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Abstract

Supervised systems have nowadays become
the standard recipe for Word Sense Disam-
biguation (WSD), with Transformer-based
language models as their primary ingredient.
However, while these systems have certainly
attained unprecedented performances, virtu-
ally all of them operate under the constraining
assumption that, given a context, each word
can be disambiguated individually with no ac-
count of the other sense choices. To address
this limitation and drop this assumption, we
propose CONtinuous SEnse Comprehension
(CONSEC), a novel approach to WSD: lever-
aging a recent re-framing of this task as a
text extraction problem, we adapt it to our for-
mulation and introduce a feedback loop strat-
egy that allows the disambiguation of a target
word to be conditioned not only on its con-
text but also on the explicit senses assigned
to nearby words. We evaluate CONSEC and
examine how its components lead it to sur-
pass all its competitors and set a new state of
the art on English WSD. We also explore
how CONSEC fares in the cross-lingual set-
ting, focusing on 8 languages with various de-
grees of resource availability, and report signif-
icant improvements over prior systems. We re-
lease our code at https://github.com/
SapienzaNLP/consec.

1 Introduction

Being able to understand the meaning of the vari-
ous words within a particular text is a crucial prob-
lem in Natural Language Processing (NLP), with
Word Sense Disambiguation (WSD) as arguably its
most famous framing: given a word in context, this
task aims to pair it with its most suitable meaning,
chosen from a fixed sense inventory (Bevilacqua
et al., 2021). Similarly to the vast majority of other
NLP tasks, the advent of Deep Learning has signif-
icantly affected the landscape of WSD and has led
to supervised neural models becoming its primary
actors. In their simplest flavour, these approaches

essentially frame this task as a multi-label classifi-
cation problem over a large vocabulary of discrete
senses (Raganato et al., 2017b; Hadiwinoto et al.,
2019). However, although effective and straight-
forward, this formulation suffers from a number
of pitfalls, most notably i) senses are only defined
via their training set occurrences, with their actual
linguistic meaning not explicitly embedded within
the neural model, and ii) these architectures either
behave poorly on rare and unseen senses, or can-
not handle them at all. In order to address these
issues, recent literature has proposed more sophis-
ticated forms of supervision where definitions of
senses, i.e. glosses (Kumar et al., 2019; Blevins
and Zettlemoyer, 2020), and relational knowledge
coming from the sense inventory (Bevilacqua and
Navigli, 2020; Conia and Navigli, 2021) are inte-
grated within the neural models.

Although performances have been rising steadily
and are now beyond the 80% barrier on the estab-
lished framework of Raganato et al. (2017a), vir-
tually all modern approaches work under the lim-
iting operational hypothesis that the target word’s
explicit meaning does not depend upon those of
its surrounding words, differently from pre-neural
strategies (Navigli and Velardi, 2004; Cuadros and
Rigau, 2008). Indeed, while the commonly used
pre-trained Transformer architectures and their self-
attention mechanism (Vaswani et al., 2017; Devlin
et al., 2019) certainly help in contextualizing a
word on its context and latently model sense in-
formation, the actual disambiguation is performed
independently, that is, without taking into consider-
ation the explicit senses assigned to nearby words.1

This assumption, likely a heritage from the original
classification formulation, creates an intrinsic dif-
ference between the behavior of humans and that
of systems.

1Henceforth, unless otherwise specified, we will always
use the word independent with this connotation when referring
to the disambiguation process.

https://github.com/SapienzaNLP/consec
https://github.com/SapienzaNLP/consec
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In this work, we focus on this shortcoming
and propose CONtinuous SEnse Comprehension
(CONSEC), a novel approach to WSD that ex-
ploits a feedback loop strategy to condition the
disambiguation process also on the senses of co-
occurring words. In particular, given an input
text, we define an ordering of the words contained
therein and disambiguate each word conditioning
not only on its context and possible meanings, but
also on the senses assigned to those words already
classified. As the underlying neural architecture, in-
spired by the recent re-framing of WSD presented
by Barba et al. (2021a) and its nimble adaptability
to our setting, we leverage a Transformer model
trained with a text extraction objective: given as
input a text with a target word, its possible sense
definitions and the list of already disambiguated
words along with their chosen glosses, the model
has to learn to extract the text span associated with
the sense definition that best expresses the target
word’s meaning. Backed by several experiments on
the English all-words WSD task (Raganato et al.
(2017a), we show the benefits of our formulation,
which surpasses the prior state of the art by 1.3
F1 points, and perform a complete ablation of the
various components that lead CONSEC to achieve
unprecedented performances. Furthermore, we
also examine the scalability of our approach on
the cross-lingual setting, evaluating CONSEC on
the recently proposed framework of Pasini et al.
(2021), and report significant improvements over
prior systems. The contributions of this work are
therefore as follows:

• We put forward CONSEC, a novel approach
to WSD where the disambiguation process
is conditioned not only on context and possi-
ble meanings, but also on the explicit senses
assigned to nearby words.

• Our formulation surpasses all modern ap-
proaches on both English and cross-lingual
WSD tasks by significant margins.

• We carry out a detailed analysis of different
aspects of our approach, including an ablation
over CONSEC components.

We release our code and models at https://
github.com/SapienzaNLP/consec.

2 Related Work

Word Sense Disambiguation (WSD) is the task of
associating words in context with their most suit-

able meaning in a fixed sense inventory (Bevilac-
qua et al., 2021), which is usually a dictionary-like
lexical resource where a word’s meanings (senses)
are enumerated and defined via definitions (glosses)
and usage examples. Nowadays dominated by
supervised systems, with WordNet (Miller et al.,
1990) and SemCor (Miller et al., 1993) acting, re-
spectively, as the de facto standard sense inventory
and training corpus for the English language, this
task is generally approached as a multi-label classi-
fication problem with a number of different neural
formulations.

Early neural approaches (Kågebäck and Sa-
lomonsson, 2016; Raganato et al., 2017b) focused
on architectures where WSD was framed as to-
ken classification over WordNet senses. While
already effective, these architectures displayed a
number of shortcomings, especially with regard to
modeling rare and unseen senses. To cope with
these, many works started to complement the train-
ing data by exploiting different forms of lexical
knowledge stored in WordNet, such as sense def-
initions (Kumar et al., 2019; Blevins and Zettle-
moyer, 2020) and semantic relations (Bevilacqua
and Navigli, 2020; Conia and Navigli, 2021), or
with silver data produced via novel generative for-
mulations (Barba et al., 2021b). Sense definitions,
in particular, have been shown to significantly im-
prove models’ scalability to senses that are under-
represented in the training corpus, and their us-
age has been thoroughly investigated. Huang et al.
(2019) frame WSD as a binary classification prob-
lem where, given a word in context and one of its
possible definitions in the sense inventory, a model
has to determine whether the meaning expressed
by the definition provided is suitable for the word
considered. Continuing this line of work, Blevins
and Zettlemoyer (2020) leverage a bi-encoder that
projects both words in context and glosses in a
shared vector space; disambiguation is then per-
formed by means of identifying the gloss closest
to the target word. Pushing this research trend fur-
ther, Barba et al. (2021a) propose to frame WSD
as a text extraction task where, given a word in
context and all its possible glosses, models have
to extract the definition that best suits the word
under consideration. The authors show that their
formulation comes with several benefits, most im-
portantly it allows models to attend to both the in-
put context and all the definitions of the target word
together, and does not require large output vocab-

https://github.com/SapienzaNLP/consec
https://github.com/SapienzaNLP/consec
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ularies. However, when disambiguating multiple
words co-occurring in the same context, all of these
approaches process each word independently from
the others: neither is a word disambiguated taking
into consideration the explicit senses assigned to
nearby words, nor does its explicit sense affect their
disambiguation.

Conversely, here we clearly point out the limits
of this formulation and, standing out from previ-
ous research, propose a novel approach, CONSEC,
which drops this assumption for the first time in su-
pervised neural WSD. By introducing a feedback
loop strategy that iteratively disambiguates the tar-
get words in a given context, also conditioning at
each step on the sense assignments already per-
formed, we report significant improvements over a
wide array of experiments and find that CONSEC
outperforms all its alternatives by a large margin.

3 CONSEC

We now describe CONSEC, our proposed approach
for WSD. We first introduce our formulation and
feedback loop strategy (Section 3.1). Then, we
present our Transformer-based architecture (Sec-
tion 3.2) and, finally, we explain how the disam-
biguation of words is arranged (Section 3.3).

3.1 Continuous Sense Comprehension

Formally, given a sense inventory S, consider a
target word ŵi occurring in a context cŵi

and let
Dŵi

= di,1, . . . , di,k be its k candidate defini-
tions. Generally, it is unlikely that cŵi

is solely
composed of ŵi. On the contrary, it is very
probable that this context contains several words,
among which a number of disambiguation targets
ŵ1, . . . , ŵi, . . . , ŵn may be present, with n ≥ 1.

While supervised systems commonly process
each ŵi independently from the others, here we
propose the usage of a feedback loop strategy that
allows already-made nearby sense assignments to
be taken into account. To this end, we first de-
fine an ordering function f that sorts the disam-
biguation targets under consideration according to
some criterion, denoting by w̃1, . . . , w̃n the result-
ing sorted elements. Then, we frame the disam-
biguation of each w̃i as follows: given w̃i, its con-
text cw̃i and candidates definitions Dw̃i , along with
the context definitions ∆w̃i = δ1, . . . , δi−1, that is,
the definitions of the senses previously assigned
to w̃1, . . . , w̃i−1, a model has to extract the gloss
d∗ ∈ Dw̃i that best expresses the meaning of w̃i.

3.2 Model Architecture

Starting from the text extraction framing of WSD
introduced by Barba et al. (2021a), we implement
our formulation as follows: given a context cw̃i

with a target word w̃i, we first concatenate it with
Dw̃i and ∆w̃i , and then feed the resulting string to
our model. As a signal that w̃i is the disambigua-
tion target under consideration, we mark it, that is,
surround it with the special tokens <d> and </d>.
Furthermore, we use an additional special token,
<def>, and prepend it to each candidate definition
to denote their beginning.

Given this input, the model computes which
<def> corresponds to the start of the gloss that
best represents w̃i. As our reference architec-
ture, we use a linear classification head on top of
DEBERTA2 (He et al., 2021), a recently proposed
Transformer model that improves over RoBERTa
(Liu et al., 2019). The main reason behind this
choice is the DEBERTA usage of relative positions,
an encoding which, differently from its absolute
counterparts commonly used in other Transformer
architectures, models text positional information
via a bi-dimensional matrix that stores the relative
distance between each word pair. Leveraging this
encoding and inspired by Liu et al. (2020b), we
propose an elegant approach to inform the model
that, ∀w̃j ∈ {w̃1, . . . , w̃i−1}, the meaning of w̃j

is the one expressed by δj : we place definitions
immediately after the words they refer to, while
simultaneously leaving unchanged the word order
of cw̃i . This is achieved by overriding the relative
distances in the positional matrix so that w̃j per-
ceives next to it both δj and its subsequent words in
cw̃i . Formally, we manipulate the relative positions
as follows:

• with the exception of the distances between
w̃j and the words in δj , we leave the natural
order unchanged, with words in cw̃i , Dw̃i and
∆w̃i occurring sequentially one after the other
(Figure 1a);

• w̃j witnesses δw̃j after it (Figure 1b);

• symmetrically, δw̃j perceives w̃j as immedi-
ately before it (Figure 1c).

This strategy, which lets different words see differ-
ent word orders, provides a way to communicate
the model, in place, the meaning of each word that

2We use DEBERTA large in all our experiments.
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A mouse takes more space than a trackball on the desk. Any of numerous small rodents. A hand-operated electronic device. An electronic device made with a rotatable ball.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26 2725

Context Sentence Candidate Definitions Context Definitions

(a) Natural word order.

  on the desk. Any of numerous small rodents. A hand-operated electronic device.

An electronic device made with a rotatable ball.
A mouse takes more space than a trackball 
-7 -6 -5 -4 -3 -2 -1 0

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 7 86

(b) Perspective of trackball.

  on the desk. Any of numerous small rodents. A hand-operated electronic device.

An electronic device made with a rotatable ball.
A mouse takes more space than a trackball 
-20 -19 -18 -17 -16 -15 -14 -1

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

0 1 2 3 4 6 75

(c) Perspective of the first word of the definition of trackball.

Figure 1: Our positional strategy for “A mouse takes more space than a trackball on the desk”, where mouse
is the disambiguation target and trackball a word already disambiguated whose meaning is An electronic device
made with a rotatable ball: (a) natural word order (with absolute positions, to ease readability of (b) and (c)); (b)
perspective of trackball, that is, relative distance of all words with respect to trackball; distances in red are different
compared to their natural order; (c) perspective of the first word of the definition of trackball; subsequent words
behave similarly but for their position offset (e.g. the relative position of trackball w.r.t. electronic is −2). For the
sake of conciseness, we omit special symbols from the example reported. Best seen in color.

has already been disambiguated, without resorting
to semi-structured formats (e.g. the usage of spe-
cial linking variables) and, most importantly, while
leaving the original context unaltered.

We train the whole architecture with a cross-
entropy criterion, considering, however, for the
loss computation only the logits corresponding to
the candidate definition beginnings. Inspired by
common practices in autoregressive models liter-
ature (Goodfellow et al., 2016), at training time,
we use teacher forcing on the context definitions
∆w̃i , that is, ∀δj ∈ ∆w̃i , δj is the gold definition
assigned to w̃j in the training set. Conversely, at
prediction time, we use a greedy decoding strategy
and let δj be the definition the model deemed as
the most likely one when disambiguating w̃j .

3.3 Disambiguation Order

As function f (Section 3.1) defines which con-
text definitions will be available for the disam-
biguation of w̃i, providing a better characterization
of its meaning, an adequate choice is crucial for
CONSEC. Here, we make the common assumption
in WSD that the more polysemous a word is, the
harder it is to disambiguate, and define a function f
that sorts ŵ1, . . . , ŵn into w̃1, . . . , w̃n by increas-
ing order of polysemy. However, if n is relatively

large, as i→ n, w̃i will be swarming with context
definitions, most of which are likely to be unnec-
essary and a source of noise for the neural model.
For example, imagine n� 20 and that w̃n is some
inflection of a very polysemous verb: the model
would likely be flooded with trivial definitions and
hindered from identifying those that are helpful.
Furthermore, having too many definitions results in
long encoded sequences and is particularly trouble-
some for most pre-trained Transformer language
models as the complexity of their attention mecha-
nisms scales quadratically.

To cope with this issue, we limit the number of
dependencies to a maximum of max_deps, priori-
tizing their selection as follows: we first compute
the positive normalized pointwise mutual informa-
tion3 (Bouma, 2009) between w̃i and each w̃j ∈
w̃1, ..., w̃i−1. Then, applying an L1-normalization,
we convert these scores into a probability distribu-
tion and select all the highest-scoring w̃j needed to
reach an α cumulative probability; in order to han-
dle potential fat tail distributions that may occur,
we enforce a minimum probability β, discarding
w̃j if its probability is lower.4

3Further details in Appendix A.
4We treat max_deps, α and β as hyperparameters and will

discuss them further in Section 4.1.
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4 WSD Evaluation

We now assess the effectiveness of CONSEC ex-
amining first its applicability to English all-words
WSD both in terms of performances (Section 4.1)
and via an ablation study of its components (Sec-
tion 4.2). We then proceed to investigate how
CONSEC fares in the cross-lingual setting (Section
4.3).

4.1 English WSD

Data We evaluate CONSEC on English all-words
WSD through the framework presented by Ra-
ganato et al. (2017a), using SemCor (Miller et al.,
1993) as the training corpus. Following estab-
lished practices in the WSD literature (Raganato
et al., 2017b; Huang et al., 2019; Blevins and
Zettlemoyer, 2020), we perform model selection
on SemEval-2007 (Pradhan et al., 2007, SE07),
while carrying out testing on Senseval-2 (Edmonds
and Cotton, 2001, SE2), Senseval-3 (Snyder and
Palmer, 2004, SE3), SemEval-2013 (Navigli et al.,
2013, SE13) and SemEval-2015 (Moro and Nav-
igli, 2015, SE15). As in previous works, we report
the F1 score WSD systems achieve on each of
these evaluation datasets and on their concatena-
tion (ALL).

In order to have a better picture of models’
performances and generalization power, we also
consider the five synthetic datasets introduced by
Barba et al. (2021a), namely: i) MFS, containing
all the instances in ALL where the target word is
tagged with its most frequent sense5; ii) LFS, con-
taining all the instances in ALL annotated with a
least frequent sense of the target word that appeared
at least once in the training corpus; iii) Unseen
Senses, containing all the instances in ALL tagged
with a sense that is not in the training set; iv) Un-
seen Words, containing all the instances in ALL
whose lemma and part of speech never co-occurred
in the training dataset; v) Unseen Definitions, con-
taining all the instances in ALL whose definition
never appears in the training dataset.6

Finally, a number of recent works have started
to use tagged glosses and examples coming from
WordNet7 (WNGE) as additional training data.

5We compute sense frequencies from SemCor.
6This dataset differs from Unseen Senses as WordNet

groups synonymous senses into lexical units called synsets, to
which definitions are assigned, and therefore different senses
may have the same definition.

7https://wordnetcode.princeton.edu/
glosstag.shtml

For fair comparability with these systems, we
also consider the setting where SemCor is com-
plemented with these supplementary resources and
train CONSEC on the resulting corpus.

Hyperparameters We train our system with a
token batch size of 1536 and 5 steps of gradient
accumulation. We use Rectified Adam (Liu et al.,
2020a) as the optimizer, fine-tuning the whole ar-
chitecture with a learning rate of 3−6 and a gradient
clipping of 1.0, as in He et al. (2021). We limit
the number of maximum training steps to 100,000
and evaluate model performance on the validation
dataset every 2000 steps, enforcing a patience of 25
evaluation rounds. As regards CONSEC-specific
parameters, we use max_deps = 9, α = 0.7 and
β = 0.1 in all our experiments.8 When working
with document-level datasets, rather than treating
the sentence where w̃i occurs as its context, we
augment it so that cw̃i also includes its preceding
and subsequent sentence.

Comparison Systems We compare CONSEC
with two common baselines in the WSD literature,
namely i) MFS-SemCor, where target words are
disambiguated by simply emitting their most fre-
quent sense in SemCor, and ii) BERT-base, which
employs a linear classifier over WordNet senses
on top of frozen BERT representations (Devlin
et al., 2019; Blevins and Zettlemoyer, 2020). Fur-
thermore, to contextualize CONSEC performances
in the current landscape of English WSD, we
further consider a number of recent state-of-the-
art systems and evaluate our approach against:
SVC (Vial et al., 2019), which leverages Word-
Net relations to compress the output vocabulary
and compensate for the lack of annotated data;
ARES (Scarlini et al., 2020), a nearest-neighbor ap-
proach based on sense embeddings; GlossBERT
(Huang et al., 2019), BEM (Blevins and Zettle-
moyer, 2020), EWISER (Bevilacqua and Navigli,
2020)9, WMLC (Conia and Navigli, 2021) and
ESCHER (Barba et al., 2021a), all of which are
supervised systems that exploit sense definitions or
relational knowledge to better model the meaning
of words. Finally, following the trend of augment-
ing training data with WNGE, we also consider
how CONSEC fares in this setting and evaluate it
against SVC, EWISER, WMLC and ESCHER.

8Further details on this choice in Appendix B.
9We note that Bevilacqua and Navigli (2020) use SE15 for

model selection, therefore hindering direct comparability.

https://wordnetcode.princeton.edu/glosstag.shtml
https://wordnetcode.princeton.edu/glosstag.shtml
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Dev Set Test Sets Concatenation of all Datasets

Model SE07 SE2 SE3 SE13 SE15 Nouns Verbs Adj. Adv. ALL

Se
m

C
or

MFS - SemCor 54.5 65.6 66.0 63.8 67.1 67.7 49.8 73.1 80.5 65.5
BERTbase 68.6 75.9 74.4 70.6 75.2 75.7 63.7 78.0 85.8 73.7
SVC - - - - - - - - - 75.6
SVC - Ensemble 69.5 77.5 77.4 76.0 78.3 79.6 65.9 79.5 85.5 76.7
GlossBERT 72.5 77.7 75.2 76.1 80.4 79.8 67.1 79.6 87.4 77.0
ARES 71.0 78.0 77.1 78.7 75.0 80.6 68.3 80.5 83.5 77.9
EWISER 71.0 78.9 78.4 78.9 79.3 81.7 66.3 81.2 85.8 78.3
WMLC 72.2 78.4 77.8 76.7 78.2 80.1 67.0 80.5 86.2 77.6
BEM 74.5 79.4 77.4 79.7 81.7 81.4 68.5 83.0 87.9 79.0
ESCHER 76.3 81.7 77.8 82.2 83.2 83.9 69.3 83.8 86.7 80.7
CONSEC 77.4 82.3 79.9 83.2 85.2 85.4 70.8 84.0 87.3 82.0

+
W

N
G

E

SVC - - - - - - - - - 77.1
SVC - Ensemble 73.4 79.7 77.8 78.7 82.6 81.4 68.7 83.7 85.5 79.0
EWISER 75.2 80.8 79.0 80.7 81.8 82.9 69.4 83.6 87.3 80.1
WMLC 76.2 80.4 77.8 81.8 83.3 82.9 70.3 83.4 85.5 80.2
ESCHER 77.6 82.5 78.5 82.7 85.1 84.6 71.5 83.7 86.7 81.6
CONSEC 78.5 82.7 81.0 85.2 87.5 86.4 72.4 85.4 89.0 83.2

Table 1: Results on the English all-words WSD task, when training on SemCor (top) and when also using WNGE
(bottom). We mark in bold best scores per column and section, and underline the highest score on ALL whose
difference with CONSEC is statistically significant (p < 0.01 according to the McNemar’s test (Dietterich, 1998)).

Results We show in Table 1 the F1 scores
CONSEC and its alternatives achieve on the evalu-
ation datasets when training on SemCor (top).

Arguably the most interesting finding we report
is the improvement CONSEC shows over ESCHER.
Indeed, both systems use Transformer-based archi-
tectures with an almost identical number of param-
eters, and build upon text extraction formulations.
The major difference lies in the usage of the feed-
back loop strategy we are proposing for CONSEC.
The improvement of 1.3 points, which is statisti-
cally significant, clearly highlights the effective-
ness of our proposal and the inherent limitations of
performing WSD independently. Taking a broader
look at the board, we can see that CONSEC sur-
passes all its comparison systems on all evaluation
datasets except the POS-specific partition of ALL
containing only adverbs, thus setting a new state of
the art in English WSD.

Furthermore, we evaluate CONSEC when feed-
ing both SemCor and WNGE to the learning pro-
cedure (Table 1, bottom). As Barba et al. (2021a)
did not report on this setting, we run this exper-
iment ourselves and train ESCHER on this aug-
mented data.10 Overall, we witness a similar trend
compared to when training on SemCor only, with
CONSEC surpassing all its alternatives. Scores are
however much higher and the additional data allow

10We used the authors’ code released at https://
github.com/SapienzaNLP/esc.

CONSEC to achieve a completely unprecedented
improvement, attaining 83.2 F1 on ALL. These re-
sults back our claim that the additional information
coming from the glosses of already disambiguated
instances does indeed help in identifying the cor-
rect meaning of words in context.

Frequency-Specific Evaluation We now carry
out a coarse-grained error analysis, using the five
datasets presented in Barba et al. (2021a) to ex-
amine how the model effectiveness changes when
considering different frequency classes for tar-
get words and senses. We show the behavior of
CONSEC in terms of F1 score in Table 2, compar-
ing it with BEM and ESCHER on the SemCor-only
training setting. Overall, our formulation achieves
higher performances on 3 out of 5 datasets; the
only exceptions are Unseen Definitions, where it
behaves on par with ESCHER, and Unseen Words,
where, instead, it falls short compared to it. Among
these findings, the improvement on the LFS subset
is particularly interesting. Indeed, as word senses
follow the Zipfian distribution (Kilgarriff, 2004),
supervised WSD systems tend to have a strong
bias towards the MFS, making improvements in
this setting hard to achieve. Thus, the 1.7 points
over ESCHER, which was the prior best system,
suggest that CONSEC better counterbalances the
strong bias in senses distribution, while experienc-
ing no side effect on MFS performances which, in
fact, rise. This finding further highlights the posi-

https://github.com/SapienzaNLP/esc
https://github.com/SapienzaNLP/esc
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Model MFS LFS U-Words U-Senses U-Defs

BEM 94.7 52.1 91.2 67.1 68.2
ESCHER 93.7 55.7 95.1 75.0 76.8
CONSEC 95.3 57.4 92.8 75.3 76.8

Table 2: F1 scores of BEM, ESCHER and CONSEC on
MFS, LFS and Unseen* datasets. Results underlined or
in bold have the same meaning as in Table 1.

Model Stat. Sign. ALL

ESCHER - 80.7
+DeBerta 7 80.6
+More Context 7 81.0
+Context Defs 3 82.0

Table 3: Ablation study over CONSEC components.
The Stat. Sign. column denotes whether the difference
w.r.t. the row before is statistically significant. The line
of +Context Defs is equivalent to CONSEC.

tive impact of our formulation and the benefits of
introducing context definitions into the disambigua-
tion process.

4.2 Ablation

As both ESCHER and CONSEC leverage text ex-
traction formulations, with similar underlying ar-
chitectures, and yet CONSEC significantly outper-
forms ESCHER, we ablate here the differences
between the two systems, namely i) the usage of
DEBERTA, ii) having cw̃i also include the previous
and subsequent sentence11, and iii) the introduc-
tion of context definitions. We show iteratively
how performances change, in terms of F1 score, as
we move from ESCHER to CONSEC in Table 3.

As a first result, we note that, as expected, chang-
ing the underlying model of ESCHER from BART
(Lewis et al., 2020) to DEBERTA does not cause
any significant difference in performances. Indeed,
the two systems feature an almost identical number
of parameters and attain similar scores on text ex-
traction tasks such as SQuAD (Lewis et al., 2020;
He et al., 2021), with DEBERTA behaving slightly
better. Once we include more surrounding context
in cw̃i , performances rise to 81.0, suggesting that
the additional context provides valuable informa-
tion to the neural model.12 However, this system,
which differs from CONSEC only in what pertains
context definitions, achieves 1 F1 point less than
CONSEC; once we include this component, perfor-

11ESCHER treats plain sentences as its contexts.
12This is especially true for short contexts, where the addi-

tional data might solve otherwise unsolvable ambiguities.

Language SyntagRank EWISER XLMR CONSEC

English 70.0 73.3 76.3 79.0

Dutch 56.0 57.5 59.2 63.3
Estonian 56.3 66.0 66.1 69.8
French 70.0 80.9 83.9 84.4
German 76.0 80.9 83.1 84.2
Italian 69.6 74.6 77.6 79.3
Japanese 57.5 55.8 61.9 63.0
Spanish 68.6 71.9 75.9 77.4

Table 4: Cross-Lingual Word Sense Disambiguation re-
sults on Pasini et al. (2021). Results underlined or in
bold have the same meaning as in Table 1.

mances rise back to 82.0, showing the benefits of
introducing our feedback loop strategy.

4.3 Cross-Lingual WSD

We now examine whether our approach can scale
to different languages, evaluating CONSEC against
the cross-lingual framework made available by
Pasini et al. (2021). Within the scope of this work,
we limit ourselves to considering only the follow-
ing language-specific setting for CONSEC: for
each language in the test bed, we train a dedicated
monolingual model, using both datasets and sense
definitions in that language. We defer exploring
zero-shot and multilingual settings to future work.

Training is performed using the silver monolin-
gual datasets the authors release within the frame-
work. As our cross-lingual framing expects sense
definitions to be in the same language as that of
its datasets, we translate English glosses towards
each language using the multilingual translation
model released by Tang et al. (2020). Since a mul-
tilingual version of DEBERTA is not available, we
replace it with mBART (Liu et al., 2020c);13 how-
ever, as mBART does not support relative positions,
to inject the knowledge that w̃j means δj , we first
prepend w̃j to each δj ∈ ∆w̃i , and then concatenate
them right after the candidate definitions.

We compare ConSeC against three systems in-
cluded in Pasini et al. (2021), namely EWISER,
XLMR-Large14 and SyntagRank (Scozzafava et al.,
2020); EWISER and XLMR-Large are supervised
systems, while SyntagRank is an unsupervised
knowledge-based approach that builds upon syn-
tagmatic relations (Maru et al., 2019). For both
EWISER and XLMR-Large, we only consider the
zero-shot scenario the authors illustrate, as it is the

13Details on the parameters used in Appendix B.
14We consider the XLMR-Large architecture as it achieved

the best average results on all the languages of the framework.
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Test ALL ∆

No Context Definitions 80.7 -1.3
Adversarial 80.0 -2.0
Teacher Forcing 82.5 +0.5

Table 5: Behavioral tests on CONSEC. The ∆ column
reports the relative difference w.r.t. CONSEC trained
on SemCor and evaluated on ALL.

only setting where EWISER is available and, be-
sides, the one where XLMR-Large fares the best.15

Table 4 reports the F1 scores on 8 different lan-
guages16. As the results show, CONSEC estab-
lishes a marked new state of the art on all the lan-
guages under examination; in particular, our ap-
proach outperforms all its competitors even on low-
resource languages (e.g. Estonian and Japanese).
The formulation we propose is therefore a viable
option for cross-lingual WSD, especially when re-
quiring high-performing systems.

5 Analysis

To get better insights into the impact context defi-
nitions have on CONSEC performance, we devise
three behavioral tests. First of all, we examine
to what extent performances degrade at prediction
time when the feedback loop is disabled, that is,
when we no longer provide context definitions to
CONSEC. As shown in Table 5 (first row), while
performances certainly drop, they are still on par
with the previous state of the art and suggest that
the feedback loop can be treated as a pluggable
component: it can be disabled for fast processing,
allowing batched independent disambiguation, or,
vice versa, enabled when higher accuracy is crucial.

Second, we perform an adversarial attack where
we provide CONSEC with wrong context defini-
tions in the feedback loop: instead of using the
most likely definition of w̃j as δj , we let δj be the
less likely one. As shown in Table 5 (second row),
performances drop by only 0.7 points compared
to when context definitions are missing rather than
purposely wrong. This result seems to suggest that

15Pasini et al. (2021) also explore training XLMR-Large
on their silver monolingual datasets, which are the same as
the ones we use here. Interestingly, they report inferior per-
formances compared to plain zero-shot, suggesting possible
quality concerns regarding the automatic silver creation proce-
dure.

16We chose to consider CONSEC only on Dutch, English,
Estonian, French, German, Italian, Japanese and Spanish as
this language set is the result of the intersection between the
languages supported by mBART and the ones available in the
multilingual framework.

the model learns to ignore noisy or irrelevant defini-
tions at training time and we hypothesize this may
be caused by our choice of using a heuristic non-
differentiable objective as function f : indeed, as
the neural model cannot tune the selection strategy,
it may learn instead to ignore unrelated definitions.
Thus, the less likely gloss does not necessarily have
a negative impact and a more significant test may
be performed involving human annotators to wisely
select adversarial definitions that could most inter-
fere with the disambiguation.

Finally, we investigate the discrepancy between
teacher forcing and greedy decoding at inference
time, and test the model when, instead, setting
δj to the gold definition of w̃j in the evaluation
datasets. As reported in Table 5 (third row), the
two techniques do not differ significantly. While
surprising at a first glance, a number of factors
might actually explain this result. First, CONSEC
performances are above 80%, implying that many
of the definitions chosen by greedy decoding are
correct. Furthermore, as instance polysemy and
error rate strongly correlate,17 our function f has
the following implications: i) early instances are
less likely to be wrongly disambiguated and be-
come inaccurate hints to subsequent words, and
ii) while late instances have a higher probability
of receiving wrong context definitions, they also
have access to more data and can therefore coun-
terbalance possible mistakes. Finally, even when
mistakes do occur and wrong hints are generated,
due to WordNet sense granularity, the misclassified
sense may not be that dissimilar from the correct
one or, in fact, even appear as a close alternative
(Erk and McCarthy, 2009), thus still acting as a
valuable hint to the neural model.

6 Conclusion

In this work we presented CONSEC, a novel ex-
tractive approach to WSD that allows the disam-
biguation of words to be conditioned not only on
their context and possible meanings but, for the first
time in neural WSD literature, also on the explicit
senses assigned to nearby words. By explicitly em-
bedding their definitions within the model input, we
report significant results on both English and cross-
lingual WSD, establishing a new state of the art
in both settings. Most notably, our system reaches
the unprecedented performances of 82 F1 on the

17The two variables correlate with a 0.94 Spearman corre-
lation, further analysis in Appendix C.
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standard English framework when trained on Sem-
Cor only, and 83.2 when leveraging the WordNet
tagged glosses and examples as additional training
data. We perform several experiments investigat-
ing different aspects of our new formulation and, in
particular, addressing its potential speed concerns,
we demonstrate that the usage of context defini-
tions can be treated as a pluggable component in
our system, to be activated when higher accuracy
is required, or seamlessly removed when speed is
of primary importance. As future work, we plan
to make the disambiguation ordering and the de-
pendencies choice fully differentiable, while at the
same time expanding on CONSEC applicability to
the cross-lingual setting.

Acknowledgments
The authors gratefully acknowledge
the support of the ERC Consolidator
Grant MOUSSE No. 726487.

This work was partially supported by the MIUR
under the grant “Dipartimenti di eccellenza 2018-
2022" of the Department of Computer Science of
Sapienza University.

References
Edoardo Barba, Tommaso Pasini, and Roberto Nav-

igli. 2021a. ESC: Redesigning WSD with extractive
sense comprehension. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 4661–4672, Online.
Association for Computational Linguistics.

Edoardo Barba, Luigi Procopio, Caterina Lacerra, Tom-
maso Pasini, and Roberto Navigli. 2021b. Ex-
emplification modeling: Can you give me an ex-
ample, please? In Proceedings of the Thirtieth
International Joint Conference on Artificial Intel-
ligence, IJCAI-21, pages 3779–3785. International
Joint Conferences on Artificial Intelligence Organi-
zation. Main Track.

Michele Bevilacqua and Roberto Navigli. 2020. Break-
ing through the 80% glass ceiling: Raising the state
of the art in word sense disambiguation by incor-
porating knowledge graph information. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 2854–2864,
Online. Association for Computational Linguistics.

Michele Bevilacqua, Tommaso Pasini, Alessandro Ra-
ganato, and Roberto Navigli. 2021. Recent trends
in word sense disambiguation: A survey. In Pro-
ceedings of the Thirtieth International Joint Con-
ference on Artificial Intelligence, IJCAI-21, pages

4330–4338. International Joint Conferences on Ar-
tificial Intelligence Organization. Survey Track.

Terra Blevins and Luke Zettlemoyer. 2020. Moving
down the long tail of word sense disambiguation
with gloss informed bi-encoders. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1006–1017, On-
line. Association for Computational Linguistics.

Gerlof Bouma. 2009. Normalized (pointwise) mutual
information in collocation extraction. Proceedings
of GSCL, pages 31–40.

Comet.ML. 2021. Comet.ML home page.

Simone Conia and Roberto Navigli. 2021. Framing
word sense disambiguation as a multi-label problem
for model-agnostic knowledge integration. In Pro-
ceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 3269–3275, Online.
Association for Computational Linguistics.

Montse Cuadros and German Rigau. 2008. KnowNet:
Building a large net of knowledge from the web. In
Proceedings of the 22nd International Conference
on Computational Linguistics (Coling 2008), pages
161–168, Manchester, UK. Coling 2008 Organizing
Committee.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Thomas G Dietterich. 1998. Approximate statistical
tests for comparing supervised classification learn-
ing algorithms. Neural computation, 10(7):1895–
1923.

Philip Edmonds and Scott Cotton. 2001. SENSEVAL-
2: Overview. In Proceedings of SENSEVAL-
2 Second International Workshop on Evaluating
Word Sense Disambiguation Systems, pages 1–5,
Toulouse, France. Association for Computational
Linguistics.

Katrin Erk and Diana McCarthy. 2009. Graded word
sense assignment. In Proceedings of the 2009 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2009, 6-7 August 2009, Singa-
pore, A meeting of SIGDAT, a Special Interest Group
of the ACL, pages 440–449. ACL.

William Falcon, Jirka Borovec, Adrian Wälchli, Nic
Eggert, Justus Schock, Jeremy Jordan, Nicki Skafte,
Ir1dXD, Vadim Bereznyuk, Ethan Harris, Tullie
Murrell, Peter Yu, Sebastian Præsius, Travis Addair,

https://doi.org/10.18653/v1/2021.naacl-main.371
https://doi.org/10.18653/v1/2021.naacl-main.371
https://doi.org/10.24963/ijcai.2021/520
https://doi.org/10.24963/ijcai.2021/520
https://doi.org/10.24963/ijcai.2021/520
https://doi.org/10.18653/v1/2020.acl-main.255
https://doi.org/10.18653/v1/2020.acl-main.255
https://doi.org/10.18653/v1/2020.acl-main.255
https://doi.org/10.18653/v1/2020.acl-main.255
https://doi.org/10.24963/ijcai.2021/593
https://doi.org/10.24963/ijcai.2021/593
https://doi.org/10.18653/v1/2020.acl-main.95
https://doi.org/10.18653/v1/2020.acl-main.95
https://doi.org/10.18653/v1/2020.acl-main.95
https://www.researchgate.net/publication/267306132_Normalized_Pointwise_Mutual_Information_in_Collocation_Extraction
https://www.researchgate.net/publication/267306132_Normalized_Pointwise_Mutual_Information_in_Collocation_Extraction
https://www.comet.ml/
https://www.aclweb.org/anthology/2021.eacl-main.286
https://www.aclweb.org/anthology/2021.eacl-main.286
https://www.aclweb.org/anthology/2021.eacl-main.286
https://aclanthology.org/C08-1021
https://aclanthology.org/C08-1021
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://direct.mit.edu/neco/article/10/7/1895/6224/Approximate-Statistical-Tests-for-Comparing
https://direct.mit.edu/neco/article/10/7/1895/6224/Approximate-Statistical-Tests-for-Comparing
https://direct.mit.edu/neco/article/10/7/1895/6224/Approximate-Statistical-Tests-for-Comparing
https://www.aclweb.org/anthology/S01-1001
https://www.aclweb.org/anthology/S01-1001
https://aclanthology.org/D09-1046/
https://aclanthology.org/D09-1046/


1501

Jacob Zhong, Dmitry Lipin, So Uchida, Shreyas Ba-
pat, Hendrik Schröter, Boris Dayma, Alexey Kar-
nachev, Akshay Kulkarni, Shunta Komatsu, Mar-
tin.B, Jean-Baptiste SCHIRATTI, Hadrien Mary,
Donal Byrne, Cristobal Eyzaguirre, cinjon, and An-
ton Bakhtin. 2020. Pytorch Lightning.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
2016. Deep Learning. MIT Press. http://www.
deeplearningbook.org.

Christian Hadiwinoto, Hwee Tou Ng, and Wee Chung
Gan. 2019. Improved word sense disambiguation us-
ing pre-trained contextualized word representations.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5297–
5306, Hong Kong, China. Association for Computa-
tional Linguistics.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: decoding-enhanced
bert with disentangled attention. In 9th Inter-
national Conference on Learning Representations,
ICLR 2021.

Luyao Huang, Chi Sun, Xipeng Qiu, and Xuanjing
Huang. 2019. GlossBERT: BERT for word sense
disambiguation with gloss knowledge. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 3509–3514, Hong
Kong, China. Association for Computational Lin-
guistics.

Mikael Kågebäck and Hans Salomonsson. 2016. Word
sense disambiguation using a bidirectional LSTM.
In Proceedings of the 5th Workshop on Cognitive
Aspects of the Lexicon (CogALex - V), pages 51–56,
Osaka, Japan. The COLING 2016 Organizing Com-
mittee.

Adam Kilgarriff. 2004. How dominant is the common-
est sense of a word? In Text, Speech and Dialogue,
pages 103–111, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Sawan Kumar, Sharmistha Jat, Karan Saxena, and
Partha Talukdar. 2019. Zero-shot word sense dis-
ambiguation using sense definition embeddings. In
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
5670–5681, Florence, Italy. Association for Compu-
tational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu
Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei Han.
2020a. On the variance of the adaptive learning rate
and beyond. In International Conference on Learn-
ing Representations.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju,
Haotang Deng, and Ping Wang. 2020b. K-bert:
Enabling language representation with knowledge
graph. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 2901–2908.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020c. Multilingual denoising
pre-training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Marco Maru, Federico Scozzafava, Federico Martelli,
and Roberto Navigli. 2019. SyntagNet: Chal-
lenging supervised word sense disambiguation with
lexical-semantic combinations. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3534–3540, Hong Kong,
China. Association for Computational Linguistics.

George A. Miller, R.T. Beckwith, Christiane D. Fell-
baum, D. Gross, and K. Miller. 1990. Introduction
to WordNet: an online lexical database. Interna-
tional Journal of Lexicography, 3(4):235–244.

George A Miller, Claudia Leacock, Randee Tengi, and
Ross T Bunker. 1993. A semantic concordance. In
Proceedings of the workshop on Human Language
Technology, pages 303–308. Association for Compu-
tational Linguistics.

Andrea Moro and Roberto Navigli. 2015. SemEval-
2015 task 13: Multilingual all-words sense disam-
biguation and entity linking. In Proceedings of the
9th International Workshop on Semantic Evaluation
(SemEval 2015), pages 288–297, Denver, Colorado.
Association for Computational Linguistics.

Roberto Navigli, David Jurgens, and Daniele Vannella.
2013. SemEval-2013 task 12: Multilingual word
sense disambiguation. In Second Joint Conference
on Lexical and Computational Semantics (*SEM),
Volume 2: Proceedings of the Seventh International
Workshop on Semantic Evaluation (SemEval 2013),
pages 222–231, Atlanta, Georgia, USA. Association
for Computational Linguistics.

Roberto Navigli and Paola Velardi. 2004. Structural
semantic interconnection: a knowledge-based ap-
proach to word sense disambiguation. In Proceed-
ings of SENSEVAL-3, the Third International Work-
shop on the Evaluation of Systems for the Semantic

https://doi.org/10.5281/zenodo.3828935
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.18653/v1/D19-1533
https://doi.org/10.18653/v1/D19-1533
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://doi.org/10.18653/v1/D19-1355
https://doi.org/10.18653/v1/D19-1355
https://www.aclweb.org/anthology/W16-5307
https://www.aclweb.org/anthology/W16-5307
https://link.springer.com/chapter/10.1007/978-3-540-30120-2_14
https://link.springer.com/chapter/10.1007/978-3-540-30120-2_14
https://doi.org/10.18653/v1/P19-1568
https://doi.org/10.18653/v1/P19-1568
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://openreview.net/forum?id=rkgz2aEKDr
https://openreview.net/forum?id=rkgz2aEKDr
https://doi.org/10.1609/aaai.v34i03.5681
https://doi.org/10.1609/aaai.v34i03.5681
https://doi.org/10.1609/aaai.v34i03.5681
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/D19-1359
https://doi.org/10.18653/v1/D19-1359
https://doi.org/10.18653/v1/D19-1359
https://doi.org/https://doi.org/10.1093/ijl/3.4.235
https://doi.org/https://doi.org/10.1093/ijl/3.4.235
https://www.aclweb.org/anthology/H94-1046.pdf
https://doi.org/10.18653/v1/S15-2049
https://doi.org/10.18653/v1/S15-2049
https://doi.org/10.18653/v1/S15-2049
https://www.aclweb.org/anthology/S13-2040
https://www.aclweb.org/anthology/S13-2040
https://www.aclweb.org/anthology/W04-0844
https://www.aclweb.org/anthology/W04-0844
https://www.aclweb.org/anthology/W04-0844


1502

Analysis of Text, pages 179–182, Barcelona, Spain.
Association for Computational Linguistics.

Tommaso Pasini, Alessandro Raganato, and Roberto
Navigli. 2021. XL-WSD: An extra-large and cross-
lingual evaluation framework for word sense disam-
biguation. Proceedings of the AAAI Conference on
Artificial Intelligence, 35(15):13648–13656.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Py-
torch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.

Sameer Pradhan, Edward Loper, Dmitriy Dligach, and
Martha Palmer. 2007. SemEval-2007 task-17: En-
glish lexical sample, SRL and all words. In Proceed-
ings of the Fourth International Workshop on Se-
mantic Evaluations (SemEval-2007), pages 87–92,
Prague, Czech Republic. Association for Computa-
tional Linguistics.

Alessandro Raganato, Jose Camacho-Collados, and
Roberto Navigli. 2017a. Word sense disambigua-
tion: A unified evaluation framework and empiri-
cal comparison. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 1, Long Pa-
pers, pages 99–110, Valencia, Spain. Association for
Computational Linguistics.

Alessandro Raganato, Claudio Delli Bovi, and Roberto
Navigli. 2017b. Neural sequence learning mod-
els for word sense disambiguation. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 1156–1167,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Bianca Scarlini, Tommaso Pasini, and Roberto Nav-
igli. 2020. With more contexts comes better per-
formance: Contextualized sense embeddings for
all-round word sense disambiguation. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
3528–3539, Online. Association for Computational
Linguistics.

Federico Scozzafava, Marco Maru, Fabrizio Brignone,
Giovanni Torrisi, and Roberto Navigli. 2020. Per-
sonalized PageRank with syntagmatic information
for Multilingual Word Sense Disambiguation. In
Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics: System
Demonstrations, pages 37–46, Online. Association
for Computational Linguistics.

Benjamin Snyder and Martha Palmer. 2004. The En-
glish all-words task. In Proceedings of SENSEVAL-
3, the Third International Workshop on the Evalu-
ation of Systems for the Semantic Analysis of Text,
pages 41–43, Barcelona, Spain. Association for
Computational Linguistics.

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Na-
man Goyal, Vishrav Chaudhary, Jiatao Gu, and An-
gela Fan. 2020. Multilingual translation with exten-
sible multilingual pretraining and finetuning. arXiv
preprint arXiv:2008.00401.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. In Advances in Neural Information
Processing Systems, page 6000–6010. Curran Asso-
ciates, Inc.

Loïc Vial, Benjamin Lecouteux, and Didier Schwab.
2019. Sense vocabulary compression through the
semantic knowledge of WordNet for neural word
sense disambiguation. In Proceedings of the 10th
Global Wordnet Conference, pages 108–117, Wro-
claw, Poland. Global Wordnet Association.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

A Positive Normalized Pointwise Mutual
Information

To choose the most important context definitions
for each disambiguation instance, we use the posi-
tive normalized pointwise mutual information mea-
sure (pnpmi), that we compute using a document
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Hyperparameter Values

Neural

Optimizer RAdam
Learning Rate 3e−6

Gradient Accumulation Steps [1.0, 5.0, 10.0]
Weight Decay* 0.01
Tokens Batch Size 1536
Patience 25
Validation Check Interval 2000

CONSEC Specific

Dependencies Cumulative Probability (α) [0.5, 0.7, 0.9]
Minimum Normalized Pmi (β) [0.0, 0.1, 0.2]
Maximum Number of Dependencies [5, 9, 20]

Table 6: Explored hyperparameters ranges via grid
search. When multiple values for a hyperparameter
have been evaluated, we report in bold the best per-
forming one. Top: standard hyperparameters involved
in training neural architectures. Bottom: CONSEC-
specific hyperparameters. * We do not apply weight
decay on neither the bias weights of Linear layers nor
the weights of Layer Norm layers.

with h(wi, wj) being − log2 p(wi, wj), and finally:

pnpmi(wi, wj) = max(0, npmi(wi, wj))

We use Wikipedia as our document collection, and
compute the words frequencies on a sample of
100,000 documents for each language.

B Training Details

Hyperparameters We report in Table 6 the hy-
perparameters with which we trained CONSEC on
the English WSD task. With the exception of the
number of gradient accumulation steps, all hyperpa-
rameters come from previous literature, especially
from He et al. (2021). Conversely, this parameter,
together with CONSEC-specific hyperparameters,
has been tuned on the standard WSD framework
(Raganato et al., 2017a) via a grid search approach.

For what concerns cross-lingual WSD, we fol-
low the training hyperparameters used in Barba
et al. (2021a) for their BART-based model while,
for CONSEC-specific parameters, we rely on the
values that performed best in the English setting.

Implementation Our work is implemented in
PyTorch (Paszke et al., 2019), using PyTorch
Lightning (Falcon et al., 2020) as the underlying
framework. We retrieve the pretrained models for
DeBERTa-Large and mBART from HuggingFace
Transformers (Wolf et al., 2020); we note the two
models have 406M and 610M parameters respec-
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Figure 2: Polysemy to Error Classification Rate that
CONSEC trained on SemCor shows on the ALL
dataset.

tively, on top of which we only add a linear clas-
sifier with shape l × 1, where l represents the size
of the final hidden states and amounts to 1024 for
both architectures. To track and optimize our ex-
periments, we used Comet.ML (2021).

Hardware and Runtime We trained every
model on a GeForce RTX 3090 graphic card with
24 gigabytes of VRAM. All trainings on SemCor
lasted between 7 and 20 hours, while those on Sem-
Cor and WNGE between 25 and 45 hours.

C Polysemy to Error Rate Correlation

To back our claims that more polysemous words
are more difficult to disambiguate, we computed
the Spearman’s correlation coefficient between the
polysemy of senses and their classification error
rate by our best system trained on SemCor and
tested on ALL. We find that the correlation coeffi-
cient is very high, amounting to 0.94 with a p-value
� 0.01. We show in Figure 2 the classification er-
ror rate for words with up to 17 possible senses.


