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Abstract

Hierarchical multi-label text classifica-
tion (HMTC) deals with the challenging task
where an instance can be assigned to multiple
hierarchically structured categories at the
same time. The majority of prior studies
either focus on reducing the HMTC task
into a flat multi-label problem ignoring the
vertical category correlations or exploiting
the dependencies across different hierarchical
levels without considering the horizontal
correlations among categories at the same
level, which inevitably leads to fundamental
information loss. In this paper, we propose a
novel HMTC framework that considers both
vertical and horizontal category correlations.
Specifically, we first design a loosely coupled
graph convolutional neural network as the rep-
resentation extractor to obtain representations
for words, documents, and, more importantly,
level-wise representations for categories,
which are not considered in previous works.
Then, the learned category representations are
adopted to capture the vertical dependencies
among levels of category hierarchy and model
the horizontal correlations. Finally, based
on the document embeddings and category
embeddings, we design a hybrid algorithm to
predict the categories of the entire hierarchical
structure. Extensive experiments conducted
on real-world HMTC datasets validate the
effectiveness of the proposed framework with
significant improvements over the baselines.

1 Introduction

As a fundamental problem in natural language pro-
cessing (NLP), text classification is the task of as-
signing a given document to one or multiple cate-
gories according to its textual content. In practice,
many documents are tagged with multiple cate-
gories that can be organized in a tree or a Directed
Acyclic Graph (DAG) (Wehrmann et al., 2018),
which poses a more challenging task. These cat-
egories can be organized into different levels of

the hierarchical structure, and the task of assigning
multiple hierarchically structured categories to doc-
uments is known as hierarchical multi-label text
classification (HMTC).

For the hierarchical multi-label classification
problem, it is essential to model the dependencies
among categories in the hierarchical structure. The
vertical correlations capture the dependencies of
categories at different levels, and the horizontal
correlations reflect the relationships at the same
level. Straightforwardly, the HMTC problem can
be reduced to a flat multi-label problem (Fall et al.,
2003), which simply ignores the vertical category
correlations. To address that, attempts have been
made to exploit the hierarchical dependencies to
improve the classification performance. Among
them, (Costa et al., 2007) adopts a top-down way
to generate a hierarchical structure of decision-tree-
based classifiers to predict categories at the cor-
responding hierarchical level. (Wehrmann et al.,
2018) proposes a unified framework that combines
the local outputs of each category hierarchical level
and the global output of the entire network. (Huang
et al., 2019a) designs a hierarchical attention-based
memory unit to model the dependencies among dif-
ferent levels in a top-down fashion. However, hori-
zontal correlations between categories at the same
hierarchical level are usually ignored, resulting in a
lack of information transfer of label characteristics
at the same level.

In principle, the characteristics of categories are
encoded in both the horizontal correlations among
categories at the same level and the vertical depen-
dencies between categories at different levels in the
hierarchical organization. Precisely, the vertical
correlation measures the top-down relevance of a
text node’s tags, while the horizontal correlation is
responsible for enhancing the information transfer
of labels within the same hierarchical level. An
example is shown in Figure 1. The red area re-
veals the vertical dependency of categories, which
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has been widely exploited in HMTC tasks. In the
meantime, the blue area represents the horizontal
correlation of categories, which is latent but essen-
tial. For instance, when we are confident that the
document is tagged with hierarchical classification,
it is more likely that the document is associated
with multi-label classification rather than single
label classification. To fully leverage the hierarchi-
cal structure of categories, this paper integrates the
horizontal and vertical correlations extracted by a
novel graph convolutional neural network (GCN).

The graph convolutional neural network (Kipf
and Welling, 2016) has been successfully applied to
text classification due to its capabilities in handling
complex structures. A GCN-based text classifica-
tion model generally works by treating the training
documents, test documents, and words as nodes
to construct a single huge graph, which incurs the
following issues in hierarchical text classification.
Firstly, during network training, the category infor-
mation which provides valuable semantic informa-
tion is missing. Secondly, organizing all nodes in
one graph expands the size of the graph, which not
only leads to the increased difficulty of training, but
also brings information confusion between nodes.

To address the problems discussed above, in
this paper, we propose an integrated framework
named Horizontally and Vertically Hierarchical
Multi-label Text Classification (HVHMC) to ex-
ploit the vertical and horizontal category correla-
tions simultaneously by introducing a newly de-
signed Loosely Coupled Graph Convolutional Net-
work (LCGCN) as the representation component.
Specifically, we include the category nodes to-
gether with word nodes and document nodes in
LCGCN by constructing two separate graphs: the
core graph containing words and categories, and
the document-word graph. Then, based on the cat-
egory representations learned based on the loosely
coupled graph neural network, a level-wise cate-
gory correlation matrix is calculated, which cap-
tures the horizontal dependencies among categories
and facilitates the semantic transfer among cate-
gories at each hierarchical level. Finally, a hybrid
algorithm is proposed to further incorporate verti-
cal dependencies of categories by integrating the
label information on the hierarchical path. The pre-
dictions of each hierarchical level and the overall
hierarchical structure will be combined as the final
results.

The contributions of our paper are as follows:

Artificial Intelligence

Computer Vision
Natural Language Processing

Vertical

Horizontal

Image Caption; Pedestrian Detection ;
Multi-label Classification; Hierarchical Classification;

𝐶0

𝐶1

𝐶2

Figure 1: The horizontal and vertical correlations in the
category hierarchical structure. The red area reveals the
vertical dependency of categories. Meanwhile, the blue
area represents the horizontal correlation of categories.

• We propose the Loosely Coupled Graph Con-
volutional Neural Network (LCGCN) as the
representation component. By dealing with
the core graph and the document-word graph
separately, this feature extraction approach
can greatly enhance the quality of semantic
representations and reduce the training ex-
penses while maintaining the performance;

• We propose a unified framework HVHMC for
the hierarchical multi-label text classification
problem that integrates vertical and horizontal
category dependencies simultaneously, with
significant improvements over the baselines
on three real datasets.

2 Related Works

In this section, we mainly review the related studies
on hierarchical multi-label classification and graph
convolutional neural networks.

2.1 Hierarchical Multi-label Classification

To leverage the category hierarchical structure in
the hierarchical multi-label classification problem,
(Cai and Hofmann, 2004) considers the parent-
child dependency of categories by organizing the
discriminant functions in a way that mirrors the
category hierarchical structure. (Banerjee et al.,
2019) introduces a Hierarchical Transfer Learning
approach (HTrans), where classifiers at lower lev-
els in the hierarchy are initialized using parameters
of the parent classifier and fine-tuned on the child
category classification tasks. (Wehrmann et al.,
2018) proposes a hybrid framework, Hierarchi-
cal Multi-label Classification Networks (HMCN),
which can simultaneously take both the local cate-
gory correlations and global information from the
entire category hierarchical structure into account.
Based on HMCN, (Huang et al., 2019b) further
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proposes a level-wise attention-based recurrent net-
work (HARNN) to model the category dependen-
cies among different levels. In (Zhou et al., 2020),
the hierarchy is formulated as a directed graph,
and hierarchy-aware structure encoders are intro-
duced to model label dependencies. (Shen et al.,
2021) conducts HMTC based on only class surface
names as supervision signals, and generalizes the
classifier via multi-label self-training. However,
the approaches mentioned above do not consider
horizontal and vertical correlations jointly.

2.2 Graph Convolutional Neural Networks
The Graph Convolutional Network (GCN) has at-
tracted extensive attention recently (Zhang et al.,
2018; Niepert et al., 2016; Scarselli et al., 2008)
for its advantages of capturing non-consecutive and
long-distance information. Various attempts have
been made to apply GCNs to text classification.
Among them, (Yao et al., 2019) introduces the Text-
GCN model by building a single huge graph for
the whole text corpus based on word co-occurrence
and document word associations. Then the graph is
fed into a two-layer GCN model to obtain the repre-
sentations of both words and documents under the
supervision of tagged instances. (Xin et al., 2021)
considers heterogeneous label information which
is ignored in Text-GCN, and incorporates the label
information while building the graph by adding
text-label-text paths. To alleviate the high memory
consumption problem of Text-GCN, (Huang et al.,
2019a) proposes constructing a text level graph
for every given document. In comparison, (Peng
et al., 2018) focuses on converting arbitrary graphs
to a very regular one to be processed by a local
convolution operator (Niepert et al., 2016). In this
paper, a novel graph neural network is proposed to
decouple the core graph and the document-word
graph, which helps to improve the quality of seman-
tic representations of graph nodes while reducing
computational costs.

3 METHODOLOGY

This section introduces the proposed framework
of Horizontally and Vertically Hierarchical Multi-
label Text Classification (HVHMC) in details.

Problem Definition In the HMTC problem,
there are a set of documents, each document con-
tains the text description and its expected cate-
gories, which are organized in a hierarchical struc-
ture. Before defining the HMTC problem, we first

give a detailed description of the hierarchical struc-
ture and documents.

Given the possible categories in H hierar-
chical levels C = (C1, C2, · · · , CH), where
Ch = {c1, c2, · · · } ∈ {0, 1}|Ch| is the set
of possible categories at the h-th hierarchical

level and T =
H∑

h=1

|Ch| is the total num-

ber of categories. A set of M documents
with hierarchical categories can be denoted
as X = {(D1, L1), (D2, L2), · · · , (DM , LM )},
where Di = {wi1, wi2, · · · , wiN} represents a
sequence of N words from the word set W =
{w1, w2, · · · , wW } with vocabulary size W . And
Li = {l1, l2, · · · , lH} is the set of hierarchical
categories assigned to the document Di, where
lh ⊂ Ch. Given a set of documents and the corre-
sponding set of hierarchical categories, the goal of
the HMTC problem is to integrate the document
texts D = {w1, w2, · · · , wN} and the correspond-
ing set of hierarchical categories C to learn a clas-
sification model, which can be used to predict the
hierarchical categories for documents.

3.1 Loosely Coupled Graph Convolutional
Neural Networks

We consider the graph convolutional neural net-
work for feature representation due to its ad-
vantages of capturing non-consecutive and long-
distance information.
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Figure 2: Overview of the loosely coupled graph con-
volutional neural network (LCGCN).

A natural idea of constructing a graph is to
build a large graph containing all the information
based on the affiliation of document nodes and
word nodes, the correspondence between document
nodes and category nodes, as well as the correspon-
dence between word nodes and category nodes.

However, this tightly coupled way of construct-
ing a large graph has some disadvantages. First,
there are too many types of nodes in the graph, and
the scale of the graph is huge, which is not con-
ducive to representation learning of nodes. In ad-
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dition, different kinds of correlations will increase
the number of edges on the graph, which is more
likely to result in the over-smoothing problem (Li
et al., 2021).

Therefore, as Figure 2 shows, we propose a
loosely coupled graph convolutional neural net-
work (LCGCN), which consists of a separate core
graph with words and categories, and a document-
word graph with documents and words. The core
graph is used to extract the word and category em-
beddings and the document-word graph captures
the relationships between documents and words.

For the core graph MCore, the edges can be di-
vided into three types: word-word, category-word,
and category-category. The weights between words
in MCore are calculated by the point-wise mutual
information (PMI), a common measure for word
associations. The weight of category i and word j
is calculated as

Mij = p(j|i) · log 1

p(j)
, (1)

where p(j|i) represents the frequency of word j
in documents related to category i and p(j) is the
frequency of word j in the whole corpus. The
higher the value, the more relevant the word is
to the category. The weight between categories is
calculated based on the co-occurrence of categories
in the training data.

The document-word graph is constructed accord-
ing to the dependency between document nodes
and word nodes. The weight between a document
node and a word node is calculated as the term
frequency-inverse document frequency (TF-IDF).

After the core graph and document-word graph
are constructed, the process of representation learn-
ing is divided into two consecutive steps. Firstly,
we apply a one-layer GCN to the core graph MCore

and obtain word embeddings as well as category
embeddings of the k-th layer:

Hk = [Ek
word;E

k
cat] = σ(M̃CoreH

(k−1)W (k−1)),
(2)

where Ek
word ∈ RW×d and Ek

cat ∈ RT×d corre-
spond to the updated representations of words and
categories respectively, and d is the dimension of
embeddings. M̃Core = D−

1
2MCoreD

− 1
2 is the nor-

malized adjacency matrix and W (k−1) ∈ Rd×d is
the parameter matrix. σ is a non-linear activation
function. H(k−1) is the output of the previous layer
and H0 is the initial embedding matrix, which is

initialized with the word and category vectors ob-
tained by the pre-trained GloVe model (Pennington
et al., 2014).

Then, the document representations are calcu-
lated by multiplying the document-word matrix
MD&W and the learned word embeddings Eword

of the final layer of LCGCN:

Edoc =MD&W · Eword, (3)

where Edoc ∈ RM×d is the document representa-
tion matrix. By stacking multiple LCGCN layers,
we can incorporate higher order neighborhood in-
formation to obtain high-quality representations.

It is worth mentioning that we do not use another
GCN to train the document-word graph due to the
following reason. In the bipartite graph of docu-
ments and words, document nodes are connected
by shared word nodes. Therefore, in a GCN with
more than two layers, a document node will absorb
information from other document nodes, resulting
in information confusion. So we use matrix mul-
tiplication to linearly aggregate word embeddings
to generate document node representations instead,
which is equivalent to a one-layer GCN.

By decoupling the tightly coupled GCN network
into two graphs, we obtain a loosely coupled graph
convolutional network. The benefits of splitting the
three types of nodes into two separate graphs in the
loosely coupled way are as follows:

• Firstly, the purpose of introducing the docu-
ment nodes and the category nodes into the
graph neural network is to enhance the seman-
tic quality of the representations as to the guid-
ing labels. However, these two types of nodes
have different guiding directions for the word
nodes. Specifically, the document-word graph
plays the role of language models as in neu-
ral machine translation (NMT) tasks, while
the core graph learns the lexical differences
of different categories. If the nodes of doc-
uments and categories are integrated in one
heterogeneous graph, information confusion
may degrade the training quality.

• Secondly, a significant problem of GCN train-
ing is the excessive smoothness (Li et al.,
2021), or the high similarity of nodes’ rep-
resentations caused by excessive dissemina-
tion of information through the edges in the
graph. In general, tightly coupled graphs
involve more information propagation paths
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than loosely coupled graphs. For example, in
a tightly coupled graph, word nodes can trans-
fer information across different types of label
guiding nodes (e.g., through word-category-
document-word paths), while the information
between two word nodes in a loosely cou-
pled way can only be transmitted through
the same type of label guiding nodes (e.g.,
through word-category-word paths or word-
document-word paths). Therefore, the train-
ing of a loosely coupled graph is less prone to
over-smoothing.

3.2 Category Correlations

Based on the word and category representations ob-
tained by LCGCN, we further introduce our meth-
ods to extract the hierarchical dependencies be-
tween categories. As discussed earlier, most previ-
ous works on hierarchical multi-label classification
only focus on exploiting vertical category corre-
lations. In our framework, we also consider hori-
zontal correlations among categories in addition to
vertical correlations.

In this subsection, we start with a discussion of
the horizontal and vertical correlations in the hier-
archical multi-label text classification task and then
propose an integrated framework that utilizes the
category representations produced above to model
both types of category correlations.

3.2.1 Horizontal Category Correlations
At each category hierarchical level, a given docu-
ment may be associated with multiple categories.

Here, we define a correlation matrix based on
the learned category representations:

Sh = softmax(λhs
Eh

cat√
‖Eh

cat‖2
· Eh

cat
T√

‖Eh
cat

T ‖2
),

(4)
where Sh ∈ R|Ch|×|Ch| is the correlation matrix at
the h-th level and λhs ∈ R is a regularization pa-
rameter. Then, the category label matrix Y h at the
h-th hierarchical level, which may be incomplete
or noisy, can be augmented using the correlation
matrix Sh:

Ỹ h = Sh · Y h (5)

where Ỹ h is the supplementary label matrix. The
regularization parameter λhs can be used to adjust
the degree of augmentation. Specifically, λhs of a
large value intensifies the discrimination of differ-
ent classes, while a small λhs makes the correlation

matrix Sh smooth, and the category matrix will be
augmented accordingly. Consequently, by intro-
ducing the horizontal correlations, the distinction
of categories’ representations can be enhanced.
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Figure 3: The vertical category correlations

3.2.2 Vertical Category Correlations
Different from traditional multi-label text classifi-
cation tasks, the HMTC problem has explicit hierar-
chical dependencies among categories at different
levels. For example, when it is determined that
a document is associated with the category natu-
ral language processing at the current hierarchical
level, the document is more likely to be tagged
with multi-label text classification than pedestrian
detection at the next hierarchical level. Thus, it is
critical to consider the information from the previ-
ous hierarchical level.

Suppose ŷh is the predicted output at the h-th
hierarchical level, it is obvious that ŷh contains the
information regarding the probability distribution
of the categories at that level. Thus, ŷh can be
utilized to integrate the representations of all the
categories at the h-th hierarchical level:

Ẽh
cat = softmax(ŷh) · Eh

cat, (6)

where Eh
cat denotes the vector representations for

categories at the h-th hierarchical level. For the
h-th hierarchical classification task, it receives the
concatenation of the document representations at
the (h−1)-th level and Ẽh

cat of the current hierarchi-
cal level as the input, and the output is the updated
document embeddings at the h-th hierarchical level
which integrate the document embeddings and cat-
egory information:

Ẽh
doc = MLP[Eh−1

doc ; Ẽ
h
cat] (7)

where Ẽh
doc ∈ RM×d, Ẽ0

doc = Edoc.
By considering the probability distribution of the

categories at the previous layer, the model can cap-
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ture the dependencies among categories at different
levels.

3.3 Loss Function

We adopt a multiple output framework proposed
in (Wehrmann et al., 2018) for prediction. The
framework consists of a series of local classifiers
per hierarchical level and a global classifier for the
entire hierarchical structure. The local classifica-
tion task at each hierarchical level is a multi-class
classification task, where we use document embed-
dings and category embeddings at the correspond-
ing hierarchical level. The local predictions at the
hierarchical level h are calculated by:

P h
loc = σ(W h

locẼ
h
doc + bhloc) (8)

where P h
loc ∈ R|Ch|×d. W h

loc ∈ R|Ch|×M denotes
the classifier parameters and bhloc is the correspond-
ing bias vector.

The global prediction of the entire hierarchical
structure is a multi-label classification task. Here
we aggregate the document embeddings at each
hierarchical level to obtain the global embeddings,
which is:

Eglob = Aggregator(Ẽ1
doc, · · · , ẼH

doc) (9)

where Eglob ∈ RM×d. Aggregator(·) is the aggre-
gate function. Many aggregators can be applied,
such as weighted average, max-pooling, LSTM,
etc. In our experiments, we use weighted average
because it performs the best among these aggrega-
tors.

The global prediction for the entire hierarchical
structure is given by:

Pglob = σ(WglobEglob + bglob), (10)

where Wglob ∈ RT×M is the weight matrix, bglob
is the corresponding bias vector, H is the number
of hierarchical levels. All the document represen-
tations Eh

doc and category information are concate-
nated as the feature representation Eglob for the
global classifier. This combination step can not
only make full use of the feature information at dif-
ferent levels, but also alleviate the over smoothing
problem in GCNs. The final predictions PF consist
of local and global predictions:

PF = β(P 0
loc ⊕ P 1

loc ⊕ · · ·PH
loc) + (1− β)Pglob,

(11)

where β ∈ [0, 1] is a balancing parameter and ⊕ is
the concatenating operator. Given P h

loc and PF , the
local and global losses are calculated as follows:

Lloc =
H∑

h=1

[
E
(
P h
loc, Ỹ

h
)]
,

Lglob =E (PF , Y ) ,

(12)

where E is the cross-entropy loss. Note that in the
local loss function Lloc, the augmented category
matrix Ỹ h is used to replace the original matrix Y h.
The final loss function for the whole framework is

min
W

(
Lloc + Lglob + λ‖W‖2

)
,

where ‖W‖2 is the `2 norm hyperparameter.

4 Experiments

In this section, we conduct extensive experiments
on three real-world datasets to evaluate our pro-
posed approach. We first introduce the datasets and
baselines followed by the experimental results.

4.1 Datasets

Experiments are conducted on three real-world
datasets: Arxiv Academic Papers dataset, Patent
Documents dataset, and WOS-46985 dataset. The
statistics of these datasets are summarized in Ta-
ble 1.

Arxiv Academic Papers Dataset (AAPD) This
dataset is built by (Yang et al., 2018). There are
55,840 abstracts of academic papers with the re-
lated subjects in this dataset. We process and aug-
ment the dataset with a two-level category hier-
archical structure. There are 9 subjects (e.g., cs,
math) at the first hierarchical level and 52 cate-
gories (e.g., cs.CV, cs.AI) at the second level.

Patent Dataset This dataset is collected from
USPTO by (Huang et al., 2019a). It includes
100,000 granted US patents, and each patent docu-
ment is associated with multiple hierarchical cate-
gories that are structured as a four-level hierarchical
structure.

WOS-46985 This dataset is built by (Kowsari
et al., 2017). There are 46985 published papers cat-
egorized into seven domains: Computer Science,
Electrical Engineering, Psychology, Mechanical
Engineering, Civil Engineering, Medical Science,
Biochemistry. These papers can be further catego-
rized into 134 sub-domains.
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Table 1: Details of datasets.

Statistics AAPD Patent WOS-46985

# instances 55,840 100,000 46,985
# hierarchical levels 2 4 2

# categories in level 1 9 9 7
# categories in level 2 52 128 134
# categories in level 3 - 661 -
# categories in level 4 - 8,364 -
# total categories 61 9,162 141

avg. # words per sample 163 64 128

4.2 Baselines and Parameter Settings
We compare our method with the following base-
lines:

• Clus-HMC (Vens et al., 2008): Clus-HMC is
a decision tree based approach. It utilizes the
global information to predict all categories at
the same time.

• HMC-LMLP (Cerri et al., 2016): HMC-
LMLP incrementally trains a set of neural
networks, each of which is responsible for pre-
dicting categories at each hierarchical level.

• HMCN-F (Wehrmann et al., 2018): HMCN-F
is a feed-forward network based approach that
takes predictions of each hierarchical level
and the entire hierarchical structure into con-
sideration.

• HMCN-R (Wehrmann et al., 2018): HMCN-
R is a recurrent version of HMCN-F that com-
bines local and global predictions together.

• HARNN (Huang et al., 2019b): HARNN em-
ploys hierarchical attentive neural networks
to model the dependencies among different
levels of the hierarchical structure.

In the experiment, we apply a grid search
for hyperparameters: specifically, we tune λhs
in [0.4,0.5,...,0.7], β in [0.3,0.4,...,0.7], λ in
[0.4,0.5,...,0.8], the learning rate is tuned in
[0.0001,0.0005,0.001,0.005].

4.3 Experimental Results
We first conduct experiments on the datasets of
AAPD and Patent. The proposed model HVHMC
and its variant HVHMC-NEG are compared to the
baselines. In HVHMC-NEG, the negative sam-
pling+ strategy is adopted, where we select the
example with the farthest distance in the tree label

structure as the negative sample. In addition, the
triplet loss in NLP tasks (Ein Dor et al., 2018) is
used to replace the cross entropy loss in HMHMC.
Results are summarized in Table 2 and Table 3.

Table 2: Classification performance on AAPD

Model Precision Recall Micro-F1
Clus-HMC 56.1 51.2 53.5

HMC-LMLP 86.4 70.5 77.7
HMCN-R 86.3 66.8 75.3
HMCN-F 86.6 65.9 74.9
HARNN 86.8 72.3 78.8
HVHMC 87.1 74.8 80.5

HVHMC-NEG 87.4 76.2 81.4

Table 3: Classification performance on Patent

Model Precision Recall Micro-F1
Clus-HMC 41.9 34.5 37.9

HMC-LMLP 69.2 38.0 49.0
HMCN-R 68.4 39.5 50.1
HMCN-F 70.4 37.6 49.1
HARNN 74.2 42.5 54.1

HVHMC 73.3 44.2 54.4
HVHMC-NEG 74.1 45.1 56.1

In the comparison, it is notable that the proposed
approaches obtain the best results in terms of all
evaluation measures on AAPD. Meanwhile, they
also achieve the best performance in Recall and
Micro-F1 on the Patent dataset, with a slightly
smaller Precision. This justifies incorporating cate-
gories when learning representations can provide
auxiliary information, which helps to extract the
horizontal and vertical dependencies among cate-
gories and facilitate the classification process.

The possible reasons that HVHMC-NEG
achieves a slightly lower Precision on Patent are
two-fold. On the one hand, the text lengths in
Patent are relatively short, which increases the spar-
sity of the document-word graph and affects the
model performance. On the other hand, the in-
creasing number of categories per level leads to a
reduced number of word nodes belonging to each
category, which weakens the label augmentation
effect in the horizontal correlations.

Unlike Patent and AAPD, in the WOS-46985
dataset, each instance is associated with only one
category at every hierarchical level. As can be ob-
served from Table 4, similarly to the results on
Patent and AAPD, HVHMC outperforms the other
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approaches by a relatively large margin, which fur-
ther confirms the effectiveness of exploiting the
category representations and correlations.

Table 4: Classification performance on WOS-46985

Model Precision Recall Micro-F1
Clus-HMC 47.1 50.1 48.6

HMC-LMLP 70.3 66.0 68.1
HMCN-R 68.4 63.1 65.6
HMCN-F 69.6 65.3 67.4
HARNN 72.5 74.1 73.3

HVHMC 77.9 74.0 74.3
HVHMC-NEG 77.9 74.1 74.3

4.4 Ablation Study
We proceed to conduct ablation studies to verify the
effect of each component of the proposed HVHMC
model. The first investigation is to validate the ne-
cessity of a loosely coupled GCN and the effective-
ness of the categories introduced in LCGCN. We
first construct a tightly coupled GCN that includes
three types of nodes in one heterogeneous graph
and find it unable to produce reliable representa-
tions. To further verify the effects of introducing
category information and learning category embed-
dings in LCGCN, we make predictions based on
directly calculating the cosine similarities between
each category embedding and all document embed-
dings in the AAPD dataset and the WOS-46985
dataset. We calculate the average recall rates of the
top 20, 50, 70 of the document nodes that are most
similar to the category nodes to measure the im-
provements brought by the category information.

Table 5: Effects of introducing category information

Recall Top 20 Top 50 Top 70 All
AAPD 86.5 84.2 89.9 74.8
WOS-46985 87.1 88.6 89.3 74.0

In Table 5 we compare the average recall rates of
the top 20, 50, 70 similar document nodes with the
average recall rate of all documents as shown in Ta-
ble 2 and Table 4. The average recall of documents
nodes close to category nodes in the embedded se-
mantic space is obviously better than the average
recall of all document nodes, indicating that the
introduction of category information in the loosely
coupled GCN provides a label guiding effect when
learning the semantic embeddings.

Next, to identify the effects of the horizontal
correlations and vertical correlations, we consider
three variants of the HVHMC model on AAPD:
HVHMC w/o h, which ignores the horizontal cor-
relations, HVHMC w/o v, which ignores the verti-
cal dependencies, and HMHMC-Pur which works
without the vertical and horizontal correlations.

Table 6: Comparison of the variants on AAPD

Model Precision Recall Micro-F1
HVHMC w/o h 86.5 74.2 79.9
HVHMC w/o v 87.1 72.6 79.3
HVHMC-Pur 86.5 71.9 78.6
HVHMC 87.1 74.8 80.5

From Table 6, we can find that HVHMC
achieves the best performance compared to the vari-
ants. Removing either the horizontal or the vertical
correlations results in a performance degradation
of HVHMC w/o h or HVHMC w/o v, which still
outperforms HVHMC-Pur, illustrating the impor-
tance of incorporating the horizontal and vertical
correlations in the proposed HVHMC framework.

4.5 Visualization of Horizontal Correlations
Besides evaluating the classification performance,
we also visualize the horizontal correlations among
categories which are critical for augmenting the
category matrix. Figure 4 illustrates the heatmap
of the correlation matrix of the first hierarchical
level in AAPD. Each cell represents the correlation
between two categories.

physics

quant

math

q-bio

stat

nlin

cond-mat

cmp-lg

cs

Figure 4: Heatmap of the horizontal correlation matrix

As illustrated in Figure 4, some correlations are
reflected in the heatmap. For example, math is se-
mantically closer to cs than the other categories.
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These results indicate that our proposed LCGCN
provides an elegant way to capture the horizon-
tal category correlations by learning semantic rep-
resentations of categories. Compared to estimat-
ing category correlations by the co-occurrence of
categories in the training data, our approach in-
tegrates the association between categories and
words, which helps capture the latent semantic cor-
relations.

5 Conclusion

This paper proposes a novel hierarchical multi-
label text classification approach named Horizon-
tally and Vertically Hierarchical Multi-label Text
Classification (HVHMC). We first design a loosely
coupled graph convolutional neural network as the
representation layer, capturing the word-to-word,
category-to-word, and category-to-category asso-
ciations. After the category representations are
learned, both the horizontal and vertical category
correlations are considered to facilitate the hier-
archical classification process. Finally, extensive
experiments are conducted to verify the effective-
ness of the proposed framework.
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