
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 1734–1744
November 7–11, 2021. c©2021 Association for Computational Linguistics

1734

Translation-based Supervision for Policy Generation in Simultaneous
Neural Machine Translation

Ashkan Alinejad, Hassan S. Shavarani and Anoop Sarkar
School of Computing Science

Simon Fraser University
BC, Canada

{aalineja,sshavara,anoop}@sfu.ca

Abstract
In simultaneous machine translation, finding
an agent with the optimal action sequence of
reads and writes that maintain a high level of
translation quality while minimizing the aver-
age lag in producing target tokens remains an
extremely challenging problem. We propose
a novel supervised learning approach for train-
ing an agent that can detect the minimum num-
ber of reads required for generating each target
token by comparing simultaneous translations
against full-sentence translations during train-
ing to generate oracle action sequences. These
oracle sequences can then be used to train a su-
pervised model for action generation at infer-
ence time. Our approach provides an alterna-
tive to current heuristic methods in simultane-
ous translation by introducing a new training
objective, which is easier to train than previous
attempts at training the agent using reinforce-
ment learning techniques for this task. Our ex-
perimental results show that our novel training
method for action generation produces much
higher quality translations while minimizing
the average lag in simultaneous translation.

1 Introduction

Simultaneous Machine Translation focuses on the
real-time translation of the stream of utterances
in the source language to the target language.
The essence of simultaneous translation imposes a
trade-off between translation quality and the delay
in the delivery of the translated utterances. Finding
the optimal segments in the input stream is one
important task to balance the delay and the trans-
lation quality. Segmentation based on the input
sentence structure (Ryu et al., 2006; Oda et al.,
2014; Shavarani et al., 2015) has been explored in
previous work.

The other approach to reach the optimal segmen-
tation strategy (policy) is to define the segmenta-
tion problem in reinforcement learning framework
(Satija and Pineau, 2016; Gu et al., 2017; Aline-
jad et al., 2018) in which the segmentation agent

chooses among two possible actions of READ
(waiting to receive more input) and WRITE (pro-
ducing an output based on the available input in-
ventory).

The segmentation agents can either use a fixed-
latency policy (Dalvi et al., 2018; Ma et al., 2019a)
or use an adaptive policy (Grissom II et al., 2014).
In the former, the agent waits for receiving a cer-
tain number of input tokens and performs pairs of
one WRITE and one READ afterward. In the lat-
ter, the agent looks for a specific signal in input to
permit a WRITE action; a signal that might come
from a parsing feature (Grissom II et al., 2014), a
stochastic classifier (Gu et al., 2017), or the atten-
tion module of the translation model (Arivazhagan
et al., 2019; Ma et al., 2020).

Recently, imitation learning has been consid-
ered to train adaptive policies. This thread of
research focuses on designing supervised oracle
agents that can compute the optimal sequence of
READ/WRITE actions; a sequence that leads the
model to produce the most similar translation to
that of an offline translation model1. Zheng et al.
(2019a,b) and Arthur et al. (2021) use pairs of (in-
put, reference) sentences to train the oracle agent.

In this work, we create such an oracle agent
using a fully trained neural machine translation
model. We do not use reference translations to im-
prove our agent and the translation model is not
fine-tuned based on the performance of the agent.
In spite of that, we are successful at lowering the
latency of simultaneous translation below all previ-
ous methods across many different language pairs
while retaining a competitive translation quality.
Our results also demonstrate the applicability of
our policy in augmenting existing simultaneous
neural translation approaches and improving their

1A model that waits to receive all the input stream tokens
and then starts to translate. Such a model can provide more
accurate translations in comparison to simultaneous translation
model that performs the task using partial and incomplete
information.



1735

(a) Example of a created Partial Translations Table

I want to study computer science </s>

I want to study computer </s>

I want to study </s>

I want to </s>

I want </s>

I </s> Ich

Ich

Ich

Ich

Ich

Ich

</s>

möchte

will

möchte

möchte

möchte

</s>

</s>

lernen

Computer

Informatik

</s>

studieren

studieren

</s>

</s>

(b) The created optimal segments in the input stream based on the Partial Translations Table above. The reference action
sequence of READs (R) and WRITEs (W) can be created based on the occupied cells in each column.

R I want to study computer science
W Ich möchte Informatik studieren

Figure 1: Example of partial translations table. Our oracle action trajectory is indicated by the red dash line and
the green cells are the words that our policy choose to WRITE. The subset of input words at each row is extended
with </s> token to improve the quality of partial translations.

translation quality and latency.
The remaining parts of the paper are as follows.

In Section 2, we formally define our imitation learn-
ing problem and describe our solution to it. In Sec-
tion 3, we examine our provided solution, and in
Section 4, we examine the solution and provide
experimental results and the analysis of our results.
Section 5 compares our work to the related work
and Section 6 concludes our work.

2 Supervised Approach

In simultaneous machine translation, we aim to
receive the input sequence X = {x1, . . . , xJ} in-
crementally and to transform it to the translated
tokens Y = {y1, . . . , yI} as accurately and as fast
as possible (by producing the output while read-
ing the input). Our supervised framework con-
tains two main components: The INTERPRETER

which takes subsets of the input sequence Xj =
{x1, . . . , xj} and generates partial translations
Y j = {yj1, . . . , y

j
mj}2; And the AGENT which de-

cides whether to send the next input subset Xj+1

to the INTERPRETER or not, based on the currently
generated output tokens (and possibly other use-
ful information) which represents the state of the
INTERPRETER.

2The last partial translation equals to the full-sentence
translation. i.e. Y J = Y

2.1 Reference Action Sequences

The central idea behind our method is our novel
definition of an optimal segment in simultaneous
translation. We define an optimal segment as a
segment of the input sequence which leads the IN-
TERPRETER to produce the exact same target words
in both simultaneous (partial) translation and full-
sentence translation. The initial optimal segment is
a prefix of the input and each subsequent optimal
segment is a further slice of the input. A reference
action sequence (or an oracle action sequence) is a
sequence that splits the input sentence into optimal
segments.

To achieve this goal we build a Partial Transla-
tions Table (PTT), each row of which corresponds
to the translation of a prefix of the source sen-
tence and each column represents a translated word.
More explicitly, the first row contains the transla-
tion of the first input token followed by the end-
of-sentence token </s> and each next row will
incrementally consider one more input token than
the immediate row before. By definition, the last
row will be equivalent to the full-sentence transla-
tion. Figure 1(a) shows an example of a generated
Partial Translations Table.

We construct the reference action sequence of
optimal segments using the PTT. Starting from the
leftmost word in the first row, we compare the con-
tent of each column with the word in its own col-
umn at the last row. If they are the same we add



1736

WRITE action to the oracle sequence and move to
the right cell. Otherwise, we will add READ and
move down to the lower cell.

Figure 1(b) demonstrates the optimal seg-
ments created using PTT for the example in-
put sentence “I want to study computer
science”. Using this stream, the first element of
the action sequence will be R since the READ row
is occupied in the first column. The next element
will be W since the WRITE row is occupied in
the second column. If we continue to look at each
column and generate a READ or WRITE action
we will end up with the reference action sequence
of “RWRWRRRRWW”.

We now formally define the reference action se-
quence generation algorithm. Let j be the number
of READs and i be the number of WRITEs at a
given time step t = i + j. At time step t + 1,
if the token yi in the full-sentence translation Y ,
equals to the i’th token in the partial translation
Y j , it means that the current subset of the input
words Xj is sufficient to generate the i’th word in
the output and our agent should choose to WRITE.
Otherwise, we will add a READ to our action se-
quence. Algorithm 1 defines the extraction process.

Our proposed algorithm for generating the refer-
ence action sequence is completely agnostic about
the underlying partial translation generation com-
ponent. We can choose offline (non-simultaneous)
or simultaneous translation models to create the
Partial Translations Table.

Algorithm 1 Generating action sequences

1: Init i← 1, j ← 1, actions← [R]
2: Y = Translate(XJ )
3: while i < len(Y ) do
4: Y j = Translate(Xj)
5: if i < len(Y j) and Y j

i = Yi then
6: actions← actions +[W]
7: i← i+ 1
8: else
9: actions← actions +[R]

10: if j < J then
11: j ← j + 1
12: return actions

2.2 Supervised Training
For any input sentenceX and its corresponding par-
tial translations Y 1, . . . , Y J , we can generate an
oracle action sequence A = {a1, . . . , aT }, where
T = I + J . This action sequence will be used

4× LSTM

Linear Linear

Action
Embed

act[-1] act[-2] act[-3]

Target
Embed

Source
Embed

tgt
token

src
token

next action

Figure 2: Architecture of our Agent. Passing the
last 3 generated actions alongside the source and tar-
get tokens help the model prevent long consecutive se-
quences of READs or WRITEs.

as the ground-truth for training our action gener-
ation policy in a supervised framework. At time
step t, the policy observes the current state of the
INTERPRETER ot by receiving xi and yj alongside
a history of actions ηh from previous time steps,
where ηh = {at−1, . . . , at−h}. We train a recurrent
neural network (RNN) to maximize the probabil-
ity of the current action at given all the previous
observations and actions:

maxP (at|a<t, o≤t; θ)

where θ is the set of parameters for our RNN.
At each time step, we pass the source token, the

target token, and all the actions in ηh through sepa-
rate embedding layers. The action embedding layer
is shared among actions. The source and target em-
beddings will be concatenated and go through a
linear layer. A separate linear layer receives con-
catenated action embeddings to extract features.
The concatenation of the outputs of the two linear
transformation layers go through 4 LSTM layers to
predict the next action. Figure 2 depicts the struc-
ture of our Agent. While the agent is modeled as an
LSTM, the underlying translation system we use is
a Transformer NMT model.

2.3 Improving Robustness

Minimizing the discrepancy between training and
inference, also known as exposure bias (Ranzato
et al., 2016), is an essential step in successfully
training a supervised agent. Our Agent has to learn



1737

how to generalize when facing unseen partial trans-
lations and make sure the errors do not compound
with each mistake in its trajectory.

The Interpreter Since we do not change the
translation component, if we consider the previ-
ously generated tokens instead of the ground truth
translations, we can guarantee that training and
inference are using the same procedure in creat-
ing the Partial Translations Table. Although this
makes the training process slower, it provides more
accurate results.

The Agent To prevent landing in unfamiliar ar-
eas of the prediction space with certain Agent mis-
takes we augment our training data of action se-
quences with additional examples that are intro-
duce distortions in the action sequence (Arthur
et al., 2021). For each input sentence X we gener-
ate its oracle action sequenceA and the set of obser-
vationsO = {o1, . . . , oT }with ot = (xi, yj , ηh) to
be used for training the Agent. Then we randomly
choose a time step t and check the training example
(ot, at) to see if it has the following conditions:

• t /∈ {1, T}.

• xi 6= </s>.

• yj 6= </s>.

If all of the conditions are true, then we swap the
action at from READ to WRITE or vice versa, and
we generate a new oracle action sequence for the
rest of the sentence. The observation ot is updated
according to the newly generated oracle. An exam-
ple is presented and discussed in the appendix.

Beam search vs. Greedy decoding Following
previous work, to boost the simultaneous nature
of the model, we use greedy decoding while per-
forming the simultaneous decoding in the INTER-
PRETER.

The simultaneous decoder (aka the INTER-
PRETER) can use beam search to get more ac-
curate results at expense of the translation speed.
However, this modification does not substantially
change the comparison with baseline methods, so
we leave this for future work.

Since the Partial Translation Table can be gener-
ated in an offline manner (and can be considered
a pre-processing step), we use beam search decod-
ing when creating these partial translations without
any negative effect on inference for simultaneous
translation at decoding time.

3 Experimental Setup

3.1 Dataset

We use IWSLT14 (Cettolo et al., 2014) and
WMT153 German to English and IWSLT15 (Lu-
ong et al., 2015) Vietnamese to English translation
tasks to examine the effectiveness of our approach.

Following Elbayad et al. (2020),we tokenize and
lower-case the German to English data and BPE
(Sennrich et al., 2016) sub-word tokenize both
sides.

For IWSLT14 data, we choose 10K separate
BPE merge operations resulting in approximately
8.8K German and 6.6K English sub-word types.
We train our models on 160K sentences and keep
7K of the train data as the validation set. We test
our models on a concatenation of dev2010 and
tst2010 to tst2013 (a total of 6750 sentence pairs).

For WMT15, we choose BPE merge operations
such that we achieve a joint BPE vocabulary of
size 32K types. We will randomly choose 20 per-
cent of the sentence pairs for training the Agent4.
We will also use the same subset for distorting the
samples and together we will end up having 1.5M
training examples. We use newstest2013 with 3000
sentence pairs as the validation set and test on new-
stest2015 with 2169 sentences.

For IWSLT15 Vietnamese to English, we use the
tokenized corpus prepared by Luong et al. (2015)
which contains 17K English and 7.7K Vietnamese
types. The data contains 133K training sentence
pairs. We use tst2012 (1553 sentence pairs) for
validation and tst2013 (1268 sentence pairs) to test
our models.

3.2 Evaluation

We evaluate the translation quality of the translated
sentences using tokenized word-level BLEU score
(Papineni et al., 2002)5. We use Average Lagging
(AL) (Ma et al., 2019b) to measure the decoding
latency for our models. AL measures the average
number of words we are lagging behind a policy
that produces words at a rate proportional to the
ratio between target and source lengths, with no
delay.

Our goal in this paper is to minimize the decod-
ing latency (get the lowest average lagging possi-

3http://www.statmt.org/wmt15/
4Making use of more data did not affect our results.
5https://github.com/moses-smt/

mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

http://www.statmt.org/wmt15/
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl


1738

DE→EN VI→EN
BLEU AL BLEU AL

wait-∞ + eval-wait-5 27.92 4.48 19.93 3.5
wait-∞ + oracle policy 34.25 4.14 28.29 4.6

multi-path + eval-wait-5 30.50 4.67 20.18 2.33
multi-path + eval-wait-5 + oracle policy 33.04 3.75 25.25 4.35

wait-∞ + (Zheng et al., 2019a) 31.18 4.50 20.71 3.31

Table 1: Comparison between different oracles on IWSLT14 DE→ EN and IWSLT15 VI→ EN datasets.

ble) while trying to balance the loss in the transla-
tion quality as measured by BLEU score. Among
the two measures, BLEU normally gets lower in
production settings, as the data is not as clean and
well prepared as the benchmark data. On the other
hand, improving average lagging is a more reliable
method to improve the user experience (in simulta-
neous translation).

3.3 Model Configuration

We use fairly standard Transformer-based NMT
system as implemented in Fairseq (Ott et al., 2019)
for all of our experiments6. We augment the im-
plementation to perform simultaneous translation
and we incorporate our Agent trained to produce
read and write actions with the base NMT system
and decoder. Our INTERPRETER can be addition-
ally configured to replicate the model proposed in
(Elbayad et al., 2020).

Our agent consists of 4 unidirectional LSTM
layers (Hochreiter and Schmidhuber, 1997) with
512 units in each layer. We use a history of the
last 3 previous action tokens (i.e. h = 3). Each
embedding and linear layer generates a vector of
dimension 512.

We train our Agent using Adam (Kingma and
Ba, 2014) optimizer. The initial learning rate is set
to 0.0008 and we use a fixed learning rate scheduler
with a shrink factor of 0.95.

After training for 50 epochs, our agent that is
trained to produce optimal segments obtains an av-
erage accuracy of 92.3% on the training data and
83% on the dev set when averaged over 4 experi-
ments on the IWSLT datasets.

6The implementation is available at:
https://github.com/sfu-natlang/
Supervised-Simultaneous-MT.

4 Results and Analysis

We compare the performance of our system against
two baselines:

• Wait-∞ also known as Wait-Until-End,
where the full sentences are read during train-
ing before generating any translations . This is
an extreme case of Wait-k strategy (Ma et al.,
2019a) in which the model reads the first k
words of the input and then performs consec-
utive WRITE/READ actions afterwards.

• Multi-path model proposed by (Elbayad
et al., 2020). The multi-path model jointly
trains the translation component on decoding
strategies with various latencies, which makes
this model effective on a wide range of delay
values.

For both of these settings, we will use the eval-
wait-k (Ma et al., 2019a) policy, where each written
word is exactly k words behind the source side. We
compare the performance of our model against the
state-of-the-art (SotA) in section 4.2.

4.1 Performance of Oracle Policy
Table 1 compares the performance of our policy for
DE→ EN and VI→ EN language pairs on IWSLT
dataset. wait-∞ + eval-wait-5 corresponds to the
model in which we decode an offline translation
component using wait-5 policy. In wait-∞+ oracle
policy, we use an offline INTERPRETER to generate
partial translations in PTT, and then we use our al-
gorithmic oracle to generate policies. The policy in
multi-path + eval-wait-5 is generated by decoding
multi-path model with wait-5 policy. multi-path +
eval-wait-5 + oracle policy is the model where we
first use the multi-path model with wait-5 decoding
path to generate partial translation and then we use
our algorithm to generate oracle policy. Our choice
of eval-wait-5 for decoding the multi-path model

https://github.com/sfu-natlang/Supervised-Simultaneous-MT
https://github.com/sfu-natlang/Supervised-Simultaneous-MT


1739

0 2 4 6 8

20

25

30

35

Average Lagging

B
L

E
U

sc
or

e
DE→EN

−4 −2 0 2 4 6 8
10

15

20

25

30

Average Lagging

EN→DE

−2 0 2 4 6 8

15

20

25

30

Average Lagging

VI→EN

0 2 4 6 8 10

20

25

30

Average Lagging

EN→VI

Figure 3: Translation quality vs delay of our oracle policy compared to multi-path policy. Markers: represents
wait-∞ model. corresponds to the multi-path model. each point in the curve is generated using eval-wait-k
policy for k ∈ {1, 3, 5, 7, 9}. points to the wait-∞ + our trained policy. represents the multi-path + eval-wait-5
+ our trained policy.

is based on the fact that the multi-path model gen-
erates more accurate translations via eval-wait-5
compared to offline decoding (Elbayad et al., 2020).
The numbers in the last row of Table 1 are gener-
ated by using an offline INTERPRETER and the
oracle in (Zheng et al., 2019a).

4.1.1 Our oracle policy vs. static policies
On both offline and multi-path settings, our ora-
cle policy outperforms eval-wait-5 policy both in
terms of translation quality and latency on DE→
EN language direction. Our policy on VI→ EN
experiment is slightly more delayed, but the trans-
lation quality is considerably more accurate. The
performance of the eval-wait-5 policy improves
when we replace the offline INTERPRETER with
the multi-path model. However, the multi-path
model does not outperform eval-wait-5 combined
with our oracle policy.

The delay of our oracle policy decreases when
we change the underlying translation component to
a multi-path translation model so using a base trans-
lation model trained to handle shorter segments can
be combined with an agent trained on our reference
actions to improve the average lagging.

4.1.2 Our oracle policy vs dynamic policies
Zheng et al. (2019a,b); Arthur et al. (2021) propose
algorithmic methods for generating oracle action
sequences. The oracle in (Zheng et al., 2019b) in-
troduces a new delay token in the target vocabulary
which makes their INTERPRETER incompatible to
our agent.

Arthur et al. (2021) use alignment-based seg-
ments to jointly train their policy and translation

components. Only using alignments extracted from
fast-align (Dyer et al., 2013) on an offline transla-
tion component gives us very low BLEU scores.

The oracle in (Zheng et al., 2019a) is the clos-
est model to our work. Unlike our policy, they
compare each word in partial translations to the
target words to find the optimal action sequence.
The numbers in Table 1 correspond to the closest
results we could get by searching for the optimal
hyperparameters. Our oracle policy outperforms
their oracle policy in both language pairs.

4.2 Trained Agent Performance

Figure 3 shows the results of our trained policy in
comparison with the policy trained with multi-path
method on DE↔ EN and VI↔ EN language pairs.
We will apply our policy on two different settings:
(1) When we use a translation model trained on
full sentences to fill up the partial translations table
(offline + our policy) and (2) generating transla-
tions in PTT via multi-path model decoded with
eval-wait-5 trajectory (multi-path + our policy). In
both settings, we are using a beam of size 5 for
generating each partial translation.

First, we investigate how the capabilities of the
INTERPRETER can affect the quality of the gen-
erated policy. By comparing the offline INTER-
PRETER (marked with star) and multi-path INTER-
PRETER (marked with diamond) we can see that the
offline model can achieve a higher translation qual-
ity with a more delayed policy. This is in align with
our experimental results with their oracles (Section
4.1) where using multi-path INTERPRETER gave
us less delayed policy by sacrificing translation
quality.



1740

2 6 10
18

20

22

24

26

28

30

32

AL

B
L

E
U

MoChA
MILk
MMA-H
MMA-IL
SL
multi-path
Our oracle policy
Our trained policy
offline

Figure 4: Comparison against SoTA results on WMT15 DE → EN language pair. SL is the supervised learning
approach proposed by (Zheng et al., 2019a). "Our oracle policy" generates the oracle action sequences for partial
translations generated by wait-∞ translation model, and "Our trained policy" is our Agent trained to learn that
oracle.

By comparing the multi-path model (marked
with square) with our trained policy we can see
that in both DE → EN and VI → EN language
pairs our policy outperforms the multi-path model
in both settings. This is because our policy gives
the INTERPRETER the freedom to translate quickly
at the beginning and have consecutive reads later in
the sentence, which consequently results in higher
translation quality and lower latency.

In EN→ DE and EN→ VI our agent generates
translation with much lower delays with slightly
lower translation scores. This happens because
translation in this direction can be monotonic with-
out losing much in terms of translation scores. In
this scenario, our model has a higher chance of
making mistakes as the length of the sentence gets
longer; while the multi-path model following the
static policy of eval-wait-k obtains slightly higher
translation scores.

On multi-path settings, for DE→ EN language
pair, our trained policy has a much lower latency
while at the same time it is considerably more ac-
curate in terms of translation scores compared to
the eval-wait-1 policy. Similarly, for VI → EN
experiment, the translation quality of our policy
is close to eval-wait-7 with a delay less than eval-
wait-5 policy. This implies that we can boost the
performance of the previously proposed methods
by combining their translation system with an agent
trained using our proposed oracle policy.

4.3 Performance on WMT15 Dataset

In order to compare the performance of our trained
agent with other state-of-the-art methods, we will
conduct experiments on the WMT15 DE→ EN
dataset. As depicted in Figure 4, our oracle policy
is able to generate action sequences with AL of
around 6, while our translation quality is as good
as the offline model. On datasets with longer sen-
tences like WMT, achieving oracle-level accuracy
is a harder task. However, compared to a static
policy like eval-wait-k, our Agent generates action
sequences that perform similar to eval-wait-3. Al-
though the policies in MoChA (Chiu and Raffel,
2018), MILK (Arivazhagan et al., 2019) and their
recent version of MMA-H and MMA-IL (Ma et al.,
2020) generate more accurate translations, the de-
lay of their systems is considerably higher than our
approach.

The BLEU scores of the previously proposed su-
pervised learning approach in (Zheng et al., 2019a)
is much worse than our model when we consider
AL values that are similar to ours. We obtain +2
points higher BLEU score for translation quality
with almost the same delay as their model.

4.4 Qualitative Analysis

Waiting for long consecutive words in the source
is not always a good strategy in translating from
SOV to SVO languages. Table 3 shows an example
where our policy can generate each word as soon as
it receives them. Such examples explain why our
model performs better than wait-k models which



1741

(a) Generated actions and translations via our supervised agent
R wir mussten uns wegen der [an] [wäl] te [us] w. sorgen machen .
W we had to worry about [law] yers and so on .

(b) Generated actions and translations via Multi-path agent
R wir mussten uns wegen der [an] [wäl] te [us] w. sorgen machen .
W we had to look forward because of the [law] yers ...

Table 2: The performance comparison of generated actions from our model (a) and multi-path model (b) on the
generated and reference translations. Each column shows a single READ (R) or WRITE (W). Subword tokens
ending in @@ are shown inside brackets.

R aber wo sind wir nützlich ?
W but where are we useful ?

Table 3: An example translation from our model where
word-by-word translation generates good translations
and waiting for 5 words is redundant.

are forced to wait for k words even when there is
sufficient information to start the translation.

Table 2 compares the output of our model for
an example German sentence to that of the multi-
path model decoded with eval-wait-5 policy. As
we mentioned earlier, our model does not wait too
long to translate the tokens for which it has enough
information. Please compare the translation time
of “wir” and “mussten” in Table 2.(a) and Table
2.(b). It is apparent that eval-wait-5 must wait for
5 tokens to translate the tokens that it has already
had enough information about them for a while.

In addition, our model does not translate to-
kens based on immature information. For exam-
ple, in table 2, our model waits until it receives
“sorgen machen” which is essential for translat-
ing “to worry” as opposed to the eval-wait-5 de-
sign which forces the model to produce the generic
verb “to look forward” which causes the
model to lose information about the verb. While
forcing this step lowers the latency, the translated
sentence becomes highly inaccurate.

5 Related Work

Satija and Pineau (2016); Gu et al. (2017) propose
to use a reinforcement learning algorithm to train
the Agent. Their proposed agent observes the pre-
trained offline translation model to learn when to
READ or WRITE. Alinejad et al. (2018) improve
their model by introducing a new predict token in
order to have a better estimate of the proper action
for the next time step.

Monotonic attention mechanism (Raffel et al.,
2017; Chiu and Raffel, 2018) proposes to use at-

tention mechanism to chunk the source and target
sequences. However, they restrict the scope of their
attention to the immediate input, which can be prob-
lematic for reordering words in the translation task.
Arivazhagan et al. (2019); Ma et al. (2020) address
this problem by attending to all the already seen
words.

The static eval-wait-k policy proposed by Ma
et al. (2019a) reads k words and then consecutively
reads a word and decodes one word until the </s>
is written to the output. The Wait-k model trains
a translation component using the eval-wait-k de-
coding strategy which leads to generating more
effective policies. Elbayad et al. (2020) show by
training the translation component jointly on var-
ious wait-k trajectories, the model can generalize
better over various eval-wait-k policies.

Arthur et al. (2021) propose to use word-
alignments to be used as the reference for training
their Agent jointly with the translation component,
using imitation learning.

A similar supervised approach proposed by
Zheng et al. (2019a), where an oracle is gener-
ated for a fixed INTERPRETER and then an Agent
will be trained to learn it. Their approach is dif-
ferent from ours in that: (a) our model compares
partial translations with full-sentence translations
of the same INTERPRETER, which leads to having
an oracle that finds notably more effective policies
without any unnecessary hyper-parameters. (2) we
are using a completely different architecture (3) we
explore the performance of our oracle using trans-
lation components other than offline translation
models.

6 Conclusion

We present a novel idea for generating optimal seg-
ments in simultaneous translation by comparing
the output of a simultaneous system for translation
with an offline translation model. This provides



1742

us with oracle action sequences that we can use to
train an Agent used to produce read and write ac-
tions for simultaneous translation. Our experimen-
tal results show that by using an offline translation
component, our agent can generate better policies
in terms of translation quality and delay compared
to our baselines. We also show that our agent can
be trained by previously proposed translation com-
ponents and generate better policies compared to
what they have reported before.

References
Ashkan Alinejad, Maryam Siahbani, and Anoop Sarkar.

2018. Prediction improves simultaneous neural ma-
chine translation. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3022–3027, Brussels, Belgium.
Association for Computational Linguistics.

Naveen Arivazhagan, Colin Cherry, Wolfgang
Macherey, Chung-Cheng Chiu, Semih Yavuz,
Ruoming Pang, Wei Li, and Colin Raffel. 2019.
Monotonic infinite lookback attention for simulta-
neous machine translation. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 1313–1323, Florence,
Italy. Association for Computational Linguistics.

Philip Arthur, Trevor Cohn, and Gholamreza Haffari.
2021. Learning coupled policies for simultaneous
machine translation using imitation learning. In Pro-
ceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 2709–2719, Online.
Association for Computational Linguistics.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa
Bentivogli, and Marcello Federico. 2014. Report
on the 11th iwslt evaluation campaign, iwslt 2014.
In Proceedings of the International Workshop on
Spoken Language Translation, Hanoi, Vietnam, vol-
ume 57.

Chung-Cheng Chiu and Colin Raffel. 2018. Monotonic
chunkwise attention. In International Conference
on Learning Representations.

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, and
Stephan Vogel. 2018. Incremental decoding and
training methods for simultaneous translation in neu-
ral machine translation. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 493–499, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameter-
ization of IBM model 2. In Proceedings of the
2013 Conference of the North American Chapter of

the Association for Computational Linguistics: Hu-
man Language Technologies, pages 644–648, At-
lanta, Georgia. Association for Computational Lin-
guistics.

Maha Elbayad, Laurent Besacier, and Jakob Verbeek.
2020. Efficient Wait-k Models for Simultaneous
Machine Translation. In Interspeech 2020 - Confer-
ence of the International Speech Communication As-
sociation, pages 1461–1465, Shangai (Virtual Conf),
China.

Alvin Grissom II, He He, Jordan Boyd-Graber, John
Morgan, and Hal Daumé III. 2014. Don’t until the
final verb wait: Reinforcement learning for simulta-
neous machine translation. In Empirical Methods in
Natural Language Processing.

Jiatao Gu, Graham Neubig, Kyunghyun Cho, and Vic-
tor O.K. Li. 2017. Learning to translate in real-time
with neural machine translation. In 15th Conference
of the European Chapter of the Association for Com-
putational Linguistics (EACL), Valencia, Spain.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9:1735–
80.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. International
Conference on Learning Representations.

Minh-Thang Luong, Christopher D Manning, et al.
2015. Stanford neural machine translation systems
for spoken language domains. In Proceedings of the
international workshop on spoken language transla-
tion, pages 76–79, Da Nang, Vietnam.

Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng,
Kaibo Liu, Baigong Zheng, Chuanqiang Zhang,
Zhongjun He, Hairong Liu, Xing Li, Hua Wu, and
Haifeng Wang. 2019a. STACL: Simultaneous trans-
lation with implicit anticipation and controllable la-
tency using prefix-to-prefix framework. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3025–3036,
Florence, Italy. Association for Computational Lin-
guistics.

Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng,
Kaibo Liu, Baigong Zheng, Chuanqiang Zhang,
Zhongjun He, Hairong Liu, Xing Li, Hua Wu, and
Haifeng Wang. 2019b. STACL: Simultaneous trans-
lation with implicit anticipation and controllable la-
tency using prefix-to-prefix framework. pages 3025–
3036.

Xutai Ma, Juan Miguel Pino, James Cross, Liezl Puzon,
and Jiatao Gu. 2020. Monotonic multihead attention.
In International Conference on Learning Represen-
tations.

Yusuke Oda, Graham Neubig, Sakriani Sakti, Tomoki
Toda, and Satoshi Nakamura. 2014. Optimizing seg-
mentation strategies for simultaneous speech transla-
tion. In Proceedings of the 52nd Annual Meeting of

https://doi.org/10.18653/v1/D18-1337
https://doi.org/10.18653/v1/D18-1337
https://doi.org/10.18653/v1/P19-1126
https://doi.org/10.18653/v1/P19-1126
https://www.aclweb.org/anthology/2021.eacl-main.233
https://www.aclweb.org/anthology/2021.eacl-main.233
https://isl.anthropomatik.kit.edu/pdf/Cettolo2014.pdf
https://isl.anthropomatik.kit.edu/pdf/Cettolo2014.pdf
https://openreview.net/forum?id=Hko85plCW
https://openreview.net/forum?id=Hko85plCW
https://doi.org/10.18653/v1/N18-2079
https://doi.org/10.18653/v1/N18-2079
https://doi.org/10.18653/v1/N18-2079
https://www.aclweb.org/anthology/N13-1073
https://www.aclweb.org/anthology/N13-1073
https://doi.org/10.21437/Interspeech.2020-1241
https://doi.org/10.21437/Interspeech.2020-1241
https://www.aclweb.org/anthology/D14-1140.pdf
https://www.aclweb.org/anthology/D14-1140.pdf
https://www.aclweb.org/anthology/D14-1140.pdf
http://www.phontron.com/paper/gu17eacl.pdf
http://www.phontron.com/paper/gu17eacl.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://nlp.stanford.edu/pubs/luong-manning-iwslt15.pdf
https://nlp.stanford.edu/pubs/luong-manning-iwslt15.pdf
https://doi.org/10.18653/v1/P19-1289
https://doi.org/10.18653/v1/P19-1289
https://doi.org/10.18653/v1/P19-1289
https://doi.org/10.18653/v1/P19-1289
https://doi.org/10.18653/v1/P19-1289
https://doi.org/10.18653/v1/P19-1289
https://openreview.net/forum?id=Hyg96gBKPS
https://doi.org/10.3115/v1/P14-2090
https://doi.org/10.3115/v1/P14-2090
https://doi.org/10.3115/v1/P14-2090


1743

the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 551–556, Baltimore,
Maryland. Association for Computational Linguis-
tics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 48–53, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Colin Raffel, Minh-Thang Luong, Peter J. Liu, Ron J.
Weiss, and Douglas Eck. 2017. Online and linear-
time attention by enforcing monotonic alignments.
In Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pages 2837–2846.
PMLR.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. In 4th Inter-
national Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings.

Koichiro Ryu, Shigeki Matsubara, and Yasuyoshi In-
agaki. 2006. Simultaneous English-Japanese spo-
ken language translation based on incremental de-
pendency parsing and transfer. In Proceedings of the
COLING/ACL 2006 Main Conference Poster Ses-
sions, pages 683–690, Sydney, Australia. Associa-
tion for Computational Linguistics.

Harsh Satija and Joelle Pineau. 2016. Simultaneous
machine translation using deep reinforcement learn-
ing. Abstraction in Reinforcement Learning Work-
shop, ICML 2016, (33).

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural Machine Translation of Rare Words
with Subword Units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Hassan S Shavarani, Maryam Siahbani, Rantim M
Seraj, and Anoop Sarkar. 2015. Learning segmen-
tations that balance latency versus quality in spoken
language translation. In Proceedings of the Eleventh
International Workshop on Spoken Language Trans-
lation (IWSLT 2015), Da Nang, Vietnam, volume 26,
page 52.

Baigong Zheng, Renjie Zheng, Mingbo Ma, and Liang
Huang. 2019a. Simpler and faster learning of
adaptive policies for simultaneous translation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1349–
1354, Hong Kong, China. Association for Computa-
tional Linguistics.

Baigong Zheng, Renjie Zheng, Mingbo Ma, and Liang
Huang. 2019b. Simultaneous translation with flexi-
ble policy via restricted imitation learning. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5816–
5822, Florence, Italy. Association for Computa-
tional Linguistics.

https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://proceedings.mlr.press/v70/raffel17a.html
http://proceedings.mlr.press/v70/raffel17a.html
http://arxiv.org/abs/1511.06732
http://arxiv.org/abs/1511.06732
https://www.aclweb.org/anthology/P06-2088
https://www.aclweb.org/anthology/P06-2088
https://www.aclweb.org/anthology/P06-2088
https://pdfs.semanticscholar.org/ee1e/acd383ffaf0b4b00d7326dd4e6efc80dbb74.pdf
https://pdfs.semanticscholar.org/ee1e/acd383ffaf0b4b00d7326dd4e6efc80dbb74.pdf
https://pdfs.semanticscholar.org/ee1e/acd383ffaf0b4b00d7326dd4e6efc80dbb74.pdf
http://www.aclweb.org/anthology/P16-1162.pdf
http://www.aclweb.org/anthology/P16-1162.pdf
https://www2.cs.sfu.ca/~anoop/papers/pdf/pareto-iwslt2015.pdf
https://www2.cs.sfu.ca/~anoop/papers/pdf/pareto-iwslt2015.pdf
https://www2.cs.sfu.ca/~anoop/papers/pdf/pareto-iwslt2015.pdf
https://doi.org/10.18653/v1/D19-1137
https://doi.org/10.18653/v1/D19-1137
https://doi.org/10.18653/v1/P19-1582
https://doi.org/10.18653/v1/P19-1582


1744

I want to study computer science </s>

I want to study computer </s>

I want to study </s>

I want to </s>

I want </s>

I </s> Ich

Ich

Ich

Ich

Ich

Ich

</s>

möchte

will

möchte

möchte

möchte

</s>

</s>

lernen

Computer

Informatik

</s>

studieren

studieren

</s>

</s>

I want to study computer science </s>

I want to study computer </s>

I want to study </s>

I want to </s>

I want </s>

I </s> Ich

Ich

Ich

Ich

Ich

Ich

</s>

möchte

will

möchte

möchte

möchte

</s>

</s>

lernen

Computer

Informatik

</s>

studieren

studieren

</s>

</s>

I want to study computer science </s>

I want to study computer </s>

I want to study </s>

I want to </s>

I want </s>

I </s> Ich

Ich

Ich

Ich

Ich

Ich

</s>

möchte

will

möchte

möchte

möchte

</s>

</s>

lernen

Computer

Informatik

</s>

studieren

studieren

</s>

</s>

Figure 5: The first table shows an example of our oracle action sequence. In the middle table, we switch the second
WRITE action to a READ action. We will continue reading until we observe the same word, then we can come
back to the original path. In this scenario, the final translation does not change. In the last table, we distort the 5th
READ into a WRITE action. Here, the generated translation is slightly changed as we are writing the wrong word.


