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Abstract

This paper addresses the efficiency challenge
of Neural Architecture Search (NAS) by for-
mulating the task as a ranking problem. Previ-
ous methods require numerous training exam-
ples to estimate the accurate performance of ar-
chitectures, although the actual goal is to find
the distinction between “good” and “bad” can-
didates. Here we do not resort to performance
predictors. Instead, we propose a performance
ranking method (RankNAS) via pairwise rank-
ing. It enables efficient architecture search us-
ing much fewer training examples. Moreover,
we develop an architecture selection method
to prune the search space and concentrate on
more promising candidates. Extensive exper-
iments on machine translation and language
modeling tasks show that RankNAS can de-
sign high-performance architectures while be-
ing orders of magnitude faster than state-of-
the-art NAS systems.

1 Introduction

Neural Architecture Search (NAS) has advanced
state-of-the-art on various tasks, such as image clas-
sification (Zoph et al., 2018; Pham et al., 2018; Real
et al., 2019; Tan et al., 2019), machine translation
(Fan et al., 2020; So et al., 2019), and language
modeling (Pham et al., 2018; Liu et al., 2019; Jiang
et al., 2019; Li et al., 2020). Despite the remarkable
results, conventional NAS methods are computa-
tionally expensive, requiring training millions of
architectures during search. For instance, obtaining
a state-of-the-art machine translation model with
an evolutionary algorithm requires more than 250
GPU years (So et al., 2019).

Several techniques have been proposed to im-
prove the search efficiency, such as sharing parame-
ters among all architectures (Pham et al., 2018; Cai
et al., 2018; Zhong et al., 2018), predicting the per-
formance instead of full training (Liu et al., 2018;
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Figure 1: The time cost of different NAS methods on
the WMT machine translation task. RankNAS* de-
notes the results without search space pruning. Our
method significantly accelerates NAS through pairwise
ranking and search space pruning.

Baker et al., 2018; Wen et al., 2020; Wei et al.,
2020), and searching over a continuous space (Liu
et al., 2019; Jiang et al., 2019; Li et al., 2020). Un-
fortunately, these approaches still suffer from the
high cost of predicting the performance of each can-
didate architecture. An inherent reason for this is
that obtaining accurate performance requires train-
ing numerous neural networks to convergence, as
described in Sec. 2.2. However, it is unnecessary to
predict the model performance as in previous NAS
methods. Rather, all we need is to distinguish archi-
tectures of different quality in NAS, say, ranking
these architectures.

In this paper, we approach the problem by for-
mulating NAS as a ranking task. Here we propose
RankNAS, a ranking model for comparing differ-
ent architectures. One of the key challenges is that
directly ranking all architectures in a large search
space is still computationally infeasible. Therefore,
we adopt the pairwise method (Burges et al., 2005;
Wauthier et al., 2013), where the ranking problem
is reduced to a binary classification problem over
architecture pairs. To speed up RankNAS further,
we develop an architecture selection method that
chooses the most promising architectures for evalu-
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ation according to the importance of features, e.g.,
the topology of architectures.

We test RankNAS on well-established machine
translation and language modeling benchmarks.
Experiments show that RankNAS is orders of mag-
nitude faster than standard NAS systems and can
find better architectures. Notably, RankNAS is
generic to different tasks and evaluation metrics.
It achieves competitive results on hardware-aware
NAS tasks and is 10× faster than the HAT baseline
(Wang et al., 2020). It also discovers new architec-
tures that outperform vanilla Transformer by +1.8
BLEU points on the IWSLT’14 De-En data and
+1.5 BLEU points on the WMT’14 En-De data, sur-
passing the Evolved Transformer (So et al., 2019)
with 150,000× less search cost.

2 Preliminaries

NAS generally consists of two steps: 1) sample
architectures from the pre-defined search space,
and 2) estimate the performance of these samples.
This work focuses on the performance estimation
step, which is the efficiency bottleneck of NAS.

2.1 Search Space

The search space contains all possible architec-
tures for the search. In this work, we take the
Transformer architecture for description, but the
discussed problem and solutions are general and
can be applied to other models. Following HAT
(Wang et al., 2020), we represent a Transformer
architecture as a set of features and search for the
optimal model configuration.

An overview of the search space is shown in
Figure 2. It is extended from the HAT’s space and
inspired by manually designed Transformer vari-
ants, including Relative Position Representations
(Shaw et al., 2018) and Deep Transformer (Wang
et al., 2019). The search space can also be repre-
sented as a supernet where each sub-network is
a unique architecture. The search space contains
around 1023 possible architectures, as detailed in
Appendix A.1. It is computationally prohibited
to explore such a large space with an exhaustive
method.

2.2 Performance Estimation

Let A denotes the search space, and each archi-
tecture in it is represented by a feature vector α.
Formally, the goal of NAS is to find the optimal
architecture α∗ with the best performance. The per-
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Figure 2: The architecture search space. We search
for the optimal model size, e.g., the number of layers,
and network topology, e.g., connections between differ-
ent layers. The encoder part is ignored in the language
modeling task. Appendix A.1 gives more details about
the design choices for different tasks.

formance can be measured by some metrics, such
as accuracy or latency. The performance estima-
tion process consists of two steps: 1) estimate the
performance of all architectures, and 2) choose the
architecture with the optimal performance.

Without loss of generality, we define S(·) as the
performance evaluated by some metrics. The task
here is to find the most promising architecture with
maximum S(·). Standard NAS methods solve this
problem by learning to estimate the performance
of each architecture. The objective is given by:

α∗ = argmax
α

Sval(w∗, α)

s.t. w∗ = argmax
w

Strain(w,α)
(1)

where w is the weights associated with the archi-
tecture. Sval and Strain are the evaluation results
on the validation set and training set, respectively.

Optimizing Eq. 1 is time-consuming as obtain-
ing the optimal weights for each architecture re-
quires training them to converge. Although we
can share the weights among all architectures to
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amortize the cost, performance evaluation is still
nontrivial and requires numerous training steps.

3 NAS as Ranking

As mentioned in Sec. 2.2, the goal of NAS is to
find promising architectures that achieve high per-
formance on unseen data. NAS requires distin-
guishing whether the architectures are “good” or
“bad” rather than predicting accurate performance.
Therefore, it is natural to treat NAS as a ranking
problem, in which the explicit goal is to rank dif-
ferent architectures correctly.

3.1 Pairwise Ranking
Problem Formulation. Given an architecture α,
we define a score s on it by a function r(·):

s = r(α, p) (2)

where p is the parameter of the scoring function.
We implement the scoring function with a gradient
boosting decision tree, as detailed in Sec. 4.1.

We want to optimize p such that s assigns high
scores to good architectures and low scores to bad
architectures. This induces a ranking of the candi-
date architectures in the search space. It is infea-
sible to sort all candidate architectures in a large
search space directly. A solution is to reduce the
listwise ranking problem to the pairwise ranking
problem. Fortunately, the properties of the NAS
task allow us to achieve the goal. As described
in Dudziak et al. (2020), the relation between any
pair of performance is antisymmetric, transitive
and connex. This makes it possible to rank all ar-
chitectures via pairwise comparisons, substantially
reducing the training complexity.

Training Set Construction. In pairwise ranking,
the learning task is framed as a binary classification
of architecture pairs into two categories: correctly
ordered and incorrectly ordered. Given an architec-
ture pair (αi, αj) and the order of performance P̄ij ,
we can construct training examples (αi, αj , P̄ij)
for the classification by comparing the two values.
Note that P̄ij is a 0-1 variable. For example, if
αi is better than αj , we would add (αi, αj , 1) and
(αj , αi, 0) to the training set.

Optimization. Consider a pair of architectures
(αi, αj), scored by si and sj , respectively. The
probability of αi being better than αj is given by
the difference through an activation function g:

Pij = g (si − sj) (3)

Algorithm 1: Training of RankNAS
Input: search space A and ranking model r

1 while r not converged do
2 training example construction:

sample (αi, αj) from A, compute P̄ij
by comparing their performance;

3 classification: compute scores (si, sj);
4 optimization: optimize r w.r.t. Eq. 6.
5 end

We assume that Pij ≥ 0.5 means αi is better than
αj while Pij < 0.5 means αj is better than αi.
Here we use a logistic function to achieve this goal:

Pij =
1

1 + e−(si−sj)
(4)

Similarly, Pji can be induced by:

Pji =
1

1 + e−(sj−si)
= 1− Pij (5)

Denote the gold score of αi being better than αj as
P̄ij . We use the cross-entropy loss function for the
classification. The loss for a pair of inputs is:

Lij = −(P̄ij logPij + P̄ji logPji)

= (1− P̄ij) · (si − sj)+
log (1 + e−(si−sj))

(6)

Compared with Eq. 1, Eq. 6 just requires P̄ij .
In particular, we use the intermediate performance
measured on the validation set during training. It
is much easier than assessing the accurate perfor-
mance of candidate architectures. In this sense, the
ranking model is “easier” to learn and may not need
many training samples as in performance predic-
tion. RankNAS also enables efficient optimization
through gradient methods. Algorithm 1 describes
the complete training process of the ranking model.

3.2 Applying Pairwise Ranking
Although the training time of the ranking model is
heavily reduced, it is still challenging to apply it to
the ranking of all architectures in the search space
A. The challenge is that exploring all architectures
is computationally expensive, even when the task
is a binary classification.

Correlations between Features and Perfor-
mance. We start by analyzing the effect of ar-
chitectural features on estimated performance. Fig-
ure 4 illustrates the impact of the FFN dimension
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Figure 4: The impact of FFN dimension on latency
and validation loss. All results are obtained on the
WMT’14 En-De task with the same settings described
in Sec. 4.2.

on latency and the validation loss on the machine
translation task. We observe that: (a) different ar-
chitectural features have very different correlations
with the same evaluation metric, and (b) the same
features also have different influences on different
metrics. For example, the latency monotonically in-
creases when scaling the FFN dimension on CPUs,
while it is almost unchanged on GPUs. Hence, it is
natural to improve search efficiency by eliminating
unimportant features.

Feature Importance. Inspired by previous fea-
ture selection methods (Breiman, 2001; Fisher
et al., 2019), we measure the importance of an
architectural feature (e.g., the number of layers)
by calculating the increase in the model error after
permuting the feature.

We assume that each architecture α is repre-
sented by a feature vector f ∈ RM×N , where
M is the number of different features, and N is the
dimension of feature vectors. Also, we assume a
set C that contains n architectures sampled from
the search space. We first estimate the original
model error Ltotal on C using the accumulation
of the prediction errors. For any feature fi ∈ f ,
we randomize it for each architecture in C. Then
the randomized architectural features are passed

to the ranking model and yield an error Li. The
importance of the i-th feature fi is defined by:

I(fi) =
Li

Ltotal
(7)

where a higher value implies fi is more important.

Search Space Pruning. It is easy to select valu-
able architectural features with the above measure.
Given all features f ∈ RM×N , we discard those
with a score less than a threshold θ and obtain the
selected features f ′ ∈ RM ′×N , where M ′ < M .
Then we can prune the search space according to
the selected features. For instance, if the feature
Embedding Dimension is not selected, we will keep
it fixed during the search. Finally, we only search
over the architectures in the reduced search space.

An overview of the search process is presented in
Figure 3. As described in Sec. 3.1, the training of
the proposed ranking model is much cheaper than
previous methods, which need to optimize the pa-
rameters for all architectures. Pruning search space
further reduces the number of architectures to be
evaluated. Also, the sampling procedure can be im-
plemented with any existing NAS search strategy,
e.g., Random Search (RS) or Evolution Algorithm
(EA).

4 Experiments

4.1 Experimental Setups

We evaluate our methods on language modeling
and machine translation tasks. In the experiments,
we search for hardware-aware architectures and
high-accuracy architectures.

Training Setups. For machine translation, we
experiment on the IWSLT’14 De-En and WMT’14
En-De tasks using the identical settings as Wang
et al. (2020). For language modeling, we experi-
ment on the WikiText-103 dataset (Merity et al.,
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Hardware Task Method
Latency

(ms) #Params
FLOPs

(G) BLEU
Search Cost

(hours)

Intel Xeon
Silver 4114

CPU

WMT
Transformer 1031.4 213.0M 12.7 28.4 -
HAT 396.8 67.9M 4.2 28.5 335.1
RankNAS 384.2 68.1M 4.0 28.6 31.8

IWSLT

Transformer 353.5 34.9M 1.6 34.4 -
HAT 190.5 27.9M 1.4 34.5 31.7
RankNAS 197.4 29.6M 1.5 34.6 7.2

NVIDIA
GTX 1080Ti

GPU

WMT
Transformer 249.6 213.0M 12.7 28.4 -
HAT 214.8 66.2M 4.1 28.5 302.1
RankNAS 201.7 62.1M 3.9 28.4 30.2

IWSLT

Transformer 200.9 34.9M 1.6 34.4 -
HAT 159.4 33.9M 1.6 34.7 24.5
RankNAS 148.2 35.4M 1.4 34.7 5.8

Table 1: Comparisons of latency, model size, FLOPs, BLEU, and the overall search cost on machine translation
tasks for the standard Transformer, HAT, and discovered architectures by our method. We mark the best results in
bold for all metrics. Search costs are measured on a single RTX 2080Ti GPU.

2017) with the same settings as Baevski and Auli
(2019). We set the maximum number of tokens per
sample to 1,843 to fit the memory constraints and
apply gradient accumulation to keep the same batch
size as Baevski and Auli (2019) ’s work. All mod-
els are trained with mixed precision on 8 NVIDIA
RTX 2080 Ti GPUs except for IWSLT ones, which
only take one GPU for training.

Ranking Model Setups. We implement the rank-
ing model (binary classifier) described in Sec.3.1
with LightGBM (Ke et al., 2017) and set the learn-
ing rate to 0.1. To prevent overfitting, we set the
maximum number of leaves to 30 and the tree’s
maximum depth to 6. We also use the default
regularization terms and apply the early stopping
strategy to the training. Specifically, the training
stops if the validation score does not increase for 5
rounds. After training the ranking model, we apply
the search space pruning method to find the most
valuable architectural features for different tasks
and hardware. There are two hyper-parameters for
pruning: the sample size and the threshold. We set
them to 200/1.15 and 300/1.25 for the hardware-
aware architecture search and high-accuracy archi-
tecture search, respectively.

Architecture Search Setups. Table 5 and Table
6 presents the search space of high-accuracy search
for the translation tasks. We refer the readers to
Wang et al. (2020)’s work for more details about the

Method
Latency
(CPU)

Latency
(GPU)

PPL

Baevski and Auli (2019) 12.49 0.53 18.70
Dai et al. (2019) 11.23 0.42 18.30
Press et al. (2020) 12.17 0.52 17.96

RankNAS (Ours) 4.83 0.29 18.13

Table 2: Performance of our discovered model and the
state-of-the-art language models. The perplexities are
evaluated on the WikiText-103 test data. Latency is
measured in units of seconds. All models have a similar
size, around 250M.

search space of hardware-aware architecture search.
RankNAS is not restricted to a specific search strat-
egy. We compare different search strategies in the
experiments, including Random Search (RS) and
Evolutionary Algorithm (EA). We apply uniform
sampling for RS and use the same settings as Wang
et al. (2020)’s work for EA. More specifically, the
random search process will stop if the best-so-far
architecture does not change for 3 epochs.

Evaluation Metrics. We report the results ob-
tained by averaging 5 runs with different seeds.
We calculate BLEU scores with case-sensitive to-
kenization using Moses, and apply the compound
splitting BLEU for WMT, the same as HAT. We
test the latency of models on an Intel Xeon Silver
4114 CPU and an NVIDIA GTX 1080Ti GPU. A



2474

ISWLT’14 De-En WMT’14 En-De

Method #Params BLEU
Search Cost

(hours) #Params BLEU
Search Cost

(hours)

Vaswani et al. (2017) 35M 34.4 - 213M 28.4 -
Shaw et al. (2018) 37M 35.4 - 213M 29.2 -
Wu et al. (2019b) 43M 35.2 - 213M 29.7 -

Pham and Le (2021) 37M 35.8 - - - -
So et al. (2019) - - - 218M 29.8 5.5×106

Fan et al. (2020) 38M 36.1 262.7 213M 30.1 1970.3
Zhao et al. (2021) - - - 215M 29.8 798.3
RankNAS (Ours) 34M 36.2 2.3 202M 29.9 36.9

Table 3: Results on the IWSLT’14 De-En and WMT’14 En-De machine translation tasks. The models above are
both designed by human experts, while the models below are discovered by NAS. Search costs are normalized to
GPU hours on a single RTX 2080Ti GPU, according to the results on public benchmarks1.

machine translation model’s latency is the time of
translating a single sentence with a fixed length
- 30 for WMT and 23 for IWSLT. For language
modeling, the latency is the cost of decoding a sin-
gle sentence without mini-batching, averaged over
the whole test set. Following Wang et al. (2020)’s
work, we measure each model’s latency 300 times
and remove the fastest and slowest 10% and then
take the average of the rest 80%. Note that we re-
port the total number of trainable parameters in a
model, while Wang et al. (2020) emit the parame-
ters of the embedding layers. The search cost is the
GPU hours measured on or normalized to a single
RTX 2080Ti.

4.2 Results

Hardware-Aware Architecture Search. The
hardware-aware NAS aims to maximize the accu-
racy under specified latency constraints on different
hardware platforms. We first rank architectures by
their latencies and pick those that meet the con-
straint to achieve this goal. Then we rank the se-
lected architectures by their losses on the validation
set and choose the best one. For machine transla-
tion tasks, we use the same search space as HAT
(Wang et al., 2020), which contains around 1015

possible architectures. For the language modeling
task, we use the following search space: [10, 12,
14] for decoder layer number, [768, 1024] for em-
bedding dimension, [3072, 4096, 5120] for hidden
dimension, and [8, 12, 16] for the head number
in attention modules. We add a simple linear pro-
jection without bias if two adjacent layers have
different hidden sizes.

Table 1 shows the results of RankNAS compar-
ing to HAT (Wang et al., 2020) and Transformer
(Vaswani et al., 2017) on the machine translation
tasks. Our method is effective in reducing the
search cost for different tasks and hardware plat-
forms. For instance, it requires 10.53× less cost to
find a comparable architecture on the WMT task.
The discovered architectures also have the lowest
latencies with the same or better BLEU scores on
most tasks. For example, the architecture designed
for the CPU is 2.68× faster than the standard Trans-
former.

We present the architecture search results for
language modeling on the WikiText-103 test data
in Table 2. All models are evaluated with a con-
text window of 2,560 tokens, following Baevski
and Auli (2019). Our method significantly acceler-
ates the baseline on different devices. Specifically,
our method speeds up the baseline by 2.59× on
the CPU and 1.83× on the GPU. Our model also
obtains a perplexity of 18.13, which outperforms
Transformer-XL (Dai et al., 2019) and is compa-
rable to the state-of-the-art language model, e.g.,
Sandwich-Transformer (Press et al., 2020).

High-Accuracy Architecture Search. Unlike
hardware-aware architecture search, the high-
accuracy architecture search only optimizes ac-
curacy and does not consider latency. In the ex-
periments, we enlarge the HAT’s search space by
introducing two additional features Relative Atten-
tion Position (Shaw et al., 2018) and Layer Norm
Position, as shown in Table 5 and Table 6. This
expands the size of search space to 1023, 8 orders
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Search
Space Method Kendall’s τ Spearman’s ρ

Small
HAT 0.827 0.913
Ours 0.883 0.945

Large
HAT 0.754 0.842
Ours 0.826 0.907

Table 4: RankNAS vs. HAT in terms of Kendall and
Spearman rank correlation coefficient. The results are
collected using the settings described in Sec. 5.1.

of magnitude larger than HAT.
We compare RankNAS with state-of-the-art ma-

chine translation models designed by human ex-
perts and models discovered by other NAS methods.
The results are presented in Table 3. RankNAS
consistently outperforms other methods in both
the IWSLT and WMT tasks. It demonstrates that
RankNAS can also design high-accuracy architec-
tures. Notably, the discovered architectures achieve
a +1.8 BLEU improvement on the IWSLT task
and a +1.5 BLEU improvement on the WMT task
than the standard Transformers baseline (Vaswani
et al., 2017). We show that RankNAS surpasses
the Evolved Transformer (So et al., 2019), with
orders of magnitude fewer search costs. RankNAS
also matches the performance of gradient-based
methods, including NAO (Fan et al., 2020) and
DARTSformer (Zhao et al., 2021).

5 Analysis

We analyze both the accuracy and efficiency of
our search method and study the effect of different
features on model performance.

5.1 Architecture Ranking Accuracy

To study the accuracy of the proposed method, we
evaluate it on the IWSLT translation task. In the
experiment, we randomly sample 200 different ar-
chitectures from the HAT search space (small) and
the enlarged search space (large) introduced in Sec.
4.2. We train these architectures from scratch and
measure their BLEU scores on the test set. Table 4
presents the Kendall and Spearman rank correlation
coefficient between the predicted results and the
real scores. It shows that RankNAS outperforms
HAT in terms of different ranking correlations. For
example, RankNAS achieves a high Kendall’s Tau
of 0.883 and 0.826 on small and large spaces. This
indicates that the predicted ranking is very close to

the real results.
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Figure 5: The selected features for different hardware
platforms. A higher score means the feature is more
important than others.

Importance of Ranking Accuracy. Although
our ranking model is more accurate than prior meth-
ods, a question remains: how does ranking accu-
racy affect the search quality? We analyze the
impact of different ranking models on the high-
accuracy NAS task. Figure 6 compares two rank-
ing models with different ranking correlation co-
efficients. The results are obtained by best-so-far
models trained from scratch on the IWSLT’14 De-
En data. Results show that inaccurate ranking leads
to poor search results. It indicates that an accurate
ranking model is essential for architecture search.

5.2 Analysis of Discovered Architectures

We present the discovered architectures in Ap-
pendix A.2 and analyze important features for dif-
ferent hardware on the IWSLT’14 De-En task.

Figure 5 (top) plots the selected features for the
CPU. It shows that the decoder FFN dimension is
the most important feature for predicting latency,
followed by the decoder’s arbitrary attention and
the encoder FFN dimension. We also find that the
decoder embedding dimension has a similar impact
on latency as the number of decoder layers.

Figure 5 (bottom) illustrates the results for the
GPU. Similar to the CPU, the latency on the GPU
has a high correlation to the decoder attention mod-
ule. The main difference is that the latency on GPU
is insensitive to FFN or embedding dimensions but
more sensitive to the number of decoder layers.

The results indicate that we can design “shallow
and wide” models for GPUs and “deep and thin”
models for CPUs to achieve the Pareto-optimal
state. Similar design insights have been verified in
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Figure 6: Search results of different ranking models.
The inaccurate ranking model (in blue) leads to worse
search results than the accurate ranking model (in red).

recent works, such as Wang et al. (2019), Hu et al.
(2020), Li et al. (2021), and Lin et al. (2021).

5.3 Search Efficiency

Experiments in Sec. 4 show that our method has
much lower search costs than previous works. We
now analyze how does our method accelerates the
architecture search.

Ranking Model Training Efficiency. The over-
all search cost includes the training time of the
ranking model and the cost of the search process.
Figure 1 compares our method and HAT on the
IWSLT’14 De-En task. The two methods share the
same search space and sampling strategy for search.
We observe that the ranking model training takes
most of the time. RankNAS speeds up the ranking
model training by 10.34 times compared with HAT.
Pruning the search space further reduces the 75%
time of the search process. Thus the overall search
cost is significantly reduced. It indicates that effi-
cient training of the ranking model is essential to
accelerate the search process.

Architecture Search Efficiency. We also ana-
lyze the efficiency of our proposed methods on
the IWSLT hardware-aware task. Figure 7 shows
the loss curves on the validation set of the mod-
els found by our method with different sampling
strategies. We observe that RankNAS is compati-
ble with different strategies. Also, the evolutionary
algorithm outperforms random search in terms of
the rate of convergence and the search result.

6 Related Work

Many efforts have been made to improve the NAS
efficiency for different tasks (Tan et al., 2019; Wu
et al., 2019a; Cai et al., 2019; Lu et al., 2019; Chen
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Figure 7: RankNAS combined with an evolutionary
strategy achieves faster convergence and better results
than other search methods.

et al., 2020). A common approach to accelerating
the search process is to use a proxy, such as reduced
model size, training data, or training steps. How-
ever, it is inaccurate for estimating the model’s per-
formance and diminishes the NAS quality (Baker
et al., 2018; Dudziak et al., 2020). Another popular
way is to share parameters among all architectures
to reduce the training time (Tan et al., 2019; Cai
et al., 2019). However, it is infeasible to train all ar-
chitecture candidates fairly to obtain their accurate
performance.

Recent works explored performance prediction
based on architectural properties, i.e., the network
topology and the model size (Liu et al., 2018;
Long et al., 2019; Wen et al., 2020; Ning et al.,
2020). For instance, Hardware-Aware Transformer
(HAT) (Wang et al., 2020) encoded architectures
into feature vectors and predicted the latency with
a Multilayer Perceptron (MLP) for the target hard-
ware. BRP-NAS (Dudziak et al., 2020) proposed
an end-to-end performance predictor based on a
Graph Convolutional Network (GCN). Although
these methods greatly improve the performance es-
timation efficiency, they still require many samples
and train numerous neural networks to converge,
thereby increasing the search cost. Instead, we are
motivated by the fact that NAS is expected to dis-
tinguish different candidate architectures. Thus,
NAS can be solved by learning pairwise ranking
rather than obtaining the accurate performance of
architectures.

7 Conclusion

We have presented RankNAS, a simple yet efficient
NAS algorithm for both hardware-aware and high-
accuracy architecture search. We have shown that
pairwise ranking can significantly improve search
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efficiency. We also have proposed a search space
pruning method to help the ranking model be more
efficient during the search. Our approach outper-
forms prior methods in both efficiency and accu-
racy. RankNAS requires 80% less time in rank-
ing model training on the hardware-aware search
task and accelerates the overall search process by
11.53 times. Also, the architectures discovered
by our method outperform state-of-the-art Trans-
former models in terms of efficiency and accuracy.
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A Appendix

A.1 High-Accuracy Architecture Search
Space

Other design choices are adopted from HAT’s
search space (Wang et al., 2020) with slight modifi-
cations. Inspired by Shaw et al. (2018), we search
for the maximum relative position (RPR Len) in the
self-attention modules in each layer. As suggested
by Wang et al. (2019) and Xiong et al. (2020),
proper locations of layer normalization lead to bet-
ter performance. Therefore, we let NAS decide
whether to put the layer normalization inside (Pre-
LN) or between (Post-LN) the residual blocks.

Features Search Space

Enc Layer Num [6]
Enc Emb Dim [512, 640, 768]
Enc FFN Dim [768, 1024, 1536, 2048]
Enc Head Num [2, 4, 8]
Enc RPR Len [8, 12, 16]

Enc Norm Type [Pre-LN, Post-LN]
Dec Layer Num [1, 2, 3, 4, 5, 6]
Dec Emb Dim [512, 640, 768]
Dec FFN Dim [768, 1024, 1536, 2048]
Dec Head Num [2, 4, 8]
Dec RPR Len [8, 12, 16]

Dec Norm Type [Pre-LN, Post-LN]
Enc-Dec Attn [1, 2, 3]

Table 5: The search space for high-accuracy search on
the IWSLT’14 De-En translation task.

Features Search Space

Enc Layer Num [6]
Enc Emb Dim [640, 768, 1024]
Enc FFN Dim [2048, 3072, 4096, 5120]
Enc Head Num [4, 8, 16]
Enc RPR Len [8, 12, 16]

Enc Norm Type [Pre-LN, Post-LN]
Dec Layer Num [1, 2, 3, 4, 5, 6]
Dec Emb Dim [640, 768, 1024]
Dec FFN Dim [2048, 3072, 4096, 5120]
Dec Head Num [4, 8, 16]
Dec RPR Len [8, 12, 16]

Dec Norm Type [Pre-LN, Post-LN]
Enc-Dec Attn [1, 2, 3]

Table 6: The search space for high-accuracy search on
the WMT’14 En-De translation task.
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Figure 8: Visualization of a discovered architecture on
the IWSLT’14 De-En translation task.

A.2 Visualization of Good Architectures
Figure 8 illustrates one of the discovered Trans-
former architecture. The presented architecture
achieves 36.2 BLEU on the IWSLT’14 De-En
translation task and has a latency of 77ms on
the GTX 1080Ti GPU, outperforming the vanilla
Transformer by +1.8 BLEU and 2.6 times speed.


