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Abstract

Implicit discourse relation recognition (IDRR)
is a critical task in discourse analysis. Pre-
vious studies only regard it as a classifica-
tion task and lack an in-depth understanding
of the semantics of different relations. There-
fore, we first view IDRR as a generation task
and further propose a method joint modeling
of the classification and generation. Specif-
ically, we propose a joint model, CG-T5, to
recognize the relation label and generate the
target sentence containing the meaning of re-
lations simultaneously. Furthermore, we de-
sign three target sentence forms, including the
question form, for the generation model to in-
corporate prior knowledge. To address the is-
sue that large discourse units are hardly em-
bedded into the target sentence, we also pro-
pose a target sentence construction mechanism
that automatically extracts core sentences from
those large discourse units. Experimental re-
sults both on Chinese MCDTB and English
PDTB datasets show that our model CG-T5
achieves the best performance against several
state-of-the-art systems.

1 Introduction

Discourse relation describes the logical connection
between two discourse units (e.g., clauses, sen-
tences, or paragraphs). As an essential discourse
analysis task, discourse relation recognition is to
recover what rhetorical relation exists between dis-
course units (DUs). Due to the absence of explicit
connectives, implicit discourse relation recogni-
tion (IDRR) is still a challenging task and research
hotspot. Moreover, IDRR is beneficial to many
downstream natural language processing (NLP) ap-
plications, such as machine translation (Webber
et al., 2017), text generation (Bosselut et al., 2018),
and text summarization (Xu et al., 2020).

With the success of representation learning in
discourse analysis, most existing methods of IDRR
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focus on three aspects: enhancing discourse units
representation (Ji and Eisenstein, 2015; Qin et al.,
2016; Liu and Li, 2016), enhancing semantic in-
teraction (Guo et al., 2018; Ruan et al., 2020; Guo
et al., 2020), and joint learning with other tasks
(Bai and Zhao, 2018; Nguyen et al., 2019; He et al.,
2020). They all regard IDRR as a classification
task and lack a deeper understanding of the rela-
tion semantics; even recent work (Nguyen et al.,
2019; He et al., 2020) with labeling embedding
cannot directly introduce the prior knowledge of
the discourse relation semantics into their models.

Ningbo Free Trade Zone ... has achieved
DU1 fruitful results after three years of construction.

... the development level is among the best...

... the Ningbo Free Trade Zone had completed
DU2 a total of US$812 million in import and ...

At the same time, the bonded zone has ...
Relation Elaboration
Target Sentence DU2 is a detailed description of DU1.

Table 1: The example of implicit discourse relation be-
tween two DUs where DU1 and DU2 are paragraphs
that contain several sentences. Also, there is no ex-
plicit hint in DU1 and DU2 for the relation. The full
sentences of these two DUs are shown in Appendix A.

In the stage of implicit discourse relation anno-
tation, annotators usually not only give the relation
type but also provide a description or basis for the
relation. Therefore, we hope the model, like a hu-
man, gives a target sentence instead of a simple
label index for understanding the relation deeper.
The target sentence should describe the core in-
formation of two DUs and their relation through
natural language. As an example in Table 1, the
Elaboration relation can be transformed by defini-
tion into the target sentence: "DU2 is a detailed de-
scription of DU1". The model can more explicitly
learn the semantics of the Elaboration relation
through such a form of the learning goal.

The Question-Answering (QA) method can in-
corporate prior knowledge into the model using
the generation instead of the classification. It has
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achieved success in a few fine-grained tasks, such
as named entity recognition (Li et al., 2019) and
coreference resolution (Wu et al., 2020). However,
it is a challenge to directly apply the traditional
Question-Answering method to IDRR due to the
following two issues. First, unlike the above fine-
grained tasks where the answers or the clues exist
in the input context, the discourse relation in IDRR
is implicit between two DUs and does not appear
explicitly in the context. It makes the IDRR model
unable to extract the answer from the input directly.
Second, since DU usually is large and contains sev-
eral sentences, the target sentence which contains
two DUs as shown in Table 1, is too long to encode.
Therefore, it is essential to extract the core infor-
mation from DU in a short form before embedding
them into the target sentence.

Besides, the classification model and the gen-
eration model have their complementary advan-
tages. The former usually has better performance
on major classes due to searching in a limited space,
while the latter can introduce prior knowledge to
capture the semantics of minor classes better, and
its result is a natural language expression with
stronger interpretability. Therefore, how to com-
bine the advantages of the classification model and
the generation model is another challenge.

Different from previous work, we first regard
IDRR as a text generation task and design three
forms of the target sentence to represent prior
knowledge. In particular, inspired by the anno-
tation work (Pyatkin et al., 2020), we use questions
instead of answers to describe the discourse relation
between two DUs as the target sentence. Therefore,
our model can understand discourse relation deeper
by generating a target sentence that describes the
relation meaning instead of an index of the relation
type. Moreover, we design a method to automati-
cally extract the core information from these large
DUs by semantic role labeling and then compress
the DU into a short form.

To address the second challenge, we propose a
CG-T5 model that combines the classification and
generation model to leverage their complementary
advantages. Specifically, inspired by pre-trained
models (e.g. BERT (Devlin et al., 2019) and GPT-
2 (Radford et al., 2019)), we first extract hidden
states of the encoder in T5 (Raffel et al., 2020) and
feed them to the span representation layer for the
classification task and then use the T5 decoder for
the generation task. Finally, we combine these two

models with a jointly learning mechanism. Our
CG-T5 can integrate the advantage of two different
models: the classification model constrains the gen-
eration model, while the generation model explains
and supports the classification model. In summary,
the main contributions of this paper are fourfold:

• We regard IDRR as a generation task to gener-
ate the target sentence containing the meaning
of relations, which can introduce prior knowl-
edge to understand discourse relations deeper.

• We propose a joint learning model CG-T5 to
integrate the classification task and generation
task.

• We design three forms of the target sentence,
including the question form, and propose a
construction method to extract the core infor-
mation from the large DUs automatically.

• The experimental results both on MCDTB and
PDTB datasets show that our CG-T5 outper-
forms the SOTA baselines.

2 Related Work

We first briefly introduce relative discourse corpora,
then summarize the existing methods of IDRR,
and finally introduce the success of the question-
answering method in fine-grained tasks.

2.1 Relative Discourse Corpora

In English, one of the most popular discourse cor-
pora is Penn Discourse TreeBank (PDTB) (Prasad
et al., 2008) . It annotates about 2.3K Wall Street
Journal articles with three-level discourse relations
(4 classes, 16 types, and 23 sub-types), including
18.4K explicit relations and 16k implicit relations.

In Chinese, two popular discourse corpora are
Chinese Discourse TreeBank (CDTB) (Li et al.,
2014) and Macro Chinese Discourse TreeBank
(MCDTB) (Jiang et al., 2018). CDTB contains 500
articles with two-level discourse relations (4 classes
and 17 types) between clauses and sentences. Fol-
lowing the PDTB-style annotation, it annotated
both explicit discourse relation and implicit dis-
course relation. MCDTB annotated 720 articles
from Xinhua News with 3 classes and 15 types re-
lations between paragraphs. Since there are few
connectives between paragraphs, it annotated all
discourse relations as implicit relations in MCDTB.



2420

2.2 Implicit Discourse Relation Recognition

Most previous studies on IDRR can be divided
into the following three categories: enhancing DU
representation, enhancing the interaction between
DUs, and joint learning of IDRR and other tasks.

In English, early work explored the methods
of enhancing DU representation via the shallow
convolutional neural network (Zhang et al., 2015),
recursive neural network (Ji and Eisenstein, 2015),
collaborative gated neural network (Qin et al.,
2016), or attention mechanism (Liu and Li, 2016).
To enhance the interaction between DUs, Guo et al.
(2018) and Ruan et al. (2020) proposed various in-
teractive attention mechanisms for IDRR. Guo et al.
(2020) proposed a knowledge-enhanced attention
neural network to introduce external knowledge
to enhance the interaction. Besides, a few studies
combined IDRR with other tasks for joint learning,
e.g., explicit relation recognition (Lan et al., 2017),
connective prediction (Bai and Zhao, 2018; Shi
and Demberg, 2019), and label embedding learn-
ing (Nguyen et al., 2019; He et al., 2020).

In Chinese, Zhou et al. (2019) used the macro-
structural features and macro-semantic represen-
tations to enhance DU representation. Sun et al.
(2020) established a large heterogeneous discourse
graph on the entire corpus and used the GCN-based
model to enhance the interaction between DUs. Xu
et al. (2019) and Jiang et al. (2019) jointly learned
the relation recognition with the topic modeling
and the nuclearity recognition, respectively.

2.3 Formalizing Fine-grained Tasks as QA

A few fine-grained tasks can be formalized as QA
and have achieved success due to introducing prior
knowledge to their tasks, such as relation extrac-
tion (Li et al., 2019), named entity recognition (Li
et al., 2020), and co-reference resolution (Wu et al.,
2020). It is worth noting that the above studies all
take questions as the input and extract the answers
from the context as the output.

3 IDRR as Text Generation

To deeper understand the semantics of discourse
relation, we regard IDRR as a text generation task,
as shown in Figure 1. Unlike previous work, we
use a generation model instead of the classification
model to generate the target sentence represent-
ing the semantics of discourse relation. Then, we
obtain the relation type by mapping it into the cor-
responding discourse relation. In this section, we

mainly describe our solution for the first challenge
of obtaining the target sentence: its different forms
and its corresponding construction method.

DU1

DU2

Classification

Model

DU1

DU2

Generation

Model

Target 

Sentence

Relation

Type

Relation

Type

map

Figure 1: The classification task (upper) and the gener-
ation task (lower) for the IDRR.

3.1 Forms of Target Sentence

Unlike other fine-grained tasks that can extract the
target sentence (answer) from the context, we can
not directly transform their methods to IDRR with-
out manual annotations. In IDRR, the relation label
is implicit between two DUs, and there is no hint
of them in the context. To alleviate this issue, we
design the following three forms of the target sen-
tence to map the relation sense to the templates
according to the relation definition: the name, ex-
planation and question of relation.

Form Target Sentence Template
Name It’s Elaboration.

这是解说关系。

Exp-Rel Because CI2 is a detailed description of CI1, it’s an Elaboration.
因为CI2是对CI1的详细说明，所以是解说关系。

Rel-Exp It’s an Elaboration, because CI2 is a detailed description of CI1.
是解说关系，因为CI2是对CI1的详细说明。

Q1 Can you explain in detail about CI1?
对于CI1这件事可以详细的解释一下吗？

Q2 What does CI2 explain in detail?
CI2是对什么事情的详细解释？

Table 2: The example of the Elaboration in MCDTB
maps to our designed three forms of templates, where
CI1 and CI2 are the core information of DU1 and DU2,
respectively. The complete target sentence templates
are shown in the Appendix B.

Relation Name As an intuitive choice, we use
relation name (Name) as the target sentence, as
shown in Table 9. Using the relation name can
introduce prior knowledge by itself, and there is no
need to extract external information from context.

Relation Explanation Furthermore, we believe
that using only the relation name is not enough,
and we design the target sentence as an explanation
of relation, as shown in Table 9. It has two vari-
ants: the explanation is before the relation name
(Exp-Rel) and after the relation name (Rel-Exp).
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Although this method contains the relation seman-
tics more comprehensively, it is necessary to extract
the core information (CI1 and CI2) from two DUs
to form the target sentence.

Relation Question Inspired by intra-sentence
discourse relation annotation (Pyatkin et al., 2020),
we use question instead of declarative sentence as
the target sentence to capture discourse relation
better. On the one hand, this form extracting core
information (CI1 or CI2) from only one DU can
reduce cascading errors. On the other hand, the
question sentence integrating prior knowledge can
better connect the semantics of two DUs more natu-
rally.1 This form also has two variants: the question
is guided by the core information of the first DU
(Q1) and guided by that of the second DU (Q2), as
shown in Table 9.

3.2 Constructing Target Sentence

Although we build three forms of the target sen-
tence, the latter two forms need to integrate the core
information of the DU into the template. However,
it is a challenge to extract the DU’s core informa-
tion without manual annotations. The DU usually
contains lots of tokens and we directly insert them
into the target sentence will make the target sen-
tence too long to represent the semantics of the
corresponding relation. Therefore, we design a
core information extraction method to compress
DU into a short form, which contains three steps:
extracting, filtering, and selecting.

We first extract all candidate tuples from the
given DU through the Semantic Role Labeling
(SRL) tool2. Then we use the following three rules
to filter out those redundant tuples: (1) Stream-
lining core semantics. We remove unimportant
elements except for arguments and predicates from
the extracted candidate tuples. (2) Ensuring se-
mantic integrity. We remove the semantically in-
complete tuples (i.e., the tuple does not contain
both A0 and A1 in SRL) from the candidate tuples.
(3) Reducing semantic overlap. We remove those
small tuples contained in the larger candidate tu-
ples due to semantic overlap. Finally, considering
that important information is usually in front of the
DUs, we extract the first tuple containing complete

1We have also tried to use the question as input and the sec-
ond DU as output following the question-answering method
in the fine-grained task. However, this method did not achieve
good performance due to the unlimited generation space.

2LTP (http://ltp.ai/index.html) for Chinese and AllenNLP
(https://allennlp.org) for English.

semantics and reproduce them in the original or-
der as the CI. In particular, to ensure the form of
"Subject-Verb-Object", we place the predicate in
the second position.

The Ningbo Free Trade Zone, with a total area of 2.3 square kilometers,

has achieved fruitful results after three years of construction. Ningbo

Free Trade Zone is one of the 13 free trade zones in China. It was

established with the approval of the State Council in 1992. At present,

the various functions of the bonded area have begun to take shape, and

the level of development is among the best in China's bonded areas.

The Ningbo Free Trade Zone, with a total area of 2.3 square kilometers, 

has achieved fruitful results

The Ningbo Free Trade Zone, with 

a total area of 2.3 square kilometers,

（A0）

has achieved

（Verb）
fruitful results

(A1)

Ningbo Free Trade Zone 

（A0）
is

（Verb）

one of the 13 free trade zones 

in China

(A1)

Tuple 1

Tuple 2

DU

CI

Figure 2: The example of extracting the core informa-
tion of discourse unit.

We use the example in Figure 2 to illustrate the
process. There is a DU that contains four sentences,
and we extract all candidate SRL tuples from it.
Then we filter them by three rules we proposed to
obtain two simplified tuples. Finally, we select the
sentence that contains the first tuple as CI. Besides,
if there is more than one tuple in a sentence, we
combine them into one CI by the comma.

4 CG-T5 Model

To integrate the advantages of the classification
model and the generation model in IDRR, we pro-
pose the Classification and Generation T5 (CG-T5)
model that recognizes relation class and generates
the target sentence simultaneously, as shown in Fig-
ure 3. Thanks to the excellent performance of T5
(Raffel et al., 2020) on many NLP tasks, we choose
it as the backbone of CG-T5. Better than BERT
(Devlin et al., 2019), an encoder architecture for
classification, and GPT-2 (Radford et al., 2019),
a decoder architecture for generation, T5 has an
encoder-decoder architecture that allows us to nat-
urally joint learning classification and generation3.

CG-T5 comprises three parts: the classification
module based on the encoder, the generation mod-
ule based on the decoder, and the joint learning
module. Therefore, when given two DUs as the
input, CG-T5 has two outputs: the class label from
the classification module and the target sentence
from the generation module.

3We have also tried the general encoder-decoder model
(Rothe et al., 2020) with a similar architecture, but the effect
is far worse than the pre-trained T5.
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g [SEP]
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Figure 3: The architecture of CG-T5 model we proposed.

4.1 Classification Module

In the encoding layer, consistent with the input of
the traditional classification model like BERT, we
first encode two discourse units (DU1 and DU2)
into a single string as follows.

S = [CLS]W1[SEP ]W2[SEP ] (1)

where W1 = {w1
1, w

2
1, ..., w

n
1 } and W2 =

{w1
2, w

2
2, ..., w

m
2 } represent the the token se-

quences of DU1 and DU2, respectively.
Then, we send the input (S) to the Encoder Stack

(i.e., the encoder of T5) to obtain the encoder hid-
den states (HiddenE) as follows.

HiddenE = EncoderCG−T5(S) (2)

Since T5 does not use the state at the position
of [CLS] for pre-training tasks like BERT, we use
the Endpoint4 of the span that combines the hidden
states of the head (H0) and tail (H−1) for repre-
senting two DUs, as shown in Equation 3. Then
we feed the output of the span representation layer
Vs into a linear layer with softmax to classify the
implicit discourse relation (r) between two DUs,
as shown in Equation 4 and 5 .

4We have evaluated our model using various span represen-
tations (Toshniwal et al., 2020), including Average Pooling,
Attention Pooling, Endpoint, Coherent, etc., and the Endpoint
achieves the best performance. The reason is that this repre-
sentation not only obtains the representation of [CLS] (the
head) commonly used in the pre-training model to represent
the Span for classification, but also considers the last hidden
state information (the tail) that is closest to the generation
module.

Vs = Con(H0, H−1) (3)

P = SoftMax(Linear(Vs)) (4)

r = argmax(P ) (5)

4.2 Generation Module
There are two inputs in the decoding layer when
training: the hidden state of the encoding layer
(HiddenE) and the golden target sentence (T ). We
take the T as the same style in the encoding layer
as follows.

T = Wt[SEP ] (6)

where Wt = {w1
t , w

2
t , ..., w

k
t } represents the token

sequence of the target sentence. Then we feed them
into the decoding layer to get the decoder hidden
states (HiddenD) as follows.

HiddenD = DecoderCG−T5(T,HiddenE) (7)

Finally, we use a linear layer generator with
softmax to produce the predicted target sentence.
When testing, our model generates the predicted
sentence Wp = {w1

p, w
2
p, ..., w

g
p} according to the

input of two DUs.

4.3 Joint Learning Module
We joint learning the above two modules. The loss
function for the classifier (Losscla) and generator
(Lossgen) is cross-entropy loss, and the total loss
(Loss) is the sum of the two losses as follows.

Loss = Losscla + Lossgen (8)
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5 Experimentation

In this section, we first introduce the datasets and
experimental settings. Then, we evaluate our model
CG-T5 on MCDTB and PDTB.

5.1 Datasets and Experimental Settings

We mainly evaluate our model on two popular dis-
course relation datasets Chinese MCDTB and En-
glish PDTB. First of all, considering the macro
discourse unit is longer, and the connection be-
tween discourse units is more obscure in Chinese,
we first conduct the experiments on MCDTB. Then,
we conduct the experiments on PDTB, one of the
most popular discourse relation corpus in English,
to verify the generality of our model. Besides, we
also conduct the experiments on another Chinese
dataset CDTB and the results are shown in Ap-
pendix D.3.

MCDTB: following previous work (Jiang et al.,
2019; Sun et al., 2020), we use the same dataset
division and five-fold cross-validation for the ex-
periments.

PDTB: following previous work (Ji and Eisen-
stein, 2015; Kim et al., 2020), we adopt the most-
used dataset splitting PDTB-Ji that takes the sec-
tions 2-20 as the training set, 0-1 as the develop-
ment set, and 21-22 for testing.

We use Pytorch and Huggingface (Wolf et al.,
2020)5 as a deep learning framework, and the key
parameter settings of our model are described in
Appendix C. Since there is no official Chinese T5
model, we use the parameter weights provided by
the third party6. It is a T5 (base) model with 12-
layer encoders and 12-layer decoders trained by au-
tomatic summarization task on about a 30G corpus.
In English, we use the official parameter weight7

of T5 (base) for our CG-T5 model. Besides, we
use AllenNLP instead of LTP tools to extract the
core information from discourse units in English.

Following previous work, we use Micro-F1 and
Macro-F1 to evaluate the IDRR models on the top-
level and second-level class. In MCDTB, there
are 3 classes on the top-level and 15 types on the
second-level. In PDTB, there are 4 classes on the
top-level and 11 types on the second-level8.

5https://huggingface.co/transformers/
6https://github.com/renmada/t5-pegasus-pytorch/
7https://huggingface.co/t5-base/tree/main
8We follow (Ji and Eisenstein, 2015) to exclude 5 minor

second-level classes in our experiments because none of these
classes appear in the test or dev sets.

Model Second-Level Top-Level
Micro-F1 Macro-F1 Micro-F1 Macro-F1

MSRN 54.18 14.92 65.62 50.10
STGSN 56.71 15.68 67.63 57.87
DAGGNN - - 70.01 55.38
BERT (base) 61.67 25.12 70.25 64.21
GPT-2 (Q1) 51.81 17.29 60.86 49.81
Name (cla) 60.98 31.09 69.78 63.66
Name (gen) 61.69 31.50 70.67 64.27
Rel-Exp (cla) 61.13 30.48 70.76 64.66
Rel-Exp (gen) 60.02 28.53 70.62 64.59
Exp-Rel (cla) 60.44 27.42 70.73 64.53
Exp-Rel (gen) 61.02 27.70 70.29 64.30
Q2 (cla) 61.04 29.65 70.21 64.02
Q2 (gen) 60.47 27.20 69.59 63.24
Q1 (cla) 63.61 31.94 72.57 66.43
Q1 (gen) 63.12 31.80 72.43 66.24

Table 3: The performance comparison on Chinese
MCDTB (five-fold cross-validation). Note that the per-
formance of our model reported in the table is that of
the output of classification (cla) and generation (gen)
with the joint modeling.

5.2 Experimentation on MCDTB

To exhibit the effectiveness of our CG-T5 model,
we select the following strong baselines: 1) MSRN
(Zhou et al., 2019): it uses Support Vector Machine
(SVM) as a classifier and uses word vectors and
structural features to enhance the discourse unit
representation. 2) STGSN (Jiang et al., 2019):
it proposes a structure and topic gated semantic
network for enhancing the discourse representa-
tion. 3) DAGGNN (Sun et al., 2020): it is a GCN-
based neural network on the discourse pair graph
to enhance the interaction between DUs. 4) BERT
(Devlin et al., 2019): we view discourse relation
recognition as text pair classification and choose
BERT (base) at the same scale as our model for fair
comparison and real-world application. 5) GPT-2
(Radford et al., 2019): we also add the representa-
tive generation model GPT-2 into baselines.

Table 3 shows the performance of our CG-T5
(the bottom ten lines using different forms of the tar-
get sentence) and other baselines on MCDTB. The
pre-trained BERT performs better than the other
classification-based baselines. However, there is
still a significant gap between the performance of
the traditional generation model GPT-2 (Q1) and
that of the classification model. It indicates that
the traditional generation model is not suitable to
recognize implicit discourse relation.

In addition, CG-T5 using the relation name
(Name) and the explanation of relation (Rel-Exp
and Exp-Rel) as the target sentence achieve similar
performance. In particular, Table 3 shows that our
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generation model and classification model with re-
lation name (Name) and joint learning reach 31.09
and 31.50 at Second-Level in Macro-F1, signifi-
cantly gain 5.97 and 6.3 improvement, respectively,
in comparison with BERT, which demonstrates this
form recognizes classes with fewer samples better.

Our CG-T5 using the question sentence guided
by the first DU (Q1) achieves the best performance
and improves the fine-grained (15 types) IDRR up
to 1.94 and 6.82 in Micro-F1 and Macro-F1, respec-
tively, in comparison with the best baseline BERT.
There are two following reasons, as mentioned in
Section 3.1. First, using the question sentence ex-
tracting core information from only one DU to
construct the target sentence can reduce cascading
errors. Second, the question sentence highlights
the meaning of discourse relation and difference
between various types, which enables the model
to understand the discourse relation better than the
other two forms. Besides, according to our statis-
tics, the average length of Q1’s target sentence is
45.44 words, and that of Exp-Rel’s target sentence
is 87.73 words. It is more difficult for the model
to learn the relation from the Exp-Rel because the
relation description takes up a smaller proportion
in the target sentence. Compared with generating
only relation name (Name) that lacks core informa-
tion of DUs and generating explanation and rela-
tion (Exp-Rel) that doesn’t pay enough attention to
the relation description, using questions as the tar-
get sentence (Q1) can balance learning discourse
relation description and the core information of
discourse unit, achieving the best performance.

In addition, we also notice the performance of
the generation model (gen) is slightly lower than
that of the classification model (cla). The reason
may be that the pre-trained T5 in Chinese is differ-
ent from the vanilla T5 in English.

However, the performance of CG-T5 using the
question sentence guided by the second DU (Q2)
is not good as that guided by the first DU (Q1). We
believe that the reason is the uneven distribution
of the nuclearity that the first DU is usually the
nucleus. In MCDTB, 63.94% of the first DU is
the nucleus, 2.52% of the second DU is the nu-
cleus, and 33.54% of the discourse relation pairs
are equally important. Therefore, the model (Q1)
using the question sentence guided by the first DU
composing of more important information can bet-
ter grasp the connection between the two DUs to
recognize discourse relation better.

5.3 Experimentation on PDTB
To evaluate the model generality, we also conduct
experiments on another dataset PDTB and select
six strong baselines for fair comparison as follows:
1) Bai2018 (Bai and Zhao, 2018): it uses different
grained text representations on ELMO to enhance
DU representation. 2) Bai2019 (Bai et al., 2019):
it adds the memorizing mechanism to their previ-
ous work (Bai and Zhao, 2018). 3) Nguyen2019
(Nguyen et al., 2019): it uses multi-task learn-
ing via label embedding. 4) Guo2020 (Guo et al.,
2020): it is a knowledge-enhanced attention neu-
ral network that enhances the interaction between
discourses by introducing external knowledge. 5)
He2020 (He et al., 2020): it translates the discourse
relations in low-dimensional embedding space and
propose a joint learning framework with the se-
mantic features of arguments. In addition, we also
reproduce 6) BERT (base)9 at the same scale as
our model for fair comparison.

Model Second-Level Top-Level
Micro-F1 Macro-F1 Micro-F1 Macro-F1

Bai2018 48.22 - - 51.06
Bai2019 49.15 - 60.69 52.19
Nguyen2019 49.95 - - 53.00
Guo2020 - - 57.25 47.90
He2020 - - 59.94 51.24
BERT (base) 51.88 36.10 63.91 55.13
Name (cla) 48.03 34.60 61.12 53.21
Name (gen) 48.22 35.21 61.21 53.57
Rel-Exp (cla) 51.20 37.43 64.00 56.29
Rel-Exp (gen) 51.20 35.86 63.14 54.78
Exp-Rel (cla) 51.68 36.17 63.52 55.70
Exp-Rel (gen) 51.40 34.38 62.95 55.56
Q2 (cla) 51.68 37.49 63.91 56.10
Q2 (gen) 51.49 36.76 64.20 55.69
Q1 (cla) 52.17 37.53 63.23 55.35
Q1 (gen)* 53.13 37.76 65.54 57.18

Table 4: The performance comparison on PDTB. Note
that the performance of our model reported in the table
is that of the output of classification (cla) and genera-
tion (gen) with the joint modeling. Superscript * indi-
cates the model is significantly superior to the BERT
model with a p-value < 0.01.

Table 4 shows the performance of our model on
PDTB-Ji at the top-level and second-level classes.
Consistent with Kim et al. (2020)’s conclusion,
BERT is indeed the best baseline, achieves 51.88
and 36.10 in Micro-F1 and Macro-F1 at the second-
level and 63.91 and 55.13 in Micro-F1 and Macro-
F1 at the top-level, respectively.

Similar to the performance on MCDTB, our CG-
T5 with Q1 achieves the best performance and al-
most all its F1-measures integrating classification

9We use the same parameter settings in Kim et al. (2020).
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or generation mechanism is better than the strong
baseline BERT. In particular, compared with BERT,
our generation model (gen) improve the Micro-F1
and Macro-F1 in 11-way classification by 1.25 and
1.66, and in 4-way classification by 1.63 and 2.05,
respectively. These results indicate that our model
can achieve the best performance under the same
order of magnitude of model parameters, proving
the effectiveness of our model on English IDRR.

Model Comp. Cont. Exp. Temp.
Bai2018 47.85 47.85 70.60 36.87
Bai2019 47.15 55.24 70.82 38.20
Nguyen2019 48.44 56.84 73.66 38.60
Guo2020 43.92 57.67 73.45 36.33
He2020 47.98 55.62 69.37 38.94
BERT 47.19 59.20 72.63 41.51
Q1 (gen) 55.40 57.04 74.76 41.54

Table 5: The results of different relations on PDTB
(top-level multi-class classification).

We further analyze the performance of the 4-
way classification on PDTB at the top-level on dif-
ferent classes, shown in Table 5. We notice that
our improvement mainly comes from the relation
Comparison, where there is a significant increase
of 8.21%. The reason is that the two words "negate"
and "opposite" in the target sentence (question) of
the Concession and Contrast relations can more
accurately represent their meanings, which helps
the model better recognize the two relations.

6 Analysis

To further demonstrate the effectiveness of our CG-
T5, we choose the 1st-fold data set of MCDTB as
an example to further analyze the following two
parts: the ablation experiments of joint modeling
and the text generation quality assessment.

6.1 Ablation Study

We conduct ablation studies to evaluate CG-T5
with joint modeling of classification and genera-
tion, as shown in Table 6. We can find that both
the only-generation (only-gen) model (i.e., vanilla
T5) and the only-classification (only-cla) model
achieve better performance than GPT-2 and BERT,
respectively. It is worth noting that our CG-T5 fur-
ther improves the performance of the classification
model (cla) and generation model (gen) simulta-
neously by joint modeling, which proves that our
CG-T5 model can integrate the advantages of these

two models, and achieve better performance. In
addition, we find that the improvement of the gen-
eration model is more significant than the classifi-
cation model in joint modeling architecture.

Model Second-Level Top-Level
Micro-F1 Macro-F1 Micro-F1 Macro-F1

Q1 (cla) 62.75 31.25 71.79 65.59
Q1 (gen) 62.36 31.80 71.41 65.22
only-cla 62.20 29.47 70.48 63.83
vanilla T5 58.73 23.27 67.70 60.55
BERT 60.59 24.62 69.32 62.47
GPT-2 51.55 16.19 60.59 48.87

Table 6: The ablation experiments of our best model
(Q1) on MCDTB (the 1st-fold data set).

Since we notice that the performance of the gen-
eration model is similar to that of the classification
model in Table 3, we further analyze the differ-
ence between the two models with Q1 in the joint
framework, as shown in Table 7. Although the
performance gap between the two outputs is not
significant and the agreement rate is 91.34%, its or-
acle value (as long as one of two outputs is correct,
the final result is correct) has a further improve-
ment. Specifically, we find the generation model
performs better for the minor classes with fewer
samples, while the classification model performs
better for the major classes. It demonstrates that our
model can effectively integrate the classification
model and the generation model to complement
each other’s advantages.

Joint Model Second-Level Top-Level
Q1 (gen) 62.36 71.41
Q1 (cla) 62.75 71.79
Oracle 65.00 74.19
Agreement 91.34% 93.51%

Table 7: The Micro-F1 comparison between the clas-
sification and generation of our best model (Q1) on
MCDTB (the 1st-fold data set).

6.2 Text Generation Quality Assessment
We select the Rouge scores10 commonly used in the
generation task to evaluate the generation quality
of our best model (Q1), as shown in Table 8. Due
to the more advanced generation model architec-
ture, our model achieves better performance than
the traditional GPT-2. Moreover, since joint mod-
eling with the classification can constrain the gen-
eration, our model CG-T5 outperforms the vanilla

10https://github.com/JialeGuo/py_rouge_zh
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T5 model and achieves excellent performances of
83.99, 79.69, 77.22, and 82.97 on Rouge-1/2/3/L.
It proves that our model can effectively extract the
core information of discourse units and generate
the question sentence based on the corresponding
discourse relation.

Q1 Rouge-1 Rouge-2 Rouge-3 Rouge-L
GPT-2 75.83 69.48 65.86 74.33

vanilla T5 83.34 78.70 76.16 82.18
CG-T5 (gen) 83.99 79.69 77.22 82.97

Table 8: The generated quality of our model (Q1) on
MCDTB (the 1st-fold data set).

7 Conclusion

In this paper, we regard IDRR as a generation task
to generate the target sentence, which can intro-
duce prior knowledge to understand discourse rela-
tions deeper. Moreover, we propose a joint learning
model, CG-T5, to integrate the classification model
and the generation model and design three forms
of the target sentence and the construction method
to automatically extract core content from the large
DUs. The experimental results both on MCDTB
and PDTB datasets show that our CG-T5 outper-
forms the SOTA baselines. In future work, we
will focus on how to construct more robust and
automatic target sentences and how to integrate the
question generation and the answer generation to
recognize discourse relations better.
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Appendices

A Details of Example

DU1: The Ningbo Free Trade Zone, with a total
area of 2.3 square kilometers, has achieved fruitful
results after three years of construction. Ningbo
Free Trade Zone is one of the 13 free trade zones
in China. It was established with the approval of
the State Council in 1992. At present, the various
functions of the bonded area have begun to take
shape, and the level of development is among the
best in China’s bonded areas.

DU2: According to statistics, by the end of last
year, the Ningbo Free Trade Zone had completed a
total of US$812 million in import and export trade,
and the import and export trade volume through
the customs of the Free Trade Zone last year alone
reached US$365 million. At present, there are ten
bonded warehouses in the zone with a storage area
of more than 80,000 square meters; last year alone,
the zone has stored goods of 2.627 billion yuan.
With the adjustment of China’s special policies
outside the bonded area since April this year, the
bonded area’s certificate and tax exemption, and
the stability advantages of the bonded policy have
become more obvious. A large number of domes-
tic and foreign industrial processing projects have
successively settled in the area. By the end of De-
cember last year, a total of 1,614 enterprises had
been established in the zone, with a total invest-
ment of 1.2 billion U.S. dollars, of which 260 were
foreign-invested enterprises, and the actual utiliza-
tion of foreign capital was 113 million U.S. dollars.
In addition, many domestic enterprises have also
connected with the international market through
the bonded zone. In order to complement the free
trade zone in terms of operating mechanism, the
Ningbo Free Trade Zone took the lead in imple-
menting the trial one-stop management system of
direct registration of enterprises in accordance with
the law in China, which was handled at one time.
At the same time, the bonded zone has vigorously
promoted the construction of the information ex-
pressway network system in the zone to create good
supporting conditions for the realization of modern
management. (Finish)

B Complete Templates of Target
Sentences

Table 9 and Table 10 show the target sentences
guided by DU1(Q1) in MCDTB and PDTB on dif-

ferent relations, respectively.

Relation Target Sentence Template
Joint Is there anything similar to CI1?

和CI1类似的事情还有吗？
Sequence What happened after CI1?

在CI1之后，发生了什么？
Progression What goes further than CI1?

比CI1更进一步的事情是什么？
Contrast What is the contrast with CI1?

和CI1这件事相对比的是什么？
Supplement What else do you want to add to CI1?

对于CI1这件事还有什么要补充的？
Result-Cause What is the cause of CI1?

导致CI1这件事发生的原因是什么？
Cause-Result What is the result of CI1?

CI1这件事所导致的结果是什么？
Background What’s the background of CI1?

CI1这件事的背景是什么？
Behavior-Purpose What’s the purpose of CI1?

CI1这件事的目的是什么？
Purpose-Behavior What behavior was did for CI1?

为了CI1这件事，做了什么行为？
Elaboration What is the detailed explanation for CI1?

对于CI1这件事可以详细的解释一下吗？
Summary What’s the summarization for CI1?

对于CI1这件事可以总结一下吗？
Evaluation What’s the evaluation on CI1?

对于CI1这件事是怎么评价的？
Statement-Illustration Take an example for CI1?

对于CI1这件事，举一个例子？
Illustration-Statement What does CI2, the example, mean?

对于CI2这个例子，它想说明什么？

Table 9: The complete template of Q1 in MCDTB. CI1
is the core information of DU1.

Relation Target Sentence Template
Concession What event negates part of CI1?
Contrast What is the opposite of CI1?
Cause What is the cause or result of CI1?
Pragmatic cause What is the justification of CI1?
Conjunction Is there anything to add about CI1?
Instantiation Can you give me an example of CI1?
Alternative Can you replace CI1 with something else?
List What is the other list member for CI1?
Restatement Can you explain CI1 in detail?
Asynchronous What happened after CI1?
Synchrony What happened in synchrony with CI1?

Table 10: The complete template of Q1 in PDTB. CI1
is the core information of DU1.

C Details of Experimental Settings

In MCDTB (Jiang et al., 2018), there are 720 docu-
ments annotated with 3 classes and 15 types. The
distribution of relation classes in MCDTB is shown
in Table 11.

PDTB 2.0 (Prasad et al., 2008) annotated 16K
implicit relations in over 2K Wall Street Journal
(WSJ) articles annotated with 4 classes and 16
types. We only select 11 types following previous
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Class (Top-level) Type (Second-level)
Causality Result-Cause, Cause-Result, Background,

Behavior-Purpose, Purpose-Behavior
Coordination Joint, Sequence,

Progression, Contrast, Supplement
Explanation Elaboration, Summary, Evaluation,

Statement-Illustration, Illustration-Statement

Table 11: The set of two-level discourse relations on
MCDTB.

work (Ji and Eisenstein, 2015). The distribution of
relation classes in PDTB is shown in Table 12.

Class (Top-level) Type (Second-level)
Comparison Concession, Contrast
Contingency Cause, Pragmatic cause
Expansion Conjunction, Instantiation,

Alternative, List, Restatement
Temporal Asynchronous, Synchrony

Table 12: The set of two-level discourse relations on
PDTB.

The key parameters of our experimental model
are shown in Table 13.

Parameter Value
The learning rate 1e-4
The training epoch 10
The batch size 2
The random seed 42
The optimizer Adam
The hidden size of pre-training model 768
The maximum length of input 512
The maximum length of the target sentence 200

Table 13: The key parameter in experimental settings.

D More Details of Experiments on PDTB
and CDTB

D.1 Error Analysis on PDTB

Figure 4 shows the confusion matrix of CG-T5
(Q1) on 11 relation types. We find that the five
major types (Contrast, Cause, Conjunction,
Instantiation, and Restatement), whose sam-
ples are greater than 100 in the test set, achieve
higher performance (Accuracy: >50). Although
the instances of two types (Pragmatic cause
and Synchrony) cannot be recognized due to too
few samples, our model with the target sentence
still improves the other types (e.g., Alternative,
Asynchronous, and List). In addition, we
also find that the main errors come from the

confusion between the relations Synchrony and
Conjunction, the relations Pragmatic cause
and Cause, the relations Pragmatic cause
and Restatement, and the relations List and
Conjunction. They are difficult to distinguish
even if our model takes the question as the target
sentence due to their similar semantics.
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Figure 4: The confusion matrix of CG-T5 model (Q1)
in PDTB. The X-axis is the predicted value, and the Y-
axis is the true value. The values are normalized (%).

D.2 Case Study on PDTB

Table 14 shows the two prediction outputs of our
joint model CG-T5 (Q1) and the prediction output
of BERT for a sample. It can be seen that BERT
can’t distinguish the relations Pragmatic cause
and Instantiation well because the form of the
discourse unit in the two relation types is similar.
However, our CG-T5 model accurately generates
the target sentence and better grasp the difference
between the two relations through joint learning.
Therefore, both the classification and the genera-
tion of our CG-T5 model are correct due to the
classification and generation modules can comple-
ment each other.

D.3 Experiments on CDTB

In CDTB, following the previous work (Xu et al.,
2019)11, we use 446 articles as the training set and
49 articles as the test set.

we reproduce the following baselines: Bi-
LSTM, CNN, GCN (Dauphin et al., 2017) and

11We contacted the author and use the latest CDTB V2.0
instead of CDTB V1.0, which corrected some annotated errors
and removed five problematic articles (No. 150, 208, 287, 300,
and 644).
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DU1: TV programmers could let audiences vote on different
endings for a movie
DU2: Fox Broadcasting experimented with this concept last
year when viewers of "Married ... With Children" voted on
whether Al should say "I love you" to Peg on Valentine’s Day
True relation: Expansion.Instantiation
True target sentence:
Can you give me an example of TV programmers let audiences
vote on different endings for a movie?
Relation predicted by BERT: Contingency.Pragmatic cause
Relation predicted by CG-T5: Expansion.Instantiation
The target sentence generated by CG-T5:
Can you give me an example of TV programmers let audiences
vote on different endings for a movie?

Table 14: The example of the prediction of our CG-T5
model with question sentence (Q1) and BERT model in
PDTB.

Xu19 (Xu et al., 2019). In addition, we also repro-
duce the BERT (base) model for a fairer compar-
ison. The experiment setting parameters are the
same as those on MCDTB. To be consistent with
the previous work, we use the results of converting
17 types into four classes (top-level).

Model Caus. Coor. Elab. Tran. Micro-F1 Macro-F1
Bi-LSTM 24.5 80.9 55.7 - 68.7 40.3
CNN 26.7 81.0 53.6 - 70.3 41.2
GCN 25.5 81.8 50.0 11.8 70.3 43.2
Xu19 30.8 81.5 56.2 15.4 71.0 46.3
BERT 44.1 84.6 67.6 25.0 76.7 55.7
Exp-Rel (gen) 39.5 85.5 72.1 18.2 76.6 53.8
Rel-Exp (gen) 39.0 85.9 71.0 24.0 76.7 55.0
Name (gen) 42.4 85.4 71.3 27.3 76.7 56.6
Q1 (gen) 42.5 84.7 68.8 31.6 75.8 56.9
Q2 (gen) 48.6 84.9 70.9 30.0 76.9 58.6

Table 15: Top-level multi-class classification results on
CDTB. We report Micro-F1, Macro-F1 and Micro-F1
on each class (Causuality, Coordination, Explanation
and Transition).

Table 15 shows that thanks to the large-scale
pre-training tasks, the BERT model achieve 76.7
Micro-F1 and 55.7 Macro-F1, which is better than
other SOTAs without pre-training tasks. It can
be seen that our model with Q2 achieves the best
performance, higher 0.2 and 2.9 on Micro-F1 and
Macro-F1 than BERT. It significantly improves 4.5
Macro-F1 scores in the Caus., which benefit from
introducing prior knowledge.

Unlike the experimental results on the MCDTB,
we notice that the model using Q2 instead of Q1

achieves the best performance. The reason may
be the semantic difference between types within a
class is not significant in the Q1 form. For example,
in the Caus., the difference between Hypothesis
and Conditional relationship is more difficult to
distinguish by the model using Q1 than Q2.


