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Abstract

Embedding based methods are widely used
for unsupervised keyphrase extraction (UKE)
tasks. Generally, these methods simply cal-
culate similarities between phrase embeddings
and document embedding, which is insuffi-
cient to capture different context for a more
effective UKE model. In this paper, we pro-
pose a novel method for UKE, where local
and global contexts are jointly modeled. From
a global view, we calculate the similarity be-
tween a certain phrase and the whole docu-
ment in the vector space as transitional embed-
ding based models do. In terms of the local
view, we first build a graph structure based on
the document where phrases are regarded as
vertices and the edges are similarities between
vertices. Then, we proposed a new centrality
computation method to capture local salient
information based on the graph structure. Fi-
nally, we further combine the modeling of
global and local context for ranking. We eval-
uate our models on three public benchmarks
(Inspec, DUC 2001, SemEval 2010) and com-
pare with existing state-of-the-art models. The
results show that our model outperforms most
models while generalizing better on input doc-
uments with different domains and length. Ad-
ditional ablation study shows that both the lo-
cal and global information is crucial for unsu-
pervised keyphrase extraction tasks.

1 Introduction

Keyphrase extraction (KE) task aims to extract a set
of words or phrases from a document that can repre-
sent the salient information of the document (Hasan
and Ng, 2014). KE models can be divided into su-
pervised and unsupervised. Supervised methods
need large-scale annotated training data and always
perform poorly when transferred to different do-
main or type datasets. Compared with the super-
vised method, the unsupervised method is more
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universal and adaptive via extracting phrases based
on information from input document itself. In this
paper, we focus on the unsupervised keyphrase ex-
traction (UKE) model.

UKE has been widely studied (Mihalcea, 2004;
Wan and Xiao, 2008a; Bougouin et al., 2013;
Boudin, 2018; Bennani-Smires et al., 2018; Sun
et al., 2020) in the keyphrase extraction field. Re-
cently, with the development of text representa-
tion, embedding-based models (Bennani-Smires
et al., 2018; Sun et al., 2020) have achieved promis-
ing results and become the new state-of-the-art
models. Usually, these methods compute phrase
embeddings and document embedding with static
word2vec models (e.g. GloVe (Pennington et al.,
2014; Le and Mikolov, 2014; Pagliardini et al.,
2018)) or dynamic pre-trained language models
(e.g. BERT (Devlin et al., 2019)). Then, they rank
candidate phrases by computing the similarity be-
tween phrases and the whole document in the vec-
tor space. Though, these methods performed better
than traditional methods (Mihalcea, 2004; Wan and
Xiao, 2008a; Bougouin et al., 2013), the simple
similarity between phrase and document is insuffi-
cient to capture different kinds of context and limits
in performance.

Figure 1 shows an intuitive explanation for the
importance of context modeling. The nodes are
candidate phrase embeddings, the star is the doc-
ument embedding. Each black circle represents
one local context. Nodes in the same black circle
mean that these candidate phrases are all related to
one vital local information (e.g. one topic/aspect
of the document). Nodes in the red circle mean
that these candidate phrases are similar with the
document semantics. If only model the global con-
text via computing similarity between candidate
phrases and the document, the model will tend to
select red nodes, which will ignore local salient
information in three clusters. In order to get the
keywords accurately, we should take the local con-
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Figure 1: Visualization of embedding space. Nodes re-
fer to candidate phrase representation and star is docu-
ment representation. Black circles mean clusters which
contain local salient information. Red circle means
global similarity phrases.

text (black circles) and global context (red circle)
into consideration.

To obtain information from context adequately,
in this paper, we proposed a novel method which
jointly models the local and global context of the
input document. Specifically, we calculate the sim-
ilarity between candidate phrases and the whole
document for modeling global context. For lo-
cal context modeling, we first build a graph struc-
ture, which represents each phrase as nodes and the
edges are similarity between nodes. Then, we pro-
posed a new centrality computation method, which
is based on the insight that the most important in-
formation typically occurs at the start or end of
documents (document boundary) (Lin and Hovy,
1997; Teufel, 1997; Dong et al., 2021), to measure
salience of local context based on the graph struc-
ture. Finally, we further combine the measure of
global similarity and local salience for ranking. To
evaluate the effectiveness of our method, we com-
pare our method with recent state-of-the-art models
on three public benchmarks (Inspec, DUC 2001,
SemEval 2010). The results show that our model
can outperform most models while generalizing
better on input documents with different domains
and length. It is deservedly mentioned that our
models have a huge improvement on long scientific
documents.

2 Methodology

The overall framework of our model is shown in
Fig. 2. We follow the general process of unsuper-

vised keyphrase extraction. The main steps are as
follows: (1) We tokenize the document and tag the
document with part-of-speech (POS) tags. (2) We
extract candidate phrases based on part-of-speech
tags. We only keep noun phrases (NP) that con-
sist of zero or more adjectives followed by one or
multiple nouns (Wan and Xiao, 2008b). (3) We
use a pre-trained language model to map the doc-
ument text to low-dimension vector space and ex-
tract vector representation of candidate phrases and
the whole document. (4) We score each candidate
phrase with a rank algorithm which jointly models
the global and local context. (5) We extract phrases
with scores from the rank algorithm.

The main contribution of the whole process is
the rank algorithm we proposed in step (4), which
can be divided into three components: 1) phrase-
document similarity for modeling global context;
2) boundary-aware centrality for modeling local
context; 3) the combination of global and local
information. We will introduce the details of these
components in this section.

2.1 Document and Phrases Representations
Before introducing the rank algorithm, we first
make clear step (1) - (3). We follow the com-
mon practice and use StanfordCoreNLP Tools*

to accomplish step (1) and (2). After previous
universal steps, the document D was tokenized
into tokens {t1, t2, ..., tN} and candidate phrases
{KP0,KP1, ...,KPn} were extracted from docu-
ment D. Different from previous works (Bennani-
Smires et al., 2018) which use static vector to repre-
sent tokens in document, we employ BERT, which
is a strong pre-trained language model, to obtain
contextualized dynamic vector representations by
Equ. (1).

{H1, H2, ...,HN} = BERT({t1, t2, ..., tN}) (1)

Where Hi is the vector representation of token ti.
Then, we obtain the vector representation HKPi of
candidate phrases by computing the average of the
phrase’s token vectors. The document vector repre-
sentation is computed with max-pooling operation
by Equ. (2).

HD = Maxpooling({H1, H2, ...,HN}) (2)

Then, we can obtain document vector representa-
tion HD which contains the global semantic infor-
mation of the full document and a set of candidate

*https://stanfordnlp.github.io/CoreNLP/
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Figure 2: The framework of our unsupervised keyphrase extraction ranking model. (1) Get tokenized document
and POS tags. (2) Extract noun phrases that consist of zero or more adjectives followed by one or multiple nouns.
(3) Obtain embeddings of tokens in document with BERT. (4) Compute boundary-aware centrality and global
relevance of each candidate phrases with global and local similarities. (5) Rank and extract keyphrases from
candidate phrases with scores from the previous step.

phrase representations V = {HKPi}i=1,...,n. Based
on these representations, we will introduce the core
rank algorithm of our model in the next section.

2.2 Proposed Rank Algorithm

2.2.1 Phrase-Document Similarity
We first introduce the computation of the phrase-
document similarity for modeling global context.
Specifically, we empirically employ Manhattan
Distant (i.e. L1-distance) to compute similarity
by Equ. (3).

R(HKPi) =
1

‖ HD −HKPi ‖1
(3)

Where ‖ · ‖1 means Manhattan Distant and
R(HKPi) represent the relevance between candi-
date phrase i and the whole document.

2.2.2 Traditional Degree Centrality
Graph-based ranking algorithms for keyphrase ex-
traction represent a document as a graph G =
(V,E), where V = {HKPi}i=1,...,n is the set of
vector that represent nodes in graph (i.e. candidate
phrases in document), and E = {eij} is the set
of edges that represent interactions between candi-
date phrases. In this paper, we simply employ the

degree of nodes as centrality to measure the impor-
tance of nodes. The degree centrality for candidate
phrase i can be computed with Equ. (4).

C(HKPi) =
n∑

j=1

eij (4)

Where eij = HT
KPi
·HKPj is the dot-product similar-

ity score for each pair (HKPi , HKPj ). We could also
use other similarity measure methods (e.g. cosine
similarity), but we empirically find that the simple
dot-product performs better.

2.2.3 Boundary-Aware Centrality
Traditional centrality computation is based on the
assumption that the contribution of the candidate
phrase’s importance in the document is not affected
by the relative position of them, and the similarities
of two graph nodes are symmetric. From human
intuition, phrases that exist at the start or the end of
a document should be more important than others.
To implement this insight, we propose a new cen-
trality computation method called boundary-aware
centrality based on the assumption that important
information typically occurs near boundaries (the
start and end of documents) (Lin and Hovy, 1997;
Teufel, 1997).
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We reflect this assumption by employing a
boundary function db(i) over position of candidate
phrases. This function db is formulated as Equ (5).

db(i) = min(i, α(n− i)) (5)

Where n is the number of candidate phrases, and
α is a hyper-parameter that controls relative impor-
tance of the start and end of a document. For node
i and j, if db(i) < db(j), then node i is closer to
the boundary than node j. When calculating the
centrality of node i, we need to reduce the contribu-
tion of node j to the centrality of node i. Based on
this assumption and the boundary function db(i),
we can reconstruct the centrality computation of
node i in the graph as Equ. (6).

C(HKPi) =
∑

db(i)<db(j)

eij + λ
∑

db(i)≥db(j)

eij (6)

Where λ is used to reduce the influence of phrases
which do not appear near the boundary to the cen-
trality of node i.

Besides, we employ a threshold θ =
β(max(eij − min(eij)) to filter the noise from
nodes, which is far different from node i. We re-
move the influence of them to centrality by setting
all eij < θ to zero. β is a hyper-parameter that
controls the filter boundary. With the introduction
of the noise filter strategy, we rewrite the Equ. (6)
as Equ. (7).

C(HKPi) =
∑

db(i)<db(j)

max(eij − θ, 0)

+λ
∑

db(i)≥db(j)

max(eij − θ, 0)
(7)

Where C(HKPi) represents the local salience of
candidate phrase i.

For most long documents or news articles, the
author tends to write the key information at the
beginning of the document. Florescu and Caragea
(2017a) point out that the position-biased weight
can greatly improve the performance for keyphrase
extraction and they employ the sum of the posi-
tion’s inverse of words in the document as the
weight. For example, the word appearing at
2th, 5th and 10th, has a weight p(wi) = 1/2 +
1/5 + 1/10 = 0.8. Our boundary-aware centrality
has considered relative position information with
boundary function. To prevent double counting, we
follow a simpler position bias weight from (Sun

et al., 2020), which only considers where the candi-
date phrase first appears. The position bias weight
is computed by p(KPi) = 1

p1
, where p1 is the posi-

tion of the candidate keyphrase’s first appearance.
After that the softmax function is used to normalize
the position bias weight as follow:

p̂(KPi) =
exp(p(KPi))∑n

k=1 exp(p(KPk))
(8)

Then, boundary-aware centrality can be rewritten
as Equ. (9).

Ĉ(HKPi) = p̂(KPi) ·C(HKPi) (9)

We finally employ Ĉ(HKPi) to measure the local
salience of candidate phrase i.

2.2.4 Rank with Global and Local
Information

To consider global and local level information at
the same time, we simply combine the measure
of global relevance R(HKPi) and local salience
Ĉ(HKPi) of candidate phrase together with mul-
tiplication to obtain the final score by Equ. (10).

S(HKPi) = R(HKPi) · Ĉ(HKPi) (10)

Finally, we rank candidate phrases with their final
score S(HKPi) and extract top-ranked k phrases as
keyphrases of the document.

3 Experiments

3.1 Datasets and Evaluation Metrics
We evaluate our model on three public datasets: In-
spec, DUC2001 and SemEval2010. The Inspec
dataset (Hulth, 2003) consists of 2,000 short doc-
uments from scientific journal abstracts. We fol-
low previous works (Bennani-Smires et al., 2018;
Sun et al., 2020) to use 500 test documents and
the version of uncontrolled annotated keyphrases
as ground truth. The DUC2001 dataset (Wan and
Xiao, 2008a) is a collection of 308 long length
news articles with average 828.4 tokens. The Se-
mEval2010 dataset (Kim et al., 2010) contains
ACM full length papers. In our experiments, we
use the 100 test documents and the combined set
of author- and reader- annotated keyphrases.

We follow the common practice and evaluate the
performance of our models in terms of f-measure
at the top N keyphrases (F1@N), and apply stem-
ming to both extracted keyphrases and gold truth.
Specifically, we report F1@5, F1@10 and F1@15
of each model on three datasets.
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Models DUC2001 Inspec SemEval2010
F1@5 F1@10 F1@15 F1@5 F1@10 F1@15 F1@5 F1@10 F1@15

Statistical Models
TF-IDF 9.21 10.63 11.06 11.28 13.88 13.83 2.81 3.48 3.91
YAKE 12.27 14.37 14.76 18.08 19.62 20.11 11.76 14.4 15.19

Graph-based Models
TextRank 11.80 18.28 20.22 27.04 25.08 36.65 3.80 5.38 7.65
SingleRank 20.43 25.59 25.70 27.79 34.46 36.05 5.90 9.02 10.58
TopicRank 21.56 23.12 20.87 25.38 28.46 29.49 12.12 12.90 13.54
PositionRank 23.35 28.57 28.60 28.12 32.87 33.32 9.84 13.34 14.33
MultipartiteRank 23.20 25.00 25.24 25.96 29.57 30.85 12.13 13.79 14.92

Embedding-based Models
EmbedRank d2v 24.02 28.12 28.82 31.51 37.94 37.96 3.02 5.08 7.23
EmbedRank s2v 27.16 31.85 31.52 29.88 37.09 38.40 5.40 8.91 10.06
SIFRank 24.27 27.43 27.86 29.11 38.80 39.59 - - -
SIFRank+ 30.88 33.37 32.24 28.49 36.77 38.82 - - -
KeyGames 24.42 28.28 29.77 32.12 40.48 40.94 11.93 14.35 14.62

Proposed Model
Our Model 28.62 35.52 36.29 32.61 40.17 41.09 13.02 19.35 21.72

Table 1: Comparison of our models with other baselines.

DUC2001 Inspec SemEval2010
F1@5 F1@10 F1@15 F1@5 F1@10 F1@15 F1@5 F1@10 F1@15

Our Model 28.62 35.52 36.29 32.49 40.04 41.05 12.26 19.22 21.42
- Global Similarity 26.22 33.85 34.61 30.75 38.49 40.52 12.00 18.93 21.29
- Local Similarity 17.45 18.64 19.03 22.51 27.58 30.36 8.81 10.7 11.45

Table 2: The results of ablation experiments on three datasets.

3.2 Comparison Models and Implementation
Details

We compare our methods with three types of mod-
els to comprehensively prove the effectiveness of
our models. Firstly, we compare with traditional
statistical methods TF-IDF and YAKE (Campos
et al., 2018). Secondly, We compare five strong
graph-based ranking methods. TextRank (Mihal-
cea and Tarau, 2004) is the first attempt to con-
vert text to graph with the co-occurrence of words
and employ PageRank to rank phrases. SingleR-
ank (Wan and Xiao, 2008a) improves the graph
construction with a slide window. TopicRank
(Bougouin et al., 2013) considers keyphrase ex-
traction with topic distribution. PositionRank (Flo-
rescu and Caragea, 2017b) employs position in-
formation to weight the importance of phrases.
MultipartiteRank (Boudin, 2018) splits the whole
graph into sub-graph and ranks them with some
graph theory. Finally, We compare three state-
of-the-art embedding-based models. EmbedRank

(Bennani-Smires et al., 2018) first employs embed-
ding of texts with Doc2Vec/Sent2Vec and measures
the relevance of phrases and documents to select
keyphrases. SIFRank (Sun et al., 2020) improves
EmbedRank with contextualized embedding from
a pre-trained language model. KeyGames (Saxena
et al., 2020) creatively introduces game theoretic
approach into automatic keyphrase extraction.

All the models use Stanford CoreNLP Tools†

for tokenizing, part-of-speech tagging and noun
phrase chunking. And regular expression {〈NN. ∗
|JJ〉 ∗ 〈NN.∗〉} is used to extract noun phrases
as the candidate keyphrases. Our model’s hyper-
parameters for testing are chosen based on our re-
sults with the sampled 200 validation sets. The
test results are chosen from the following hyper-
parameter settings: α ∈ {0.5, 0.8, 1, 1.2, 1.5},
β ∈ {0.0, 0.1, 0.2, 0.3} and λ ∈ {0.8, 0.9, 1.0}.

†https://stanfordnlp.github.io/CoreNLP/
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3.3 Results

We report the results of our model in Tab. 1.
We can observe that our model consistently out-
performs most of the existing systems across
the three datasets, each with different document
length, covering two different domains. SIFRank
and SIFRank+ have a remarkable performance on
datasets with short input length due to document
embedding of short documents can better repre-
sent the semantic information of full document and
short document has fewer local information (e.g.
aspects), which make embedding-based models
perform well. We can further see that models with
global similarity (i.e. EmbedRank and SIFRank)
all outperform graph-based models on short length
documents (i.e. DUC2001 and Inspec).

Compared with other works, our model and
KeyGames, which is based on game theory, are
more generalized and can tackle short and long in-
put documents well. The advantages of our models
are very obvious on the long scientific document
dataset SemEval2010. This mainly benefits from
the boundary-aware centrality for modeling local
context.

3.4 Discussion

3.4.1 Ablation Study
We evaluate the contribution of the global and local
component of our model with ablation study and
the results can be seen in Tab. 2. From the results,
we can find that the modeling of local context is
more important than the modeling of global context.
When we remove local information from our model,
our model goes back to an embedding-based model.
The performance on SemEval2010 is not sensitive
to the removal of relevance-aware weighting. We
guess that embedding of long documents may con-
tain multi-aspects information which influences the
measure of similarity between the phrase and the
whole document, which leads to the influence of
global information being limited. Overall, we can
prove that jointly modeling global and local context
is crucial for unsupervised keyphrase extraction
and the revisit of degree centrality is effective for
modeling local context and meaningful for future
work.

3.4.2 Impact of Hyper-Parameters
In this section, we first analyze the impact of hyper-
parameter β and then report the best setting on each
dataset. We employ three hyper-parameters in our

Figure 3: Performance with different β.

models, β is used to filter noise and we can see
the impact of β from Fig. 3. β = 0.2 is a proper
configure for three datasets. α is used to control
the importance of the start or end of a document.
α < 1 means the start of the document is more
vital and α > 1 means the end of the document is
more vital.

The best settings are α = 0.8, β = 0.2, λ = 0.9
on DUC2001, α = 0.5, β = 0.2, λ = 0.9 on
Inspec and α = 1.5, β = 0.2, λ = 0.8 on Se-
mEval2010. From these settings, we can get the fol-
lowing three conclusions, which is conforming to
the characteristics of these datasets. For DUC2001
and Inspec, most vital information occurs at the
start of the document due to the fact that DUC2001
is from news articles, and Inspec is from the ab-
stract. For SemEval2010, the setting of α is con-
trary to previous datasets due to SemEval2010 is
long scientific documents and much key informa-
tion occurring at the end of the document (section
conclusion). The settings of λ on three datasets
show that long documents need to reduce more in-
fluence from contexts not near the boundary, which
is intuitive.

3.4.3 Impact of Different Similarity Measure
Methods

Our model employs Manhattan Distance to mea-
sure the similarity between phrases and the whole
document. We also attempt to employ different
measure methods. The results of different similar-
ity measure methods are shown in Tab. 3, and we
can see that the advantage of Manhattan Distance
is obvious. We also can see that cosine similarity
performs badly and is not suitable for our models.
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Similarity Measure DUC2001 Inspec SemEval2010
F1@5 F1@10 F1@15 F1@5 F1@10 F1@15 F1@5 F1@10 F1@15

Euclidean Distance 23.31 28.04 30.39 28.5 37.01 29.25 10.99 16.37 18.41
Cosine similarity 15.01 17.96 19.44 23.67 30.26 33.35 9.70 12.22 13.29

Manhattan Distance 28.62 35.52 36.29 32.49 40.04 41.05 12.26 19.22 21.42

Table 3: The results of different measure methods for similarity between candidate phrase and the whole document.

Figure 4: An example from DUC2001. The correct keyphrases are underlined. Red text means the extracted gold
truth and blue text means extracted phrases by our model.

3.4.4 Case Study

In this section, we show an example from
DUC2001 in Fig. 4. DUC2001 is a dataset from
news articles. The correct keyphrases are under-
lined. Red text means the extracted gold truth and
blue text means extracted phrases by our model.

We can see that all keyphrases occur at the start
of the document. Our model extracted many correct
phrases which are the same as gold truth and ex-
tracted the phrase “existing word record" which is
semantically same with “word record" in gold truth.
It is worth mentioning that our model focuses on
the boundary of the document and most extracted
phrases were located at the start of the document,
which is controlled by our setting of α. This proves
the effectiveness of our boundary-aware central-
ity. From the figure, we also can find that wrong
phrases are highly relevant to topics of this docu-
ment, which is influenced by our phrase-document
relevance weighting. This example shows that the
joint modeling of global and local context can im-
prove the performance of keyphrase extraction and
our model really captures local and global informa-

tion.

4 Related Work

4.1 Pre-trained Language Model
Pre-trained language model is the kind of model
that is trained on large-scale unlabeled corpus to
learn prior knowledge and then fine-tuned on down-
stream tasks. The pre-trained language model with-
out fine-tuning also can provide high quality em-
bedding of natural texts for unsupervised tasks.
Different from static word embedding, such as
Word2Vec (Mikolov et al., 2013), GloVe (Penning-
ton et al., 2014), and FastText (Joulin et al., 2017).
Pre-trained language models can encode words or
sentences with context dynamically and solve the
OOV problem. In addition, pre-trained language
models can provide document-level or sentence-
level embedding which contains more semantic
information than Sen2Vec (Pagliardini et al., 2018)
or Doc2Vec (Le and Mikolov, 2014).

ELMo (Peters et al., 2018) employs Bi-LSTM
structure and concatenate forward and backward
information to capture bidirectional information.
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BERT (Devlin et al., 2019) is a bidirectional trans-
former structure pre-trained language model. Com-
pared with the concatenation of bidirectional infor-
mation, BERT can capture better context informa-
tion. There are also a lot of other pre-trained lan-
guage models such as RoBERTa (Liu et al., 2019),
XLNET (Yang et al., 2020), etc. In this paper, we
choose BERT, the most used, to obtain vector rep-
resentation of documents and phrases by merging
the embedding of tokens.

4.2 Unsupervised Keyphrase Extraction

Unsupervised keyphrase extraction can be di-
vided into four main types: statistics-based mod-
els, graph-based models, topic-based models, and
embedding-based models. Statistics-based models
(Campos et al., 2018) mainly analyze an article’s
probability features such as word frequency fea-
ture, position feature, linguistic features, etc. Topic-
based models (Jardine and Teufel, 2014; Liu et al.,
2009) focus on how to mine keyphrases by making
use of the probability distribution of articles.

Graph-based models are the most proposed and
popular used in early works which convert the doc-
ument into a graph. Inspired by (Page et al., 1999),
(Mihalcea, 2004) proposed TextRank to convert
keyphrase extraction task into the rank of nodes in
graph. After this, various works focused on the ex-
pansion of TextRank. (Wan and Xiao, 2008a) pro-
posed SingleRank, which employs co-occurrences
of tokens as edge weights. (Bougouin et al., 2013)
proposed TopicRank, which assigns a significance
score to each topic by candidate keyphrase cluster-
ing. MultipartiteRank (Boudin, 2018) encodes top-
ical information within a multipartite graph struc-
ture. Recently, (Wang, 2015) proposed WordAt-
tractionRank, which added distance between word
embeddings into SingleRank, and (Florescu and
Caragea, 2017b) use node position weights, favor-
ing words appearing earlier in the text. This posi-
tion bias weighting strategy is very useful in news
articles and long documents.

Embedding-based models benefit from the de-
velopment of representation learning, which maps
natural language into low-dimension vector repre-
sentation. Therefore, in recent years, embedding-
based keyphrase extraction (Wang et al., 2016;
Bennani-Smires et al., 2018; Papagiannopoulou
and Tsoumakas, 2018; Sun et al., 2020) has
achieved good performance . (Bennani-Smires
et al., 2018) proposed EmbedRank, which ranks

phrases by measuring the similarity between phrase
embedding and document embedding. (Sun et al.,
2020) proposed SIFRank, which improves the
static embedding from EmbedRank with a pre-
trained language model.

Embedding-based models just measured the sim-
ilarity between document and candidate phrases
and ignored the local information. To jointly model
global and local context (Zheng and Lapata, 2019;
Liang et al., 2021), in this paper, we revisit de-
gree centrality, which can model local context, and
convert it into boundary-aware centrality. Then,
we combine global similarity and boundary-aware
centrality for local salient information to rank and
extract phrases.

5 Conclusion and Future Work

In this paper, we point out that embedding-based
models ignore the local information and propose a
novel model which jointly models global and local
context. Our model revisited degree centrality and
modified it with boundary function for modeling
local context. We combine global similarity with
our proposed boundary-aware centrality to extract
keyphrases. Experiments on 3 public benchmarks
demonstrate that our model can effectively capture
global and local information and achieve remark-
able results. In the future work, we will focus
on how to introduce our boundary-aware mecha-
nism into supervised end2end keyphrase extrac-
tion/generation models.
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