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Abstract
Homomorphic encryption (HE) and garbled
circuit (GC) provide the protection for users’
privacy. However, simply mixing the HE and
GC in RNN models suffer from long inference
latency due to slow activation functions. In
this paper, we present a novel hybrid structure
of HE and GC gated recurrent unit (GRU) net-
work, CRYPTOGRU, for low-latency secure
inferences. CRYPTOGRU replaces computa-
tionally expensive GC-based tanh with fast
GC-based ReLU , and then quantizes sigmoid
and ReLU to smaller bit-length to acceler-
ate activations in a GRU. We evaluate CRYP-
TOGRU with multiple GRU models trained
on 4 public datasets. Experimental results
show CRYPTOGRU achieves top-notch accu-
racy and improves the secure inference latency
by up to 138× over one of the state-of-the-art
secure networks on the Penn Treebank dataset.

1 Introduction

Billions of text analysis requests are processed by
powerful RNN models (Bahdanau et al., 2015; Kan-
nan et al., 2016) deployed on public clouds every-
day. These text analysis requests contain private
emails, personal text messages, and sensitive online
reviews. For instance, Gmail smart reply genera-
tion needs to scan users’ plaintext email messages
anonymously (Kannan et al., 2016).

Prior work (Juvekar et al., 2018) proposes a
hybrid cryptographic scheme that uses homomor-
phic encryption (HE) to process linear layers and
garbled circuits (GC) to compute activations in
a convolutional neural network. Compared to
convolutional neural networks (CNN), RNNs can
achieve more competitive accuracy in text analysis
tasks (Bahdanau et al., 2015; Podschwadt and Tak-
abi, 2020; Bakshi and Last, 2020). Mixing HE and
GC presents impressing results in secure classifica-
tion tasks (Barni et al., 2011). However, mixing HE
and GC in RNN will suffer from a long inference
latency due to the slow GC-based activations. In

contrast to a CNN, a RNN (Bahdanau et al., 2015)
requires more types of activations such as tanh
and sigmoid. The GC protocol (Ohrimenko et al.,
2016) has to use a huge garbled table to implement
a tanh or sigmoid activation. Both garbling and
evaluating such a large table add significant latency
to RNN layers. Based on our experimental and
theoretical analysis, the GC-based activations can
occupy up to 91% of the inference latency in a HE
and GC hybrid secure GRU.

To reduce the GC-based activation latency, we
propose a novel secure gated recurrent unit (GRU)
network framework, CRYPTOGRU, that achieves
high security level and low inference latency si-
multaneously. We use SIMD HE kerel functions
from Juvekar et al. (2018) to process linear opera-
tions in a GRU cell, while it adopts GC to compute
activations. Our contributions are summarized as
follows:
• We build a HE and GC hybrid privacy-preserving

cryptosystem, CRYPTOGRU, that uses HE oper-
ations to process multiplications and additions,
and adopts GC to compute activations such as
ReLU , tanh, and sigmoid.
• We replace computationally expensive GC-based
tanh activations in a GRU cell with fast ReLU
activations without sacrificing the inference ac-
curacy. We quantize GC-based sigmoid and
ReLU activations with smaller bitwidths to fur-
ther accelerate activations in a GRU.
• We implement all proposed techniques of CRYP-

TOGRU and compared CRYPTOGRU against
state-of-the-art secure networks.

2 Background and Related Work

Text analysis using GRU. GRU and long short-
term memory (LSTM) are two types of RNNs that
can capture long term dependencies (Chung et al.,
2014), which are important text classification and
text generation (Bahdanau et al., 2015). A single
LSTM cell has totally 4×(n2+nm+n) parameters,
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while a single GRU cell has only 3×(n2+nm+n)
parameters, where m means the dimension of the
input and n for the dimension of the hidden state.
Prior studies (Chung et al., 2014; Bahdanau et al.,
2015) show GRU can the same level of inference
accuracy as LSTM.

Threat model and cryptographic primitives.
We consider semi-honest corruptions (Juvekar
et al., 2018; Lou and Jiang, 2019; Chou et al., 2020)
in our threat model, where a server S is hosting a
model and many clients C are sending inputs for
inference using S’ model. The client and the server
adhere the protocol, but attempt to infer informa-
tion about the other party’s input. Our protocol
hides model weights, biases, and activations of a
network model, which are likely to be proprietary.

HE (Gentry et al., 2009) is a cryptosystem that
supports computation on ciphertext without decryp-
tion. GC enables two parties (Sender and Receiver)
to jointly compute a function over their private data
without revealing data beyond output from each
other. A GC function is represented by a Boolean
circuit with 2-input gates (e.g., XOR, AND, etc.).
The Sender garbles the Boolean circuit and gener-
ates the garbled table. The Receiver receives the
garbled table from an Oblivious Transfer (Juvekar
et al., 2018) and then evaluates the table. The to-
tal GC communication overhead is proportional
to the number of non-XOR gates in the garbling
function (Rouhani et al., 2018; Riazi et al., 2018).
For instance, a 12-bit ReLU requires only 30 non-
XOR gates, while a 12-bit tanh needs > 2K non-
XOR gates.

Comparison with prior privacy-preserving in-
ference. Prior studies create GC-only (Ohri-
menko et al., 2016), HE-only (Chou et al., 2020;
Badawi et al., 2019) and HE+GC hybrid (Juvekar
et al., 2018) privacy-preserving neural networks for
secure inferences. GC-only secure networks have
to pay huge communication overhead and long
inference latency, whereas the HE-only networks
cannot accurately implement nonlinear activations
by only homomorphic multiplications and addi-
tions. So, secure networks (Juvekar et al., 2018)
implement linear layers with HE operations and
nonlinear activations with GC operations. We com-
pare CRYPTOGRU against prior related works in
Table 1. PrivFT (Badawi et al., 2019), and FHE-
Infer (Chou et al., 2020) are two HE-only secure
neural networks. While Gazelle (Juvekar et al.,

Text
tasks

Accurate Efficient No
decrypt

PrivFT 7 7 7 3
FHE-Infer 7 7 7 3
Gazelle 7 7 7 3
SHE 3 7 7 3
HE-RNN 3 3 7 7
CRYPTOGRU 3 3 3 3

Table 1: The comparison of secure models. 3 means
the scheme performs good under such condition or is
friendly to the description and 7 means the opposite.

2018) is one of the first HE and GC hybrid convo-
lutional neural networks, it does not support RNN
cells. Although SHE (Lou and Jiang, 2019) uses
an emerging HE protocol (TFHE), many TFHE-
based activations greatly prolong its inference la-
tency in text analysis tasks. Several prior works
HE-RNN (Bakshi and Last, 2020; Podschwadt and
Takabi, 2020) use HE to implement linear opera-
tions, and return the intermediate encrypted results
to the client without non-linear operations.

Latency Bottleneck and Motivation. In a typi-
cal GRU cell, there are nine stages of linear opera-
tions and two non-linear operations. In out baseline
implementation using Gazelle, the non-linear oper-
ations take up to 91.37%. Therefore GC-based non-
linear operations are the bottleneck in this structure.
This is further discussed in Section 3.

3 CRYPTOGRU

3.1 Constructing the base CRYPTOGRU

Conventional neural network inference uses depth-
bounded arithmetic circuits (LHE). However, the
computation cost is large for the LHE scheme.
CRYPTOGRU adopts a simpler HE scheme,
namely packed additive homomorphic encryption
(PAHE) scheme and garbled circuits (GC).

Algorithm 1: CRYPTOGRU cell
Input: an input ciphertext [xt]
Output: a ciphertext hidden state [ht]
[ir], [ii], [in] = MultPC([x],Ωi, bi) // HE
[hr], [hi], [hn] = MultPC([ht−1],Ωh, bh) // HE

[Gatereset] = GCSig(AddCC([ir], [hr])) // GC

[Gateinput] = GCSig(AddCC([ii], [hi])) // GC

[Gatenew] = GCTanh( // GC

AddCC([in],MultCC([Gatereset], [hn])))
// HE

[ht] = AddCC([Gatenew], // HE
MultCC([Gateinput], // HE
AddCC([ht−1],−[Gatenew]))) // HE

return [ht]
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Figure 1: A cell of CRYPTOGRU with HE-based linear operations and GC-based non-linear operations.

Figure 1 illustrates the details of an internal view
of a full GRU cell, which consists of both linear
and non-linear operations. The linear operations
are in blue, as shown in Figure 1. In a GRU cell,
linear operations include matrix vector multiplica-
tions (MATMUL), element-wise add, minus, and
multiplications (ADD,1-,MUL). Element-wise mi-
nus function is implemented as adding negative
elements. In CRYPTOGRU, we map the neural net-
work layers to PAHE matrix-vector multiplication
for these linear operations. The activation func-
tion sigmoid and tanh are non-linear, which are
shown in red in Figure 1. For non-linear opera-
tions, we apply garbled circuits. The process of
updating hidden states inside a GRU cell is shown
in Algorithm 1. Here, the MultPC is a matrix
vector multiplication based on HE, where the ma-
trix is plaintext and the vector is ciphertext. We
use [ ] to denote a ciphertext. In this function, [ir]
is the product of [x] with the first third of Ωi, [ii]
is the product of [x] with the second third of Ωi,
and [in] is the product of [x] with the last third of
Ωi. This mechanism also applies to the product of
[ht−1] with Ωh. Here, the AddCC and MultCC
are element-wise addition and multiplication re-
spectively. In addition, the GCSig and GCTanh
are the GC-enabled sigmoid function and tanh
function respectively.

3.2 1 Replacing tanh with ReLU

In this paper, we aim to build a privacy-preserving
GRU network for text analysis. However, if we use
the HE and GC hybrid technique (Juvekar et al.,
2018) to implement a GRU network, the complex
GC-based activations including tanh and sigmoid
significantly prolong the inference latency. In GRU
RNN, the activation nonlinearity function is typi-
cally tanh but can also be implemented with the
rectified linear unit ReLU (Ravanelli et al., 2018;
Chung et al., 2014). More importantly, we investi-

Accuracy Latency
Datasets tanh ReLU tanh ReLU
IMDB 84.8% 84.6% 14860ms 3779ms
Yelp Reviews 77.3% 78.1% 5383ms 1852ms

Table 2: The tanh activation vs. ReLU activation.

gate that a ReLU activation is more GC-friendly
than a tanh activation. A 8-bit ReLU activation
requires∼ 4× less latency than a 8-bit tanh activa-
tion since a 8-bit ReLU requires only 24 non-XOR
gates, but a tanh needs 95 non-XOR gates.

We use some tests against two public datasets
to demonstrate this motivation. One dataset is the
IMDB, which consists of 50,000 movie reviews.
The other dataset is the Yelp review. Both datasets
are used in binary classification tasks. In a one-
layer GRU network, we compare the accuracy of
using tanh with ReLU on the two datasets and
compare the latency for a single sample inference.
The results are summarized in Table 2. From this
table, the GRU model with ReLU can gain almost
the same accuracy as that uses tanh but trade off its
training time for significant shorter latency during
the inference stage. We label this version as “CG-
1 ” in all the following text.

3.3 2 Quantizing both sigmoid and ReLU

During the computation of a full GRU cell, we
identify the latency bottleneck is at non-linear func-
tions. In Figure 1, we show the computation time
for non-linear operations hold about 91.37% for a
typical case. This is mainly due to the computa-
tional complexity for ciphertext is significantly pro-
portional to the underlying bit-length (Riazi et al.,
2018). As shown in Table 2, the latency of ReLU
is significant less than that of tanh due to simpler
computational complexity (Rouhani et al., 2018).

Then, we quantize the all default bit-length from
20 to 8 in activations. First, the design of garbled
circuits is proportional simpler after the quantiza-
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Figure 2: Latency comparison for two sets of experi-
ments. “B1”, the first “CG1”, and the first “CG2” rep-
resents a model with the input size set at 10 and the hid-
den size set as 128. “B2”, the second “CG1”, and the
second “CG2” represents a model with the input size
set at 100 and the hidden size set as 64. “CG1” and
“CG2” represents the CG- 1 and CG- 2 respectively.
For both baseline cases, the online latency is signifi-
cant. CG- 1 can reduce the online and offline latency
and CG- 2 can further reduce the online latency while
maintains the same level of the offline and setup.

tion since the garbled circuits are sensitive to the
bit length. Second, since these activation functions
do not have any weight parameters, the overall
accuracy of the neural networks with quantized ac-
tivation functions can still hold. We summarize
the results of testing CRYPTOGRU in Table 3 and
we compare the latency shown in Figure 2. This
benefit is further discussed in Section 4. We label
this version as “CG- 2 ” in all the following text.

4 Experiments and Results

4.1 Cryptographic settings

We develop the CRYPTOGRU with the Gazelle
SIMD Homomorphic operations in C++ (Juvekar
et al., 2018). Two main sets of cryptographic primi-
tives are used for the CRYPTOGRU inference. One
set is for homomorphic encryption and the other set
is for a garbled-circuit scheme. For the homomor-
phic encryption, we use Brakerski-Fan-Vercauteren
(BFV) scheme (Brakerski, 2012). Yao’s garbled
circuits scheme is used for a two-party secure com-
putation (Yao, 1986). We set the bit-length to 20 for
plaintext and 60 for ciphertext in the BFV scheme
as explained in Section 3.1.

4.2 Ablation studies from 1 and 2

We test our three versions of CRYPTOGRU for
the performance with respect to the latency. The
results are shown in Table 3 and Figure 2. In a sin-
gle GRU cell, there are 12 operations, 9 of which
are linear and 3 are non-linear as discussed in Sec-
tion 3.1. For each operation, we calibrate its setup

latency, offline latency, online latency. In addition,
the complexity of these operations are proportional
to the size of input and configured hidden size. We
use 30 time steps in the default settings. Here we
illustrate two sets of input and hidden sizes. Given
the input size is 10 and hidden size is 128, for the
baseline case, the offline latency is 1651.2ms, the
setup latency is 107.5ms, and the total latency is
1567.85ms. Compared to this case, CG- 1 can fin-
ish with a 258ms offline latency, 107.5ms setup
latency, and 3225.15ms online latency, resulting a
total of 3590.65ms latency.

The offline latency and online latency are im-
proved due to the simpler computational complex-
ity of using ReLU . Benchmark results show that
the ReLU function can use 6.4 times less circuit
gates for ciphertexts. This version is about 77%
faster than the baseline. By contrast, the CG- 2 has
the same setup and offline latency as the CG- 1 ,
but the online latency is only about 1290.06ms, re-
sulting that the total latency is 1655.56ms, which
is about 54% faster than the CG- 1 . The two tech-
niques show the same effect when the input and
hidden sizes are 100, and 64 respectively. The base-
line version use a total of 5392.91ms, the CG- 1
use a total of 1851.32ms, and the CG- 2 use a total
of 913.32ms. In this setting, the CG- 1 shows an
improvement of about 66% respect to the latency
of the baseline and CG- 2 shows a further improve-
ment of about 51% compared to the CG- 1 .

Applying two techniques 1 and 2 can decrease
the total latency and online message size for GC.
Compared with related work, CRYPTOGRU can
achieve low latency in a secure inference system
and maintain the same level of accuracy. There are
some limitations due to the nature of homomorphic
computing complexity. In addition, the recurrent
computation would raise noise in homomorphic
encryption. We mitigate the noise by bootstrapping
the ciphertext (Chillotti et al., 2020).

4.3 Results

We test the latency and accuracy of CRYPTOGRU
against public datasets and compare the perfor-
mance with the state-of-art prior related works. We
use Enron emails (Klimt and Yang, 2004) and Penn
Treebank datasets (Le et al., 2015) that are com-
mon to machine learning tasks for text to evaluate
the performance of the CG- 2 (referred as CRYP-
TOGRU in this section) as well as the IMDB and
Yelp datasets from Section 3.2. Experiments cov-
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Schemes Input Size Hidden Size Total Latency GC Msg Size
Baseline 10 128 15675.85 ms 213.4 MB
CG- 1 10 128 3590.65 ms 19.4 MB
CG- 2 10 128 1655.56 ms 7.7 MB
Baseline 100 64 5382.91 ms 106.7 MB
CG- 1 100 64 1851.32 ms 9.7 MB
CG- 2 100 64 913.32 ms 3.9 MB

Table 3: The benchmark results of CRYPTOGRU.

Datasets Neural Networks Accuracy(%) Latency
Enron
Emails

PrivFT - 7.95s∗
CryptoGRU 84.2 2.03s

Penn
Treebank

SHE 89.8ppw ∼576s
CryptoGRU 79.4ppw 4.14s

IMDB
HE-RNN 86.47∗ 70.6s∗
PrivFT 91.49∗ 7.90s∗
CryptoGRU 84.6 2.07s

Yelp
Review

PrivFT 96.06∗ 7.88s∗
CryptoGRU 91.3 0.91s

Table 4: Results from CRYPTOGRU and related work.

ered in Table 4 are typical classification or regres-
sion tasks for text datasets. We use the perplexity
per word (PPW) as the target for the Penn Treebank
dataset, which means the average log-probability
per word. This is a common regression task for this
dataset. Enron Emails is a dataset collection con-
sisting of 500,000 emails with subjects and body
messages.For Enron email datasets, we classify
emails as spam or ham. This is a binary classifica-
tion task. We perform the binary classification task
for the IMDB dataset that labels the reviews either
as positive or negative (Maas et al., 2011). For
Yelp reviews dataset 1, we also perform the binary
classification task. Reviews with a star greater than
and equal to 3 are regarded as positive.

We summarize the comparison results in Table 4.
For the Penn Treebank dataset, our CRYPTOGRU
can infer a sample in 4.14s, which is about 138
times faster than the SHE (Lou and Jiang, 2019).
For the IMDB datset, our CRYPTOGRU can finish
one sample inference within 2.07s on CPU, which
is about 33 times faster than the HE-RNN (Pod-
schwadt and Takabi, 2020). The CRYPTOGRU can
infer a sample from Enron Emails in 2.03 and Yelp
reviews in 0.91s.

5 Conclusion

Machine learning as a service attracts interest from
many aspects in industry. Public cloud companies
already launched prediction services. However,

1https://www.ics.uci.edu/~vpsaini/

sending plaintext to model servers for inference
raise attentions to user privacy issues. We propose
CRYPTOGRU, a secure inference building block
for gated recurrent unit that emphasises on text-
like or time series models. We elaborate all the
improvements based on theoretical analysis and
confirm the legitimacy for all optimization means.
CRYPTOGRU improves a GRU with homomorphic
encryption, share secrets, and garbled circuits het-
erogeneously to achieve low latency as well as high
accuracy.

Code Availability
CRYPTOGRU code is available at: https://
github.com/bfeng/CryptoGRU. The pub-
lic repository also includes software dependencies
like the ‘cryptoTools’ and the ‘Gazelle’ code. Used
datasets from all experiments are downloadable
from the internet as described in the text.
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