· ··
· · · ··
·····
·
·
···
· ··
·· ···
··

·

·
·

·
··· ··

sample

Reduced Space

·
····· · · · ··
····· ·
· rank

Reduced Space

·
····· · · · ··
····· ·
·

Ranking

select

· 1

· 2
. . .

· n
·

Figure 3: The proposed search process consists of three steps: 1) prune the search space according to the impor-
tance of architectural features, 2) sample n architectures from the reduced search space by specific strategies, and
3) rank them with the trained ranking model and choose the best one. Here different color means different features.

750 1000 1250 1500 1750
FFN Dimension

200

250

300

350

La
te

nc
y 

(m
s)

CPU Latency
GPU Latency

1000 2000 3000
FFN Dimension

4.2

4.4

4.6

4.8

Lo
ss

Encoder
Decoder

Figure 4: The impact of FFN dimension on latency
and validation loss. All results are obtained on the
WMT’14 En-De task with the same settings described
in Sec. 4.2.

on latency and the validation loss on the machine
translation task. We observe that: (a) different ar-
chitectural features have very different correlations
with the same evaluation metric, and (b) the same
features also have different influences on different
metrics. For example, the latency monotonically in-
creases when scaling the FFN dimension on CPUs,
while it is almost unchanged on GPUs. Hence, it is
natural to improve search efficiency by eliminating
unimportant features.

Feature Importance. Inspired by previous fea-
ture selection methods (Breiman, 2001; Fisher
et al., 2019), we measure the importance of an
architectural feature (e.g., the number of layers)
by calculating the increase in the model error after
permuting the feature.

We assume that each architecture α is repre-
sented by a feature vector f ∈ RM×N , where
M is the number of different features, and N is the
dimension of feature vectors. Also, we assume a
set C that contains n architectures sampled from
the search space. We first estimate the original
model error Ltotal on C using the accumulation
of the prediction errors. For any feature fi ∈ f ,
we randomize it for each architecture in C. Then
the randomized architectural features are passed

to the ranking model and yield an error Li. The
importance of the i-th feature fi is defined by:

I(fi) =
Li

Ltotal
(7)

where a higher value implies fi is more important.

Search Space Pruning. It is easy to select valu-
able architectural features with the above measure.
Given all features f ∈ RM×N , we discard those
with a score less than a threshold θ and obtain the
selected features f ′ ∈ RM ′×N , where M ′ < M .
Then we can prune the search space according to
the selected features. For instance, if the feature
Embedding Dimension is not selected, we will keep
it fixed during the search. Finally, we only search
over the architectures in the reduced search space.

An overview of the search process is presented in
Figure 3. As described in Sec. 3.1, the training of
the proposed ranking model is much cheaper than
previous methods, which need to optimize the pa-
rameters for all architectures. Pruning search space
further reduces the number of architectures to be
evaluated. Also, the sampling procedure can be im-
plemented with any existing NAS search strategy,
e.g., Random Search (RS) or Evolution Algorithm
(EA).

4 Experiments

4.1 Experimental Setups

We evaluate our methods on language modeling
and machine translation tasks. In the experiments,
we search for hardware-aware architectures and
high-accuracy architectures.

Training Setups. For machine translation, we
experiment on the IWSLT’14 De-En and WMT’14
En-De tasks using the identical settings as Wang
et al. (2020). For language modeling, we experi-
ment on the WikiText-103 dataset (Merity et al.,



2473

Hardware Task Method
Latency

(ms) #Params
FLOPs

(G) BLEU
Search Cost

(hours)

Intel Xeon
Silver 4114

CPU

WMT
Transformer 1031.4 213.0M 12.7 28.4 -
HAT 396.8 67.9M 4.2 28.5 335.1
RankNAS 384.2 68.1M 4.0 28.6 31.8

IWSLT

Transformer 353.5 34.9M 1.6 34.4 -
HAT 190.5 27.9M 1.4 34.5 31.7
RankNAS 197.4 29.6M 1.5 34.6 7.2

NVIDIA
GTX 1080Ti

GPU

WMT
Transformer 249.6 213.0M 12.7 28.4 -
HAT 214.8 66.2M 4.1 28.5 302.1
RankNAS 201.7 62.1M 3.9 28.4 30.2

IWSLT

Transformer 200.9 34.9M 1.6 34.4 -
HAT 159.4 33.9M 1.6 34.7 24.5
RankNAS 148.2 35.4M 1.4 34.7 5.8

Table 1: Comparisons of latency, model size, FLOPs, BLEU, and the overall search cost on machine translation
tasks for the standard Transformer, HAT, and discovered architectures by our method. We mark the best results in
bold for all metrics. Search costs are measured on a single RTX 2080Ti GPU.

2017) with the same settings as Baevski and Auli
(2019). We set the maximum number of tokens per
sample to 1,843 to fit the memory constraints and
apply gradient accumulation to keep the same batch
size as Baevski and Auli (2019) ’s work. All mod-
els are trained with mixed precision on 8 NVIDIA
RTX 2080 Ti GPUs except for IWSLT ones, which
only take one GPU for training.

Ranking Model Setups. We implement the rank-
ing model (binary classifier) described in Sec.3.1
with LightGBM (Ke et al., 2017) and set the learn-
ing rate to 0.1. To prevent overfitting, we set the
maximum number of leaves to 30 and the tree’s
maximum depth to 6. We also use the default
regularization terms and apply the early stopping
strategy to the training. Specifically, the training
stops if the validation score does not increase for 5
rounds. After training the ranking model, we apply
the search space pruning method to find the most
valuable architectural features for different tasks
and hardware. There are two hyper-parameters for
pruning: the sample size and the threshold. We set
them to 200/1.15 and 300/1.25 for the hardware-
aware architecture search and high-accuracy archi-
tecture search, respectively.

Architecture Search Setups. Table 5 and Table
6 presents the search space of high-accuracy search
for the translation tasks. We refer the readers to
Wang et al. (2020)’s work for more details about the

Method
Latency
(CPU)

Latency
(GPU)

PPL

Baevski and Auli (2019) 12.49 0.53 18.70
Dai et al. (2019) 11.23 0.42 18.30
Press et al. (2020) 12.17 0.52 17.96

RankNAS (Ours) 4.83 0.29 18.13

Table 2: Performance of our discovered model and the
state-of-the-art language models. The perplexities are
evaluated on the WikiText-103 test data. Latency is
measured in units of seconds. All models have a similar
size, around 250M.

search space of hardware-aware architecture search.
RankNAS is not restricted to a specific search strat-
egy. We compare different search strategies in the
experiments, including Random Search (RS) and
Evolutionary Algorithm (EA). We apply uniform
sampling for RS and use the same settings as Wang
et al. (2020)’s work for EA. More specifically, the
random search process will stop if the best-so-far
architecture does not change for 3 epochs.

Evaluation Metrics. We report the results ob-
tained by averaging 5 runs with different seeds.
We calculate BLEU scores with case-sensitive to-
kenization using Moses, and apply the compound
splitting BLEU for WMT, the same as HAT. We
test the latency of models on an Intel Xeon Silver
4114 CPU and an NVIDIA GTX 1080Ti GPU. A



2474

ISWLT’14 De-En WMT’14 En-De

Method #Params BLEU
Search Cost

(hours) #Params BLEU
Search Cost

(hours)

Vaswani et al. (2017) 35M 34.4 - 213M 28.4 -
Shaw et al. (2018) 37M 35.4 - 213M 29.2 -
Wu et al. (2019b) 43M 35.2 - 213M 29.7 -

Pham and Le (2021) 37M 35.8 - - - -
So et al. (2019) - - - 218M 29.8 5.5×106

Fan et al. (2020) 38M 36.1 262.7 213M 30.1 1970.3
Zhao et al. (2021) - - - 215M 29.8 798.3
RankNAS (Ours) 34M 36.2 2.3 202M 29.9 36.9

Table 3: Results on the IWSLT’14 De-En and WMT’14 En-De machine translation tasks. The models above are
both designed by human experts, while the models below are discovered by NAS. Search costs are normalized to
GPU hours on a single RTX 2080Ti GPU, according to the results on public benchmarks1.

machine translation model’s latency is the time of
translating a single sentence with a fixed length
- 30 for WMT and 23 for IWSLT. For language
modeling, the latency is the cost of decoding a sin-
gle sentence without mini-batching, averaged over
the whole test set. Following Wang et al. (2020)’s
work, we measure each model’s latency 300 times
and remove the fastest and slowest 10% and then
take the average of the rest 80%. Note that we re-
port the total number of trainable parameters in a
model, while Wang et al. (2020) emit the parame-
ters of the embedding layers. The search cost is the
GPU hours measured on or normalized to a single
RTX 2080Ti.

4.2 Results

Hardware-Aware Architecture Search. The
hardware-aware NAS aims to maximize the accu-
racy under specified latency constraints on different
hardware platforms. We first rank architectures by
their latencies and pick those that meet the con-
straint to achieve this goal. Then we rank the se-
lected architectures by their losses on the validation
set and choose the best one. For machine transla-
tion tasks, we use the same search space as HAT
(Wang et al., 2020), which contains around 1015

possible architectures. For the language modeling
task, we use the following search space: [10, 12,
14] for decoder layer number, [768, 1024] for em-
bedding dimension, [3072, 4096, 5120] for hidden
dimension, and [8, 12, 16] for the head number
in attention modules. We add a simple linear pro-
jection without bias if two adjacent layers have
different hidden sizes.

Table 1 shows the results of RankNAS compar-
ing to HAT (Wang et al., 2020) and Transformer
(Vaswani et al., 2017) on the machine translation
tasks. Our method is effective in reducing the
search cost for different tasks and hardware plat-
forms. For instance, it requires 10.53× less cost to
find a comparable architecture on the WMT task.
The discovered architectures also have the lowest
latencies with the same or better BLEU scores on
most tasks. For example, the architecture designed
for the CPU is 2.68× faster than the standard Trans-
former.

We present the architecture search results for
language modeling on the WikiText-103 test data
in Table 2. All models are evaluated with a con-
text window of 2,560 tokens, following Baevski
and Auli (2019). Our method significantly acceler-
ates the baseline on different devices. Specifically,
our method speeds up the baseline by 2.59× on
the CPU and 1.83× on the GPU. Our model also
obtains a perplexity of 18.13, which outperforms
Transformer-XL (Dai et al., 2019) and is compa-
rable to the state-of-the-art language model, e.g.,
Sandwich-Transformer (Press et al., 2020).

High-Accuracy Architecture Search. Unlike
hardware-aware architecture search, the high-
accuracy architecture search only optimizes ac-
curacy and does not consider latency. In the ex-
periments, we enlarge the HAT’s search space by
introducing two additional features Relative Atten-
tion Position (Shaw et al., 2018) and Layer Norm
Position, as shown in Table 5 and Table 6. This
expands the size of search space to 1023, 8 orders



2475

Search
Space Method Kendall’s τ Spearman’s ρ

Small
HAT 0.827 0.913
Ours 0.883 0.945

Large
HAT 0.754 0.842
Ours 0.826 0.907

Table 4: RankNAS vs. HAT in terms of Kendall and
Spearman rank correlation coefficient. The results are
collected using the settings described in Sec. 5.1.

of magnitude larger than HAT.
We compare RankNAS with state-of-the-art ma-

chine translation models designed by human ex-
perts and models discovered by other NAS methods.
The results are presented in Table 3. RankNAS
consistently outperforms other methods in both
the IWSLT and WMT tasks. It demonstrates that
RankNAS can also design high-accuracy architec-
tures. Notably, the discovered architectures achieve
a +1.8 BLEU improvement on the IWSLT task
and a +1.5 BLEU improvement on the WMT task
than the standard Transformers baseline (Vaswani
et al., 2017). We show that RankNAS surpasses
the Evolved Transformer (So et al., 2019), with
orders of magnitude fewer search costs. RankNAS
also matches the performance of gradient-based
methods, including NAO (Fan et al., 2020) and
DARTSformer (Zhao et al., 2021).

5 Analysis

We analyze both the accuracy and efficiency of
our search method and study the effect of different
features on model performance.

5.1 Architecture Ranking Accuracy

To study the accuracy of the proposed method, we
evaluate it on the IWSLT translation task. In the
experiment, we randomly sample 200 different ar-
chitectures from the HAT search space (small) and
the enlarged search space (large) introduced in Sec.
4.2. We train these architectures from scratch and
measure their BLEU scores on the test set. Table 4
presents the Kendall and Spearman rank correlation
coefficient between the predicted results and the
real scores. It shows that RankNAS outperforms
HAT in terms of different ranking correlations. For
example, RankNAS achieves a high Kendall’s Tau
of 0.883 and 0.826 on small and large spaces. This
indicates that the predicted ranking is very close to

the real results.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Feature Score (CPU)

Dec FFN
Dec Attn
Enc FFN

Dec Layer
Dec Emb

2.9

2.7

1.5

1.4

1.3

0.0 0.5 1.0 1.5 2.0 2.5
Feature Score (GPU)

Dec Attn
Dec Layer

Enc Self-Attn
Dec FFN
Enc FFN

2.4

2.0

1.3

1.3

1.2

Figure 5: The selected features for different hardware
platforms. A higher score means the feature is more
important than others.

Importance of Ranking Accuracy. Although
our ranking model is more accurate than prior meth-
ods, a question remains: how does ranking accu-
racy affect the search quality? We analyze the
impact of different ranking models on the high-
accuracy NAS task. Figure 6 compares two rank-
ing models with different ranking correlation co-
efficients. The results are obtained by best-so-far
models trained from scratch on the IWSLT’14 De-
En data. Results show that inaccurate ranking leads
to poor search results. It indicates that an accurate
ranking model is essential for architecture search.

5.2 Analysis of Discovered Architectures

We present the discovered architectures in Ap-
pendix A.2 and analyze important features for dif-
ferent hardware on the IWSLT’14 De-En task.

Figure 5 (top) plots the selected features for the
CPU. It shows that the decoder FFN dimension is
the most important feature for predicting latency,
followed by the decoder’s arbitrary attention and
the encoder FFN dimension. We also find that the
decoder embedding dimension has a similar impact
on latency as the number of decoder layers.

Figure 5 (bottom) illustrates the results for the
GPU. Similar to the CPU, the latency on the GPU
has a high correlation to the decoder attention mod-
ule. The main difference is that the latency on GPU
is insensitive to FFN or embedding dimensions but
more sensitive to the number of decoder layers.

The results indicate that we can design “shallow
and wide” models for GPUs and “deep and thin”
models for CPUs to achieve the Pareto-optimal
state. Similar design insights have been verified in



2476

25 50 75 100 125 150 175 200
Sample Size

32.25

32.50

32.75

33.00

33.25

33.50

33.75

34.00
B

LE
U

= 0.84
= 0.35

Figure 6: Search results of different ranking models.
The inaccurate ranking model (in blue) leads to worse
search results than the accurate ranking model (in red).

recent works, such as Wang et al. (2019), Hu et al.
(2020), Li et al. (2021), and Lin et al. (2021).

5.3 Search Efficiency

Experiments in Sec. 4 show that our method has
much lower search costs than previous works. We
now analyze how does our method accelerates the
architecture search.

Ranking Model Training Efficiency. The over-
all search cost includes the training time of the
ranking model and the cost of the search process.
Figure 1 compares our method and HAT on the
IWSLT’14 De-En task. The two methods share the
same search space and sampling strategy for search.
We observe that the ranking model training takes
most of the time. RankNAS speeds up the ranking
model training by 10.34 times compared with HAT.
Pruning the search space further reduces the 75%
time of the search process. Thus the overall search
cost is significantly reduced. It indicates that effi-
cient training of the ranking model is essential to
accelerate the search process.

Architecture Search Efficiency. We also ana-
lyze the efficiency of our proposed methods on
the IWSLT hardware-aware task. Figure 7 shows
the loss curves on the validation set of the mod-
els found by our method with different sampling
strategies. We observe that RankNAS is compati-
ble with different strategies. Also, the evolutionary
algorithm outperforms random search in terms of
the rate of convergence and the search result.

6 Related Work

Many efforts have been made to improve the NAS
efficiency for different tasks (Tan et al., 2019; Wu
et al., 2019a; Cai et al., 2019; Lu et al., 2019; Chen

0 500 1000 1500 2000 2500 3000
Sample Size

3.924

3.926

3.928

3.930

3.932

3.934

3.936

3.938

V
al

id
at

io
n 

Lo
ss

Evolutionary Search
Random Search

Figure 7: RankNAS combined with an evolutionary
strategy achieves faster convergence and better results
than other search methods.

et al., 2020). A common approach to accelerating
the search process is to use a proxy, such as reduced
model size, training data, or training steps. How-
ever, it is inaccurate for estimating the model’s per-
formance and diminishes the NAS quality (Baker
et al., 2018; Dudziak et al., 2020). Another popular
way is to share parameters among all architectures
to reduce the training time (Tan et al., 2019; Cai
et al., 2019). However, it is infeasible to train all ar-
chitecture candidates fairly to obtain their accurate
performance.

Recent works explored performance prediction
based on architectural properties, i.e., the network
topology and the model size (Liu et al., 2018;
Long et al., 2019; Wen et al., 2020; Ning et al.,
2020). For instance, Hardware-Aware Transformer
(HAT) (Wang et al., 2020) encoded architectures
into feature vectors and predicted the latency with
a Multilayer Perceptron (MLP) for the target hard-
ware. BRP-NAS (Dudziak et al., 2020) proposed
an end-to-end performance predictor based on a
Graph Convolutional Network (GCN). Although
these methods greatly improve the performance es-
timation efficiency, they still require many samples
and train numerous neural networks to converge,
thereby increasing the search cost. Instead, we are
motivated by the fact that NAS is expected to dis-
tinguish different candidate architectures. Thus,
NAS can be solved by learning pairwise ranking
rather than obtaining the accurate performance of
architectures.

7 Conclusion

We have presented RankNAS, a simple yet efficient
NAS algorithm for both hardware-aware and high-
accuracy architecture search. We have shown that
pairwise ranking can significantly improve search



2477

efficiency. We also have proposed a search space
pruning method to help the ranking model be more
efficient during the search. Our approach outper-
forms prior methods in both efficiency and accu-
racy. RankNAS requires 80% less time in rank-
ing model training on the hardware-aware search
task and accelerates the overall search process by
11.53 times. Also, the architectures discovered
by our method outperform state-of-the-art Trans-
former models in terms of efficiency and accuracy.

Acknowledgements

This work was supported in part by the National
Science Foundation of China (Nos. 61876035
and 61732005), the National Key R&D Program
of China (No.2019QY1801), and the Ministry
of Science and Technology of the PRC (Nos.
2019YFF0303002 and 2020AAA0107900). The
authors would like to thank the anonymous review-
ers for their comments and suggestions.

References
Alexei Baevski and Michael Auli. 2019. Adaptive in-

put representations for neural language modeling. In
7th International Conference on Learning Represen-
tations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net.

Bowen Baker, Otkrist Gupta, Ramesh Raskar, and
Nikhil Naik. 2018. Accelerating neural architec-
ture search using performance prediction. In 6th
International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, April 30
- May 3, 2018, Workshop Track Proceedings. Open-
Review.net.

Leo Breiman. 2001. Random forests. Mach. Learn.,
45(1):5–32.

Christopher J. C. Burges, Tal Shaked, Erin Renshaw,
Ari Lazier, Matt Deeds, Nicole Hamilton, and Gre-
gory N. Hullender. 2005. Learning to rank using gra-
dient descent. In Machine Learning, Proceedings of
the Twenty-Second International Conference (ICML
2005), Bonn, Germany, August 7-11, 2005, volume
119 of ACM International Conference Proceeding
Series, pages 89–96. ACM.

Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and
Jun Wang. 2018. Efficient architecture search by net-
work transformation. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Arti-
ficial Intelligence (IAAI-18), and the 8th AAAI Sym-
posium on Educational Advances in Artificial Intel-
ligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pages 2787–2794. AAAI Press.

Han Cai, Ligeng Zhu, and Song Han. 2019. Proxyless-
nas: Direct neural architecture search on target task
and hardware. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net.

Daoyuan Chen, Yaliang Li, Minghui Qiu, Zhen Wang,
Bofang Li, Bolin Ding, Hongbo Deng, Jun Huang,
Wei Lin, and Jingren Zhou. 2020. Adabert: Task-
adaptive BERT compression with differentiable neu-
ral architecture search. In Proceedings of the
Twenty-Ninth International Joint Conference on Ar-
tificial Intelligence, IJCAI 2020, pages 2463–2469.
ijcai.org.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 2978–2988, Florence, Italy.
Association for Computational Linguistics.

Lukasz Dudziak, Thomas C. P. Chau, Mohamed S. Ab-
delfattah, Royson Lee, Hyeji Kim, and Nicholas D.
Lane. 2020. BRP-NAS: prediction-based NAS us-
ing gcns. In Advances in Neural Information Pro-
cessing Systems 33: Annual Conference on Neu-
ral Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual.

Yang Fan, Fei Tian, Yingce Xia, Tao Qin, Xiang-Yang
Li, and Tie-Yan Liu. 2020. Searching better archi-
tectures for neural machine translation. IEEE ACM
Trans. Audio Speech Lang. Process., 28:1574–1585.

Aaron Fisher, Cynthia Rudin, and Francesca Dominici.
2019. All models are wrong, but many are useful:
Learning a variable’s importance by studying an en-
tire class of prediction models simultaneously. J.
Mach. Learn. Res., 20:177:1–177:81.

Chi Hu, Bei Li, Yinqiao Li, Ye Lin, Yanyang Li, Chen-
glong Wang, Tong Xiao, and Jingbo Zhu. 2020. The
NiuTrans system for WNGT 2020 efficiency task. In
Proceedings of the Fourth Workshop on Neural Gen-
eration and Translation, pages 204–210, Online. As-
sociation for Computational Linguistics.

Yufan Jiang, Chi Hu, Tong Xiao, Chunliang Zhang,
and Jingbo Zhu. 2019. Improved differentiable ar-
chitecture search for language modeling and named
entity recognition. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 3585–3590, Hong Kong, China. As-
sociation for Computational Linguistics.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang,
Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
2017. Lightgbm: A highly efficient gradient boost-
ing decision tree. In Advances in Neural Informa-
tion Processing Systems 30: Annual Conference on

https://openreview.net/forum?id=ByxZX20qFQ
https://openreview.net/forum?id=ByxZX20qFQ
https://openreview.net/forum?id=HJqk3N1vG
https://openreview.net/forum?id=HJqk3N1vG
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/1102351.1102363
https://doi.org/10.1145/1102351.1102363
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16755
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16755
https://openreview.net/forum?id=HylVB3AqYm
https://openreview.net/forum?id=HylVB3AqYm
https://openreview.net/forum?id=HylVB3AqYm
https://doi.org/10.24963/ijcai.2020/341
https://doi.org/10.24963/ijcai.2020/341
https://doi.org/10.24963/ijcai.2020/341
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://proceedings.neurips.cc/paper/2020/hash/768e78024aa8fdb9b8fe87be86f64745-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/768e78024aa8fdb9b8fe87be86f64745-Abstract.html
https://doi.org/10.1109/TASLP.2020.2995270
https://doi.org/10.1109/TASLP.2020.2995270
http://jmlr.org/papers/v20/18-760.html
http://jmlr.org/papers/v20/18-760.html
http://jmlr.org/papers/v20/18-760.html
https://doi.org/10.18653/v1/2020.ngt-1.24
https://doi.org/10.18653/v1/2020.ngt-1.24
https://doi.org/10.18653/v1/D19-1367
https://doi.org/10.18653/v1/D19-1367
https://doi.org/10.18653/v1/D19-1367
https://proceedings.neurips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html


2478

Neural Information Processing Systems 2017, De-
cember 4-9, 2017, Long Beach, CA, USA, pages
3146–3154.

Yanyang Li, Ye Lin, Tong Xiao, and Jingbo Zhu. 2021.
An efficient transformer decoder with compressed
sub-layers. In Thirty-Fifth AAAI Conference on Arti-
ficial Intelligence, AAAI 2021, Thirty-Third Confer-
ence on Innovative Applications of Artificial Intelli-
gence, IAAI 2021, The Eleventh Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI
2021, Virtual Event, February 2-9, 2021, pages
13315–13323. AAAI Press.

Yinqiao Li, Chi Hu, Yuhao Zhang, Nuo Xu, Yufan
Jiang, Tong Xiao, Jingbo Zhu, Tongran Liu, and
Changliang Li. 2020. Learning architectures from
an extended search space for language modeling. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6629–
6639, Online. Association for Computational Lin-
guistics.

Ye Lin, Yanyang Li, Ziyang Wang, Bei Li, Quan Du,
Tong Xiao, and Jingbo Zhu. 2021. Weight distilla-
tion: Transferring the knowledge in neural network
parameters. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 2076–2088, Online. Association for Computa-
tional Linguistics.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon
Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan L.
Yuille, Jonathan Huang, and Kevin Murphy. 2018.
Progressive neural architecture search. In Computer
Vision - ECCV 2018 - 15th European Conference,
Munich, Germany, September 8-14, 2018, Proceed-
ings, Part I, volume 11205 of Lecture Notes in Com-
puter Science, pages 19–35. Springer.

Hanxiao Liu, Karen Simonyan, and Yiming Yang.
2019. DARTS: differentiable architecture search. In
7th International Conference on Learning Represen-
tations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net.

D. Long, S. Zhang, and Y. Zhang. 2019. Performance
prediction based on neural architecture features. In
2019 2nd China Symposium on Cognitive Comput-
ing and Hybrid Intelligence (CCHI), pages 77–80.

Qing Lu, Weiwen Jiang, Xiaowei Xu, Yiyu Shi, and
Jingtong Hu. 2019. On neural architecture search
for resource-constrained hardware platforms. CoRR,
abs/1911.00105.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Xuefei Ning, Yin Zheng, Tianchen Zhao, Yu Wang,
and Huazhong Yang. 2020. A generic graph-based
neural architecture encoding scheme for predictor-
based NAS. In Computer Vision - ECCV 2020 -
16th European Conference, Glasgow, UK, August
23-28, 2020, Proceedings, Part XIII, volume 12358
of Lecture Notes in Computer Science, pages 189–
204. Springer.

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le,
and Jeff Dean. 2018. Efficient neural architecture
search via parameter sharing. In Proceedings of the
35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, volume 80 of Proceedings of Ma-
chine Learning Research, pages 4092–4101. PMLR.

Hieu Pham and Quoc V. Le. 2021. Autodropout: Learn-
ing dropout patterns to regularize deep networks. In
Thirty-Fifth AAAI Conference on Artificial Intelli-
gence, AAAI 2021, Thirty-Third Conference on In-
novative Applications of Artificial Intelligence, IAAI
2021, The Eleventh Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2021, Virtual
Event, February 2-9, 2021, pages 9351–9359. AAAI
Press.

Ofir Press, Noah A. Smith, and Omer Levy. 2020. Im-
proving transformer models by reordering their sub-
layers. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2996–3005, Online. Association for Computa-
tional Linguistics.

Esteban Real, Alok Aggarwal, Yanping Huang, and
Quoc V. Le. 2019. Regularized evolution for im-
age classifier architecture search. In The Thirty-
Third AAAI Conference on Artificial Intelligence,
AAAI 2019, The Thirty-First Innovative Applications
of Artificial Intelligence Conference, IAAI 2019,
The Ninth AAAI Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2019, Hon-
olulu, Hawaii, USA, January 27 - February 1, 2019,
pages 4780–4789. AAAI Press.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 464–468,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

David R. So, Quoc V. Le, and Chen Liang. 2019. The
evolved transformer. In Proceedings of the 36th In-
ternational Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Re-
search, pages 5877–5886. PMLR.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasude-
van, Mark Sandler, Andrew Howard, and Quoc V.
Le. 2019. Mnasnet: Platform-aware neural architec-
ture search for mobile. In IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2019,

https://ojs.aaai.org/index.php/AAAI/article/view/17572
https://ojs.aaai.org/index.php/AAAI/article/view/17572
https://doi.org/10.18653/v1/2020.acl-main.592
https://doi.org/10.18653/v1/2020.acl-main.592
https://doi.org/10.18653/v1/2021.acl-long.162
https://doi.org/10.18653/v1/2021.acl-long.162
https://doi.org/10.18653/v1/2021.acl-long.162
https://doi.org/10.1007/978-3-030-01246-5_2
https://openreview.net/forum?id=S1eYHoC5FX
https://doi.org/10.1109/CCHI.2019.8901943
https://doi.org/10.1109/CCHI.2019.8901943
http://arxiv.org/abs/1911.00105
http://arxiv.org/abs/1911.00105
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://doi.org/10.1007/978-3-030-58601-0_12
https://doi.org/10.1007/978-3-030-58601-0_12
https://doi.org/10.1007/978-3-030-58601-0_12
http://proceedings.mlr.press/v80/pham18a.html
http://proceedings.mlr.press/v80/pham18a.html
https://ojs.aaai.org/index.php/AAAI/article/view/17127
https://ojs.aaai.org/index.php/AAAI/article/view/17127
https://doi.org/10.18653/v1/2020.acl-main.270
https://doi.org/10.18653/v1/2020.acl-main.270
https://doi.org/10.18653/v1/2020.acl-main.270
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/N18-2074
http://proceedings.mlr.press/v97/so19a.html
http://proceedings.mlr.press/v97/so19a.html
https://doi.org/10.1109/CVPR.2019.00293
https://doi.org/10.1109/CVPR.2019.00293


2479

Long Beach, CA, USA, June 16-20, 2019, pages
2820–2828. Computer Vision Foundation / IEEE.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998–6008.

Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai,
Ligeng Zhu, Chuang Gan, and Song Han. 2020.
HAT: Hardware-aware transformers for efficient nat-
ural language processing. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 7675–7688, Online. As-
sociation for Computational Linguistics.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu,
Changliang Li, Derek F. Wong, and Lidia S. Chao.
2019. Learning deep transformer models for ma-
chine translation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1810–1822, Florence, Italy. Associa-
tion for Computational Linguistics.

Fabian L. Wauthier, Michael I. Jordan, and Nebojsa Jo-
jic. 2013. Efficient ranking from pairwise compar-
isons. In Proceedings of the 30th International Con-
ference on Machine Learning, ICML 2013, Atlanta,
GA, USA, 16-21 June 2013, volume 28 of JMLR
Workshop and Conference Proceedings, pages 109–
117. JMLR.org.

Chen Wei, Chuang Niu, Yiping Tang, and Jimin
Liang. 2020. NPENAS: neural predictor guided
evolution for neural architecture search. CoRR,
abs/2003.12857.

Wei Wen, Hanxiao Liu, Yiran Chen, Hai Helen Li,
Gabriel Bender, and Pieter-Jan Kindermans. 2020.
Neural predictor for neural architecture search. In
Computer Vision - ECCV 2020 - 16th European Con-
ference, Glasgow, UK, August 23-28, 2020, Proceed-
ings, Part XXIX, volume 12374 of Lecture Notes in
Computer Science, pages 660–676. Springer.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan
Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter
Vajda, Yangqing Jia, and Kurt Keutzer. 2019a. Fb-
net: Hardware-aware efficient convnet design via
differentiable neural architecture search. In IEEE
Conference on Computer Vision and Pattern Recog-
nition, CVPR 2019, Long Beach, CA, USA, June
16-20, 2019, pages 10734–10742. Computer Vision
Foundation / IEEE.

Felix Wu, Angela Fan, Alexei Baevski, Yann N.
Dauphin, and Michael Auli. 2019b. Pay less atten-
tion with lightweight and dynamic convolutions. In
7th International Conference on Learning Represen-
tations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng,
Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan
Lan, Liwei Wang, and Tie-Yan Liu. 2020. On
layer normalization in the transformer architecture.
In Proceedings of the 37th International Confer-
ence on Machine Learning, ICML 2020, 13-18 July
2020, Virtual Event, volume 119 of Proceedings of
Machine Learning Research, pages 10524–10533.
PMLR.

Yuekai Zhao, Li Dong, Yelong Shen, Zhihua
Zhang, Furu Wei, and Weizhu Chen. 2021.
Memory-efficient differentiable transformer archi-
tecture search. In Findings of the Association for
Computational Linguistics: ACL/IJCNLP 2021, On-
line Event, August 1-6, 2021, volume ACL/IJCNLP
2021 of Findings of ACL, pages 4254–4264. Associ-
ation for Computational Linguistics.

Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and
Cheng-Lin Liu. 2018. Practical block-wise neural
network architecture generation. In 2018 IEEE Con-
ference on Computer Vision and Pattern Recogni-
tion, CVPR 2018, Salt Lake City, UT, USA, June 18-
22, 2018, pages 2423–2432. IEEE Computer Soci-
ety.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and
Quoc V. Le. 2018. Learning transferable architec-
tures for scalable image recognition. In 2018 IEEE
Conference on Computer Vision and Pattern Recog-
nition, CVPR 2018, Salt Lake City, UT, USA, June
18-22, 2018, pages 8697–8710. IEEE Computer So-
ciety.

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/2020.acl-main.686
https://doi.org/10.18653/v1/2020.acl-main.686
https://doi.org/10.18653/v1/P19-1176
https://doi.org/10.18653/v1/P19-1176
http://proceedings.mlr.press/v28/wauthier13.html
http://proceedings.mlr.press/v28/wauthier13.html
http://arxiv.org/abs/2003.12857
http://arxiv.org/abs/2003.12857
https://doi.org/10.1007/978-3-030-58526-6_39
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/CVPR.2019.01099
https://openreview.net/forum?id=SkVhlh09tX
https://openreview.net/forum?id=SkVhlh09tX
http://proceedings.mlr.press/v119/xiong20b.html
http://proceedings.mlr.press/v119/xiong20b.html
https://doi.org/10.18653/v1/2021.findings-acl.372
https://doi.org/10.18653/v1/2021.findings-acl.372
https://doi.org/10.1109/CVPR.2018.00257
https://doi.org/10.1109/CVPR.2018.00257
https://doi.org/10.1109/CVPR.2018.00907
https://doi.org/10.1109/CVPR.2018.00907


2480

A Appendix

A.1 High-Accuracy Architecture Search
Space

Other design choices are adopted from HAT’s
search space (Wang et al., 2020) with slight modifi-
cations. Inspired by Shaw et al. (2018), we search
for the maximum relative position (RPR Len) in the
self-attention modules in each layer. As suggested
by Wang et al. (2019) and Xiong et al. (2020),
proper locations of layer normalization lead to bet-
ter performance. Therefore, we let NAS decide
whether to put the layer normalization inside (Pre-
LN) or between (Post-LN) the residual blocks.

Features Search Space

Enc Layer Num [6]
Enc Emb Dim [512, 640, 768]
Enc FFN Dim [768, 1024, 1536, 2048]
Enc Head Num [2, 4, 8]
Enc RPR Len [8, 12, 16]

Enc Norm Type [Pre-LN, Post-LN]
Dec Layer Num [1, 2, 3, 4, 5, 6]
Dec Emb Dim [512, 640, 768]
Dec FFN Dim [768, 1024, 1536, 2048]
Dec Head Num [2, 4, 8]
Dec RPR Len [8, 12, 16]

Dec Norm Type [Pre-LN, Post-LN]
Enc-Dec Attn [1, 2, 3]

Table 5: The search space for high-accuracy search on
the IWSLT’14 De-En translation task.

Features Search Space

Enc Layer Num [6]
Enc Emb Dim [640, 768, 1024]
Enc FFN Dim [2048, 3072, 4096, 5120]
Enc Head Num [4, 8, 16]
Enc RPR Len [8, 12, 16]

Enc Norm Type [Pre-LN, Post-LN]
Dec Layer Num [1, 2, 3, 4, 5, 6]
Dec Emb Dim [640, 768, 1024]
Dec FFN Dim [2048, 3072, 4096, 5120]
Dec Head Num [4, 8, 16]
Dec RPR Len [8, 12, 16]

Dec Norm Type [Pre-LN, Post-LN]
Enc-Dec Attn [1, 2, 3]

Table 6: The search space for high-accuracy search on
the WMT’14 En-De translation task.

Input

512 Embed Dim

E
n
co

d
er

 L
ay

er
 1

1536 FFN Hidden Dim

4 Self-Attn Heads

Pre-LN

Pre-LN

8 RPR Len

1024 FFN Hidden Dim

4 Self-Attn Heads

Pre-LN

Pre-LN

8 RPR Len

768 FFN Hidden Dim

2 Self-Attn Heads

Pre-LN

Pre-LN

8 RPR Len

1536 FFN Hidden Dim

8 Self-Attn Heads

Pre-LN

Pre-LN

8 RPR Len

2048 FFN Hidden Dim

8 Self-Attn Heads

Pre-LN

Pre-LN

8 RPR Len

1536 FFN Hidden Dim

4 Self-Attn Heads

Pre-LN

Pre-LN

8 RPR Len

D
ec

o
d
er

 L
ay

er
 1

512 Embed Dim

Output

2048 FFN Hidden Dim

8 Self-Attn Heads

Pre-LN

Pre-LN

8 RPR Len

8 Cross-Attn Heads

Pre-LN

2048 FFN Hidden Dim

8 Self-Attn Heads

Pre-LN

Pre-LN

8 RPR Len

8 Cross-Attn Heads

Pre-LN

D
ec

o
d
er

 L
ay

er
 2

E
n
co

d
er

 L
ay

er
 2

E
n
co

d
er

 L
ay

er
 3

E
n
co

d
er

 L
ay

er
 4

E
n
co

d
er

 L
ay

er
 5

E
n
co

d
er

 L
ay

er
 6

Figure 8: Visualization of a discovered architecture on
the IWSLT’14 De-En translation task.

A.2 Visualization of Good Architectures
Figure 8 illustrates one of the discovered Trans-
former architecture. The presented architecture
achieves 36.2 BLEU on the IWSLT’14 De-En
translation task and has a latency of 77ms on
the GTX 1080Ti GPU, outperforming the vanilla
Transformer by +1.8 BLEU and 2.6 times speed.


