
EMNLP 2021

The 2021 Conference on
Empirical Methods in Natural Language Processing

Proceedings of System Demonstrations

November 7 - 11, 2021

©2021 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-955917-11-7

ii

Preface by the System Demonstration Co-Chairs

Welcome to the proceedings of the system demonstrations session. This volume contains the papers of
the system demonstrations presented at the 2021 Conference on Empirical Methods in Natural Language
Processing, which was held on November 7–11, 2021.

The system demonstrations session includes papers describing systems ranging from early research
prototypes to mature production-ready software. We received 130 valid submissions, of which 42 were
selected for inclusion in the proceedings after review of the program committee, achieving an overall
acceptance rate of 32%.

We thank all authors for their submissions, and the 105 members of the program committee for their
timely and thoughtful reviews.

Heike Adel and Shuming Shi
EMNLP 2021 System Demonstration Co-Chairs

iii

Organizers:

Heike Adel, Bosch Center for Artificial Intelligence, Germany
Shuming Shi, Tencent AI Lab, China

Program Committee:

Alan Akbik, Zeynep Akkalyoncu, Akari Asai, Eleftherios Avramidis, Wei Bi, Georgeta
Bordea, Ari Bornstein, Aljoscha Burchardt, Eric Charton, Hai Leong Chieu, Simone Conia,
Danilo Croce, Montse Cuadros, Marina Danilevsky, Pradipto Das, Victor Dibia, Chenchen
Ding, Carsten Eickhoff, Kshitij Fadnis, Nicolas Rodolfo Fauceglia, Anthony Ferritto, Dimitris
Galanis, Yang Gao, Stefan Grünewald, Xianpei Han, Jialong Han, Michael A. Hedderich,
Leonhard Hennig, Tom Hope, Ales Horak, Kasra Hosseini, Takumi Ito, Peter Jansen, Sai
Muralidhar Jayanthi, Haiyun Jiang, Sudipta Kar, Mamoru Komachi, Lukas Lange, John
Lee, Jing Li, Marina Litvak, Changsong Liu, Zhengzhong Liu, Wei Lu, Wolfgang Maier,
Benjamin Marie, Stella Markantonatou, Ivan Vladimir Meza Ruiz, John Morris, Hamdy
Mubarak, Philippe Muller, Preslav Nakov, Diane Napolitano, Pierre Nugues, Yusuke Oda,
Tsuyoshi Okita, Daniel Ortega, Sebastian Padó, Sean Papay, Oren Pereg, Stelios Piperidis,
Christopher Potts, Prokopis Prokopidis, Fanchao Qi, Carlos Ramisch, German Rigau, Pablo
Ruiz Fabo, Irene Russo, Niloofar Safi Samghabadi, Saurav Sahay, Sebastin Santy, David
Schlangen, Fabian David Schmidt, Hendrik Schuff, Sanuj Sharma, Liang-Hsin Shen, Michal
Shmueli-Scheuer, Sameer Singh, Amy Siu, Konstantinos Skianis, Mohammad Golam Sohrab,
Yuanfeng Song, Michael Stewart, Duyu Tang, Juan-Manuel Torres-Moreno, Natalia Vanetik,
Andrea Varga, Ivan Vulić, Yan Wang, Longyue Wang, Changhan Wang, Rui Wang, Leo
Wanner, Moritz Wolf, Deyi Xiong, Qiongkai Xu, Tae Yano, Seid Muhie Yimam, Dian Yu,
Wenhao Yu, Liang-Chih Yu, Rongsheng Zhang, Ningyu Zhang, Guangyou Zhou, Imed
Zitouni

v

Table of Contents

MiSS: An Assistant for Multi-Style Simultaneous Translation
Zuchao Li, Kevin Parnow, Masao Utiyama, Eiichiro Sumita and Hai Zhao . 1

Automatic Construction of Enterprise Knowledge Base
Junyi Chai, Yujie He, Homa Hashemi, Bing Li, Daraksha Parveen, Ranganath Kondapally and

Wenjin Xu . 11

LightTag: Text Annotation Platform
Tal Perry . 20

TransIns: Document Translation with Markup Reinsertion
Jörg Steffen and Josef van Genabith . 28

ET: A Workstation for Querying, Editing and Evaluating Annotated Corpora
Elvis de Souza and Cláudia Freitas . 35

N-LTP: An Open-source Neural Language Technology Platform for Chinese
Wanxiang Che, Yunlong Feng, Libo Qin and Ting Liu . 42

COMBO: State-of-the-Art Morphosyntactic Analysis
Mateusz Klimaszewski and Alina Wróblewska . 50

ExcavatorCovid: Extracting Events and Relations from Text Corpora for Temporal and Causal Analysis
for COVID-19

Bonan Min, Benjamin Rozonoyer, Haoling Qiu, Alexander Zamanian, Nianwen Xue and Jessica
MacBride . 63

KOAS: Korean Text Offensiveness Analysis System
San-Hee Park, Kang-Min Kim, Seonhee Cho, Jun-Hyung Park, Hyuntae Park, Hyuna Kim, Seong-

won Chung and SangKeun Lee . 72

RepGraph: Visualising and Analysing Meaning Representation Graphs
Jaron Cohen, Roy Cohen, Edan Toledo and Jan Buys . 79

Thermostat: A Large Collection of NLP Model Explanations and Analysis Tools
Nils Feldhus, Robert Schwarzenberg and Sebastian Möller . 87

LMdiff: A Visual Diff Tool to Compare Language Models
Hendrik Strobelt, Benjamin Hoover, Arvind Satyanaryan and Sebastian Gehrmann 96

Semantic Context Path Labeling for Semantic Exploration of User Reviews
Salah Aït-Mokhtar, Caroline Brun, Yves Hoppenot and Agnes Sandor . 106

Beyond Accuracy: A Consolidated Tool for Visual Question Answering Benchmarking
Dirk Väth, Pascal Tilli and Ngoc Thang Vu. .114

Athena 2.0: Contextualized Dialogue Management for an Alexa Prize SocialBot
Marilyn Walker, Vrindavan Harrison, Juraj Juraska, Lena Reed, Kevin Bowden, Wen Cui, Omkar

Patil and Adwait Ratnaparkhi . 124

vii

SPRING Goes Online: End-to-End AMR Parsing and Generation
Rexhina Blloshmi, Michele Bevilacqua, Edoardo Fabiano, Valentina Caruso and Roberto Navigli

134

fairseq Sˆ2: A Scalable and Integrable Speech Synthesis Toolkit
Changhan Wang, Wei-Ning Hsu, Yossi Adi, Adam Polyak, Ann Lee, Peng-Jen Chen, Jiatao Gu and

Juan Pino . 143

Press Freedom Monitor: Detection of Reported Press and Media Freedom Violations in Twitter and
News Articles

Tariq Yousef, Antje Schlaf, Janos Borst, Andreas Niekler and Gerhard Heyer 153

UMR-Writer: A Web Application for Annotating Uniform Meaning Representations
Jin Zhao, Nianwen Xue, Jens Van Gysel and Jinho D. Choi . 160

TranslateLocally: Blazing-fast translation running on the local CPU
Nikolay Bogoychev, Jelmer Van der Linde and Kenneth Heafield . 168

Datasets: A Community Library for Natural Language Processing
Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen,

Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davison, Mario Šaško,
Gunjan Chhablani, Bhavitvya Malik, Simon Brandeis, Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger, Clément Delangue, Théo Matussière,
Lysandre Debut, Stas Bekman, Pierric Cistac, Thibault Goehringer, Victor Mustar, François Lagunas,
Alexander Rush and Thomas Wolf . 175

Summary Explorer: Visualizing the State of the Art in Text Summarization
Shahbaz Syed, Tariq Yousef, Khalid Al Khatib, Stefan Jänicke and Martin Potthast 185

MeetDot: Videoconferencing with Live Translation Captions
Arkady Arkhangorodsky, Christopher Chu, Scot Fang, Yiqi Huang, Denglin Jiang, Ajay Nagesh,

Boliang Zhang and Kevin Knight . 195

Box Embeddings: An open-source library for representation learning using geometric structures
Tejas Chheda, Purujit Goyal, Trang Tran, Dhruvesh Patel, Michael Boratko, Shib Sankar Dasgupta

and Andrew McCallum . 203

LexiClean: An annotation tool for rapid multi-task lexical normalisation
Tyler Bikaun, Tim French, Melinda Hodkiewicz, Michael Stewart and Wei Liu 212

T3-Vis: visual analytic for Training and fine-Tuning Transformers in NLP
Raymond Li, Wen Xiao, Lanjun Wang, Hyeju Jang and Giuseppe Carenini 220

DomiKnowS: A Library for Integration of Symbolic Domain Knowledge in Deep Learning
Hossein Rajaby Faghihi, Quan Guo, Andrzej Uszok, Aliakbar Nafar and Parisa Kordjamshidi . 231

OpenFraming: Open-sourced Tool for Computational Framing Analysis of Multilingual Data
Vibhu Bhatia, Vidya Prasad Akavoor, Sejin Paik, Lei Guo, Mona Jalal, Alyssa Smith, David Assefa

Tofu, Edward Edberg Halim, Yimeng Sun, Margrit Betke, Prakash Ishwar and Derry Tanti Wijaya . 242

IrEne-viz: Visualizing Energy Consumption of Transformer Models
Yash Kumar Lal, Reetu Singh, Harsh Trivedi, Qingqing Cao, Aruna Balasubramanian and Niranjan

Balasubramanian . 251

viii

Open-Domain Question-Answering for COVID-19 and Other Emergent Domains
Sharon Levy, Kevin Mo, Wenhan Xiong and William Yang Wang . 259

Project Debater APIs: Decomposing the AI Grand Challenge
Roy Bar-Haim, Yoav Kantor, Elad Venezian, Yoav Katz and Noam Slonim 267

CroAno : A Crowd Annotation Platform for Improving Label Consistency of Chinese NER Dataset
Baoli Zhang, Zhucong Li, Zhen Gan, Yubo Chen, Jing Wan, Kang Liu, Jun Zhao, Shengping Liu

and Yafei Shi . 275

iFacetSum: Coreference-based Interactive Faceted Summarization for Multi-Document Exploration
Eran Hirsch, Alon Eirew, Ori Shapira, Avi Caciularu, Arie Cattan, Ori Ernst, Ramakanth Pasunuru,

Hadar Ronen, Mohit Bansal and Ido Dagan . 283

AMuSE-WSD: An All-in-one Multilingual System for Easy Word Sense Disambiguation
Riccardo Orlando, Simone Conia, Fabrizio Brignone, Francesco Cecconi and Roberto Navigli 298

SeqAttack: On Adversarial Attacks for Named Entity Recognition
Walter Simoncini and Gerasimos Spanakis . 308

InVeRo-XL: Making Cross-Lingual Semantic Role Labeling Accessible with Intelligible Verbs and Roles
Simone Conia, Riccardo Orlando, Fabrizio Brignone, Francesco Cecconi and Roberto Navigli 319

SummerTime: Text Summarization Toolkit for Non-experts
Ansong Ni, Zhangir Azerbayev, Mutethia Mutuma, Troy Feng, Yusen Zhang, Tao Yu, Ahmed

Hassan Awadallah and Dragomir Radev . 329

Chandler: An Explainable Sarcastic Response Generator
Silviu Oprea, Steven Wilson and Walid Magdy . 339

TabPert : An Effective Platform for Tabular Perturbation
Nupur Jain, Vivek Gupta, Anshul Rai and Gaurav Kumar . 350

DRIFT: A Toolkit for Diachronic Analysis of Scientific Literature
Abheesht Sharma, Gunjan Chhablani, Harshit Pandey and Rajaswa Patil . 361

FAST: Fast Annotation tool for SmarT devices
Shunyo Kawamoto, Yu Sawai, Kohei Wakimoto and Peinan Zhang . 372

deepQuest-py: Large and Distilled Models for Quality Estimation
Fernando Alva-Manchego, Abiola Obamuyide, Amit Gajbhiye, Frédéric Blain, Marina Fomicheva

and Lucia Specia . 382

ix

Conference Program

MiSS: An Assistant for Multi-Style Simultaneous Translation
Zuchao Li, Kevin Parnow, Masao Utiyama, Eiichiro Sumita and Hai Zhao

Automatic Construction of Enterprise Knowledge Base
Junyi Chai, Yujie He, Homa Hashemi, Bing Li, Daraksha Parveen, Ranganath Kon-
dapally and Wenjin Xu

LightTag: Text Annotation Platform
Tal Perry

TransIns: Document Translation with Markup Reinsertion
Jörg Steffen and Josef van Genabith

ET: A Workstation for Querying, Editing and Evaluating Annotated Corpora
Elvis de Souza and Cláudia Freitas

N-LTP: An Open-source Neural Language Technology Platform for Chinese
Wanxiang Che, Yunlong Feng, Libo Qin and Ting Liu

COMBO: State-of-the-Art Morphosyntactic Analysis
Mateusz Klimaszewski and Alina Wróblewska

ExcavatorCovid: Extracting Events and Relations from Text Corpora for Temporal
and Causal Analysis for COVID-19
Bonan Min, Benjamin Rozonoyer, Haoling Qiu, Alexander Zamanian, Nianwen
Xue and Jessica MacBride

KOAS: Korean Text Offensiveness Analysis System
San-Hee Park, Kang-Min Kim, Seonhee Cho, Jun-Hyung Park, Hyuntae Park,
Hyuna Kim, Seongwon Chung and SangKeun Lee

RepGraph: Visualising and Analysing Meaning Representation Graphs
Jaron Cohen, Roy Cohen, Edan Toledo and Jan Buys

Thermostat: A Large Collection of NLP Model Explanations and Analysis Tools
Nils Feldhus, Robert Schwarzenberg and Sebastian Möller

LMdiff: A Visual Diff Tool to Compare Language Models
Hendrik Strobelt, Benjamin Hoover, Arvind Satyanaryan and Sebastian Gehrmann

xi

Nov. 7–11, 2021 (continued)

Semantic Context Path Labeling for Semantic Exploration of User Reviews
Salah Aït-Mokhtar, Caroline Brun, Yves Hoppenot and Agnes Sandor

Beyond Accuracy: A Consolidated Tool for Visual Question Answering Benchmark-
ing
Dirk Väth, Pascal Tilli and Ngoc Thang Vu

Athena 2.0: Contextualized Dialogue Management for an Alexa Prize SocialBot
Marilyn Walker, Vrindavan Harrison, Juraj Juraska, Lena Reed, Kevin Bowden,
Wen Cui, Omkar Patil and Adwait Ratnaparkhi

SPRING Goes Online: End-to-End AMR Parsing and Generation
Rexhina Blloshmi, Michele Bevilacqua, Edoardo Fabiano, Valentina Caruso and
Roberto Navigli

fairseq Sˆ2: A Scalable and Integrable Speech Synthesis Toolkit
Changhan Wang, Wei-Ning Hsu, Yossi Adi, Adam Polyak, Ann Lee, Peng-Jen
Chen, Jiatao Gu and Juan Pino

Press Freedom Monitor: Detection of Reported Press and Media Freedom Viola-
tions in Twitter and News Articles
Tariq Yousef, Antje Schlaf, Janos Borst, Andreas Niekler and Gerhard Heyer

UMR-Writer: A Web Application for Annotating Uniform Meaning Representations
Jin Zhao, Nianwen Xue, Jens Van Gysel and Jinho D. Choi

TranslateLocally: Blazing-fast translation running on the local CPU
Nikolay Bogoychev, Jelmer Van der Linde and Kenneth Heafield

Datasets: A Community Library for Natural Language Processing
Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur,
Patrick von Platen, Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Šaško, Gunjan Chhablani, Bhavitvya Malik,
Simon Brandeis, Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas Patry, Angelina
McMillan-Major, Philipp Schmid, Sylvain Gugger, Clément Delangue, Théo Ma-
tussière, Lysandre Debut, Stas Bekman, Pierric Cistac, Thibault Goehringer, Victor
Mustar, François Lagunas, Alexander Rush and Thomas Wolf

Summary Explorer: Visualizing the State of the Art in Text Summarization
Shahbaz Syed, Tariq Yousef, Khalid Al Khatib, Stefan Jänicke and Martin Potthast

MeetDot: Videoconferencing with Live Translation Captions
Arkady Arkhangorodsky, Christopher Chu, Scot Fang, Yiqi Huang, Denglin Jiang,
Ajay Nagesh, Boliang Zhang and Kevin Knight

Box Embeddings: An open-source library for representation learning using geomet-
ric structures
Tejas Chheda, Purujit Goyal, Trang Tran, Dhruvesh Patel, Michael Boratko, Shib
Sankar Dasgupta and Andrew McCallum

xii

Nov. 7–11, 2021 (continued)

LexiClean: An annotation tool for rapid multi-task lexical normalisation
Tyler Bikaun, Tim French, Melinda Hodkiewicz, Michael Stewart and Wei Liu

T3-Vis: visual analytic for Training and fine-Tuning Transformers in NLP
Raymond Li, Wen Xiao, Lanjun Wang, Hyeju Jang and Giuseppe Carenini

DomiKnowS: A Library for Integration of Symbolic Domain Knowledge in Deep
Learning
Hossein Rajaby Faghihi, Quan Guo, Andrzej Uszok, Aliakbar Nafar and Parisa
Kordjamshidi

OpenFraming: Open-sourced Tool for Computational Framing Analysis of Multi-
lingual Data
Vibhu Bhatia, Vidya Prasad Akavoor, Sejin Paik, Lei Guo, Mona Jalal, Alyssa
Smith, David Assefa Tofu, Edward Edberg Halim, Yimeng Sun, Margrit Betke,
Prakash Ishwar and Derry Tanti Wijaya

IrEne-viz: Visualizing Energy Consumption of Transformer Models
Yash Kumar Lal, Reetu Singh, Harsh Trivedi, Qingqing Cao, Aruna Balasubrama-
nian and Niranjan Balasubramanian

Open-Domain Question-Answering for COVID-19 and Other Emergent Domains
Sharon Levy, Kevin Mo, Wenhan Xiong and William Yang Wang

Project Debater APIs: Decomposing the AI Grand Challenge
Roy Bar-Haim, Yoav Kantor, Elad Venezian, Yoav Katz and Noam Slonim

CroAno : A Crowd Annotation Platform for Improving Label Consistency of Chi-
nese NER Dataset
Baoli Zhang, Zhucong Li, Zhen Gan, Yubo Chen, Jing Wan, Kang Liu, Jun Zhao,
Shengping Liu and Yafei Shi

iFacetSum: Coreference-based Interactive Faceted Summarization for Multi-
Document Exploration
Eran Hirsch, Alon Eirew, Ori Shapira, Avi Caciularu, Arie Cattan, Ori Ernst, Ra-
makanth Pasunuru, Hadar Ronen, Mohit Bansal and Ido Dagan

AMuSE-WSD: An All-in-one Multilingual System for Easy Word Sense Disambigua-
tion
Riccardo Orlando, Simone Conia, Fabrizio Brignone, Francesco Cecconi and
Roberto Navigli

SeqAttack: On Adversarial Attacks for Named Entity Recognition
Walter Simoncini and Gerasimos Spanakis

InVeRo-XL: Making Cross-Lingual Semantic Role Labeling Accessible with Intelli-
gible Verbs and Roles
Simone Conia, Riccardo Orlando, Fabrizio Brignone, Francesco Cecconi and
Roberto Navigli

xiii

Nov. 7–11, 2021 (continued)

SummerTime: Text Summarization Toolkit for Non-experts
Ansong Ni, Zhangir Azerbayev, Mutethia Mutuma, Troy Feng, Yusen Zhang, Tao
Yu, Ahmed Hassan Awadallah and Dragomir Radev

Chandler: An Explainable Sarcastic Response Generator
Silviu Oprea, Steven Wilson and Walid Magdy

TabPert : An Effective Platform for Tabular Perturbation
Nupur Jain, Vivek Gupta, Anshul Rai and Gaurav Kumar

DRIFT: A Toolkit for Diachronic Analysis of Scientific Literature
Abheesht Sharma, Gunjan Chhablani, Harshit Pandey and Rajaswa Patil

FAST: Fast Annotation tool for SmarT devices
Shunyo Kawamoto, Yu Sawai, Kohei Wakimoto and Peinan Zhang

deepQuest-py: Large and Distilled Models for Quality Estimation
Fernando Alva-Manchego, Abiola Obamuyide, Amit Gajbhiye, Frédéric Blain, Ma-
rina Fomicheva and Lucia Specia

xiv

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 1–10
November 7–11, 2021. ©2021 Association for Computational Linguistics

MISS: An Assistant for Multi-Style Simultaneous Translation

Zuchao Li1,2,3,†, Kevin Parnow1,2,3, Masao Utiyama4,∗, Eiichiro Sumita4, Hai Zhao1,2,3∗
1Department of Computer Science and Engineering, Shanghai Jiao Tong University

2Key Laboratory of Shanghai Education Commission for Intelligent Interaction
and Cognitive Engineering, Shanghai Jiao Tong University, Shanghai, China

3MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University
4National Institute of Information and Communications Technology (NICT), Kyoto, Japan

charlee@sjtu.edu.cn, {mutiyama, eiichiro.sumita}@nict.go.jp, zhaohai@cs.sjtu.edu.cn

Abstract
In this paper, we present MISS, an assistant
for multi-style simultaneous translation. Our
proposed translation system has five key fea-
tures: highly accurate translation, simultane-
ous translation, translation for multiple text
styles, back-translation for translation quality
evaluation, and grammatical error correction.
With this system, we aim to provide a com-
plete translation experience for machine trans-
lation users. Our design goals are high trans-
lation accuracy, real-time translation, flexibil-
ity, and measurable translation quality. Com-
pared with the free commercial translation
systems commonly used, our translation as-
sistance system regards the machine transla-
tion application as a more complete and fully-
featured tool for users. By incorporating
additional features and giving the user bet-
ter control over their experience, we improve
translation efficiency and performance. Ad-
ditionally, our assistant system combines ma-
chine translation, grammatical error correc-
tion, and interactive edits, and uses a crowd-
sourcing mode to collect more data for further
training to improve both the machine trans-
lation and grammatical error correction mod-
els. A short video demonstrating our system
is available at https://www.youtube.
com/watch?v=ZGCo7KtRKd8.

1 Introduction

With the increasing technological development of
the world and the acceleration of globalization,
people from different languages and cultural back-
grounds communicate more and more, and the
needs of translation are becoming more and more
important and diverse. Although traditional man-
ual translation works well, with the increasing
frequency of international communication, tradi-
tional manual translation far from meets demand,

∗Corresponding author. †This paper was partially finished
when Zuchao Li was a fixed term technical researcher at NICT.
This paper was supported by Key Projects of National Natural
Science Foundation of China (U1836222 and 61733011).

and machine translation has correspondingly risen
in popularity (Hutchins and Somers, 1992). Re-
cently, Neural Machine Translation (NMT), espe-
cially Transformer-based NMT, has emerged as
a promising approach with the potential to ad-
dress many of the shortcomings of traditional rule-
based or statistics-based machine translation sys-
tems (Sutskever et al., 2014; Bahdanau et al., 2015;
Vaswani et al., 2017). This has significantly im-
proved the performance of machine translation and
other related tasks (Huang et al., 2018; Li et al.,
2018a,b).

Although neural machine translation has made
tremendous improvements and is relatively high-
performing, because human language is so com-
plex, machine translation is often still only used as
an assistance tool rather than the sole entity respon-
sible for translation. There are several popular and
large existing commercial machine translation sys-
tems that provide users with effective translation
(e.g., Google Translator, Bing Translator, Ama-
zon Translate, and Baidu Translate). As NMT is
still very imprecise, however, these web services
fall short, as they do not provide sufficient infor-
mation to users in how good each translation is,
which is particularly pertinent to those who have
not mastered the target language. VoiceTra1 in-
cluded back-translation in the machine translation
system to alleviate this deficiency; however, this
practice requires users to perform additional man-
ual evaluations, which brings new usage costs.

In mainstream machine translation systems, sen-
tences or paragraphs are used as the units of transla-
tion, which means that it takes a relatively long time
to provide users with translated content. Simulta-
neous machine translation, translating sentences in
real-time while the user speaks or types, can signif-
icantly reduce this translation time, but its perfor-
mance lags behind that of standard NMT. Although
some commercial machine translation systems such

1https://voicetra.nict.go.jp/

1

as Google and Baidu have introduced simultaneous
translation feature, due to the integration of simul-
taneous translation and whole-sentence translation,
users cannot easily control whether the system uses
simultaneous translation or whole-sentence transla-
tion, and the automated control of commercial sys-
tems sometimes does not follow the user’s wishes.

Since user input errors are unavoidable for any
human-computer interaction system, the quality of
NMT system also has been shown to significantly
degrade when confronted with source-side noise
(Heigold et al., 2018; Belinkov and Bisk, 2018;
Anastasopoulos, 2019). The previous grammati-
cal error detection and correction work focused on
computer-aided writing systems. Some existing
computer-aided writing systems (Grammarly2 and
Pigai3, Write&Improve4, and LinggleWrite5) de-
tect and correct grammatical errors; however, sys-
tems such as these have had little attention when
considered in the context of input error detection
or correction for commercial machine translation
systems, as their main focus is generally post-
translation editing.

High quality domain specific machine transla-
tion systems are in high demand whereas general
purpose MT has limited applications because dif-
ferent machine translation users want to generate
translations that can be used in the scenario. On the
one hand, general purpose translation systems usu-
ally perform poorly (Koehn and Knowles, 2017).
On the other hand, appropriate translation is also
a very important goal to pursue. There are two
typical methods to achieve this goal. One is to use
the domain adaptation method to obtain a domain-
specific model from the existing general machine
translation model through transfer learning. The
other is to adopt an conditional translation decoder
to integrate various domains into the same model
and generate translations according to different in-
put conditions (Keskar et al., 2019). At present,
the commercial machine translation system mainly
adopts the former one, but it also brings the addi-
tional deployment cost.

Considering the deficiencies of existing systems,
the new needs of users, and the current develop-
ment of natural language processing, we developed
a web-based machine translation demonstration
system MISS. In this system, we tried to integrate

2https://www.grammarly.com
3https://www.pigai.org
4https://writeandimprove.com
5https://f.linggle.com

several new features to provide better services for
users. With MISS, users can get real-time trans-
lations while writing, flexible control in switching
between real-time translation and whole-sentence
translation, informative back-translation feedback
and scoring, and input error detection and revision
suggestions. In addition, the system also supports
user interactions that modify the translations or in-
puts, which provides crowdsourced data for further
improving the performance of our machine trans-
lation and grammatical error correction. Notably,
there were also several interactive translation sys-
tems in the past, such as CASMACAT (Alabau
et al., 2014), (Knowles and Koehn, 2016), (Peris
et al., 2017), and INMT (Santy et al., 2019). The
distinctions lie in the abilities of the systems and
the features to adapt to the latest user needs.

2 The MISS System

There are 5 features in our MISS translation sys-
tem: simultaneous translation, back-translation
for quality evaluation, grammatical error correc-
tion, multi-style translation, and crowdsourcing
data collection. The system is available at http:
//miss.x2brain.com/ until November 12,
2021. We show a screenshot of the system in Figure
1. In the following subsections, we will describe
each component of the system.

2.1 Basis: Transformer-based NMT

Transformer (Vaswani et al., 2017) is an atten-
tion mechanism-based network. This architecture
introduced the innovative self-attention network
(SAN) that computes the relationships between
all tokens in the source sequence. (Hassan et al.,
2018; Läubli et al., 2018; Li et al., 2020a, 2021) ob-
served that Transformer-based NMT has achieved
performance similar to human-level performance
on some benchmarks, and because of this tremen-
dous performance, this model has been widely used
in the field of machine translation. Given the ex-
cellent performance of Transformer-based NMT,
we use it as the basis for our system. The model
includes an encoder and a decoder, which are re-
spectively used for incrementally processing the
source and target sentences. Both the encoder and
decoder are stacks of L Transformer blocks.

2.2 Feature #1: Simultaneous Translation

Simultaneous NMT has attracted much attention
recently. In contrast to standard NMT, where the

2

Figure 1: The screenshot of MISS system.

NMT system can access the full input sentence, si-
multaneous NMT can only utilize the current state
of an input sentence (which may be incomplete).
Because of this, the translation task entails more
uncertainty and consequently, more difficulty. Cur-
rent simultaneous NMT systems model the task as
a prefix-to-prefix problem. Among them, wait-k
inference (Ma et al., 2019) is a simple yet effec-
tive strategy for simultaneous NMT. In wait-k, the
decoder is asked to generate the output sequence
k words behind the input words. Specifically, the
wait-k strategy is defined as follows: given an in-
put x ∈ X , the generation of the translation y is
always k tokens behind reading x; that is, at the
t-th decoding step, we generate token yt based on
x ≤ t − k + 1. We thus adopt a Transformer-
based NMT model with the wait-k strategy, aiming
for balance between translation performance and
efficiency.

2.3 Feature #2: Back-translation for Quality
Evaluation

A machine translation model on its own is unable
to evaluate the quality of its generated translations,
as typical translation quality metrics require refer-
ence sentences. This lack of obvious evaluation
can cause users to mistrust the translation system
and doubt whether it accurately expresses a sen-
tence’s true meaning. Back-translation – the ‘re-

translation’ of a translated sequence back into its
original language – is a potential method of gen-
erating reference sentences for comparison that
utilizes the duality of direction in translation (He
et al., 2016). Back-translation is currently mainly
used as a data-enhancement method for supervised
NMT systems (Edunov et al., 2018) and as a cru-
cial training method for unsupervised NMT sys-
tems (Conneau and Lample, 2019), though it has
been more controversial as a method of assessing
translations. According to (Behr, 2017)’s conclu-
sion, while back-translation can give some evalu-
ation of the translation, it often raises issues not
noted by human assessors, and more importantly,
is less reliable in general, as many problems re-
main hidden. These shortcomings are mainly are
a result of commonly used automatic evaluation
methods (like BLEU) using only surface-level sim-
ilarity; they do not strictly measure , Semantic
Equivalence (SE), which is the true goal. Thus,
we adopted BERTScore(Zhang et al., 2019), a lan-
guage generation evaluation metric based on pre-
trained BERT contextual embeddings, for seman-
tic equivalence assessment and the evaluation met-
ric BT-BLEU (Li et al., 2020b) (also described in
(Nguyen et al., 2021) as reconstruction BLEU) for
translation quality evaluation. Furthermore, recent
work (Fomicheva et al., 2020) mentions various
other unsupervised quality evaluation methodolo-

3

gies, we will include it into the follow-up updates
and provide a better reference indicator in our sys-
tem.

2.4 Feature #3: Grammatical Error
Correction

Detecting potential grammatical errors and offer-
ing corrective suggestions for them sentence is
also a very important feature in MISS. We chose
the tag-based modeling approach for this feature
based on the fresearch field’s latest achievements
(Omelianchuk et al., 2020) and our recent work
(Parnow et al., 2020, 2021) in the Grammatical
Error Correction (GEC).

Specifically, the g-transformations developed by
(Omelianchuk et al., 2020) were included in our
system in the hopes of providing learners more
specific suggestions (i.e., the edit type of an error)
to revise the users’ input. Predicting edits rather
than tokens also increases the generalization of our
GEC model. G-transformations are based on sev-
eral basic transformations: $KEEP (keep the cur-
rent token unchanged), $DELETE (delete current
token), $APPEND_t1 (append new token t1 next
to the current token), and $REPLACE_t2 (replace
the current token with another token t2). From
these basic transformations, further, more task-
specific transformations are hand designed (such
as $CASE (fix the casing of a word), $MERGE
(merge the current token and the next token into
a single one) and $SPLIT (split the current token
into two new tokens)) and empirically learned (e.g.,
$REPLACE_cause, which replaces certain words
with “cause,” and $APPEND_for, which adds “for”
when it is needed), resulting in a total tag vocabu-
lary size of 5000.

We train our tag-based GEC model with a multi-
stage strategy using the same model architecture
and pre-processing script as (Omelianchuk et al.,
2020). We use the same synthesis strategy as in
(Parnow et al., 2020) to synthesize pseudo data for
pre-training in the first stage before fine-tuning on a
small, high-quality human-annotated GEC dataset.

2.5 Feature #4: Multi-style Translation
In linguistics, the “style" of a text denotes “the ag-
gregate of contextual probabilities of its linguistic
items" (Enkvist, 1964) and can be seen as refer-
ring to its deviation from textual norms (Huang,
2015). Machine translation requires generating
translated text with different styles, leading to what
are known as as domain adaptation tasks (Koehn

and Knowles, 2017). In these tasks, there are two
main approaches (the data-centric approach and
the model-centric approach), but though these ap-
proaches produce more powerful in-domain mod-
els (i.e., domain-specific models) for their given
domains, they bring extra overhead to deployment.

Recently, large-scale Transformer-based lan-
guage models have shown promising text gener-
ation capabilities, as seen with GPT-2 (Radford
et al., 2019) and GPT-3 (Brown et al., 2020), which
demonstrated strong generation performance with
the Transformer decoder. (Keskar et al., 2019)
sought to make a more malleable model and re-
leased CTRL, a 1.63 billion-parameter conditional
Transformer language model, demonstrating that
with enough model capacity, and compute power,
language models can adapt to and be successful
in multiple domains. Inspired by CTRL’s use of
control codes, which governed the style and other
apsects of its generation, and GPT’s use of Trans-
former decoders, we made a simple modification to
the decoder of a Transformer-based NMT model,
making this decoder also conditioned on a variety
of control codes (Pfaff, 1979; Poplack, 2000). We
call our system CTRL-NMT. Formally speaking,
the target distribution of CTRL-NMT can be de-
composed using the chain rule of probability and
trained with a loss that takes the control code into
account:

p(y|x) =

NMT︷ ︸︸ ︷
n∏

i=1

p(yi|y<i, x)→

CTRL-NMT︷ ︸︸ ︷
n∏

i=1

p(yi|y<i, x, c),

where x is the source language input, y is the target
language translation, and c is the control code.

In CTRL-NMT, the control code uses natural lan-
guage terms (words) instead of separately defined
tokens, so it can share the word embedding and
has the ability to continue to expand to more codes.
There is little change to the model in comparison
to our standard NMT model, so CTRL-NMT can
be initialized with the checkpoint of our standard
NMT model. Additionally, since we only use a
single model, deploying multiple styles will not be
more costly.

2.6 Feature #5: Crowdsourcing Data
Collection

In machine translation, grammatical error correc-
tion, and Semantic Similarity calculation, high-
performing models rely on large-scale data, par-

4

ticularly high-quality, manually labeled data. Pro-
ducing large scale annotated data is an onerous
task requiring intensive human effort. This is espe-
cially true for machine translation, which requires
bilingual speakers. “Crowdsourcing" (Howe, 2006)
refers to a data collection method that involves ob-
taining work, information, or opinions from a large
group of people who typically submit their data
via internet services. Our MISS system adopts
crowdsourcing data collection as a method of fur-
ther improving model performance, making MISS
an active learning system.

Specifically, when a user begins to input a sen-
tence, the system responds with translation, back-
translation, and revision suggestions. The user’s
decisions in response to these suggestions will then
constitute the data that we collect.

Operation NMT GEC SE

Acc. Trans. X X
Edit Trans. X X X
Edit Source X
Acc. Trans.Rv. X X X
Acc. Source.Rv. X

Table 1: User operations used for our crowdsourcing
data collection in our MISS system.

3 Implementation and Training

The full system consists of 4 neural models: (1) a
multi-style NMT model, (2) a simultaneous NMT
model, (3) a grammatical error correction model,
and (4) a BERT model. In our current MISS re-
lease, we translate between three languages (En-
glish (EN), Chinse (ZH), and Japanese (JA)) for
demonstration.

For the multi-style NMT model, we implement
CTRL-NMT using the public fairseq (Ott et al.,
2019) toolkit. In our system, we adopt the Trans-
former (big) setting as in (Vaswani et al., 2017).
We did not choose a deeper or wider Transformer
(Wang et al., 2019; Sun et al., 2019) model because
we wanted to balance performance and efficiency.
As in (Li et al., 2019), we used a data-dependent
gaussian prior objective (D2GPo) during the NMT
model training process for better generalization.
Due to resource constraints, our currently deployed
model does not perform back-translation of larger
sentences. Table 2 lists all our training corpora and
their sizes.

For the simultaneous translation model, we im-
plemented the wait-k strategy and replaced the bi-

Provider Style Num.

EN-ZH WMT20 Formal 28.3M
AI Challenger18 Oral 12.9M

EN-JA WMT20 Formal 17.7M
TED+BSD Oral 0.25M

Table 2: All NMT training data

directional attention in the encoder side with unidi-
rectional attention. We also used the Transformer
model implemented by fairseq as a base for this.
Inspired by (Wu et al., 2020), we used beam search
for partial tokens during simultaneous translation
to obtain better translation sequences. We wanted
to emphasize efficient inference, so we adopted a
Transformer (Base) setting with fewer parameters.
The training data used was the same as that in the
multi-style NMT model.

We formulated the GEC task as a sequence la-
beling problem and thus adopted a neural sequence
tagging model to handle the task. We followed
(Omelianchuk et al., 2020)’s model architecture,
which was an encoder consisting of a pre-trained
BERT-like transformer stacked with two linear lay-
ers with softmax layers on the top - one for error
detection and one for error labeling. As in (Awasthi
et al., 2019), the architecture uses an iterative cor-
rection strategy in which predicted transformations
are applied to the input sequence successively. Af-
ter errors are detected and predicted, a modified
Levenshtein distance guides the generation of a
corrected sentence. We limit the maximum number
of inference iterations to 4 to speed up the over-
all correction process while still maintaining good
correction accuracy. The training data we used
for GEC is shown in Table 3. We trained our En-
glish GEC model at the word level and our Chinese
and Japanese models at the character level. We
used pre-trained language models for initialization;
namely, XLNet-large-cased in English, BERT-base-
chinese in Chinese, and BERT-base-japanese-char
in Japanese.

For translation quality evaluation, we measure
the semantic equivalence using BERTScore, an
automated evaluation metric that computes token
similarity using contextual embeddings. We use
RoBERTa-large, BERT-base-chinese, and BERT-
base-japanese-char as the respective initial em-
bedding sources for our English, Chinese, and
Japanese evaluation models. As (Zhang et al., 2019,
2020) observed that fine-tuning the pre-trained con-

5

Provider Num.

EN

PIE-synthetic 9M
Lang-8 947K
NUCLE 56K
FCE 34K
W&I+LOCNESS 34K

ZH
NLPCC2018-GEC

1.3MHSK+Lang8
CGED

JA Lang8 3.1M

Table 3: The GEC training data

Models EN→ZH ZH→EN EN→JA JA→EN

separate training

Transformer-big 37.6 28.0 33.5 18.7
30.8 28.6 23.2 11.5

joint training

Transformer-big 36.9 27.2 33.4 18.5
28.9 28.0 26.9 15.6

CTRL-NMT 37.5 28.4 33.8 19.2
31.4 29.1 28.9 16.8

joint training

Transformer-base 35.4 25.8 31.7 17.0
27.5 26.7 25.7 14.6

Sim-NMT (k=3) 31.1 23.3 30.2 16.1
24.0 23.5 23.2 13.3

Table 4: The performance of our NMT models. Each
model presents two lines of results - the top one for
formal language and the bottom one for oral language
translation.

textualized models on a related task can lead to
better evaluation, we fine-tuned the pre-trained con-
textualized language models using our collected
data.

4 Evaluation

We conducted empirical experiments on our mod-
els to evaluate the performance of important com-
ponents in our system. For the NMT component,
we chose the WMT2020 test set newstest2020 as
the evaluation set for formal EN-ZH and EN-JA
translation and the development set of the AI Chal-
lenger 2018 competition as the evaluation set for
oral ZH-EN translation. In ZH→EN and JA→EN
translation, we used Multi-bleu as our evaluation
metric, and we adopted the moses tokenizer for
word tokenization, while in EN→ZH and EN→JA,
we used character-level Multi-BLEU to remove the
influence of different segmenters on BLEU score.
For the standard and simultaneous machine transla-
tion components, we used the same evaluation sets
and metrics.

PrLM Dict P R F0.5

EN − Word 53.46 37.45 54.22
+XLNet Word 76.92 41.03 65.47

ZH
− Word 38.72 15.07 29.47
− Char 45.06 19.55 35.73

+BERT Char 50.34 33.46 45.72

JA
− Word 36.83 20.52 31.78
− Char 45.68 16.49 33.74

+BERT Char 46.56 27.34 40.82

Table 5: The performance of our GEC models

For the GEC component, we followed common
practice in the GEC task (Rei and Yannakoudakis,
2016; Omelianchuk et al., 2020) and used precision
(P), recall (R), and F0.5 to evaluate our models on
all three languages. We evaluated English at the
word level and Chinese and Japanese at the charac-
ter level. We chose the test set of the CoNLL-2014
shared task as our evaluation set for our English
GEC model. For Chinese and Japanese, we ex-
tracted 5000 sentences from the original training
set for the development set and 5000 sentences for
the test set and used the rest as the training set. ER-
RANT6 was used to convert parallel files to the m2
format for subsequent scoring with the M2Scorer
(Dahlmeier and Ng, 2012).

The results of our models for standard NMT and
simultaneous NMT are shown in Table 4. First, for
the evaluation results of standard NMT, we found
that the joint training of multiple styles of data does
not bring performance improvement compared to
separate training, especially when the corpora sizes
of the two styles are similar. The translation perfor-
mance gap between different styles demonstrates
that the level difficulty of translation in different
styles is different. Since style essentially refers to
deviation from standard textual norms, the greater
the deviation, the greater the translation complexity
is, which explains why different styles will have dif-
ferent levels of difficulty in comparison to standard
translation.

In CTRL-NMT, through the incorporation con-
trol codes, we found that the translation perfor-
mance for specific styles using the single model
was equivalent to or, in some cases, better than
that of training separate models. This shows that
the Transformer-based model sufficiently accom-
modates the generation of multiple styles of lan-
guage, and leveraging the language commonalities
between different styles can bring additional im-

6https://github.com/chrisjbryant/errant

6

Crowdsource
Service

EN

ZH

JA

NMT
Collector

GEC
Collector

Simultaneous
NMTModel GEC Model BERTScore

Model
Multiple-styled
NMTModel

Web UI

Service Streamer Flask Gunicorn NGINXDocker
…

Figure 2: The deployment architecture of MISS system.

provements.
The results of simultaneous NMT and standard

NMT, however, do show that the performance of si-
multaneous NMT still lags behind that of standard
NMT when using the same architecture, as there is
less information available to the model during si-
multaneous translation. Despite this, simultaneous
NMT is likely to further approach standard NMT’s
performance in the future through the use of greater
contextual information and input prediction facili-
tated by a specific input module.

We show the evaluation results7 of the GEC mod-
els in Table 5. The results show that pre-trained
language models (PrLMs) can bring large perfor-
mance improvements. Additionally, comparing
Chinese and Japanese models at the word and char-
acter levels shows that in tag-based GEC modeling,
character-level models outperform their word-level
counterparts because of the character-level models’
smaller tag sets.

5 Deployment

The architecture diagram of our deployment of
the MISS system is shown in Figure 2. Since
modern GPUs can bring good inference acceler-
ation for deep neural network models, we choose
NVIDIA GPUs as the basis for model deployment.
There are four models in the system: the multi-
style NMT model, the simultaneous NMT model,
the GEC model, and the BERTScore model. We
use Docker to install and isolate the environments
of each model and use service_streamer to assem-
ble scattered user requests to form a mini-batch
to make full use of the GPUs in parallel. Flask

7In our results, since the evaluation sets of Chinese and
Japanese are self-split and character-level, they are not directly
comparable to other work.

and Gunicorn are used to wrap the model into a
microservice interface for external calls. NGINX is
used to distribute static resources and balance load.
We use a basic Web UI to make our service acces-
sible to users. In addition, Mongodb is adopted to
store the users’ logs, which the system collects.

6 Conclusion and Future Work

In this paper, we presented a translation sys-
tem, MISS. This system supports multi-style ma-
chine translation, simultaneous machine transla-
tion, grammatical error detection and correction,
and back-translation-based quality evaluation. Our
goal in developing this system is providing users
with a more fluid machine translation experience.
Using the research of the NLP community, we
were able to introduce a variety of translation and
translation-related tools to help users. In addition,
we leverage the user’s operations and feedback in
the system as a source of crowdsourced informa-
tion to potentially use in further improving the per-
formance of the system. Compared with existing
commercial translation systems, our system can
provide a more comprehensive experience.

With this work, we also lay out steps to take to
further improve the machine translation user ex-
perience: improve the consistency of translation
by integrating document-level context, enhance
the performance of models by incorporating back-
translation using monolingual data, include more
language styles such as academic translation, and
explore the data collected through crowdsourcing
for further improving overall performance.

7

References
Vicent Alabau, Christian Buck, Michael Carl, Fran-

cisco Casacuberta, Mercedes García-Martínez, Ul-
rich Germann, Jesús González-Rubio, Robin Hill,
Philipp Koehn, Luis Leiva, Bartolomé Mesa-Lao,
Daniel Ortiz-Martínez, Herve Saint-Amand, Ger-
mán Sanchis Trilles, and Chara Tsoukala. 2014.
CASMACAT: A computer-assisted translation work-
bench. In Proceedings of the Demonstrations at the
14th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 25–
28, Gothenburg, Sweden. Association for Computa-
tional Linguistics.

Antonios Anastasopoulos. 2019. An analysis of source-
side grammatical errors in NMT. In Proceedings of
the 2019 ACL Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
213–223, Florence, Italy. Association for Computa-
tional Linguistics.

Abhijeet Awasthi, Sunita Sarawagi, Rasna Goyal,
Sabyasachi Ghosh, and Vihari Piratla. 2019. Parallel
iterative edit models for local sequence transduction.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 4260–
4270, Hong Kong, China. Association for Computa-
tional Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Dorothée Behr. 2017. Assessing the use of back trans-
lation: The shortcomings of back translation as a
quality testing method. International Journal of So-
cial Research Methodology, 20(6):573–584.

Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic
and natural noise both break neural machine transla-
tion. In International Conference on Learning Rep-
resentations.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In Advances
in Neural Information Processing Systems, pages
7059–7069.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better
evaluation for grammatical error correction. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages

568–572, Montréal, Canada. Association for Com-
putational Linguistics.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 489–500, Brussels, Belgium. Association for
Computational Linguistics.

Nils Erik Enkvist. 1964. Linguistic and Style: On
Defining Style; an Essay in Applied Linguistics; and
Approach to the Study of Style. Oxford University
Press.

Marina Fomicheva, Shuo Sun, Lisa Yankovskaya,
Frédéric Blain, Francisco Guzmán, Mark Fishel,
Nikolaos Aletras, Vishrav Chaudhary, and Lucia
Specia. 2020. Unsupervised quality estimation for
neural machine translation. Trans. Assoc. Comput.
Linguistics, 8:539–555.

Hany Hassan, Anthony Aue, Chang Chen, Vishal
Chowdhary, Jonathan Clark, Christian Feder-
mann, Xuedong Huang, Marcin Junczys-Dowmunt,
William Lewis, Mu Li, et al. 2018. Achieving hu-
man parity on automatic chinese to english news
translation. arXiv preprint arXiv:1803.05567.

Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai
Yu, Tie-Yan Liu, and Wei-Ying Ma. 2016. Dual
learning for machine translation. In Advances in
Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Sys-
tems 2016, December 5-10, 2016, Barcelona, Spain,
pages 820–828.

Georg Heigold, Stalin Varanasi, Günter Neumann, and
Josef van Genabith. 2018. How robust are character-
based word embeddings in tagging and MT against
wrod scramlbing or randdm nouse? In Proceedings
of the 13th Conference of the Association for Ma-
chine Translation in the Americas (Volume 1: Re-
search Track), pages 68–80, Boston, MA. Associa-
tion for Machine Translation in the Americas.

Jeff Howe. 2006. Crowdsourcing: A definition.

Libo Huang. 2015. Style in translation. In Style in
Translation: A Corpus-Based Perspective, pages 17–
30. Springer.

Yafang Huang, Zuchao Li, Zhuosheng Zhang, and Hai
Zhao. 2018. Moon IME: Neural-based Chinese
Pinyin aided input method with customizable associ-
ation. In Proceedings of ACL 2018, System Demon-
strations, pages 140–145, Melbourne, Australia. As-
sociation for Computational Linguistics.

William John Hutchins and Harold L Somers. 1992.
An introduction to machine translation, volume 362.
Academic Press London.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney,
Caiming Xiong, and Richard Socher. 2019. Ctrl: A
conditional transformer language model for control-
lable generation. arXiv preprint arXiv:1909.05858.

8

Rebecca Knowles and Philipp Koehn. 2016. Neural
interactive translation prediction.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Proceed-
ings of the First Workshop on Neural Machine Trans-
lation, pages 28–39, Vancouver. Association for
Computational Linguistics.

Samuel Läubli, Rico Sennrich, and Martin Volk. 2018.
Has machine translation achieved human parity? a
case for document-level evaluation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 4791–4796,
Brussels, Belgium. Association for Computational
Linguistics.

Zuchao Li, Jiaxun Cai, Shexia He, and Hai Zhao.
2018a. Seq2seq dependency parsing. In Proceed-
ings of the 27th International Conference on Com-
putational Linguistics, pages 3203–3214, Santa Fe,
New Mexico, USA. Association for Computational
Linguistics.

Zuchao Li, Shexia He, Jiaxun Cai, Zhuosheng Zhang,
Hai Zhao, Gongshen Liu, Linlin Li, and Luo Si.
2018b. A unified syntax-aware framework for se-
mantic role labeling. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2401–2411, Brussels, Bel-
gium. Association for Computational Linguistics.

Zuchao Li, Rui Wang, Kehai Chen, Masao Utiyama,
Eiichiro Sumita, Zhuosheng Zhang, and Hai Zhao.
2020a. Explicit sentence compression for neural ma-
chine translation. In The Thirty-Fourth AAAI Con-
ference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial In-
telligence, EAAI 2020, New York, NY, USA, Febru-
ary 7-12, 2020, pages 8311–8318. AAAI Press.

Zuchao Li, Rui Wang, Kehai Chen, Masso Utiyama,
Eiichiro Sumita, Zhuosheng Zhang, and Hai Zhao.
2019. Data-dependent gaussian prior objective for
language generation. In International Conference
on Learning Representations.

Zuchao Li, Zhuosheng Zhang, Hai Zhao, Rui Wang,
Kehai Chen, Masao Utiyama, and Eiichiro Sumita.
2021. Text compression-aided transformer encod-
ing. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence.

Zuchao Li, Hai Zhao, Rui Wang, Masao Utiyama, and
Eiichiro Sumita. 2020b. Reference language based
unsupervised neural machine translation. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2020, pages 4151–4162, Online. As-
sociation for Computational Linguistics.

Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng,
Kaibo Liu, Baigong Zheng, Chuanqiang Zhang,
Zhongjun He, Hairong Liu, Xing Li, Hua Wu, and

Haifeng Wang. 2019. STACL: Simultaneous trans-
lation with implicit anticipation and controllable la-
tency using prefix-to-prefix framework. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3025–3036,
Florence, Italy. Association for Computational Lin-
guistics.

Xuan-Phi Nguyen, Shafiq R. Joty, Thanh-Tung
Nguyen, Kui Wu, and Ai Ti Aw. 2021. Cross-
model back-translated distillation for unsupervised
machine translation. In Proceedings of the 38th In-
ternational Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event, volume 139 of
Proceedings of Machine Learning Research, pages
8073–8083. PMLR.

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem
Chernodub, and Oleksandr Skurzhanskyi. 2020.
GECToR – grammatical error correction: Tag, not
rewrite. In Proceedings of the Fifteenth Workshop
on Innovative Use of NLP for Building Educational
Applications, pages 163–170, Seattle, WA, USA â†’
Online. Association for Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

Kevin Parnow, Zuchao Li, and Hai Zhao. 2020. Gram-
matical error correction: More data with more con-
text. The International Conference on Asian Lan-
guage Processing (IALP).

Kevin Parnow, Zuchao Li, and Hai Zhao. 2021. Gram-
matical error correction as GAN-like sequence label-
ing. In Findings of the Association for Computa-
tional Linguistics: ACL-IJCNLP 2021, pages 3284–
3290, Online. Association for Computational Lin-
guistics.

Álvaro Peris, Miguel Domingo, and Francisco Casacu-
berta. 2017. Interactive neural machine translation.
Comput. Speech Lang., 45:201–220.

Carol W Pfaff. 1979. Constraints on language mix-
ing: Intrasentential code-switching and borrowing in
spanish/english. Language, pages 291–318.

Shana Poplack. 2000. Sometimes i’ll start a sentence
in spanish y termino en español: Toward a typol-
ogy of code-switching. The bilingualism reader,
18(2):221–256.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Marek Rei and Helen Yannakoudakis. 2016. Composi-
tional sequence labeling models for error detection
in learner writing. In Proceedings of the 54th An-
nual Meeting of the Association for Computational

9

Linguistics (Volume 1: Long Papers), pages 1181–
1191, Berlin, Germany. Association for Computa-
tional Linguistics.

Sebastin Santy, Sandipan Dandapat, Monojit Choud-
hury, and Kalika Bali. 2019. INMT: Interactive neu-
ral machine translation prediction. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP): System Demonstrations,
pages 103–108, Hong Kong, China. Association for
Computational Linguistics.

Meng Sun, Bojian Jiang, Hao Xiong, Zhongjun He,
Hua Wu, and Haifeng Wang. 2019. Baidu neural ma-
chine translation systems for WMT19. In Proceed-
ings of the Fourth Conference on Machine Transla-
tion (Volume 2: Shared Task Papers, Day 1), pages
374–381, Florence, Italy. Association for Computa-
tional Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
Advances in neural information processing systems,
27:3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu,
Changliang Li, Derek F. Wong, and Lidia S. Chao.
2019. Learning deep transformer models for ma-
chine translation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1810–1822, Florence, Italy. Associa-
tion for Computational Linguistics.

Xueqing Wu, Yingce Xia, Lijun Wu, Shufang Xie,
Weiqing Liu, Jiang Bian, Tao Qin, and Tie-Yan Liu.
2020. Learn to use future information in simultane-
ous translation. arXiv preprint arXiv:2007.05290.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Zhuosheng Zhang, Yuwei Wu, Hai Zhao, Zuchao Li,
Shuailiang Zhang, Xi Zhou, and Xiang Zhou. 2020.
Semantics-aware BERT for language understanding.
In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Inno-
vative Applications of Artificial Intelligence Confer-
ence, IAAI 2020, The Tenth AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI
2020, New York, NY, USA, February 7-12, 2020,
pages 9628–9635. AAAI Press.

10

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 11–19
November 7–11, 2021. ©2021 Association for Computational Linguistics

Automatic Construction of Enterprise Knowledge Base

Junyi Chai, Yujie He, Homa Hashemi, Bing Li,
Daraksha Parveen, Ranganath Kondapally, Wenjin Xu

Microsoft Corporation
juchai,yujh,hohashem,libi,daparvee,rakondap,wenjinxu@microsoft

Abstract
In this paper, we present an automatic knowl-
edge base construction system from large scale
enterprise documents with minimal efforts of
human intervention. In the design and de-
ployment of such a knowledge mining system
for enterprise, we faced several challenges in-
cluding data distributional shift, performance
evaluation, compliance requirements and other
practical issues. We leveraged state-of-the-art
deep learning models to extract information
(named entities and definitions) at per docu-
ment level, then further applied classical ma-
chine learning techniques to process global sta-
tistical information to improve the knowledge
base. Experimental results are reported on ac-
tual enterprise documents. This system is cur-
rently serving as part of a Microsoft 365 ser-
vice.

1 Introduction

Massive knowledge bases constructed from public
web documents have been successful in enriching
search engine results in Bing and Google for over a
decade (Noy et al., 2019). There is growing interest
in automatically constructing a similar knowledge
base for each enterprise from their internal doc-
uments (e.g., web pages, reports, emails, presen-
tation decks; textual contents in natural language
form are all referred to as documents in this paper).
Such knowledge base can help an enterprise to bet-
ter organize its domain knowledge, help employees
(users) better find and explore knowledge, and to
encourage knowledge sharing.

Mining knowledge from enterprise documents
poses unique challenges. One challenge is that
the system needs to be fully automated without
per enterprise customization or existing (semi-)
structured sources. Knowledge base construction
from web documents is often based on bootstrap-
ping entities from human-curated sources such as
Wikipedia with customized extraction rules (DBpe-
dia: Auer et al., 2007, Freebase: Bollacker et al.,

2008, YAGO2: Hoffart et al., 2013), or the exis-
tence of a prior knowledge base (Knowledge Vault:
Dong et al., 2014). Maintaining such Wiki site and
keep it fresh is costly for enterprise. Another chal-
lenge is that most training data for natural language
processing (NLP) models is from public documents.
Enterprise documents can have different writing
style and vocabulary than the public documents.
The data distributional shift (Quiñonero-Candela
et al., 2008) is a challenge as (a) we need model to
generalize better to enterprise domain and (b) we
need test metrics to reflect the actual performance
on enterprise documents to guide model develop-
ment.

On the other hand, enterprise domain brings new
opportunities. For search engines, the knowledge
base must be extremely accurate. This require-
ment limits the usage of NLP models to extract
information from unstructured text as few models
can achieve the required precision with meaning-
ful coverage. In enterprise domain, we can relax
the requirement on accuracy as enterprise users are
expected to spend more time to absorb and discrim-
inate information. In addition, users can curate and
improve the automatically constructed knowledge
base, which is not an option for search engine users.
The relaxation on accuracy requirement makes it
possible to perform knowledge mining on unstruc-
tured text by heavily relying on NLP techniques.

In this paper, we present the first large-scale
knowledge mining system for enterprise documents
taking advantage of recent advances in NLP such
as pretrained Transformers (Devlin et al., 2019) as
well as traditional NLP techniques. It is in produc-
tion since February 2021 as part of a Microsoft 365
feature (Microsoft Viva Topics1). For an enterprise
that enables this feature, our system will build a
knowledge base from its internal documents that
already exist in Microsoft cloud and will keep it

1https://www.microsoft.com/en-us/
microsoft-viva/topics/overview

11

fresh without the need of any customized interven-
tion. At the core of our knowledge base are entities
mined from documents that are of interest to the en-
terprise, such as product, organization and project.
These entities are loosely referred to as topics to
the end users (not to be confused with topic model-
ing in NLP). The knowledge base is a collection of
“topic cards” with rich information: properties that
help users understand the topic (such as alternative
names, descriptions, and related documents), or
enable users to connect with people who might be
knowledgeable about the topic (related people) or
explore related topics.

The contributions of this work are as follows:

• We demonstrate a system in production that
performs knowledge mining in large scale:
hundreds of millions of documents, thousands
of organizations.

• We apply state-of-the-art deep learning mod-
els in two NLP tasks named entity recognition
(NER) and definition extraction. We discuss
the challenges and how we improve our sys-
tem to reach the desired performance.

2 System description

The overall system architecture is depicted in Fig-
ure 1. In this section, we discuss at length the
knowledge mining system that works “offline”.
The system works in a semi-streaming mode: when-
ever there’s a document update, the content of the
document is sent to the NER and description min-
ing components. The NER component extracts
entities then updates information in the topic candi-
date store. The topic ranker periodically pulls the
topic candidates store to select the top N topics.
The topic card builder then builds topics cards with
various attributes. Note that this is a simplified
view of the actual system. For example, there is
another component that conflates information from
other sources using techniques described in Winn
et al. (2019).

2.1 Named entity recognition for enterprise
NER is the typical first step in information ex-
traction (Jurafsky and Martin, 2009, Chapter 22).
Based on our study on enterprise customers’ de-
mand and an analysis of Bing’s Satori knowledge
graph, we define 8 entity types that are of inter-
est to the enterprises while covering most of real-
world entities. Among them, “person”, “organiza-
tion”, “location”, "event", and “product” are the

common NER types in various public datasets
(CoNLL03: Tjong Kim Sang and De Meulder,
2003, OntoNotes: Hovy et al., 2006; WNUT 2017:
Derczynski et al., 2017), while “project”, “field of
study”, “creative work” are less common but are
also of high interest to enterprises. These 8 types
cover about 85% of entities in Bing’s Satori knowl-
edge graph. The remaining entities are mainly bio-
logical organisms.

Our NER model is based on Transformers with
the pretraining-finetuning paradigm (Devlin et al.,
2019). State-of-the-art results on several NER
benchmarks are achieved with Transformers (Ya-
mada et al., 2020; Li et al., 2020). To make data
collection easier, we train our model on public data
but apply it to enterprise domain. The distributional
shift between training and testing can cause a signif-
icant performance drop (Quiñonero-Candela et al.,
2008). To measure model’s true performance un-
der distributional shift, we construct a test set from
actual internal documents within Microsoft. The
size of this test set is comparable to CoNLL03 test
set (Tjong Kim Sang and De Meulder, 2003).

To mitigate the distributional shift issue, we di-
vide model training into multiple stages, with the
first stage training on large amount of automatically
annotated data using Wikipedia, which has been
shown to help the system generalize better to a new
domain (Ni and Florian, 2016). Entities are identi-
fied by wikilink, and we use Bing’s Satori knowl-
edge graph to find out the corresponding entity type.
We selected paragraphs with at least 10 wikilinks,
which gives us ∼1 million paragraphs. Finally, we
use an entity linking tool NEMO (Cucerzan, 2007,
2014) to annotate entities without wikilinks and get
∼ 50% more entities.

The benefit of Wikipedia training data lies in its
size, but it comes with low annotation quality. Af-
ter training on it, we continue training on smaller
data with high quality human annotation. In the
second stage, we use OntoNotes 5.02 data set and
mapped their types to our 8 types. This stage is
mainly beneficial for the common NER types, but it
does not help our additional “project” and “field of
study” type. In the last stage, the training data is a
combination of a small number of web documents
with 8 types annotation (size is ∼1000 paragraphs)
and CoNLL03 data with “MISC” type being rean-
notated to one of our 8 types. This last stage of

2https://catalog.ldc.upenn.edu/
LDC2013T19

12

Figure 1: An illustration of the knowledge mining system.

Figure 2: Scores for selected tokens and selected types
from the sentence “The history of NLP dates back to
the 1950s when Alan Turing proposed a simple test (the
“Turing Test”) to determine . . . ”. The abbreviations in
use are: per for person, fos for field of study, wrk for
creative work, and prj for project.

training data is most aligned with our NER type
definition.

To illustrate the effect of multistage training as
well as additional improvement techniques, we con-
sider BERT-base with cased vocabulary finetuned
only on the last stage of training data as a strong
baseline. The F1 metrics of our model, baseline,
and ablation experiments on our test set from inter-
nal documents are shown in Table 1. The baseline
56% F1 is much lower than the reported F1 > 90%
on CoNLL03 test set (Devlin et al., 2019), which
shows the challenge from the distributional shift
(we also test our baseline model on CoNLL03 test
set and get F1 > 90%). The most common entity
type in our test set is product, which can be more
difficult to detect than the most common entity
types (person, location, organization) in CoNLL03.
Also our test set is noisier than CoNLL03 as in-
ternal documents are often less formal than public
documents such as newswire articles. Our best
model achieved an F1 of 71.1%. In ablation study,
multistage training improves F1 by 5.4% from the
baseline. We find additional techniques that can
robustly improve model performance:

• Data augmentation: we find two most use-

ful data augmentation methods out of many
methods we have tried. One method is simply
lower casing the training data. This method
has been shown to increase NER performance
on uncased text significantly, and even im-
prove performance on cased text when train
and test on different domains (Mayhew et al.,
2019). The second method is to replace an
entity mention with a randomly selected en-
tity of the same type. This is motivated by
our observation that the distribution of entities
roughly follows the Zipf’s law. Randomly re-
placing entities can give more weights to tail
entities. In combination, data augmentation
provides a 0.6% F1 lift.

• Focal loss: NER is an imbalanced classifi-
cation problem as most input tokens are not
entities. We test loss functions suitable for im-
balanced dataset: Dice Loss (Li et al., 2020),
Am-Softmax (Wang et al., 2018), and Focal
Loss (Lin et al., 2017). They all provide simi-
lar improvement. We report focal loss (hyper-
parameter gamma=1.6) results here with an
additional 1.5% F1 lift.

• Viterbi decoding: as there is no hard constraint
on the sequence of labels from BERT, the se-
quence can be invalid under the standard BIO
tagging scheme (Lample et al., 2016). Fig-
ure 2 shows such an example. The scores
for tokens (“Turin”, “##g”, “Test”) give an
invalid label sequence of B-per, I-wrk, I-wrk
(per stands for person, wrk for creative work)
using greedy argmax decoding, which we cor-
rect to O, O, O in the baseline setting. We
observe that the correct sequence B-wrk, I-
wrk, I-wrk has highest sum of scores among

13

Experiment Config F1 P R
Best model UniLMv2-large: all techniques 71.1% 72.2% 70.2%
Baseline BERT base: single last stage 56.0% 54.0% 58.2%
Ablation BERT base: multi-stage 61.4% 60.7% 62.1%

+data augmentation 62.0% 60.6% 63.4%
+focal loss 63.5% 62.7% 64.4%
+Viterbi decoding 65.4% 65.8% 65.1%

Table 1: NER results on internal test set.

all valid sequences, for example B-per, I-per, I-
per. Based on this observation, we use Viterbi
algorithm to find the valid path under BIO
scheme with the maximum sum of scores.
This provides a 1.9% F1 lift. We have also
tried adding a CRF layer on top of BERT,
training jointly or separately. We do not see
additional gain (though CRF layer can further
improve 1-layer student model).

• Bigger and better pretrained model: BERT
is pretrained on English Wikipedia and Book-
Corpus, which have limited writing styles. En-
terprise documents can be more diverse, less
formal and noisier. Therefore, pretraining on
more diverse corpora may help our task. We
switched from BERT base-cased to UniLM v2
large-cased, which is pretrained on additional
144GB corpora including OpenWebText, CC-
News, and Stories (Bao et al., 2020). This
provides a 5.7% F1 lift.

For production, we distill knowledge from the
24-layer UniLMv2 teacher model into a 3-layer stu-
dent model, which is initialized from the weights of
the first 3 layers of the teacher model (Hinton et al.,
2015). We use 1 GB Wikipedia data for distillation.
The student model suffers a 5.6% F1 drop. Though
not used in production, we experiment continuing
distillation with only about 50MB of internal docu-
ments. This small amount of data reduces the gap
between student and teacher models to 0.9% F1,
which suggests the usefulness of using in domain
data for knowledge distillation.

Knowledge distillation gives us ∼6x speed up
for inferencing a single input sequence on Nvidia
V100 GPU with f32 precision. On top of student
model, we get another∼14x speedup by (1) export-
ing model from Pytorch to ONNX (Ning, 2020),
(2) switching from Python to C#, and (3) running
inference in f16 precision and batch mode.

2.2 Topic ranker
In the NER step, tens of millions of topic candi-
dates could be detected. The goal of topic ranker is

to pick the top tens of thousands most salient topics
while reducing the number of noisy topics. We
achieve this in two stages by first simply ranking
topics by their total number of times being detected
by NER (referred to as NER frequency) to produce
a short list of topics. Then we rerank the short list
by scores from a binary classifier. The classifier
is trained to distinguish between good and noisy
topics. It uses features such as NER frequency, doc-
ument frequency, topic-in-title frequency (number
of times the topic appears in the document title)
and the ratios of these counting features.

This classifier is effective as it uses global statis-
tical information not available during NER stage.
For example, the word “Company” could be mis-
labeled as an organization by the NER model. Al-
though the probability is small, it could still make
into the short list as this word appears very often.
The classifier would filter it out as the ratio (NER
frequency/document frequency) is very small.

Our training set contains 6000 annotated topics
detected from about 0.5 million Microsoft internal
documents. Using a single feature NER frequency
as a baseline, the AUC is 0.54. We train a gradi-
ent boosting trees classifier (Ke et al., 2017) using
5-fold cross validation and achieve an average vali-
dation AUC 0.67.

In the production system, as the number of topic
candidates scales up, the topic ranker could play
a more important role as much lower percentage
of topics will be selected. To evaluate its true use-
fulness, we apply the classifier in the end-to-end
system to process all Microsoft documents. We ran-
domly sample a subset of topics before and after
applying the classifier. We observe a 9% reduction
in noisy topics with the classifier.

2.3 Definition mining

A succinct and accurate description is a crucial at-
tribute of a topic. Such descriptions come from two
sources: (1) for some topics such as “field of study”
type, their descriptions exist in public knowledge
and therefore we retrieve this information from
Bing’s Satori knowledge graph using an existing
context aware ranking service, which is in use for
Microsoft Word’s Smart Lookup feature; (2) more
importantly, we build a description mining pipeline
to extract private definitions from enterprise doc-
uments. This pipeline consists of the following
steps:

1. Split a document into sentences.
14

2. A deep learning model classifies each sen-
tence into one of 5 categories. Pass a sentence
in the “Sufficient Definition” category to the
next step.

3. Extract topic from the sentence using a list
of patterns, for example: topic is defined as
description text.

4. Remove sentences with negative opinion (or
sentiment) based on lexicon match. We use
the Opinion Lexicon from Hu and Liu (2004).

A large corpus contains definition-like sentences
with a wide range of ambiguity beyond a binary
classification task can capture. Therefore, we make
the task more granular and define 5 categories most
common in enterprise domain: Sufficient, Informa-
tional, Referential, Personal and Non- definitions.
Detailed schema is included in the Appendix.

To collect training data, we need to first collect
sentences with a relative high chance of being a de-
scription. In addition, we want to collect more hard
negative examples such as opinions (e.g., "Cater-
pillar 797B is the biggest car I’ve ever seen.") than
easy negative examples. Using query log from
Bing, we achieved these two goals: we collect
search results for queries that match patterns such
as “what is {term}”, “define {term}” as the results
are highly related to definitions. The search results
also have the advantage of being more diverse than
a single corpus. From the search results, we create
a set of 42,256 annotated sentences, which is re-
ferred as public dataset. As we will show, a model
trained on the public dataset suffers a significant
performance degrade on enterprise documents due
to distributional shift. Therefore, we construct a
second dataset from our internal documents that
have been approved for use after compliance re-
view, which is referred as enterprise dataset. The
model trained on the public dataset is used for iden-
tifying candidate sentences for annotation during
the construction of the enterprise dataset. Using
the enterprise dataset involves many compliance
restrictions. For example, we need to delete a sen-
tence if its source document is deleted or our access
expires; the model is trained within the compli-
ance zone and stays within it. Details for these
two datasets are shown in Table 2, which also in-
cludes the DEFT corpus for comparison (Spala
et al., 2019). Roughly 15% of the data from the
two datasets is withhold from training for testing.

Dataset # of sentences # of positive
Public dataset 42,256 10,927
Enterprise dataset 58,780 49,017
DEFT (Spala et. al. 2019) 23,746 11,004

Table 2: Datasets for definition classification task.

Model Train data Test data F1/P/R
Bert-base Public Public 0.82/0.76/0.89

Enterprise 0.64/0.55/0.77
BERT-base Enterprise Enterprise 0.73/0.68/0.80
BERT-large 0.72/0.70/0.77
UniMLv2-large 0.75/0.71/0.80
Rule based N/A Public 0.48/0.40/0.60

Table 3: Results for definition classification.

Similar to our approach in NER, we consider
BERT-base (with cased vocabulary) as a strong
baseline. First we train BERT-base model on the
public dataset. When testing it on public and enter-
prise datasets, we get F1 results of 0.82 and 0.64 re-
spectively, as shown in Table 3. This performance
degradation again exemplifies the challenge from
distributional shift. Then we train on the enterprise
dataset and compare BERT-base with BERT-large
and UniLMv2-large. UniLMv2-large achieves the
best result with F1 of 0.75, which may again ben-
efit from the bigger pretraining corpus (Bao et al.,
2020). In Table 3, we also add the result from
rule-based classification, which directly uses the
list of patterns in Step 3 (e.g., “is a”, “is defined
as”, “refer to”) to identify definition. It is eval-
uated as a binary classification task: “Sufficient
Definition” vs Others. We get F1 of 0.48 with an
even lower precision of 0.40. This shows the ne-
cessity of model-based classification in Step 2 in
our definition extraction pipeline.

For production, we distill our best model into
a much smaller BiLSTM model. The embedding
of the BiLSTM is initialized from 50-dimensional
Glove vector (Pennington et al., 2014) with a re-
duced vocabulary size of 0.12 million. The hid-
den dimension size is 300. We follow similar
knowledge distillation approach as in Tang et al.
(2019). The student model reaches F1 of 0.72
while achieves about 30x speedup vs. the 24-layer
teacher.

2.4 Topic card builder

Topic card builder builds topics cards with rich
information by aggregating information like defi-
nition and acronym from other components. More
importantly, it computes the relatedness between

15

topics, documents and users. Using relatedness, it
links the top related topics, documents, and users
to each topic. By adding related users to a topic,
we enable the “expert finding” scenario, which is
important for enterprise users to explore expertise.
Topic card builder also conflates two topics if their
degree of relatedness exceeds a threshold and they
pass additional checks to prevent over conflation.

To compute relatedness between any two items,
we build a dense embedding vector for each topic,
document and user. We apply SVD to decompose
the topic-document matrix M into topic and doc-
ument embeddings, where Mi,j is the BM25 of
topic i in document j. This is a classical algorithm
in collaborative filtering (Koren et al., 2009) and
semantic embedding (Bellegarda, 2000; Levy et al.,
2015), but the challenge is the size of the matrix M
in the j dimension as it can be on the order of tens
of millions. We improve a randomized SVD algo-
rithm that iterates on smaller batches of documents
so it can solve problem of our scale on a single
machine under 8 GB memory limit (Halko et al.,
2011). User embedding is represented as the aver-
age of embeddings of the documents that the user
has authored. Relatedness is computed as the dot
product of two embedding vectors. Top K topics
and users most related to a given topic are added
to the topic card in this manner. For related docu-
ments, embedding is used as a recall-oriented step
to select candidate documents, and we apply an
additional reranking step using additional signals.

To evaluate the overall quality of the system, we
conduct human evaluation on the quality of gen-
erated topic cards (70K) mined from Microsoft
internal documents (40 million). We ask users (Mi-
crosoft employees) to judge the overall quality of
randomly sub-sampled topic cards by considering
all the information. A good topic card means that it
has sufficient information to help users understand
the topic. In this study, we achieve 85% good rate.

3 Use Cases

The detailed user guide and licensing information
can be found on Microsoft Viva Topics website3.
Here we briefly introduce two ways user can inter-
act with the knowledge base. Figure 3 shows the
topic highlighting feature. Topic mentions in doc-
uments get automatically linked to the knowledge
base. User can hover over the topic mention to see

3https://docs.microsoft.com/en-us/
microsoft-365/knowledge/

Figure 3: Snapshot of an example topic card impres-
sion in enterprise web document.4

Figure 4: Snapshot of a personalized topic center home-
page.4

the topic card and click the link in the topic cards to
checkout more information. Figure 4 shows an ex-
ample topic center homepage. The view is person-
alized as the related topics for a user is presented
for the user to confirm. Users can also checkout all
the topics from Manage Topics page.

4 Conclusion

Organizing resources inside an enterprise into one
centralized location facilitates knowledge and ex-
pertise sharing and improves productivity. We
present a system that automatically constructs a
knowledge base from unstructured documents to
help enterprises achieving this goal. The system is
built upon a combination of deep learning models
and classical techniques. We show the challenge
of applying NLP models in enterprise domain. We
also discuss how we improve the models and the
whole system to meet our requirements with de-
tailed experiment results. Finally, we show two
typical use cases. We hope our experience can
benefit researchers and practitioners in this field.

4The contents (company name, topic information) are not
real internal information but are created for demo purpose.

16

References
Sören Auer, Christian Bizer, Georgi Kobilarov, Jens

Lehmann, Richard Cyganiak, and Zachary Ives.
2007. DBpedia: A Nucleus for a Web of Open Data.
In The Semantic Web, pages 722–735, Berlin, Hei-
delberg. Springer Berlin Heidelberg.

Hangbo Bao, Li Dong, Furu Wei, Wenhui Wang, Nan
Yang, Xiaodong Liu, Yu Wang, Jianfeng Gao, Song-
hao Piao, Ming Zhou, and Hsiao-Wuen Hon. 2020.
UniLMv2: Pseudo-masked language models for
unified language model pre-training. In Proceed-
ings of the 37th International Conference on Ma-
chine Learning, ICML 2020, 13-18 July 2020, Vir-
tual Event, volume 119 of Proceedings of Machine
Learning Research, pages 642–652. PMLR.

Jerome R. Bellegarda. 2000. Exploiting latent sematic
information in statistical language modeling. Pro-
ceedings of the IEEE, 88(8):1279–1296.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: A col-
laboratively created graph database for structuring
human knowledge. In Proceedings of the ACM SIG-
MOD International Conference on Management of
Data, pages 1247–1249, New York, New York, USA.
ACM Press.

Silviu Cucerzan. 2007. Large-scale named entity dis-
ambiguation based on Wikipedia data. In Proceed-
ings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL), pages 708–716, Prague, Czech Republic.
Association for Computational Linguistics.

Silviu Cucerzan. 2014. Name entities made obvious:
the participation in the ERD 2014 evaluation. In Pro-
ceedings of the first international workshop on En-
tity recognition & disambiguation - ERD ’14, pages
95–100, New York, New York, USA. ACM Press.

Leon Derczynski, Eric Nichols, Marieke van Erp, and
Nut Limsopatham. 2017. Results of the WNUT2017
shared task on novel and emerging entity recogni-
tion. In Proceedings of the 3rd Workshop on Noisy
User-generated Text, pages 140–147, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko
Horn, Ni Lao, Kevin Murphy, Thomas Strohmann,
Shaohua Sun, and Wei Zhang. 2014. Knowledge

vault: a web-scale approach to probabilistic knowl-
edge fusion. In The 20th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and
Data Mining, KDD ’14, New York, NY, USA - Au-
gust 24 - 27, 2014, pages 601–610. ACM.

N Halko, P G Martinsson, and J A Tropp. 2011. Find-
ing Structure with Randomness: Probabilistic Al-
gorithms for Constructing Approximate Matrix De-
compositions. SIAM Review, 53(2):217–288.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the Knowledge in a Neural Net-
work. In NIPS Deep Learning and Representation
Learning Workshop.

Johannes Hoffart, Fabian M. Suchanek, Klaus
Berberich, and Gerhard Weikum. 2013. YAGO2:
A spatially and temporally enhanced knowledge
base from Wikipedia. Artificial Intelligence,
194(November):28–61.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. OntoNotes:
The 90% solution. In Proceedings of the Human
Language Technology Conference of the NAACL,
Companion Volume: Short Papers, pages 57–60,
New York City, USA. Association for Computa-
tional Linguistics.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the 2004
ACM SIGKDD international conference on Knowl-
edge discovery and data mining - KDD ’04, vol-
ume 65, page 168, New York, New York, USA.
ACM Press.

Daniel Jurafsky and James H Martin. 2009. Speech and
Language Processing (2nd Edition). Prentice-Hall,
Inc.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang,
Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
2017. LightGBM: A highly efficient gradient boost-
ing decision tree. In Advances in Neural Informa-
tion Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, De-
cember 4-9, 2017, Long Beach, CA, USA, pages
3146–3154.

Yehuda Koren, Robert Bell, and Chris Volinsky. 2009.
Matrix Factorization Techniques for Recommender
Systems. Computer, 42(8):30–37.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270, San Diego, California. Association
for Computational Linguistics.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associ-
ation for Computational Linguistics, 3:211–225.

17

Xiaoya Li, Xiaofei Sun, Yuxian Meng, Junjun Liang,
Fei Wu, and Jiwei Li. 2020. Dice loss for data-
imbalanced NLP tasks. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 465–476, Online. Associ-
ation for Computational Linguistics.

Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming
He, and Piotr Dollár. 2017. Focal loss for dense ob-
ject detection. In IEEE International Conference on
Computer Vision, ICCV 2017, Venice, Italy, October
22-29, 2017, pages 2999–3007. IEEE Computer So-
ciety.

Stephen Mayhew, Tatiana Tsygankova, and Dan Roth.
2019. ner and pos when nothing is capitalized. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 6256–
6261, Hong Kong, China. Association for Computa-
tional Linguistics.

Jian Ni and Radu Florian. 2016. Improving multilin-
gual named entity recognition with Wikipedia en-
tity type mapping. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1275–1284, Austin, Texas. Asso-
ciation for Computational Linguistics.

Emma Ning. 2020. Microsoft open sources break-
through optimizations for transformer inference on
gpu and cpu. cloudblogs.microsoft.com.

Natasha Noy, Yuqing Gao, Anshu Jain, Anant
Narayanan, Alan Patterson, and Jamie Taylor. 2019.
Industry-scale knowledge graphs: Lessons and chal-
lenges. Communications of the ACM, 62(8):36–43.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Joaquin Quiñonero-Candela, Masashi Sugiyama, An-
ton Schwaighofer, and Neil D. Lawrence, editors.
2008. Dataset Shift in Machine Learning. MIT
Press.

Sasha Spala, Nicholas A. Miller, Yiming Yang, Franck
Dernoncourt, and Carl Dockhorn. 2019. DefT: A
corpus for definition extraction in free- and semi-
structured text. In Proceedings of the 13th Linguis-
tic Annotation Workshop, pages 124–131, Florence,
Italy. Association for Computational Linguistics.

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga
Vechtomova, and Jimmy Lin. 2019. Distilling task-
specific knowledge from BERT into simple neural
networks. arXiv.

Erik F. Tjong Kim Sang and Fien De Meulder. 2003.
Introduction to the CoNLL-2003 shared task. In
Proceedings of the seventh conference on Natural

language learning at HLT-NAACL 2003 -, volume 4,
pages 142–147, Morristown, NJ, USA. Association
for Computational Linguistics.

Feng Wang, Jian Cheng, Weiyang Liu, and Haijun Liu.
2018. Additive Margin Softmax for Face Verifica-
tion. IEEE Signal Processing Letters, 25(7):926–
930.

John Winn, John Guiver, Sam Webster, Yordan Zaykov,
Martin Kukla, and Dany Fabian. 2019. Alexandria:
Unsupervised High-Precision Knowledge Base Con-
struction using a Probabilistic Program. In Auto-
mated Knowledge Base Construction (AKBC).

Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki
Takeda, and Yuji Matsumoto. 2020. LUKE: Deep
contextualized entity representations with entity-
aware self-attention. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 6442–6454, On-
line. Association for Computational Linguistics.

A Appendix

18

Category Description Example
Sufficient
Definition

Can uniquely define and can only
define this term.

Statistics is a branch of mathematics dealing
with data collection, organization, analysis, in-
terpretation, and presentation.

Informational
Definition

Informational but cannot
uniquely define this term or can
also apply to other terms.

Statistics is a branch of mathematics.

Referential
Definition

Is a definition but does not con-
tain the term but instead a refer-
ence (“it/this/that”).

This method is used to identifying a hyper-
plane which separates a positive class from the
negative class.

Personal Def-
inition

Associated with the name of a
person.

Tom is a Data Scientist at Acme Corporation
working on natural language processing.

Non-
definition

Does not fall in the other cate-
gories. It can be an opinion (hard
negative) or not related to defini-
tion at all (easy negative).

The Caterpillar 797B is the
biggest car I’ve ever seen.
"Effective Date" means the date 5th May
2020.

Table 4: Schema for definition categories.

19

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 20–27
November 7–11, 2021. ©2021 Association for Computational Linguistics

LightTag: Text Annotation Platform

Tal Perry
LightTag

tal@lighttag.io

Abstract

Text annotation tools assume that their user’s
goal is to create a labeled corpus. However,
users view annotation as a necessary evil on
the way to deliver business value through NLP.
Thus an annotation tool should optimize for
the throughput of the global NLP process, not
only the productivity of individual annotators.
LightTag is a text annotation tool designed and
built on that principle. This paper shares our
design rationale, data modeling choices, and
user interface decisions then illustrates how
those choices serve the full NLP lifecycle.

1 Introduction

Building supervised learning models is like oper-
ating a manufacturing plant. Raw materials(data)
need to be refined and processed(annotated) as a
precursor to final assembly. Some manufacturing
plants rely on a supply chain (outsource annota-
tion) while others are vertically integrated (annotate
in house). According to the theory of constraints
(Goldratt and Cox, 2016), a manufacturing process
should optimize the global throughput and not any
individual sub-process .

LightTag is a text annotation tool built on the
premise of global optimization by addressing anno-
tator as well as project managers and data scientists
who manage the work and enforce production qual-
ity. LightTag is a commercial offering with an
unlimited free tier for academic use 1. LightTag is
unique not only in philosophical outlook but also
in it’s technical implementation and user interface
choices, which we share in this paper.

The remainder of this article is structured as fol-
lows. Section 2 describes prior art. Section 3 an-
alyzes requirements and user personas to derive
LightTag’s goal. Section 4 describes novel user
facing features. Section 5 highlights LightTag’s
data model and it’s implications. We conclude

1Academic free tier avalible at https://lighttag.
io/signup/academic

with a number of case studies from industry and
academia.

2 Related Work

Emacs (Stallman, 1981) was (shockingly) used to
annotate the Penn Treebank (Marcus et al., 1993).
Afterwards a series of standalone annotation tools
emerged such as Salsa (Erk et al., 2003) and ITU
(Eryiğit, 2007) for treebanks or BOEMIE (Fragkou
et al., 2008) and ABNER (Settles, 2005)for the
biomedical domain. This generation of tools is
notable for being standalone software as opposed
to the later web-based tools. DUALIST (Settles,
2011) stands out as an influential system due to it’s
inclusion of active learning and feature labeling.

The following generation of annotation tools
were the first to leverage the browser as a user in-
terface platform and include the Brandeis Annota-
tion Tool (Verhagen, 2010), GATE Teamware (Cun-
ningham and Bontcheva, 2011), BRAT (Stenetorp
et al., 2012) and WebAnno (Yimam et al., 2013).
These also leveraged a client-server architecture
to enable multi-user annotation projects and server
side automation. The recent trends and ubiquity
of NLP, along with improved web development
frameworks and simplified delivery mechanisms,
have inspired a new generation of tools which cater
to data scientists as opposed to academics and em-
phasize ergonomics. This generation of tools, of
which LightTag is a contemporary, include the open
source Docanno (Nakayama et al., 2018) as well as
the commercial Prodi.gy (Montani and Honnibal,
2018) which focuses on annotator productivity via
active learning, and TagTog (Cejuela et al., 2014)
which optimizes for bio-medical annotation.

LightTag’s generation of annotation tools offer
roughly the same set of capabilities as the previous
generation, that of WebAnno, INCEpTION and
BRAT. Yet the current generation of tools enjoys
a measure of commercial success, despite estab-
lished and free alternatives. We posit that the cur-

20

rent generation of tools has a stronger focus on user
experience, ease of use and integration with the end
users goals and systems. Thus, despite the simi-
lar feature sets between the two generations, we
offer the commercial success of LightTag and it’s
contemporaries as proof of innovation that satisfies
previously unmet needs.

3 Goals and Design

In designing LightTag, we relied on the manufac-
turing metaphor mentioned above and identified
three user personas and five broad needs that need
to be served to optimize the overall "NLP process"
as opposed to the local-maxima of individual anno-
tator.

We assume that the end user’s goal is to solve a
business problem with NLP and that text annotation
is a bottleneck in that process (Sambasivan et al.,
2021) . We distinguish between the rate at which
labeled data is produced, and the rate at which
labeled data propagates through the end user’s NLP
process and optimize for the latter.

3.1 Requirements Of An Annotation Tool

Expressivity An annotation tool should allow the
user to express the kinds of annotation they need
to carry out. LightTag supports span annotations,
single and multi-label document classification and
relationship annotation, including dependency and
constituency grammars. LightTag also emphasizes
working with "text in the wild" and supports RTL
languages, unicode, and very long documents such
as legal contracts and electronic medical records.

Productivity In our taxonomy, productivity is
the rate at which an annotator can express the re-
quired annotation. All else being equal, the desired
productivity is "As much as possible."

Coordination Larger annotation projects need
to coordinate the work among the annotators. This
can be as simple as sending out N examples to be
labeled by K annotators such that M annotators an-
notate each example. More complex requirements
include sending out tasks to subsets of annotators
(based on language or security clearance) or dy-
namically scheduling work based on agreement
levels.

Review and Quality Control As in manufac-
turing, the quality of an annotation needs to be
reviewed before delivery. The ability to efficiently
review annotations from multiple annotators and/or
models is required for larger annotation projects.

Analytics Project managers and data consumers
need to know what is happening. That can include
the project’s progress, inter-annotator agreement,
or annotator accuracy.

3.2 User Personas
Modern annotation projects have multiple, distinct,
participants whose requirements from an annota-
tion tool differ. LightTag recognizes three pri-
mary user personas annotators, data scientists, and
project managers

Personas

Needs

Annotator

Manager

Data Scientist

Expression

Efficency

QA

Coordination

Figure 1: A visualization of the mapping between user
personas and their requirements. An annotation plat-
form caters to multiple personas who have different
needs.

Annotators have three primary needs from an
annotation tool. First, they should express the re-
quired annotation (an entity, a document class, re-
lationships). Second, the tooling should help anno-
tators avoid errors such as mistakenly annotating
trailing whitespace. Third, the annotator’s through-
put should be maximized subject to their other re-
quirements.

Project Managers need to control what work is
being done and understand the project’s cadence
and productivity. A common best practice (Hovy
and Lavid, 2010) is to have more than one annota-
tor annotate each example. However, coordinating
and distributing the work is complex, and the effort
scales with the number of annotators while being
constrained by the availability of the project man-
ager. LightTag resolves this issue by automating
the distribution and management of work according
to a project manager’s configuration.

Data Scientists are the final consumer of labeled
data and are responsible for assessing it is quality

21

and suitability. LightTag minimizes their heavy
lifting by calculating inter-annotator agreement,
precision and recall (based on reviewed data), and
other metrics. This allows data scientists to spend
more time in differentiated data science instead of
joining excel files.

4 User Interface and User Facing
Features

In this section, we present user interface decisions
and user-facing features that are, to our knowledge,
unique to LightTag.

4.1 Annotation Features

Contextual Display: Conversational annotation
requires preceding messages in order to interpret
and properly annotate their followers. LightTag
supports this ability through "contextual display,"
whereby a project manager can configure to display
all examples with a particular metadata attribute
(such as conversation_id) at once and sort the items
by a separate attribute (such as timestamp). Thus
annotators can see the entire conversation but an-
notate each message individually.

Drag And Drop Relationship Annotation:
Relationship annotation is a common feature of text
annotation tools. To our knowledge, all text annota-
tion tools that offer this functionality implement it
as arcs drawn between entities in text, implemented
with Scalable Vector Graphics (SVG).

LightTag implements relationship annotation via
the dragging and dropping of entities onto each
other and visualizes a full tree in a separate pane.
Inspired by the Trees3 program Phillips (1998),
users can annotate partial trees and drag and drop
branches to annotate richer structures.

Of note is the ability to annotate constituency
grammars by defining non-terminal nodes. This
feature is often used to "group together" related
nodes in a "container" such as in resume annotation,
where a title, company and dates are all constituents
of a single job.

Figure 2: Relationship annotation of a resume with a
constituency grammar. The "Sales Job" and "Period"
nodes are user defined non-terminals while the other
nodes are entities from the text

Large Taxonomies: Annotation starts with a
taxonomy, the collection of concepts that will be
annotated. Some projects are based on taxonomies
with hundreds or thousands of classes or entity
types. In these cases, it is infeasible to display the
entire taxonomy in a static list. Long lists slow
down annotators and introduces an availability bias
(Tversky and Kahneman, 1973) where annotators
are more likely to select entities that are visible and
at the top of a list, thus biasing the resulting data.

LightTag resolves this issue by providing a
searchable field for classes and entities, allowing
the annotator to quickly find the correct class by
searching.

Figure 3: The user can search a taxonomy of a few
thousand classes to quickly find the most relevant class,
without scrolling through a list

Unobtrusive Pre-Annotations: Many annota-
tion tools offer pre-annotations to increase anno-
tator productivity. The efficacy of pre-annotations
depends on both their accuracy and how the user
interacts with them, particularly when the pre-
annotations are incorrect. If a user must make an
action for every pre-annotation, incorrect ones risk

22

increasing the total number of actions and dimin-
ishing productivity.

Figure 4: Unobstrusive pre-annotations are displayed
as colored underlines. When the user hovers over a pre-
annotation they can accept or reject it. A batch accept
butto (not displayed) allows users to save clicks by ac-
cepting all at once.

LightTag displays pre-annotations in as an unob-
trusive underline. The user can ignore them (and
thus take no action) or accept/reject them by hov-
ering over a pre-annotation and clicking. LightTag
offers a batch accept button allowing users to ac-
cept many pre-annotations at once.

We find that this mode of interaction has a signif-
icant effect on annotator productivity, with a near
doubling of annotator throughput achieved when
only 50% of pre-annotations are accepted.

Annotating With Search Like other annotation
tools, LightTag defaults to displaying examples to
annotate one at a time. However, many datasets are
sparse with respect to the classes or entities that
users need to annotate. In such cases having anno-
tators annotate each example, where the majority
are irrelevant, is ineffective.

To address this issue, LightTag follows Atten-
berg and Provost (2010) by offering a "Search
Mode" in which the entire dataset is displayed in
an infinite scroll, and the user can narrow it down
using search queries.

LightTag’s implementation of search is notewor-
thy because it is operationally simple while remain-
ing fast at scale. Cox (2012) demonstrated the use
of tri-gram indices to speed up plain text and reg-
ular expression search and Korotkov (2012) intro-
duced an implementation to Postgres. Leveraging
these, LightTag can offer users very fast regular
expressions search with minimal operational over-
head.

Figure 5: Annotating with search. Users can write
search queries or regular expressions to narrow down
the set of documents to work on. In this example, doc-
uments from the Federal Registar are annoted for men-
tions of foreign policy.

4.2 Review

Project managers and data scientists want to review
annotations produced by both annotators and, later,
by models. LightTag’s Review mode displays all
annotations made in a selected example and con-
solidates agreements and conflicts. Reviewers can
narrow the scope of review to human or model an-
notations and automatically accept all annotations
that meet a certain agreement threshold.

Figure 6: Agreement detection powered by the rela-
tional model. Conflicts are easily detected by the sys-
tem and visually displayed during review. A reviewer
can click on the button to accept all annotations meet-
ing a specific criteria

4.2.1 Batch Lexical Review
We observe that the distribution of annotated enti-
ties is Zipfian. Rather than having reviewers review
every case of trivially correct or incorrect anno-
tations, LightTag offers a batch review function
where every instance of a particular lexical form
can be seen and reviewed in either a stream or in
one click.

23

Figure 7: All instances of the form "White House" la-
beled as place are displayed. The user can review them
one by one or batch accept/reject them with one click.

5 Backend and Data Model

LightTag’s focus on project management and qual-
ity assurance requires a rich data management struc-
ture. LightTag’s backend is a relational database
using Postgres and makes heavy use of relational
design theory Codd (2002). In this section, we
provide an overview of LightTag’s data model and
elaborate on useful implications.

5.1 Relational Data Model

A project manager in LightTag may define a Job
comprised of the Dataset to annotate and the con-
cepts (entity tags or document classes) with which
to annotate. N annotators should annotate each Ex-
ample in the Dataset of a Job. A project manager
may wish to have the same Dataset annotated with
the same Schema in two Jobs, where a different
Team executes each Job. The definition and assign-
ment of work as described above fits neatly into a
relational model.

Example1

Example2

Annotator 1

Annotator 2

Dataset

Job Schema

Team

Task1

Task2

Task3

Figure 8: A graphical display of the relation between
data entities describing three tasks carried out by two
annotators as part of a job

The natural extension of a relational data model
is that annotations are stored separately from the
Example being annotated. LightTag takes this
idea a step further and separates the Platonic Ideal
(Plato, 1961) of annotation from the event that An-
notator A made Annotation X, thus brining the
database to third normal form. For example, the
"Ideal" that “Document X is classified as class Y”
is stored in a distinct table with id Z. A separate
events table would then store the event “Annotator 1
made classification Z during Task x”. Storing every
possible ideal would be inefficient, thus LightTag
stores the ideal of an annotation the first time it is
manifested via annotation.

Task

Annotator

Schema

Class1 Example

Annotation Ideal

Annotation

Figure 9: A graphical depiction of the relations defin-
ing an annotation. Each node corresponds to a row in
the respective table. The annotator that worked on the
Task made the annotation represent by the Ideal of an
annotation that the Example is classified as Class1

24

5.2 Relational Data Implications
A notable implication of this design is batch func-
tionality during review. For example, automatically
accepting all annotations with a majority vote is dis-
played as a button to the user and is implemented
by aggregating over the “Annotation Ideal table” id,
counting and comparing with the number of users
that saw that example (derived from the Tasks ta-
ble).

Measuring Negative Annotations When anno-
tating with a larger team, we can not assume that
every team member annotated every example. Thus
when calculating metrics such as inter-annotator
agreement, a particular annotator even saw the par-
ticular example needs to be accounted for. The
relational model makes this easy by implicitly pro-
viding a list for each annotator of the Examples
they worked on (by aggregating on the Task table).

Majority Vote During a quality assurance pro-
cess, it is common practice to automatically accept
annotations with a majority or unanimous vote au-
tomatically and manually review annotations in a
conflicting state. By separating the Ideal of an An-
notation from the Event that annotation was made
and recording the particular Job under which the
annotation was made, LightTag can provide the
reviewing user with a one-click functionality to
accept all annotations that meet some agreement
criteria.

Transitive Annotation Rejections LightTag’s
quality assurance functionality assumes only one
correct answer for an annotated span or a document
classification2. When a reviewer marks an annota-
tion as correct, the system rejects any conflicting
annotation automatically, be it a difference in class,
an entity tag, or span range. If annotations A and B
overlap and A is correct, then B must be incorrect.
The relational model allows executing the transi-
tive rejection in O(1) time instead of scanning the
entire annotation table. More importantly, doing
so in a single database transaction ensures that the
data is never in an invalid state.

6 Case Studies

6.1 Detecting Foreign Policy With Search
The Federal Register is the official journal of the
federal government of the United States that con-
tains government agency rules, proposed rules, and

2In single-class classification. In configurations where
more than one class is allowed per document, this assumption
is removed

public notices. A team of researchers from Harvard
Law wished to annotate every mention of foreign
policy across over 100,000 rules spanning 2.1 Mil-
lion paragraphs. A team of 15 undergraduate law
students was assembled, and the data was loaded
into LightTag. Using LightTag’s search mode, sub-
sections of the dataset were assigned to subsets of
annotators who then searched over the corpus to
find and annotate over 60 thousand distinct men-
tions of foreign policy in the corpus.

6.2 Sponsorship Detection in Podcasts
Thoughtleaders (TL). a provider of marketing ana-
lytics created a corpus of podcast transcripts to de-
tect which brands sponsored each podcast episode
(Kassuto, 2021). TL trained a BERT-based model
to recognize brands and distinguish between casual
brand mentions and mentions of a podcast sponsor.
To create a training corpus with LightTag, TL first
created pre-annotations with regular expressions
and then had their team validate those and annotate
missing entities.

Within a week, they had generated over 20 thou-
sand human-annotated entities and trained a model
that met their requirements. To validate the model’s
performance, they loaded model predictions from
data outside of the training set into LightTag and
used the review functionality to verify model pre-
dictions and establish performance metrics manu-
ally.

6.3 Multi-Lingual Malware Detection
CS is a provider of Malware analytic and early
detection systems. To serve their customers, they
develop custom NLP models to detect the sale of
zero-day exploits on the dark web. Due to the
multi-lingual nature of the data, they needed to
manage multiple teams and projects, each special-
izing in a particular language (Mandarin, Russian,
English, etc.). LightTag’s workforce management
solution enabled them to minimize project manage-
ment overhead, while pre-annotations and review
functionality allowed the team to validate both an-
notations and candidate model outputs, reaching
production grade models and their market faster.

6.4 Mentions In Other Publications
Sarkar (2020) created a corpus for emotion de-
tection in musical lyrics. Vasilyev et al. (2020)
generated a corpus of text-summary quality on a
five-point scale across five attributes of the sum-
mary.Alnazzawi (2021) annotated a joint corpus

25

of tweets and electronic health records to detect
underlying risk factors for hypertension and dia-
betes.Pitenis et al. (2020) developed a Greek lan-
guage corpus of offensive language

References
Noha Alnazzawi. 2021. Building a semantically anno-

tated corpus for chronic disease complications using
two document types. PloS one, 16(3):e0247319.

Josh Attenberg and Foster Provost. 2010. Why label
when you can search? alternatives to active learning
for applying human resources to build classification
models under extreme class imbalance. In Proceed-
ings of the 16th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining,
KDD ’10, page 423–432, New York, NY, USA. As-
sociation for Computing Machinery.

Juan Miguel Cejuela, Peter McQuilton, Laura Ponting,
Steven J Marygold, Raymund Stefancsik, Gillian H
Millburn, Burkhard Rost, FlyBase Consortium, et al.
2014. tagtog: interactive and text-mining-assisted
annotation of gene mentions in plos full-text articles.
Database, 2014.

Edgar F Codd. 2002. A relational model of data for
large shared data banks. In Software pioneers, pages
263–294. Springer.

Russ Cox. 2012. Regular expression matching with a
trigram index or how google code search worked.

Diana Maynard Hamish Cunningham and Kalina
Bontcheva. 2011. Text Processing with GATE (Ver-
sion 6). University of Sheffield D.

Katrin Erk, Andrea Kowalski, and Sebastian Pado.
2003. The salsa annotation tool. In Proceedings
of the Workshop on Prospects and Advances in the
Syntax/Semantics Interface, pages 1–4.

Gülşen Eryiğit. 2007. Itu treebank annotation tool. In
Proceedings of the Linguistic Annotation Workshop,
pages 117–120.

Pavlina Fragkou, Georgios Petasis, Aris Theodorakos,
Vangelis Karkaletsis, and Constantine D Spyropou-
los. 2008. Boemie ontology-based text annotation
tool. In LREC. Citeseer.

Eliyahu M Goldratt and Jeff Cox. 2016. The goal: a
process of ongoing improvement. Routledge.

Eduard Hovy and Julia Lavid. 2010. Towards a ‘sci-
ence’of corpus annotation: a new methodological
challenge for corpus linguistics. International jour-
nal of translation, 22(1):13–36.

Avi Kassuto. 2021. Read between the lines.

Alexander Korotkov. 2012. Index support for regular
expression search. In Proc. PostgreSQL Conference.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of english: The penn treebank.

Ines Montani and Matthew Honnibal. 2018. Prodigy:
A new annotation tool for radically efficient machine
teaching. Artificial Intelligence, to appear.

Hiroki Nakayama, Takahiro Kubo, Junya Kamura, Ya-
sufumi Taniguchi, and Xu Liang. 2018. doccano:
Text annotation tool for human. Software available
from https://github.com/doccano/doccano.

Colin Phillips. 1998. Teaching syntax with trees. Glot
international, 3.

Zeses Pitenis, Marcos Zampieri, and Tharindu Ranas-
inghe. 2020. Offensive language identification in
greek. arXiv preprint arXiv:2003.07459.

HG Plato. 1961. Republic. Princeton University Press.

Nithya Sambasivan, Shivani Kapania, Hannah High-
fill, Diana Akrong, Praveen Kumar Paritosh, and
Lora Mois Aroyo. 2021. "everyone wants to do the
model work, not the data work": Data cascades in
high-stakes ai.

Diptanu Sarkar. 2020. Detecting emotions in lyrics.

Burr Settles. 2005. Abner: an open source tool for au-
tomatically tagging genes, proteins and other entity
names in text. Bioinformatics, 21(14):3191–3192.

Burr Settles. 2011. Closing the loop: Fast, interactive
semi-supervised annotation with queries on features
and instances. In Proceedings of the 2011 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 1467–1478.

Richard M Stallman. 1981. Emacs the extensible, cus-
tomizable self-documenting display editor. In Pro-
ceedings of the ACM SIGPLAN SIGOA symposium
on Text manipulation, pages 147–156.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. Brat: a web-based tool for nlp-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 102–107.

Amos Tversky and Daniel Kahneman. 1973. Availabil-
ity: A heuristic for judging frequency and probabil-
ity. Cognitive psychology, 5(2):207–232.

Oleg Vasilyev, Vedant Dharnidharka, Nicholas Egan,
Charlene Chambliss, and John Bohannon. 2020.
Sensitivity of blanc to human-scored qualities of text
summaries. arXiv preprint arXiv:2010.06716.

Marc Verhagen. 2010. The brandeis annotation tool. In
LREC.

26

Seid Muhie Yimam, Iryna Gurevych, Richard Eckart
de Castilho, and Chris Biemann. 2013. Webanno: A
flexible, web-based and visually supported system
for distributed annotations. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages
1–6.

27

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 28–34
November 7–11, 2021. ©2021 Association for Computational Linguistics

TransIns: Document Translation with Markup Reinsertion

Jörg Steffen
German Research Center for
Artificial Intelligence (DFKI)

Saarland Informatics Campus D3 2
66123 Saarbrücken, Germany
Joerg.Steffen@dfki.de

Josef van Genabith
DFKI and Saarland University

Saarland Informatics Campus D3 2
66123 Saarbrücken, Germany

Josef.Van_Genabith@dfki.de

Abstract
For many use cases, it is required that MT
does not just translate raw text, but complex
formatted documents (e.g. websites, slides,
spreadsheets) and the result of the translation
should reflect the formatting. This is chal-
lenging, as markup can be nested, apply to
spans contiguous in source but non-contiguous
in target etc. Here we present TransIns,
a system for non-plain text document transla-
tion that builds on the Okapi framework and
MT models trained with Marian NMT. We de-
velop, implement and evaluate different strate-
gies for reinserting markup into translated sen-
tences using token alignments between source
and target sentences. We propose a simple
and effective strategy that compiles down all
markup to single source tokens and transfers
them to aligned target tokens. Our evaluation
shows that this strategy yields highly accurate
markup in the translated documents that out-
performs the markup quality found in docu-
ments translated with popular translation ser-
vices. We release TransIns under the MIT
License as open-source software on https://
github.com/DFKI-MLT/TransIns. An online
demonstrator is available at https://transins.
dfki.de.

1 Introduction

In MT research, models are usually trained and
evaluated on plain text parallel data. But such mod-
els do not translate complex formatted documents
created, e.g., with MS Office. Translating such
documents comes with several challenges.

Text content has to be separated from formatting
and other code and made available as input to MT.
This requires a parser that handles the document
format at hand and provides access to the embed-
ded text content. After translation, the translated
text must be placed into the target document and a
further component is needed to create the translated
version of the document reflecting the formatting
and layout of the original document.

Furthermore, MT has to be able to handle inline
sentence markup, i.e. to make sure that markup
in the source sentence is correctly transferred to
the appropriate parts of the target sentence. It is
possible to train markup-aware MT models, e.g. by
replacing tags with unique mask tokens in training
and translation, as described in (Zhechev and van
Genabith, 2010), but in order to use an existing MT
model that is unaware of markup, the only option
is to remove markup from the source sentence and
to reinsert it at proper positions in the target sen-
tence after translation. Du et al. (2010) describe
a reinsertion strategy based on the phrase segmen-
tation indicated by the decoder. This is refined by
Hudik and Ruopp (2011) who use word alignments
instead of phrase segmentation. Joanis et al. (2013)
propose a hybrid approach combining phrase seg-
mentation with word alignments. Building on these,
Müller (2017) evaluates different markup handling
strategies and provides implementations as part of
the Zurich NLP mtrain1 framework.

In order to utilize state-of-the-art MT technol-
ogy and obtain alignments at the same time, we
use Marian2 NMT (Junczys-Dowmunt et al., 2018).
Marian allows transformer models to be trained
using guided alignment so that the decoder pro-
duces translations together with alignments be-
tween source and target tokens. The OPUS-MT3

project (Tiedemann and Thottingal, 2020) provides
pre-trained Marian models for many language pairs,
mostly trained with guided alignment based on
eflomal4 word alignments (Östling and Tiedemann,
2016), but unaware of markup.

Below, we describe TransIns, a translator
for non-plain text documents. We use the Okapi5

framework to process such documents and extend

1https://github.com/ZurichNLP/mtrain
2https://marian-nmt.github.io/
3https://github.com/Helsinki-NLP/Opus-MT
4https://github.com/robertostling/eflomal
5https://okapiframework.org/

28

Okapi in order to query Marian for translations and
alignments. We study different alignment-based
markup reinsertion strategies, starting with the one
implemented in mtrain. We identify deficits and
present improved strategies. Finally, we evaluate
different strategies and compare the markup quality
between documents translated by TransIns and
popular translation services.

2 Okapi Framework

Okapi is a free open-source framework designed to
support localization and translation processes. It in-
cludes a collection of filters providing access to the
translatable content for many file formats. A work-
flow in Okapi is modelled as a pipeline of steps
that pass events through the pipeline. Events are
associated with resources, e.g. text units, and are
created when using a filter on a source document.
A typical Okapi pipeline for translating documents
consists of four steps:

The Raw Document to Filter Events Step
reads the source document with an associated filter
configuration and sends the filter events with the
associated text units down the pipeline.

The Segmentation Step breaks down the text
units into sentences, using rules specified in Seg-
mentation Rules eXchange format (SRX)6, a stan-
dard describing how to segment text.

The Leveraging Step sends each sentence to a
translation service and stores the generated transla-
tion with the sentence. Translation services are ac-
cessed via connectors. Okapi provides connectors
for popular translation services, but a connector for
Marian is not included.

The Filter Events to Raw Document Step cre-
ates the target document in the original format from
the translated text content coming in as filter events.

Okapi handles global document markup, but not
inline sentence markup. This has to be dealt with
by the translation service.7

3 TransIns System Description

Below, we describe how we build TransIns
(translation with markup reinsertion) based on the
Okapi translation pipeline by adding Marian spe-
cific components and setting up an additional Okapi
pipeline to support efficient processing.

6https://www.gala-global.org/srx-20-april-7-2008
7The Okapi supported popular translation services can

handle inline sentence markup, but details are not available.

Marian comes with a web-socket server that
loads a model once at start time and then listens for
single or batch translation queries. The server can
be run remotely, supporting distributed setups with
multiple Marian servers. In order to use Marian as
a translation service from the leveraging step, we
provide a Marian connector that implements the
Okapi connector interface.

Most MT models are trained on parallel data
where sentences are preprocessed, e.g. tokenized.
Sentences to be translated need to be preprocessed
in the same way. Also, the translation provided by
the MT model might require postprocessing, e.g
detokenization. With Marian, pre-/postprocessing
often resorts to Perl scripts written for the Moses
statistical MT system (Koehn et al., 2007). For
TransIns, we use a Python reimplementation
provided by Sacremoses8. Transformer MT models
often apply subword tokenization in preprocessing.
In postprocessing, subword tokenization has to be
undone in the translated sentence. For transformer
models, Byte-Pair Encoding (BPE) (Sennrich et al.,
2016) and SentencePiece (Kudo and Richardson,
2018) are popular subword tokenizers. We use pub-
licly available implementations of both subword to-
kenizers.9,10 Undoing the subword tokenization in
the translated sentence in postprocessing is straight-
forward by applying simple string replacements.
TransInswraps the steps described above in a

web service that provides corresponding endpoints
for pre-/postprocessing single sentences or batches.
The steps to apply can be configured separately for
each translation direction. The Marian connector
for Okapi calls this web service to preprocess a
sentence before translation and again afterwards to
postprocess the translated sentence.

The standard Okapi translation pipeline is some-
what inefficient: extracted sentences arrive at the
leveraging step one-by-one, i.e. only single sen-
tences are sent for pre-/postprocessing and trans-
lation to the corresponding services, even though
the services support batch processing. The accu-
mulated overhead of connecting and disconnecting
slows throughput significantly. For efficient batch
processing, we set up another Okapi pipeline, the
sentence collector pipeline, consisting of a Raw
Document to Filter Events Step and a Segmen-
tation Step followed by a custom Sentence Col-

8https://github.com/alvations/sacremoses
9https://github.com/rsennrich/subword-nmt

10https://github.com/google/sentencepiece

29

Figure 1: TransIns processes the source document with two Okapi pipelines

lector Step that simply adds each sentence to a
local Batch Translator component. In a first run,
we process the source document with this pipeline.
Once the batch translator has collected all sentences
it sends batches to preprocessing, translation and
postprocessing. The batch translator also serves as
Cache: for each source sentence, it stores the re-
sulting target sentence. In a second run, we process
the source document with the translation pipeline,
but we adapt the Marian connector so that it queries
the batch translator cache. This avoids connections
to remote services, resulting in increased through-
put. Figure 1 shows the TransIns workflow with
both Okapi pipelines.11

4 Markup Reinsertion

Okapi provides sentences in a generic format. Sen-
tence internal tags are encoded using characters
from the Unicode private use area (PUA). Each
tag consists of two such characters. The first en-
codes the type of the tag, which is either opening
(e.g.), closing (e.g.), or isolated (e.g.

). The second character encodes a running
tag index. Tags provided by Okapi are always well-
formed and balanced, i.e. for each opening tag,
there is a corresponding closing tag, and tag pairs
are properly nested. Tag indices are unique, and so
is each tag pair.

The OPUS-MT models we use with TransIns
are unaware of markup, so the only option is to re-
move tags before translation and to reinsert them af-
terwards. The general workflow of all TransIns
markup reinsertion strategies is shown in Figure 2.

Alignments provided by Marian12 refer to token
indices. As tokenization is decided by preprocess-
ing, we can only map and remove tags from the
source sentence after preprocessing. Postprocess-
ing like detokenization might change target tok-
enization. Therefore tag reinsertion has to be done

11For debugging purposes, our system can be run without
the sentence collector pipeline.

12using the --alignment hard option

1 preprocess source sentence;
2 map each tag to a source token;13

3 remove tags from source sentence;
4 send source sentence to Marian for translation,

retrieve target sentence and alignments;
5 reinsert tags into target sentence based on the alignments

of the mapped source tokens;
6 clean up target sentence markup;
7 postprocess target sentence.

Figure 2: Markup reinsertion workflow

into the raw target sentence before postprocessing.
As reinserted tags may end up anywhere and in

any order in the target sentence, we do a cleanup
step after tag reinsertion that takes care of:

Tags in subword token sequences: If a tag is
inserted within a sequence of subword tokens, e.g.
as created by BPE, that tag has to be moved so
that the subword token sequence can be properly
merged in postprocessing. We move opening and
isolated tags to the front of the sequence and clos-
ing tags to the end.

Improper tag order: Reinserted tags in the tar-
get sentence might occur in incorrect order, i.e.
closing tag before corresponding opening tag. In
this case, we swap the tags. Furthermore, tag pairs
might be improperly nested. We reorder and, if
required, insert additional tags to restore a proper
nesting. E.g., a target sentence with two "overlap-
ping" tag scopes

(1) <i> x y </i> z

is fixed by adding two additional tags
(2) <i> x y </i> z

Below, we describe the markup reinsertion strate-
gies implemented in TransIns. For some strate-
gies the cleanup step has to be adapted or extended.

4.1 mtrain Strategy

mtrain (Müller, 2017) is implemented in the
Zurich NLP mtrain Python package.14 We reim-
plement it with the TransIns workflow (Figure

13Source tokens include subword tokens.
14https://github.com/ZurichNLP/mtrain/blob/master/

mtrain/preprocessing/reinsertion.py#L315

30

2) as follows: in step 2, tags are always mapped to
the following token.15 In step 5, we iterate over the
target tokens left to right. For each target token for
which there is an alignment with a source token,
we check if that source token has a tag mapped to it.
If yes, that tag is moved in front of the target token.
After the iteration, any remaining source sentence
tags that have not been moved are added at the end
of the target sentence. Such tags occur if they are
mapped to a source token without alignment.

Example (3) demonstrates the strategy. The first
row contains the source sentence with tags. Tag
and mapped token are underlined. The last row
contains the target sentence with reinserted tags,
with vertical lines indicating alignments.

Hello World !
(3)

Hallo Welt !

 is mapped to "World", is mapped to "!".
"Welt" is aligned with "World", so is moved in
front of "Welt". The same is done for "!" and ,
resulting in correct markup reinsertion. But if the
word order in the target language is different from
the source language, mtrain fails:

Porte verte !
(4)

 Green door !

In (4) "door" is incorrectly rendered bold. In (5)
both "Green" and "door" end up with incorrect
markup:16

 Porte verte !
(5)

 Green door !

In conclusion, mtrain is only suitable for lan-
guage pairs with similar word order and often fails
otherwise. Below, we propose improvements to
compensate for mtrain deficits.

4.2 mtrain++ Strategy

The first improvement comes from the insight that
tags do not generally refer to the following token.
mtrain++ only maps opening and isolated tags
to the following token, but closing tags are mapped
to the previous token and moved after the aligned
target token. This fixes (4) (and also (5)):

Porte verte !
(6)

 Green door !

15A tag at the end of a sentence is mapped to an artificial
end-of-sentence token.

16 and are swapped in the cleanup step.

But mtrain++ requires an adaptation of the
cleanup step, as (7) shows:

 Porte verte !
(7)

Green door !

Swapping the tags here is not sufficient. We also
have to consider the tag type. After swapping, we
move the opening tag in front of the previous token
and the closing tag after the following token:

(8) Green door !

Another deficit of mtrain is the handling of
tags mapped to unaligned source tokens.17 Un-
aligned tags are added at the end of the target sen-
tence, resulting in a counter-intuitive markup rein-
sertion:

a <i> b c d </i> e
(9)

x y z <i> </i>

mtrain++ handles unaligned tags in the source
sentence: opening and isolated unaligned tags are
moved in front of the following aligned token and
closing unaligned tags after the previous aligned
token. We then remap the tags accordingly. This
results in correct markup reinsertion:

a b <i> c </i> d e
(10)

x <i> y </i> z

A further problem may occur with 1-to-n align-
ments where a single source token is aligned to
multiple target tokens. Tags mapped to such a
source token are moved by mtrain, so they are
only applied to the first of the possible n aligned
target tokens:

Police arrests man
(11)

Polizei nimmt Mann fest

mtrain++ copies opening and closing tags in-
stead of moving them, resulting in correct markup
reinsertion for (11), where both "nimmt" and "fest"
are correctly rendered bold.

But copying tags instead of moving them comes
at a price: tags in the target sentence are poten-
tially no longer well-formed and balanced. E.g., an
opening tag may be copied twice while the corre-
sponding closing tag is only copied once if they are
mapped to different source tokens. We extend the
cleanup step so that well-formedness and balance
are restored.

But even with all the improvements, there still
remain configurations where the markup is not rein-
serted correctly to the target sentence:

17We call such tags unaligned tags in the following.

31

 Search Site !
(12)

Seite durchsuchen !

The underlying problem is that mtrain++ only
considers tokens immediately next to tags. Source
tokens located within a tag pair’s scope but not next
to a tag, as "Site" in (12), may be aligned with a
target token outside of that tag pair’s scope in the
target sentence.

Another problem are tag pairs with a contiguous
scope in the source sentence that should be non-
contiguous in the target sentence:

a <i> b c </i> d
(13)

<i> w x y z </i>

In (13) only w and z should be rendered italic.
Rather than continuing to fix individual problem

cases, below we develop a new mapping strategy
designed to provide a general solution.

4.3 Complete Mapping Strategy (CMS)

CMS is based on the insight that if (i) alignments
steer markup transfer, and (ii) alignments relate
tokens, then compiling down tag pairs to their min-
imal token level scope should solve most if not
all of the problems presented in Sections 4.1 and
4.2. Formally, a tagged sentence is a sequence
s = s1 . . . sm consisting of one or more sequence
elements si, where si is either a raw token w or a
function ti(sj) representing a tag pair with scope
over a sequence sj .18 This allows for sentences
with arbitrarily nested tag pairs and ensures that
markup is well-formed. We use t1i (. . . (t

k
j (.))) to

denote one or more (k) nested tag pairs with scope
(.). The algorithm compiles tag pairs to their mini-
mal scopes t1i (. . . (t

k
j (w))) by repeatedly applying

(14) tkj (s1 . . . sm)→ tkj (s1) . . . t
k
j (sm)

until no tag pair with scope sequence of length >
1 remains. In terms of tag mapping, this results
in each tag pair being mapped to all tokens in its
original scope, hence the term complete mapping.19

The compilation is meaning-preserving, e.g.
(15) x <i> y </i> z

is turned into
(16) x <i> y </i> z

CMS simplifies markup reinsertion significantly:
as minimum scope tag pairs "travel" with token
alignments, tag balance, well-formedness and com-
plex positioning in the target sentence are taken

18Isolated tags are considered as tag pairs with empty scope,
though they have an implicit scope over all following tokens.

19Isolated tags are still mapped to the following token.

care of by the alignments. Tag swapping, reorder-
ing or insertion is no longer required in the cleanup
step. Unaligned opening and closing tags no longer
have to be moved.20 The cleanup step only needs
to take care of tags in subword token sequences.
Readers are invited to check that all "toxic" exam-
ples discussed in Sections 4.1 and 4.2 are handled
correctly by CMS. Finally to remove clutter, we
simplify the target sentence markup by eliminating
closing tags immediately followed by the corre-
sponding opening tag, so

(17) x y z

simplifies to
(18) x y z

While CMS ensures that target tokens "inherit"
the markup of their aligned source tokens, there
may be unaligned target tokens. Such tokens would
never receive markup, resulting in gaps:

 a
(19)

 x y z

In such configurations, rendering "y" bold seems
appropriate. We implement a tag interpolation
scheme for target tokens within gaps. A gap is a
target token sequence not longer than a specified
maximum gap size where all target tokens have no
markup, either because they are unaligned or they
are aligned with a source token without tags. The
latter is often the result of incorrect alignments that
tag interpolation can correct.21 Tag interpolation
inspects the tags applied to the neighbor tokens in
front of and after the gap. Identical tags22 found
with both neighbor tokens are applied to the gap
tokens. E.g., applying tag interpolation to a gap of
size 2 with tokens x and y turns

(20) <i> w </i> x y z

(after simplification) into
(21) <i> w </i> x y z

5 Evaluation

To the best of our knowledge, there are no pub-
lic standard evaluation data sets for markup trans-
fer yet. We collect 10 complex web pages from
spiegel.de, a well-known German news provider,
that contain a total of 378 sentences with inline
markup. We convert the web pages to MS Office

20Unaligned isolated tags are still moved in front of the
following aligned token.

21Tag interpolation produces a markup error if a gap target
token is correctly aligned with a source token without tags.

22Identical tags have the same tag type and index.

32

Reinsertion Strategy
de –> fr de –> en

Marian
Alignments

Perfect
Alignments

Marian
Alignments

Perfect
Alignments

mtrain 104 94 98 85
mtrain++ 23 31 28 31

CMS

max gap 3 12 (8 + 4) 4 7 (3 + 4) 4
max gap 2 9 (8 + 1) 1 7 (3 + 4) 4
max gap 1 9 (8 + 1) 1 5 (3 + 2) 2
max gap 0 10 (10 + 0) 0 5 (5 + 0) 0

Table 1: Markup transfer errors by reinsertion strategy

MT Service de –> fr de –> en
Google 119 55
DeepL 129 78

Microsoft 261 235
CMS (max gap 1) 58 (48 + 10) 32 (21 + 11)
CMS (max gap 0) 57 (57 + 0) 25 (25 + 0)

Table 2: Markup transfer errors by translation service

docx documents, preserving the relevant markup,
and examine translations to French and English
using the latest OPUS-MT models. As a quality
measure of markup transfer, we count how many
target tokens end up with incorrect markup.23

Even though CMS can handle all toxic examples
described in Section 4, as a sanity check, we do a
small evaluation of the three TransIns reinser-
tion strategies using the first evaluation document
containing 40 sentences with inline markup. We do
this for alignments as provided by the OPUS-MT
models and also for hand-corrected perfect align-
ments.24 For CMS and Marian alignments, we
distinguish between errors resulting from incorrect
alignments (first number in brackets) and errors
from incorrect tag interpolation (second number
in brackets). We also examine different maximum
gap sizes. Table 1 shows the results.

For both translation directions mtrain pro-
duces most errors. Using perfect alignments yields
only a minor improvement. mtrain++ reduces
the number of errors by about two-thirds. Surpris-
ingly, the quality for both translation directions
is slightly better when using Marian alignments
instead of perfect alignments. This is due to the
fact that a single change in alignment, even if it
is a correction, can potentially change the markup
of multiple tokens. With CMS, a change in align-
ment only effects a single target token, making this
strategy less volatile.

For both types of alignments, CMS produces the
smallest number of errors. The results are similar

23We ignore punctuation tokens with incorrect markup.
24We hand-correct 8% of the de –> fr and 10% of the de –>

en Marian token alignments.

for both translation directions. For de –> fr, using
Marian alignments with a maximum gap size of
3, we find 8 errors caused by incorrect alignments
and 4 errors caused by incorrect tag interpolation.
Reducing the maximum gap size to 2 and 1 de-
creases the number of interpolation errors, as tag
interpolation is applied to fewer gaps. With a gap
size of 0, i.e. with no tag interpolation, the number
of errors caused by incorrect alignments increases
by 2. These errors are now no longer corrected by
tag interpolation. With perfect alignments, only the
errors caused by incorrect tag interpolation remain.

The main focus of our evaluation is the com-
parison of CMS with popular translation services.
These services are able to handle markup, but the
details are unknown to us. Table 2 shows the er-
rors for all evaluation document translations.25 The
performance for de –> en is always better than for
de –> fr. This is probably due to the more similar
word order between German and English. For both
translation directions, CMS produces less than half
as many markup errors as the next best commercial
MT service. Errors decrease when omitting tag
interpolation, i.e. the number of corrected align-
ment errors is smaller than the number of errors
introduced by incorrect tag interpolation. We see
this as an indicator of the high quality alignments
provided by the OPUS-MT models.

6 Conclusion

In this paper, we present TransIns, an open-
source system implementing several alignment
based strategies for markup reinsertion in trans-
lated documents. mtrain constitutes a baseline,
while mtrain++ can handle more complex con-
figurations. CMS correctly handles all problem
cases discussed and outperforms the markup trans-
fer in documents translated with popular translation
services.

25All evaluation documents are available at https://github.
com/DFKI-MLT/TransIns/tree/master/evaluation.

33

Acknowledgements

We thank Thierry Declerck and Cristina España
i Bonet for feedback and productive discussion.
We also thank the anonymous reviewers for their
constructive reviews. This work is supported in part
by the German Federal Ministry of Education and
Research (BMBF) under funding code 01IW20010
(CORA4NLP).

References
Jinhua Du, Johann Roturier, and Andy Way. 2010.

TMX markup: A challenge when adapting SMT to
the localisation environment. In Proceedings of the
14th Annual conference of the European Association
for Machine Translation, Saint Raphaël, France. Eu-
ropean Association for Machine Translation.

Tomáš Hudik and Achim Ruopp. 2011. The integration
of Moses into localization industry. In Proceedings
of the 15th Annual conference of the European Asso-
ciation for Machine Translation, Leuven, Belgium.
European Association for Machine Translation.

Eric Joanis, Darlene Stewart, and Samuel Larkin. 2013.
Transferring markup tags in statistical machine trans-
lation: A two-stream approach. In Proceedings of
MT Summit XIV Workshop on Post-editing Technol-
ogy and Practice, pages 73–81.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in C++. In Proceedings
of ACL 2018, System Demonstrations, pages 116–
121, Melbourne, Australia. Association for Compu-
tational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Ses-
sions, pages 177–180, Prague, Czech Republic. As-
sociation for Computational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Mathias Müller. 2017. Treatment of markup in sta-
tistical machine translation. In Proceedings of the

Third Workshop on Discourse in Machine Transla-
tion, pages 36–46, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Robert Östling and Jörg Tiedemann. 2016. Effi-
cient word alignment with Markov Chain Monte
Carlo. Prague Bulletin of Mathematical Linguistics,
106:125–146.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Jörg Tiedemann and Santhosh Thottingal. 2020.
OPUS-MT – building open translation services for
the world. In Proceedings of the 22nd Annual Con-
ference of the European Association for Machine
Translation, pages 479–480, Lisboa, Portugal. Euro-
pean Association for Machine Translation.

Ventsislav Zhechev and Josef van Genabith. 2010.
Seeding statistical machine translation with trans-
lation memory output through tree-based structural
alignment. In Proceedings of the 4th Workshop
on Syntax and Structure in Statistical Translation,
pages 43–51, Beijing, China. Coling 2010 Organiz-
ing Committee.

34

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 35–41
November 7–11, 2021. ©2021 Association for Computational Linguistics

ET: A Workstation for Querying, Editing and Evaluating Annotated
Corpora

Elvis de Souza
Department of Letters

PUC-Rio, Brazil
elvis.desouza99@gmail.com

Cláudia Freitas
Department of Letters

PUC-Rio, Brazil
claudiafreitas@puc-rio.br

Abstract

In this paper we explore the functionalities
of ET, a suite designed to support linguis-
tic research and natural language processing
tasks using corpora annotated in the CoNLL-
U format. These goals are achieved by two
integrated environments – Interrogatório, an
environment for querying and editing anno-
tated corpora, and Julgamento, an environ-
ment for assessing their quality. ET is open-
source, built on different Python Web tech-
nologies and has Web demonstrations avail-
able on-line. ET has been intensively used
in our research group for over two years, be-
ing the chosen framework for several linguis-
tic and NLP-related studies conducted by its
researchers.

1 Introduction

Annotated corpora are the basis for several natural
language processing (NLP) tasks, serving as ma-
terial from which machine learning systems learn
how to perform linguistic analysis and as evalu-
ating material against which system analyses can
be confronted. However, manipulating annotated
corpora is a costly activity for humans alone.

In this context, we present ET: a workstation
for querying, editing and evaluating annotated cor-
pora12. The underlying idea is to facilitate linguis-
tic research using annotated corpora in the CoNLL-
U format3. ET is composed of two integrated web-
browser-based interfaces that are easily manipu-
lated by non-developers at the same time that it
provides tools to explore annotated texts driven by

1The workstation GitHub page and its live demonstration
are available at http://comcorhd.letras.puc-rio.
br/ET.

2The Portuguese term for workstation is "Estação de Tra-
balho" (lit. workstation), the reason why the suite was named
"ET".

3The CoNLL-U format is used by the Universal De-
pendencies (Nivre et al., 2016) project. The format
is described at: https://universaldependencies.
org/format.html. Accessed on 5 jan. 2021.

simple-to-build yet linguistically complex queries.
The system main language is Portuguese but comes
with English translation for the majority of its mod-
ules, it was built using different Python Web tech-
nologies and has Web demonstrations available on-
line. One can use the available demonstration pages
for working with small corpora or install a local
copy4.

ET has been intensively used in our research
group for over two years, being the chosen frame-
work for several linguistic and NLP-related studies
conducted by its researchers. In section 2, we dis-
cuss other tools that inspired ET and how different
it is from them. In section 3, we explore the in-
terface for querying and editing annotated corpora,
and in section 4 we demonstrate how to assess their
quality using the workstation. Finally, in section 5,
we outline some future perspectives for the tool.

2 Related tools

ET is a workstation that focuses on building qual-
ity corpora for Natural Language Processing, but
not from scratch. Thus, it should not be confused
with tools aimed at corpus annotation from raw
pieces of text, such as Arborator (Gerdes, 2013),
ConlluEditor (Heinecke, 2019) and UD Annotatrix
(Tyers et al., 2017), nor with tools aimed at Cor-
pus Linguistics studies, such as AntConc (Anthony,
2005) and CQPweb (Hardie, 2012).

From the point of view of text analysis tools,
although ET query environment was largely in-
spired by AC/DC (Santos and Bick, 2000), from
Linguateca (Santos, 2011) – one of the most impor-
tant repositories for NLP in Portuguese –, AC/DC
is based on an early version of CWB (Evert and
Hardie, 2011), a robust and widely used processor
capable of quickly and reliably processing corpora
of millions of tokens, a task which ET does not
propose to do with such high quality. The query-

4Only tested on Ubuntu distributions.

35

ing module from ET allows for querying syntactic
dependencies in the Universal Dependencies for-
mat, sorting the results based on their annotation
distribution, such as part-of-speech, morphological
features and dependency labels distribution, and
affords the addition of filters in order to further
specify the query. In addition to the search tools,
ET comprises both a manual and a rule-based tree-
bank editing system that was inspired by AC/DC’s
Corte e costura (Mota and Santos, 2009), where
the user codes linguistic rules that will search and
correct annotation mistakes.

From the point of view of corpora annotation,
tools like Arborator will suit better as they allow
the editing of trees with features such as graphi-
cal editing and user management for collaborative
annotation, which facilitate the process for anno-
tators and project coordinators. What is different
about ET, in turn, is the integration of the query-
ing environment with evaluation methods to assess
corpora that were previously annotated by humans
or NLP systems. With the application of linguistic
rules and the verification of inconsistent patterns,
the tool makes it possible to linguistically guide the
work of reviewing annotated corpora for NLP.

3 Querying and editing annotated
corpora

Interrogatório (Portuguese word for "Interroga-
tory") is the name of the first of the two environ-
ments that compose ET. Its purpose is to make
it easy for anyone to query and revise annotated
corpora.

The system was built using Python CGI technol-
ogy in the back-end and JQuery in the front-end.
A server and a client machine are needed, but the
same machine can work as both server and client,
although installing and running a server-side will
require intermediate technology skills. Installation
steps and requirements are available in the work-
station GitHub page.

Managing corpora The "Manage corpora" hub
can be accessed from Interrogatório main menu on
the top. This is where a new file is uploaded to
the workstation. This file can be either a .conllu
file, which already carries annotation, or a raw text
in a .txt file. In the latter case, the text will be
tokenized, tagged and parsed by UDPipe (Straka
et al., 2016) using the models for Portuguese or

Figure 1: Interrogatório homepage. The main menu is
on the top, a list of corpora is on the left, and the user
guide is on the right.

Figure 2: Query expression builder available on the In-
terrogatório homepage

English5. Once there are files in the repository,
this page will present the number of sentences and
tokens in each corpus.

Interrogating a corpus There are multiple ways
one can interrogate a corpus and find sentences
with specific annotation. The search criteria have
been developed attending the needs of researchers
– linguists – who used the workstation. Whenever
a new search must be done and can not be easily
achieved, a new query system can be built and doc-
umented by code. The current five search criteria
are explained and exemplified in the homepage user
guide (on the right, in Figure 1).

Since querying treebanks can be a complex task
for beginners, Interrogatório comes with a "Query
expressions builder", a GUI that helps the user
when building query expressions by showing them
the tags and relations between them in natural lan-
guage (Figure 2). The intended search is then trans-
lated into the query syntax.

As a last resort, when a query is too complex and

5Such models were trained on Rademaker et al. (2017) and
Silveira et al. (2014) for Portuguese and English, respectively

36

Figure 3: Users can save results for later analyses

cannot be done by any of the implemented search
criteria, Interrogatório will allow the user to write
their own Python code to look for sentences fol-
lowing a given model by opening the menu "Write
your own query script".

Saving a query Interrogatório will not make any
previous indexation on corpora uploaded to the
workstation, which is an architecture decision that
makes queries slower – in comparison to systems
that perform indexation – but that is what allows the
dynamism needed for changing the corpus while
being able to make queries in it real-time. The time
it takes to complete a query will depend on the
search criterion and the amount of results that the
query returns. Thus, if the user intends to execute
a query that returns too many results, it might be
more efficient to save these results for later. They
will be found on the page "saved queries".

Finding sentence information Returned sen-
tences within a query are presented on the screen
along with some visualization options. By click-
ing on the "Show context" button one can see the
sentences before and after the sentence in focus.
Besides, through the "Show annotation" button the
user can see the annotation of the sentence, allow-
ing them to understand how it is currently being
analyzed and judge its quality.

Editing sentences Whenever a user finds a mis-
take in the annotation of a sentence, be it sporadic
or in cases in which the query expression was
meant to lead to errors that need correction, one
can click "Open inquiry". An "inquiry" is a new tab
with the annotated sentence displayed in a table,
one token per line, ready to be edited. Options such
as modifying the sentence segmentation are also

Figure 4: Filtering selected sentences

available, making it possible to add or remove a
token, split the sentence or join two different sen-
tences using the GUI, leaving the difficult job of
ensuring that the output format is correct to the
machine.

Another possibility for changing sentence an-
notation automatically is by running a correction
script. Once in the query results page one can
navigate to the "Options" menu and select "Batch
correction", where they will be able to download a
model script for automatic correction. The script
will then be edited by the user maintaining a Python
syntax to both find the tokens that need to be
changed and to assign them the new annotation.
Once the script is uploaded back to Interrogatório,
a page will simulate the changes so the user can
decide whether the changes are as intended or not
before applying them.

Filtering query results Once inside a saved
query results page, the user is able to filter the
results, separating sentences in different slots. The
reasons for applying this are various:

• The same query can lead to different but re-
lated linguistic phenomena. Disentangling
linguistic phenomena is a common task in re-
search, and it is something that at times can
only be done by reading each sentence inside
a query results page. Keeping track of those
sentences in different slots may facilitate lin-
guists’ work.

• The main query expression might not be fine-
grained enough to find the phenomenon being
studied, in which case there is the need of
refining a query with other queries inside it.

37

Figure 5: Distribution of dependency relations for the
query expression "president." in corpus Bosque-UD
v2.6

• A user may want to apply a correction script
to only a subset of sentences that are the re-
sults of a query, so filtering the sentences that
should be automatically corrected and separat-
ing them from the main query is needed.

This feature was developed while looking for
omitted subjects in different Portuguese corpora,
a research that required complex queries that in-
volved the absence of a tag in the sentence (the
"subject" relation) and five further query specifi-
cations (filters) to remove sentences such as those
without verbs and those whose main verbs express
meteorological condition such as "to rain", "to
snow" etc. (Freitas and de Souza, 2021)

Distribution of linguistic phenomena When a
user executes a query they will see the sentences
returned with the tokens being looked for in the
query expression in bold. However, if one is not
willing to read sentence by sentence but, instead,
wants to see the distribution of any annotation for
the words in bold, it is possible to view the distri-
bution of their part-of-speech, dependency relation,
features, lemma etc., as shown in Figure 5. This
page can be accessed by clicking on the "Options"
menu on the top of the screen and selecting "View
distribution" or before executing a query selecting
the same option in the homepage.

4 Evaluating annotated corpora

Julgamento (Portuguese word for "Judgment") is
the name of the second of two environments that
compose ET. Its purpose is to evaluate the qual-
ity of annotated corpora by different methods that

search for inconsistencies in the annotation. Cur-
rently, Julgamento provides three methods that help
to search for annotation inconsistencies – n-grams,
linguistic rules and contrastive analysis – presented
below.

The system was built using Python Flask frame-
work technology in the back-end and JQuery in the
front-end. Its installation process and architecture
are the same as Interrogatório: a server and a client
machine are needed, one for setting the system up
and the other for the user to browse through the
interfaces. Installation steps and requirements are
available in the workstation GitHub page.

Managing corpora From the top menu in any
screen one can have access to the "manage corpora"
hub in Julgamento. Interrogatório and Julgamento
are integrated6, which means that whatever corpora
are uploaded to one environment will also be ac-
cessible through the other, since the corpus file is
the same.

Some of Julgamento’s evaluation methods are
based on the idea of contrastive analysis, which
will require the user to upload a corpus with two
different annotations (e.g. annotations provided by
two different systems, two different human annota-
tors or a gold-standard and a system counterpart),
basing the evaluation on the confrontation of both.
It is in this page that the user is able to upload the
main corpus and its alternative annotation, that is,
two different CoNLL-U files with the same sen-
tences but different annotation.

Finding inconsistent n-grams This is a method
for detecting inconsistencies in the annotation of a
corpus uploaded to Julgamento. It is largely based
on de Marneffe et al. (2017) method, although
some important changes were applied and are still
under test. The general idea is that hardly two de-
pendency pairs with the same context and same
lemmas will have different dependency relations,
as in Figure 6, in which "António" and "Oliveira"
are a dependency pair (António being the head)
but have a different dependency relation in each
sentence (nmod and flat:name), indicating an incon-
sistency that needs fixing. The method will display
all the n-grams in the corpus that, although simi-
lar, have different relations, leaving it to the user

6Interrogatório must be installed in the same folder as
Julgamento to make it possible to integrate them. To ensure
that the integration is working, the "manage corpora" page on
Interrogatório should present a large orange strip warning that
"Interrogatório is integrated to Julgamento".

38

Figure 6: Inconsistent n-gram between two sentences
(António and Oliveira are related by different tags in
each sentence)

to judge whether they are wrongly annotated and
giving them the ability to correct their annotation.

Checking for validation errors Two methods
for checking validation errors in a corpus are avail-
able in Julgamento. One is the official Universal
Dependencies project script for validating a new
corpus7, in which several rules will be applied to a
CoNLL-U file to ensure that the format is correctly
encoded and that basic points from UD annotation
guidelines have not been skipped while annotating
that corpus.

Another script was built by our team and focuses
on Portuguese grammar rules that, when skipped,
provide evidence of incorrect annotation or incon-
sistency. The rules were built using the same syntax
from interrogating a corpus in Interrogatório (as
discussed earlier) and can be edited8 to conform to
any project annotation guidelines.

Comparing corpora Other way of judging a cor-
pus quality is by comparing two different annota-
tions of the same sentences. These two annota-
tions can be provided by two different systems, by

7The script is named "validate.py", which can be
called from the workstation interface. The returned sen-
tences can be edited from inside it, as well. The
source code is available at: https://github.com/
UniversalDependencies/tools. Accessed on 5 jan.
2021.

8Rules can be edited from the file "validar_UD.txt".

two different human annotators or even by a gold-
standard and a system counterpart, in which case
the comparison will provide an evaluation of the
system output. Once two annotations are uploaded
to Julgamento, new methods will unlock:

• Metrics from conll18_ud_eval.py: This fea-
ture applies the evaluation metrics from the
CoNLL 2018 Shared Task (Zeman et al.,
2018) on the corpus to compare the second
annotation to the first. The metrics encompass
precision, recall and F1 of attributes such as
tokenization, sentence segmentation, lemmati-
zation, POS-tagging, the attachment of depen-
dency relations etc.9

• Sentences accuracy: This feature presents
how many sentences received exactly the
same annotation in both versions of the corpus.
Its relevance is based on a point that Manning
(2011) makes – we usually assess quality by
number of correct tokens, but a perhaps more
difficult yet realistic way of assessing quality
is by the number of totally correct sentences.

• Accuracy per morphosyntactic category:
The ”accuracy” for each part-of-speech
tag and dependency relation are described
through tables, as in Figure 7. Clicking on
any dependency head attachment percentage
will lead to a page where the user will find
sentences in which a token is attached to dif-
ferent heads when comparing both versions of
the corpus.

• Confusion matrix: CMs facilitate visualiz-
ing what are the most usual divergences in
POS tags and dependency relations. In Fig-
ure 8, the diagonal line shows the number of
tokens in which annotation both versions con-
verged, whereas numbers out of this diagonal
will show divergent analyses that could sug-
gest inconsistencies in the training data when
the alternative annotation was provided by a
model trained on the corpus. Clicking any
number will open a page listing the sentences
with the focused token in bold where the user
can judge which is the correct annotation and
edit the sentence when needed.

9More information on the original evaluation methods
can be found at: https://universaldependencies.
org/conll18/evaluation.html. Accessed on 5 jan.
2021.

39

Figure 7: Accuracy for some of the dependency rela-
tions when comparing two annotations for the same cor-
pus

Figure 8: Confusion matrix portraying divergences in
POS annotation

5 Concluding remarks

In this paper we presented ET, a Workstation for
Querying, Editing and Evaluating Annotated Cor-
pora. Its aims are to facilitate linguistic research
and evaluate annotated corpora in the CoNLL-U
format, reuniting functionalities that are not new
ideas along with innovative ways of characterizing
and judging annotated corpora. Both Interrogatório
and Julgamento, integrated parts of the workstation,
are available on-line in the project GitHub page for
download and usage, as well as a live demonstra-
tion which does not need previous installation.

Although ET is not to be confused with corpus
analysis tools and corpora annotation tools alone,
the workstation can benefit from features of both
kinds of tools. In the future, thus, it is possible to
expand its functionalities so it will work as both
kinds of tools as well, increasing the range of tools
available to the user without leaving the worksta-
tion.

Acknowledgments

We would like to thank Luísa Rocha, who assisted
in the conception of the system in its very initial

steps, and Aline Silveira, Tatiana Cavalcanti, Maria
Clara Castro and Wograine Evelyn, who have cho-
sen the workstation as main framework for their lin-
guistic research and daily work in various projects,
challenging the tool to fit their (computational) lin-
guistic needs. Elvis de Souza thanks the National
Council for Scientific and Technological Devel-
opment (CNPq) for the Masters scholarship grant
number 130495/2021-2.

References
Laurence Anthony. 2005. Antconc: design and de-

velopment of a freeware corpus analysis toolkit for
the technical writing classroom. In IPCC 2005.
Proceedings. International Professional Communi-
cation Conference, 2005., pages 729–737. IEEE.

Marie-Catherine de Marneffe, Matias Grioni, Jenna
Kanerva, and Filip Ginter. 2017. Assessing the
annotation consistency of the universal dependen-
cies corpora. In Proceedings of the Fourth In-
ternational Conference on Dependency Linguistics
(Depling 2017), pages 108–115.

Stefan Evert and Andrew Hardie. 2011. Twenty-first
century corpus workbench: Updating a query archi-
tecture for the new millennium.

Cláudia Freitas and Elvis de Souza. 2021. Sujeito
oculto às claras: uma abordagem descritivo-
computacional/omitted subjects revealed: a
quantitative-descriptive approach. REVISTA DE
ESTUDOS DA LINGUAGEM.

Kim Gerdes. 2013. Collaborative dependency annota-
tion. In Proceedings of the second international con-
ference on dependency linguistics (DepLing 2013),
pages 88–97.

Andrew Hardie. 2012. Cqpweb—combining power,
flexibility and usability in a corpus analysis tool. In-
ternational journal of corpus linguistics, 17(3):380–
409.

Johannes Heinecke. 2019. Conllueditor: a fully graph-
ical editor for universal dependencies treebank files.
In Proceedings of the Third Workshop on Universal
Dependencies (UDW, SyntaxFest 2019), pages 87–
93.

Christopher D Manning. 2011. Part-of-speech tagging
from 97% to 100%: is it time for some linguistics?
In International conference on intelligent text pro-
cessing and computational linguistics, pages 171–
189. Springer.

Cristina Mota and Diana Santos. 2009. Corte e costura
no ac/dc: auxiliando a melhoria da anotação nos cor-
pos.

40

Joakim Nivre, Marie-Catherine De Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, et al. 2016. Universal dependencies
v1: A multilingual treebank collection. In Proceed-
ings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC’16), pages
1659–1666.

Alexandre Rademaker, Fabricio Chalub, Livy Real,
Cláudia Freitas, Eckhard Bick, and Valeria de Paiva.
2017. Universal dependencies for portuguese. In
Proceedings of the Fourth International Conference
on Dependency Linguistics (Depling 2017), pages
197–206.

Diana Santos. 2011. Linguateca’s infrastructure for
portuguese and how it allows the detailed study of
language varieties. OSLa: Oslo Studies in Lan-
guage 32 (2011) ISSN: 18909639 Volume edited by
J.B.Johannessen.

Diana Santos and Eckhard Bick. 2000. Providing inter-
net access to portuguese corpora: the ac/dc project.
In Maria Gavrilidou; George Carayannis; Stella
Markantonatou; Stelios Piperidis; Gregory Stain-
hauer (ed) Proceedings of the Second International
Conference on Language Resources and Evaluation
(LREC 2000)(Athens 31 May-2 June 2000).

Natalia Silveira, Timothy Dozat, Marie-Catherine
de Marneffe, Samuel Bowman, Miriam Connor,
John Bauer, and Christopher D. Manning. 2014. A
gold standard dependency corpus for English. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC-
2014).

Milan Straka, Jan Hajic, and Jana Straková. 2016.
Udpipe: trainable pipeline for processing conll-u
files performing tokenization, morphological anal-
ysis, pos tagging and parsing. In Proceedings of
the Tenth International Conference on Language Re-
sources and Evaluation (LREC’16), pages 4290–
4297.

Francis Tyers, Mariya Sheyanova, and Jonathan Wash-
ington. 2017. Ud annotatrix: An annotation tool for
universal dependencies. In Proceedings of the 16th
International Workshop on Treebanks and Linguistic
Theories, pages 10–17.

Daniel Zeman, Jan Hajic, Martin Popel, Martin Pot-
thast, Milan Straka, Filip Ginter, Joakim Nivre, and
Slav Petrov. 2018. Conll 2018 shared task: Mul-
tilingual parsing from raw text to universal depen-
dencies. In Proceedings of the CoNLL 2018 Shared
Task: Multilingual parsing from raw text to univer-
sal dependencies, pages 1–21.

41

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 42–49
November 7–11, 2021. ©2021 Association for Computational Linguistics

N-LTP: An Open-source Neural Language Technology Platform
for Chinese

Wanxiang Che, Yunlong Feng, Libo Qin, Ting Liu
Research Center for Social Computing and Information Retrieval

Harbin Institute of Technology, China
{car,ylfeng,lbqin,tliu}@ir.hit.edu.cn

Abstract

We introduce N-LTP, an open-source neural
language technology platform supporting six
fundamental Chinese NLP tasks: lexical analy-
sis (Chinese word segmentation, part-of-speech
tagging, and named entity recognition), syn-
tactic parsing (dependency parsing), and se-
mantic parsing (semantic dependency parsing
and semantic role labeling). Unlike the exist-
ing state-of-the-art toolkits, such as Stanza,
that adopt an independent model for each task,
N-LTP adopts the multi-task framework by
using a shared pre-trained model, which has
the advantage of capturing the shared knowl-
edge across relevant Chinese tasks. In addition,
a knowledge distillation method (Clark et al.,
2019) where the single-task model teaches the
multi-task model is further introduced to en-
courage the multi-task model to surpass its
single-task teacher. Finally, we provide a col-
lection of easy-to-use APIs and a visualization
tool to make users to use and view the pro-
cessing results more easily and directly. To
the best of our knowledge, this is the first
toolkit to support six Chinese NLP fundamen-
tal tasks. Source code, documentation, and
pre-trained models are available at https:
//github.com/HIT-SCIR/ltp.

1 Introduction

There is a wide of range of existing natu-
ral language processing (NLP) toolkits such as
CoreNLP (Manning et al., 2014), UDPipe (Straka
and Straková, 2017), FLAIR (Akbik et al., 2019),
spaCy,1 and Stanza (Qi et al., 2020) in English,
which makes it easier for users to build tools with
sophisticated linguistic processing. Recently, the
need for Chinese NLP has a dramatic increase in
many downstream applications. A Chinese NLP
platform usually includes lexical analysis (Chinese
word segmentation (CWS), part-of-speech (POS)

1https://spacy.io

Result
Analysis

Easy-to-use
API

Visualization
Tool

Output Sentence Split

Word Segmentation

Part-of-Speech Tagging

Named Entity Recognition

Toolkit

lexical analysis

Dependency Parsing
syntactic parsing

Semantic Dependency Parsing

semantic parsing

preprocess

Corpus
Input Processor

Semantic Role Labeling

Figure 1: Workflow of the N-LTP. N-LTP takes the
Chinese corpus as input and output the analysis results
including lexical analysis, syntactic parsing, and seman-
tic parsing. In addition, we provide the visualization tool
and easy-to-use API to help users easily use N-LTP.

tagging, and named entity recognition (NER)), syn-
tactic parsing (dependency parsing (DEP)), and
semantic parsing (semantic dependency parsing
(SDP) and semantic role labeling (SRL)). Unfortu-
nately, there are relatively fewer high-performance
and high-efficiency toolkits for Chinese NLP tasks.
To fill this gap, it’s important to build a Chinese
NLP toolkit to support rich Chinese fundamen-
tal NLP tasks, and make researchers process NLP
tasks in Chinese quickly.

Recently, Qi et al. (2020) introduce the Python
NLP toolkit Stanza for multi-lingual languages,
including Chinese language. Though Stanza can
be directly applied for processing the Chinese texts,
it suffers from several limitations. First, it only
supports part of Chinese NLP tasks. For example, it
fails to handle semantic parsing analysis, resulting
in incomplete analysis in Chinese NLP. Second, it
trained each task separately, ignoring the shared
knowledge across the related tasks, which has been
proven effective for Chinese NLP tasks (Qian et al.,
2015; Hsieh et al., 2017; Chang et al., 2018). Third,
independent modeling method will occupy more

42

System Programming Language Fully Neural
State-of-the-art
Performance

Rich Chinese
Fundamental Tasks

Multi-task
Learning

LTP (Che et al., 2010) C++
√

UDPipe (Straka and Straková, 2017) C++
√

FLAIR (Akbik et al., 2019) Python
√ √

Stanza (Qi et al., 2020) Python
√ √

N-LTP Python
√ √ √ √

Table 1: Feature comparisons of N-LTP against other popular natural language processing toolkits.

memory with the increase of the number of tasks,
which makes it hard to deploy for mobile devices
in real-word scenario.

To address the aforementioned issues, we intro-
duce N-LTP, a PyTorch-based neural natural lan-
guage processing toolkit for Chinese NLP, which
was built on the SOTA pre-trained model. As
shown in Figure 1, given Chinese corpus as input,
N-LTP produces comprehensive analysis results,
including lexical analysis, syntactic parsing, and
semantic parsing. In addition, N-LTP provides
easy-to-use APIs and visualization tool, which is
user-friendly.

As shown in Table 1, compared to the existing
widely-used NLP toolkits, N-LTP has the follow-
ing advantages:

• Comprehensive Tasks. N-LTP supports rich
Chinese fundamental NLP tasks including
lexical analysis (word segmentation, part-of-
speech tagging, named entity recognition),
syntactic parsing, and semantic parsing (se-
mantic dependency parsing, semantic role la-
beling). To the best of our knowledge, this is
the first neural Chinese toolkit that support six
Chinese fundamental NLP tasks.

• Multi-Task Learning. The existing NLP
toolkits for the Chinese language all adopt
independent models for each task, which ig-
nore the shared knowledge across tasks.

To alleviate this issue, we propose to use the
multi-task framework (Collobert et al., 2011)
to take advantage of the shared knowledge
across all tasks. Meanwhile, multi-task learn-
ing with a shared encoder for all six tasks can
greatly reduce the occupied memory and im-
prove the speed, which makes N-LTP more
efficient, reducing the need for hardware.

In addition, to enable the multi-task learning
to enhance each subtask performance, we fol-
low Clark et al. (2019) to adopt the distillation
method single-task models teach a multi-task

model, helping the multi-task model surpass
its all single-task teachers.

• Extensibility. N-LTP works with users’ cus-
tom modules. Users can easily add a new
pre-trained model with a configuration file, in
which users can change the pretrained model
to any BERT-like model supported by Hug-
gingFace Transformers (Wolf et al., 2019) eas-
ily by changing the config. We have made all
task training configuration files open-sourced.

• Easy-to-use API and Visualization Tool.
N-LTP provides a collection of fundamental
APIs, which is convenient for users to use the
toolkit without the need for any knowledge.
We also provide a visualization tool, which
enables users to view the processing results
directly. In addition, N-LTP has bindings for
many programming languages (C++, Python,
Java, Rust, etc.).

• State-of-the-art Performance. We evaluate
N-LTP on a total of six Chinese NLP tasks,
and find that it achieves state-of-the-art or
competitive performance at each task.

N-LTP is fully open-sourced and can support six
Chinese fundamental NLP tasks. We hope N-LTP
can facilitate Chinese NLP research.

2 Design and Architecture

Figure 2 shows an overview of the main architec-
ture of N-LTP. It mainly consists of the compo-
nents including a shared encoder and different de-
coders for each task. Our framework shares one
encoder for leveraging the shared knowledge across
all tasks. Different task decoders are used for each
task separately. All tasks are optimized simulta-
neously via a joint learning scheme. In addition,
the knowledge distillation technique is introduced
to encourage the multi-task model to surpass its
single-task teacher model.

43

ELECTRA

CWS

POS NER DEP SRL SDP

s! s" … s#[CLS] [SEP]

ℎ! ℎ" ℎ$ℎ[&'(] ℎ[(*+]

Other Tasks

CWS

Shared Encoder

Input Sentences

…

Figure 2: The architecture of the proposed model.

2.1 Shared Encoder
Multi-task framework uses a shared encoder to ex-
tract the shared knowledge across related tasks,
which has obtained remarkable success on various
NLP tasks (Qin et al., 2019; Wang et al., 2020;
Zhou et al., 2021). Inspired by this, we adopt
the SOTA pre-trained model (ELECTRA) (Clark
et al., 2020) as the shared encoder to capture shared
knowledge across six Chinese tasks.

Given an input utterance s = (s1, s2, . . . , sn),
we first construct the input sequence by adding
specific tokens s = ([CLS], s1, s2, . . . , sn, [SEP]),
where [CLS] is the special symbol for represent-
ing the whole sequence, and [SEP] is the spe-
cial symbol to separate non-consecutive token se-
quences (Devlin et al., 2019). ELECTRA takes
the constructed input and output the corresponding
hidden representations of sequence H = (h[CLS],
h1,h2, . . . ,hn, h[SEP]).

2.2 Chinese Word Segmentation
Chinese word segmentation (CWS) is a prelim-
inary and important task for Chinese natural lan-
guage processing (NLP). In N-LTP, following Xue
(2003), CWS is regarded as a character based se-
quence labeling problem.

Specifically, given the hidden representations H
= (h[CLS], h1,h2, . . . ,hn, h[SEP]), we adopt a
linear decoder to classify each character:

yi = Softmax(W CWShi + bCWS), (1)

where yi denotes the label probability distribution
of each character; W CWS and bCWS are trainable
parameters.

2.3 POS Tagging
Part-of-speech (POS) tagging is another fundamen-
tal NLP task, which can facilitate the downstream
tasks such as syntactic parsing. Following the dom-
inant model in the literature (Ratnaparkhi, 1996;

Huang et al., 2015), POS tagging can be treated as
a sequence labeling task.

Similar to CWS, we take the sequence of hidden
representations H as input and output the corre-
sponding POS sequence labels, which is formu-
lated as:

yi = Softmax(W POShi + bPOS), (2)

where yi denotes the POS label probability distri-
bution of the i-th character; hi is the first sub-token
representation of word si.

2.4 Named Entity Recognition
The named entity recognition (NER) is the task
of finding the start and end of an entity (people,
locations, organizations, etc.) in a sen-
tence and assigning a class for this entity.

Traditional, NER is regarded as a sequence la-
beling task. After obtaining the hidden representa-
tions H , we follow Yan et al. (2019a) to adopt the
Adapted-Transformer to consider direction-
and distance-aware characteristic, which can be
formulated as:

ĥi = AdaptedTransformer(hi), (3)

where Ĥ = (ĥ[CLS], ĥ1, ĥ2, . . . , ĥn, ĥ[SEP]) are
the updated representations.

Finally, similar to CWS and POS, we use a linear
decoder to classify label for each word:

yi = Softmax(W NERĥi + bNER), (4)

where yi denotes the NER label probability distri-
bution of each character.

2.5 Dependency Parsing
Dependency parsing is the task to analyze the se-
mantic structure of a sentence. In N-LTP, we im-
plement a deep biaffine neural dependency parser
(Dozat and Manning, 2017) and einser algorithm
(Eisner, 1996) to obtain the parsing result, which
is formulated as:

r
(head)
i = MLP(head)(hi)

r
(dep)
j = MLP(dep)(hj)

(5)

After obtaining r
(head)
i and r

(dep)
j , we compute

the score for each dependency i↶j by:

yi↶j = BiAffine(rdep
i , rhead

j). (6)
44

Task 1
Model

Task 2
Model

Task k
Model

Multi-Task
Model

Task 1
Labels

Task 2
Labels

Task k
Labels

⋮ ⋮

1 − 𝜆 𝜆

distill train

Figure 3: We follow Clark et al. (2019) to adopt the
distillation method. This is an overview of the distilla-
tion method. λ is increased linearly from 0 to 1 over the
curriculum of training.

The above process is also used for scoring a

labeled dependency i
l↶j, by extending the 1-dim

vector s into L dims, where L is the total number
of dependency labels.

2.6 Semantic Dependency Parsing

Similar to dependency parsing, semantic depen-
dency parsing (Che et al., 2012, SDP) is a task
to capture the semantic structure of a sentence.
Specifically, given an input sentence, SDP aims at
determining all the word pairs related to each other
semantically and assigning specific predefined se-
mantic relations. Following Dozat and Manning
(2017), we adopt a biaffine module to perform the
task, using

pi↶j = sigmoid(yi↶j). (7)

If pi↶j > 0.5, wordi to wordj exists an edge.

2.7 Semantic Role Labeling

Semantic Role Labeling (SRL) is the task of de-
termining the latent predicate-argument structure
of a sentence, which can provide representations
to answer basic questions about sentence meaning,
including who did what to whom, etc. We adopt
an end-to-end SRL model by combining a deep
biaffine neural network and a conditional random
field (CRF)-based decoder (Cai et al., 2018).

The biaffine module is similar to Section 2.5 and
the CRF layer can be formulated as:

P (ŷ|s) =
∑

j=1 exp f(yi,j−1,yi,j ,s)∑
y′
i

∑
j=1 exp f(y′i,j−1,y

′
i,j ,s)

(8)

where ŷ represents an arbitrary label sequence
when predicate is si, and f(yi,j−1, yj , s) computes
the transition score from yi,j−1 to yi,j .

Figure 4: A minimal code snippet.

2.8 Knowledge Distillation

When there exist a large number of tasks, it’s dif-
ficult to ensure that each task task benefits from
multi-task learning (Clark et al., 2019).

Therefore, we follow BAM (Clark et al., 2019)
to use the knowledge distillation to alleviate this
issue, which is shown Figure 3. First, we train each
task as the teacher model. Then, N-LTP learns
from each trained single-task teacher model while
learning from the gold-standard labels simultane-
ously.

Following BAM (Clark et al., 2019), we adopt
teacher annealing distillation algorithm. More
specifically, instead of simply shuffling the datasets
for our multi-task models, we follow the task sam-
pling procedure from Bowman et al. (2018), where
the probability of training on an example for a
particular task τ is proportional to |Dτ |0.75. This
ensures that tasks with large datasets don’t overly
dominate the training.

3 Usage

N-LTP is a PyTorch-based Chinese NLP toolkit
based on the above model. All the configurations
can be initialized from JSON files, and thus it is
easy for users to use N-LTP where users just need
one line of code to load the model or process the in-
put sentences. Specifically, N-LTP can be installed
easily by the command:

$ pip install ltp

In addition, N-LTP has bindings available for
many programming languages, including C++,
Python, Java and RUST directly.

3.1 Easy-to-use API

We provide rich easy-to-use APIs, which enables
users to easily use without the need for any knowl-
edge. The following code snippet in Figure 4 shows

45

Chinese Word Part-of-Speech Named Entity Dependency Semantic Dependency Semantic Role
Model Segmentation Tagging Recognition Parsing Parsing Labeling

F FLAS F F F F

Stanza (Qi et al., 2020) 92.40 98.10 89.50 84.98 - -

N-LTP trained separately 98.55 98.35 95.41 90.12 74.47 79.23
N-LTP trained jointly with distillation 99.18 98.69 95.97 90.19 76.62 79.49

Table 2: Main Results. “-" represents the absence of tasks in the Stanza toolkit and we cannot report the results.

Figure 5: LTP annotates a Chinese sentence “他叫汤姆
去拿外衣。/ He told Tom to get his coat.”. The output
is visualized by our visualization demo.

a minimal usage of N-LTP for downloading mod-
els, annotating a sentence with customized models,
and predicting all annotations.

3.2 Visualization Tool

In addition, a visualization tool is proposed for
users to view the processing results directly. Specif-
ically, we build an interactive web demo that runs
the pipeline interactively, which is publicly avail-
able at http://ltp.ai/demo.html. The vi-
sualization tool is shown in Figure 5.

4 Experiments

4.1 Experimental Setting

To evaluate the efficiency of our multi-task model,
we conduct experiments on six Chinese tasks.

The N-LTP model is based on the Chinese
ELECTRA base (Cui et al., 2020). The learning
ratio (lr) for teacher models, student model and
CRF layer is {1e − 4}, {1e − 4}, {1e − 3}, re-
spectively. The gradient clip value adopted in our
experiment is 1.0 and the warmup proportion is
0.02. We use BertAdam (Devlin et al., 2019) to
optimize the parameters and adopted the suggested
hyper-parameters for optimization.

4.2 Results

We compare N-LTP with the state-of-the-art
toolkit Stanza. For a fair comparison, we
conduct experiments on the same datasets that
Stanza adopted.

The results are shown in Table 2, we have the
following observations:

• N-LTP outperforms Stanza on four common
tasks including CWS, POS, NER, and DEP by
a large margin, which shows the superiority
of our proposed toolkit.

• The multi-task learning outperforms the
model with independently trained. This is
because that the multi-task framework can
consider the shared knowledge which can pro-
mote each task compared with the indepen-
dently training paradigm.

4.3 Analysis

4.3.1 Speedup and Memory Reduction

In this section, we perform the speed and memory
test on the Tesla V100-SXM2-16GB and all models
were speed-tested on the 10,000 sentences of the
People’s Daily corpus with a batch size of 8. In
all experiments, N-LTP performs six tasks (CWS,
POS, NER, DEP, SDP, SRL) while Stanza only
conduct four tasks (CWS, POS, NER, DEP).

210 corpus for training CWS task includes PKU, MSR,
AS, CITYU, XU, CTB, UDC, CNC, WTB and ZX.

3http://ir.hit.edu.cn/sdp2020ccl

46

Task Model Dataset Metric
State-of-the-art N-LTP N-LTP
Performance trained separately trained jointly

CWS BERT (Huang et al., 2019) 10 Corpus2 F1 97.10 97.42 97.50
POS Glyce+BERT (Meng et al., 2019) CTB9 F1 93.15 94.57 95.17
NER ZEN (Diao et al., 2020) MSRA F1 95.25 94.95 95.78
NER DGLSTM-CRF (Jie and Lu, 2019) OntoNotes F1 79.92 84.08 84.38
SRL BiLSTM-Span (Ouchi et al., 2018) CONLL12 F1 75.75 78.20 81.65
DEP Joint-Multi-BERT (Yan et al., 2019b) CTB9 F1LAS 81.71 81.69 84.03
SDP SuPar3 CCL20204 F1LAS 80.38 76.27 75.76

Table 3: The results of N-LTP comparation to other state-of-the-art performance..

Stanza N-LTP (separately) N-LTP (jointly)
0

50

100

150

200

250

300

Se
nt

s/
s

56.16

93.98

242.03

Speed

0

500

1000

1500

2000

2500

3000

M
B

1227.70

2471.60

651.00

Memory

Figure 6: Speed and Memory test for N-LTP.

Speedup We compare the speed be-
tween Stanza, N-LTP-separately and
N-LTP-jointly and the results are shown
in Figure 6. From the results of speed test, we
have two interesting observations: (1) N-LTP
trained separately achieves the x1.7
speedup compared with Stanza. We attribute
that N-LTP adopts the transformer as an encoder
that can be calculated in parallel while Stanza
uses LSTM which can only process sentences
word by word; (2) N-LTP trained jointly
with distillation obtains the x4.3 speedup
compared with separate modeling paradigm. This
is because that our model utilizes the multi-task
to perform all tasks while the independent models
can be only processed all tasks in a pipeline mode.

Memory Reduction For memory test, we
have the following observation: (1) N-LTP
trained separately occupy more memory
than Stanza. This is because N-LTP per-
forms six tasks while Stanza only conduct four
tasks. (2) Though performing six tasks, N-LTP
trained jointly only requires half the mem-
ory compared to Stanza. We attribute it to the
fact that the multi-task framework with a shared
encoder can greatly reduce the running memory.

4.3.2 Comparation with Other SOTA Single
Models

To further verify the effectiveness of N-LTP, we
compare our framework with the existing state-of-
the-art single models on six Chinese fundamental
tasks. In this comparison, we conduct experiments
on the same wildly-used dataset in each task for a
fair comparison. In addition, we use BERT rather
than ELECTRA as the shared encoder, because the
prior work adopts BERT.

Table 3 shows the results, we observe that our
framework obtains best performance on five out
of six tasks including CWS, POS, NER, SRL, and
DEP, which demonstrates the effectiveness of our
framework. On the SDP task, N-LTP underper-
forms the best baseline. This is because many tricks
are used in the prior model for SDP task and we
just use the basic multi-task framework.

5 Conclusion

In this paper, we presented N-LTP, an open-source
neural language technology platform supporting
Chinese. To the best of our knowledge, this is the
first Chinese toolkit that supports six fundamen-
tal Chinese NLP tasks. Experimental results show
N-LTP obtains state-of-the-art or competitive per-
formance and has high speed. We hope N-LTP can
facilitate Chinese NLP research.

Acknowledgements

We thank the anonymous reviewers for their de-
tailed and constructive comments. The first three
authors contributed equally. Wanxiang Che is the
corresponding author. This work was supported
by the National Key R&D Program of China via
grant 2020AAA0106501 and the National Natu-
ral Science Foundation of China (NSFC) via grant
61976072 and 61772153. Libo is also supported
by the Zhejiang Lab’s International Talent Fund for
Young Professionals.

47

References
Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif

Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
FLAIR: An easy-to-use framework for state-of-the-
art NLP. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics (Demonstrations), pages
54–59, Minneapolis, Minnesota. Association for
Computational Linguistics.

Samuel R. Bowman, Ellie Pavlick, Edouard Grave, Ben-
jamin Van Durme, Alex Wang, Jan Hula, Patrick
Xia, Raghavendra Pappagari, R. Thomas McCoy,
Roma Patel, Najoung Kim, Ian Tenney, Yinghui
Huang, Katherin Yu, Shuning Jin, and Berlin Chen.
2018. Looking for elmo’s friends: Sentence-level
pretraining beyond language modeling. CoRR,
abs/1812.10860.

Jiaxun Cai, Shexia He, Zuchao Li, and Hai Zhao. 2018.
A full end-to-end semantic role labeler, syntactic-
agnostic over syntactic-aware? In Proceedings of the
27th International Conference on Computational Lin-
guistics, pages 2753–2765, Santa Fe, New Mexico,
USA. Association for Computational Linguistics.

Yung-Chun Chang, Fang Yi Lee, and Chun Hung Chen.
2018. A public opinion keyword vector for social sen-
timent analysis research. In 2018 Tenth International
Conference on Advanced Computational Intelligence
(ICACI), pages 752–757. IEEE.

Wanxiang Che, Zhenghua Li, and Ting Liu. 2010. LTP:
A Chinese language technology platform. In Coling
2010: Demonstrations, pages 13–16, Beijing, China.
Coling 2010 Organizing Committee.

Wanxiang Che, Meishan Zhang, Yanqiu Shao, and Ting
Liu. 2012. SemEval-2012 task 5: Chinese semantic
dependency parsing. In *SEM 2012: The First Joint
Conference on Lexical and Computational Seman-
tics – Volume 1: Proceedings of the main conference
and the shared task, and Volume 2: Proceedings of
the Sixth International Workshop on Semantic Eval-
uation (SemEval 2012), pages 378–384, Montréal,
Canada. Association for Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Urvashi Khandel-
wal, Christopher D. Manning, and Quoc V. Le. 2019.
BAM! born-again multi-task networks for natural
language understanding. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 5931–5937, Florence, Italy. Asso-
ciation for Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: pre-
training text encoders as discriminators rather than
generators. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from

scratch. Journal of machine learning research,
12(ARTICLE):2493–2537.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin
Wang, and Guoping Hu. 2020. Revisiting pre-trained
models for Chinese natural language processing. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 657–668, Online. As-
sociation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Shizhe Diao, Jiaxin Bai, Yan Song, Tong Zhang, and
Yonggang Wang. 2020. ZEN: Pre-training Chinese
text encoder enhanced by n-gram representations.
In Findings of the Association for Computational
Linguistics: EMNLP 2020, pages 4729–4740, Online.
Association for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Jason M. Eisner. 1996. Three new probabilistic models
for dependency parsing: An exploration. In COLING
1996 Volume 1: The 16th International Conference
on Computational Linguistics.

Yu-Lun Hsieh, Yung-Chun Chang, Yi-Jie Huang, Shu-
Hao Yeh, Chun-Hung Chen, and Wen-Lian Hsu.
2017. MONPA: Multi-objective named-entity and
part-of-speech annotator for Chinese using recurrent
neural network. In Proceedings of the Eighth In-
ternational Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 80–85,
Taipei, Taiwan. Asian Federation of Natural Lan-
guage Processing.

Weipeng Huang, Xingyi Cheng, Kunlong Chen, Taifeng
Wang, and Wei Chu. 2019. Toward fast and accurate
neural chinese word segmentation with multi-criteria
learning. CoRR, abs/1903.04190.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence tagging.
CoRR, abs/1508.01991.

Zhanming Jie and Wei Lu. 2019. Dependency-guided
LSTM-CRF for named entity recognition. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 3862–3872,
Hong Kong, China. Association for Computational
Linguistics.

48

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics: System Demonstrations, pages 55–60, Balti-
more, Maryland. Association for Computational Lin-
guistics.

Yuxian Meng, Wei Wu, Fei Wang, Xiaoya Li, Ping Nie,
Fan Yin, Muyu Li, Qinghong Han, Xiaofei Sun, and
Jiwei Li. 2019. Glyce: Glyph-vectors for chinese
character representations. In Advances in Neural
Information Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 2742–2753.

Hiroki Ouchi, Hiroyuki Shindo, and Yuji Matsumoto.
2018. A span selection model for semantic role la-
beling. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 1630–1642, Brussels, Belgium. Association
for Computational Linguistics.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 101–108, Online. As-
sociation for Computational Linguistics.

Tao Qian, Yue Zhang, Meishan Zhang, Yafeng Ren, and
Donghong Ji. 2015. A transition-based model for
joint segmentation, POS-tagging and normalization.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1837–1846, Lisbon, Portugal. Association for Com-
putational Linguistics.

Libo Qin, Wanxiang Che, Yangming Li, Haoyang Wen,
and Ting Liu. 2019. A stack-propagation framework
with token-level intent detection for spoken language
understanding. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2078–2087, Hong Kong, China. Association
for Computational Linguistics.

Adwait Ratnaparkhi. 1996. A maximum entropy model
for part-of-speech tagging. In Conference on Empiri-
cal Methods in Natural Language Processing.

Milan Straka and Jana Straková. 2017. Tokenizing,
POS tagging, lemmatizing and parsing UD 2.0 with
UDPipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 88–99, Vancouver, Canada.
Association for Computational Linguistics.

Yiren Wang, ChengXiang Zhai, and Hany Hassan. 2020.
Multi-task learning for multilingual neural machine
translation. In Proceedings of the 2020 Conference

on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1022–1034, Online. Association
for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2019. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing. ArXiv, abs/1910.03771.

Nianwen Xue. 2003. Chinese word segmentation as
character tagging. In International Journal of Com-
putational Linguistics & Chinese Language Process-
ing, Volume 8, Number 1, February 2003: Special
Issue on Word Formation and Chinese Language Pro-
cessing, pages 29–48.

Hang Yan, Bocao Deng, Xiaonan Li, and Xipeng Qiu.
2019a. Tener: Adapting transformer encoder for
named entity recognition.

Hang Yan, Xipeng Qiu, and Xuanjing Huang. 2019b. A
unified model for joint chinese word segmentation
and dependency parsing. CoRR, abs/1904.04697.

Baohang Zhou, Xiangrui Cai, Ying Zhang, and Xiaojie
Yuan. 2021. An end-to-end progressive multi-task
learning framework for medical named entity recog-
nition and normalization. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 6214–6224, Online. Association
for Computational Linguistics.

49

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 50–62
November 7–11, 2021. ©2021 Association for Computational Linguistics

COMBO: State-of-the-Art Morphosyntactic Analysis

Mateusz Klimaszewski1,2 Alina Wróblewska2

1Warsaw University of Technology
2Institute of Computer Science, Polish Academy of Sciences

m.klimaszewski@ii.pw.edu.pl
alina@ipipan.waw.pl

Abstract

We introduce COMBO – a fully neural
NLP system for accurate part-of-speech tag-
ging, morphological analysis, lemmatisation,
and (enhanced) dependency parsing. It pre-
dicts categorical morphosyntactic features
whilst also exposes their vector representa-
tions, extracted from hidden layers. COMBO
is an easy to install Python package with au-
tomatically downloadable pre-trained models
for over 40 languages. It maintains a bal-
ance between efficiency and quality. As it
is an end-to-end system and its modules are
jointly trained, its training is competitively
fast. As its models are optimised for accu-
racy, they achieve often better prediction qual-
ity than SOTA. The COMBO library is avail-
able at: https://gitlab.clarin-pl.eu/
syntactic-tools/combo.

1 Introduction

Natural language processing (NLP) has long recog-
nised morphosyntactic features as necessary for
solving advanced natural language understanding
(NLU) tasks. An enormous impact of contextual
language models on presumably all NLP tasks has
slightly weakened the importance of morphosyn-
tactic analysis. As morphosytnactic features are
encoded to some extent in contextual word embed-
dings (e.g. Tenney et al., 2019; Lin et al., 2019),
doubts arise as to whether explicit morphosyntactic
knowledge is still needed. For example, Glavaš and
Vulić (2021) have recently investigated an inter-
mediate fine-tuning contextual language models on
the dependency parsing task and suggested that this
step does not significantly contribute to advance
NLU models. Conversely, Warstadt et al. (2019) re-
veal the powerlessness of contextual language mod-
els in encoding linguistic phenomena like negation.
This is in line with our intuition about representing
negation in Polish sentences (see Figure 1). It does
not seem trivial to differentiate between the con-

tradicting meanings of these sentences using con-
textual language models, as the word context is
similar. The morphosyntactic features, e.g. parts
of speech PART vs. INTJ, and dependency labels
advmod:neg vs. discourse:intj, could be beneficial
in determining correct reading.

In order to verify the influence of explicit mor-
phosyntactic knowledge on NLU tasks, it is neces-
sary to design a technique for injecting this knowl-
edge into models or to build morphosyntax-aware
representations. The first research direction was
initiated by Glavaš and Vulić (2021). Our objec-
tive is to provide a tool for predicting high-quality
morphosyntactic features and exposing their em-
beddings. These vectors can be directly combined
with contextual word embeddings to build mor-
phosyntactically informed word representations.

The emergence of publicly available NLP
datasets, e.g. Universal Dependencies (Zeman et al.,
2019), stimulates the development of NLP systems.
Some of them are optimised for efficiency, e.g.
spaCy (Honnibal et al., 2020), and other for ac-
curacy, e.g. UDPipe (Straka, 2018), the Stanford
system (Dozat and Manning, 2018), Stanza (Qi
et al., 2020). In this paper, we introduce COMBO,
an open-source fully neural NLP system which
is optimised for both training efficiency and pre-
diction quality. Due to its end-to-end architec-
ture, which is an innovation within morphosyn-
tactic analysers, COMBO is faster in training than
the SOTA pipeline-based systems, e.g. Stanza. As
a result of applying modern NLP solutions (e.g.
contextualised word embeddings), it qualitatively
outperforms other systems.

COMBO analyses tokenised sentences and pre-
dicts morphosyntactic features of tokens (i.e. parts
of speech, morphological features, and lemmata)
and syntactic structures of sentences (i.e. depen-
dency trees and enhanced dependency graphs). At
the same time, its module, COMBO-vectoriser, ex-
tracts vector representations of the predicted fea-

50

(1) Nie śpię
PART VERB

(I) don’t sleep

advmod:neg
root

(2) Nie , nie śpię
INTJ PUNCT PART VERB
No , (I) don’t sleep

advmod:neg
root

punct
discourse:intj

(3) Nie , śpię
INTJ PUNCT VERB
No , (I) sleep

root
punct

discourse:intj

Figure 1: UD trees of Polish sentences: (1) and (2) mean a non-sleeping situation and (3) means sleeping.

tures from hidden layers of individual predictors.
COMBO user guide is in §4 and a live demo is
available on the website http://combo-demo.nlp.
ipipan.waw.pl.

Contributions 1) We implement COMBO (§2),
a fully neural NLP system for part-of-speech
tagging, morphological analysis, lemmatisation,
and (enhanced) dependency parsing, together with
COMBO-vectoriser for revealing vector represen-
tations of predicted categorical features. COMBO
is implemented as a Python package which is easy
to install and to integrate into a Python code. 2)
We pre-train models for over 40 languages that can
be automatically downloaded and directly used to
process new texts. 3) We evaluate COMBO and
compare its performance with two state-of-the-art
systems, spaCy and Stanza (§3).

2 COMBO Architecture

COMBO’s architecture (see Figure 2) is based
on the forerunner (Rybak and Wróblewska, 2018)
implemented in the Keras framework. Apart
from a new implementation in the PyTorch li-
brary (Paszke et al., 2019), the novelties are
the BERT-based encoder, the EUD prediction mod-
ule, and COMBO-vectoriser extracting embed-
dings of UPOS and DEPREL from the last hid-
den layers of COMBO’s tagging and dependency
parsing module, respectively. This section provides
an overview of COMBO’s modules. Implementa-
tion details are in Appendix A.

Local Feature Extractors Local feature extrac-
tors (see Figure 2) encode categorical features (i.e.
words, parts of speech, morphological features,
lemmata) into vectors. The feature bundle is con-
figurable and limited by the requirements set for
COMBO. For instance, if we train only a depen-
dency parser, the following features can be input
to COMBO: internal character-based word em-
beddings (CHAR), pre-trained word embeddings
(WORD), and embeddings of lemmata (LEMMA),

WORDLEMMACHARUPOSUFEATS

HEAD DEPREL

UPOS UFEATS

enhHEAD enhDEPREL

TOKENISED
SENTENCES

CONCATENATED LOCAL FEATURES
LO

C
AL

EX
TR

AC
TO

R
S

PR
ED

IC
TO

R
S

LEMMA

EN
C
O
D
ER

Figure 2: COMBO architecture. Explanations:
CNN FC System-trained biLSTM optional required

parts of speech (UPOS) and morphological features
(UFEATS). If we train a morphosyntactic analyser
(i.e. tagger, lemmatiser and parser), internal word
embeddings (CHAR) and pre-trained word embed-
dings (WORD), if available, are input to COMBO.

Words and lemmata are always encoded us-
ing character-based word embeddings (CHAR and
LEMMA) estimated during system training with a di-
lated convolutional neural network (CNN) encoder
(Yu and Koltun, 2016; Strubell et al., 2017).

Additionally, words can be represented using pre-
trained word embeddings (WORD), e.g. fastText
(Grave et al., 2018), or BERT (Devlin et al., 2019).
The use of pre-trained embeddings is an optional
functionality of the system configuration. COMBO
freezes pre-trained embeddings (i.e. no fine-tuning)
and uses their transformations, i.e. embeddings are
transformed by a single fully connected (FC) layer.

Part-of-speech and morphological embeddings
(UPOS and UFEATS) are estimated during system
training. Since more than one morphological fea-
ture can attribute a word, embeddings of all pos-

51

sible features are estimated and averaged to build
a final morphological representation.

Global Feature Encoder The encoder uses con-
catenations of local feature embeddings. A se-
quence of these vectors representing all the words
in a sentence is processed by a bidirectional LSTM
(Hochreiter and Schmidhuber, 1997; Graves and
Schmidhuber, 2005). The network learns the con-
text of each word and encodes its global (contex-
tualised) features (see Figure 3). Global feature
embeddings are input to the prediction modules.

ROOT The car is red

Figure 3: Estimation of global feature vectors.
biLSTM GLOBAL

Tagging Module The tagger takes global feature
vectors as input and predicts a universal part of
speech (UPOS), a language-specific tag (XPOS),
and morphological features (UFEATS) for each
word. The tagger consists of two linear layers fol-
lowed by a softmax. Morphological features build
a disordered set of category-value pairs (e.g. Num-
ber=Plur). Morphological feature prediction is thus
implemented as several classification problems.
The value of each morphological category is pre-
dicted with a FC network. Different parts of speech
are assigned different sets of morphological cate-
gories (e.g. a noun can be attributed with grammati-
cal gender, but not with grammatical tense). The set
of possible values is thus extended with the NA (not
applicable) symbol. It allows the model to learn that
a particular category is not a property of a word.

Lemmatisation Module The lemmatiser uses
an approach similar to character-based word em-
bedding estimation. A character embedding is con-
catenated with the global feature vector and trans-
formed by a linear layer. The lemmatiser takes a se-
quence of such character representations and trans-

forms it using a dilated CNN. The softmax function
over the result produces the sequence of probabili-
ties over a character vocabulary to form a lemma.

R
O

O
T

GLO
BAL F

EATURES

ADJACENCY
MATRIXDOT PRODUCT

HEAD

D
EP

EN
D

EN
T

Th
e

ca
r

is re
d

ROOT

car
is

red

The

Figure 4: Prediction of dependency arcs.

Parsing Module Two single FC layers transform
global feature vectors into head and dependent em-
beddings (see Figure 4). Based on these represen-
tations, a dependency graph is defined as an adja-
cency matrix with columns and rows corresponding
to heads and dependents, respectively. The adja-
cency matrix elements are dot products of all pairs
of the head and dependent embeddings (the dot
product determines the certainty of the edge be-
tween two words). The softmax function applied to
each row of the matrix predicts the adjacent head-
dependent pairs. This approach, however, does not
guarantee that the resulting adjacency matrix is
a properly built dependency tree. The Chu-Liu-
Edmonds algorithm (Chu and Liu, 1965; Edmonds,
1967) is thus applied in the last prediction step.

ROOT

car
is
red

The

HEAD

ADJACENCY
MATRIX

. =

ROOT

car
is
red

The

DEPENDENT

root

nsubj
cop
root

det

Figure 5: Prediction of grammatical functions.

52

The procedure of predicting words’ grammatical
functions (aka dependency labels) is shown in Fig-
ure 5. A dependent and its head are represented as
vectors by two single FC layers. The dependent em-
bedding is concatenated with the weighted average
of (hypothetical) head embeddings. The weights
are the values from the corresponding row of the ad-
jacency matrix, estimated by the arc prediction
module. Concatenated vector representations are
then fed to a FC layer with the softmax activation
function to predict dependency labels.

EUD Parsing Module Enhanced Universal De-
pendencies (EUD) are predicted similarly to depen-
dency trees. The EUD parsing module is described
in details in Klimaszewski and Wróblewska (2021).

3 COMBO Performance

Data COMBO is evaluated on treebanks from
the Universal Dependencies repository (Zeman
et al., 2019), preserving the original splits into train-
ing, validation, and test sets. The treebanks repre-
senting distinctive language types are summarised
in Table 4 in Appendix B.

By default, pre-trained 300-dimensional fastText
embeddings (Grave et al., 2018) are used. We also
test encoding data with pre-trained contextual word
embeddings (the tested BERT models are listed in
Table 5 in Appendix B). The UD datasets provide
gold-standard tokenisation. If BERT intra-tokeniser
splits a word into sub-words, the last layer embed-
dings are averaged to obtain a single vector repre-
sentation of this word.

Qualitative Evaluation Table 1 shows COMBO
results of processing the selected UD treebanks.1

COMBO is compared with Stanza (Qi et al.,
2020) and spaCy.2 The systems are evaluated with
the standard metrics (Zeman et al., 2018): F1, UAS

(unlabelled attachment score), LAS (labelled attach-
ment score), MLAS (morphology-aware LAS) and
BLEX (bi-lexical dependency score).3

COMBO and Stanza undeniably outrun spaCy
models. COMBO using non-contextualised word

1Check the prediction quality for other languages at:
https://gitlab.clarin-pl.eu/syntactic-tools/
combo/-/blob/master/docs/performance.md.

2https://spacy.io We use the project template
https://github.com/explosion/projects/tree/
v3/pipelines/tagger_parser_ud. The lemmatiser is
implemented as a standalone pipeline component in spaCy v3
and we do not test it.

3http://universaldependencies.org/conll18/
conll18_ud_eval.py (CoNLL 2018 evaluation script).

embeddings is outperformed by Stanza in many
language scenarios. However, COMBO supported
with BERT-like word embeddings beats all other
solutions and is currently the SOTA system for
morphosyntactic analysis.

Regarding lemmatisation, Stanza has an advan-
tage over COMBO in most tested languages. This
is probably due to the fact that Stanza lemmatiser
is enhanced with a key-value dictionary, whilst
COMBO lemmatiser is fully neural. It is not sur-
prising that a dictionary helps in lemmatisation of
isolating languages (English). However, the dictio-
nary approach is also helpful for agglutinative lan-
guages (Finnish, Korean, Basque) and for Arabic,
but not for Polish (fusional languages). Compar-
ing COMBO models estimated with and without
BERT embeddings, we note that BERT boost only
slightly increases the quality of lemma prediction
in the tested fusional and agglutinative languages.

For a complete insight into the prediction quality,
we evaluate individual UPOS and UDEPREL predic-
tions in English (the isolating language), Korean
(agglutinative) and Polish (fusional). Result visual-
isations are in Appendix C.

COMBO took part in IWPT 2021 Shared Task
on Parsing into Enhanced Universal Dependencies
(Bouma et al., 2021), where it ranked 4th.4 In addi-
tion to ELAS and EULAS metrics, the third evalua-
tion metric was LAS. COMBO ranked 2nd, achiev-
ing the average LAS of 87.84%. The score is even
higher than the average LAS of 86.64% in Table 1,
which is a kind of confirmation that our evaluation
is representative, reliable, and fair.

Downstream Evaluation According to the re-
sults in Table 1, COMBO predicts high-quality de-
pendency trees and parts of speech. We therefore
conduct a preliminary evaluation of morphosyntac-
tically informed word embeddings in the textual
entailment task (aka natural language inference,
NLI) in English (Bentivogli et al., 2016) and Pol-
ish (Wróblewska and Krasnowska-Kieraś, 2017).
We compare the quality of entailment classifiers
with two FC layers trained on max/mean-pooled
BERT embeddings and sentence representations es-
timated by a network with two transformer layers
which is given morphosyntactically informed word
embeddings (i.e. BERT-based word embeddings
concatenated with UPOS embeddings, DEPREL em-
beddings, and BERT-based embeddings of the head

4https://universaldependencies.org/iwpt21/
results.html

53

System UPOS XPOS UFeat Lemma UAS LAS CLAS MLAS BLEX
English EWT (isolating)

spaCy 93.79 93.10 94.89 NA 83.38 79.76 75.74 68.91 NA
Stanza 96.36 96.15 97.01 98.18 89.64 86.89 83.84 79.44 82.03
COMBO 95.60 95.21 96.60 97.43 88.56 85.58 82.35 76.56 79.78
COMBOBERT 96.57 96.44 97.24 97.86 91.76 89.28 86.83 81.71 84.38

Arabic PADT (fusional)
spaCy 90.27 82.15 82.70 NA 74.24 67.28 63.28 50.48 NA
Stanza 96.98 93.97 94.08 95.26 87.96 83.74 80.57 74.96 76.80
COMBO 96.71 93.72 93.83 93.54 87.06 82.70 79.46 73.25 73.64
COMBOBERT 97.04 94.83 95.05 93.95 89.21 85.09 82.36 76.82 76.67

Polish PDB (fusional)
spaCy 96.14 86.94 87.41 NA 86.73 82.06 79.00 65.42 NA
Stanza 98.47 94.20 94.42 97.43 93.15 90.84 88.73 81.98 85.75
COMBO 98.24 94.26 94.53 97.47 92.87 90.45 88.07 81.31 85.53
COMBOBERT 98.97 96.54 96.80 98.06 95.60 93.93 92.34 87.59 89.91

Finnish TDT (agglutinative)
spaCy 92.15 93.34 87.89 NA 80.06 74.75 71.52 61.95 NA
Stanza 97.24 97.96 95.58 95.24 89.57 87.14 85.52 80.52 81.05
COMBO 96.72 98.02 94.04 88.73 89.73 86.70 84.56 77.63 72.42
COMBOBERT 98.29 99.00 97.30 89.48 94.11 92.52 91.34 87.18 77.84

Korean Kaist (agglutinative)
spaCy 85.21 72.33 NA NA 76.15 68.13 61.98 57.52 NA
Stanza 95.45 86.31 NA 93.02 88.42 86.39 83.97 80.64 77.59
COMBO 94.46 81.66 NA 89.16 87.31 85.12 82.70 78.38 72.79
COMBOBERT 95.89 85.16 NA 89.95 89.77 87.83 85.96 82.66 75.89

Turkish IMST (agglutinative)
spaCy 87.66 86.18 82.26 NA 60.43 51.32 47.74 37.28 NA
Stanza 95.98 95.18 93.77 96.73 74.14 67.52 64.03 58.13 61.91
COMBO 93.60 92.36 88.88 96.47 72.00 64.48 60.48 49.88 58.75
COMBOBERT 95.14 94.27 93.56 97.54 78.53 72.03 68.88 60.55 67.13

Basque BDT (agglutinative with fusional verb morphology)
spaCy 91.96 NA 86.67 NA 76.11 70.28 66.96 54.46 NA
Stanza 96.23 NA 93.09 96.52 86.19 82.76 81.30 73.56 78.27
COMBO 94.28 NA 90.44 95.47 84.64 80.44 78.82 67.33 74.95
COMBOBERT 96.26 NA 93.84 96.38 88.73 85.80 84.93 75.96 81.25

Average scores
spaCy 91.03 85.67 86.97 NA 76.73 70.51 66.60 56.57 NA
Stanza 96.67 93.96 94.66 96.05 87.01 83.61 81.14 75.60 77.63
COMBO 95.66 92.54 93.05 94.04 86.02 82.21 79.49 72.05 73.98
COMBOBERT 96.88 94.37 95.63 94.75 89.67 86.64 84.66 78.92 79.01

Table 1: Processing quality (F1 scores) of spaCy, Stanza and COMBO on the selected UD treebanks (the language
types are given in parentheses). The highest scores are marked in bold.

Treebank spaCy Stanza COMBO
Tagger Lemmatiser Parser Total fastText BERT

English EWT 00:22:34 02:08:51 02:12:17 02:29:13 06:50:21 01:26:55 1:54:11
Polish PDB 01:07:55 04:36:51 03:19:04 05:08:41 13:04:36 02:39:44 3:31:41

Table 2: Training time of spaCy, Stanza and COMBO.

word). The morphosyntactically informed English
NLI classifier achieves an accuracy of 78.84% and
outperforms the max/mean-pooled classifiers by

20.77 pp and 5.44 pp, respectively. The Polish
syntax-aware NLI classifier achieves an accuracy
of 91.60% and outperforms the max/mean-pooled

54

classifiers by 17.2 pp and 7.7 pp, respectively.

Efficiency Evaluation We also compare spaCy,
Stanza and COMBO in terms of their efficiency,
i.e. training and prediction speed.5 According to
the results (see Tables 2 and 3), spaCy is the SOTA
system, and the other two are not even close to its
processing time. Considering COMBO and Stanza,
whose prediction quality is significantly better than
spaCy, COMBO is 1.5 times slower (2 times slower
with BERT) than Stanza in predicting, but it is
definitely faster in training. The reason for large
discrepancies in training times is the different archi-
tecture of these two systems. Stanza is a pipeline-
based system, i.e. its modules are trained one after
the other. COMBO is an end-to-end system, i.e. its
modules are jointly trained and the training process
is therefore faster.

Treebank Stanza COMBO COMBOBERT

English EWT 4.7× 6.8× 10.8×
Polish PDB 4.1× 5.8× 10.6×

Table 3: Prediction time of Stanza and COMBO rela-
tive to spaCy (1×) on English and Polish test data.

4 Getting Started with COMBO

Prediction COMBO provides two main predic-
tion modes: a Python library and a command-line
interface (CLI). The Python package mode sup-
ports automated model download. The code snip-
pet demonstrates downloading a pre-trained Polish
model and processing a sentence:

from combo.predict import COMBO

nlp = COMBO.from_pretrained("polish")

sentence = nlp("Ala ma kota.")

print(sentence.tokens)

To download a model for another language, se-
lect its name from the list of pre-trained models.6

The Python mode also supports acquisition of DE-
PREL or UPOS embeddings, for example:

sentence = nlp("Ala ma kota.")

chosen_token = sentence.tokens[1]

print(chosen_token.embeddings["upostag"])

5A single NVIDIA V100 card is used in all tests.
6The list of the pretrained COMBO models: https:

//gitlab.clarin-pl.eu/syntactic-tools/combo/-/
blob/master/docs/models.md#pre-trained-models

In CLI mode, COMBO processes sentences us-
ing either a downloaded model or a model trained
by yourself. CLI works on raw texts and on
the CoNLL-U files (i.e. with tokenised sentences
and even morphologically annotated tokens):

combo --mode predict \

--model_path model.tar.gz \

--input_file input.conllu \

--output_file output.conllu

Model Training COMBO CLI allows to train
new models for any language. The only require-
ment is a training dataset in the CoNLL-U/CoNLL-
X format. In the default setup, tokenised sentences
are input and all possible predictors are trained:

combo --mode train \

--training_data training.conllu \

--validation_data valid.conllu

If we only train a dependency parser, the default
setup should be changed with configuration flags:
--features with a list of input features and
--targets with a list of prediction targets.

5 Conclusion

We have presented COMBO, the SOTA system
for morphosyntacic analysis, i.e. part-of-speech
tagging, morphological analysis, lemmatisation,
and (enhanced) dependency parsing. COMBO is
a language-agnostic and format-independent sys-
tem (i.e. it supports the CoNLL-U and CoNLL-
X formats). Its implementation as a Python pack-
age allows effortless installation, and incorpora-
tion into any Python code or usage in the CLI
mode. In the Python mode, COMBO supports au-
tomated download of pre-trained models for mul-
tiple languages and outputs not only categorical
morphosyntactic features, but also their embed-
dings. In the CLI mode, pre-trained models can
be manually downloaded or trained from scratch.
The system training is fully configurable in respect
of the range of input features and output predic-
tions, and the method of encoding input data.
Last but not least, COMBO maintains a balance
between efficiency and quality. Admittedly, it is
not as fast as spaCy, but it is much more efficient
than Stanza considering the training time. Tested on
the selected UD treebanks, COMBO morphosyn-
tactic models enhanced with BERT embeddings
outperform spaCy and Stanza models.

55

Acknowledgments

The authors would like to thank Piotr Rybak for
his design and explanations of the architecture of
COMBO’s forerunner. The research presented in
this paper was founded by SONATA 8 grant no
2014/15/D/HS2/03486 from the National Science
Centre Poland and the European Regional Devel-
opment Fund as a part of the 2014-2020 Smart
Growth Operational Programme, CLARIN – Com-
mon Language Resources and Technology Infras-
tructure, project no. POIR.04.02.00-00C002/19.
The computing was performed at Poznań Super-
computing and Networking Center.

References
Rodrigo Agerri, Iñaki San Vicente, Jon Ander Campos,

Ander Barrena, Xabier Saralegi, Aitor Soroa, and
Eneko Agirre. 2020. Give your text representation
models some love: the case for Basque. In Proceed-
ings of the 12th Language Resources and Evaluation
Conference, pages 4781–4788, Marseille, France.
European Language Resources Association.

Wissam Antoun, Fady Baly, and Hazem Hajj. 2020.
AraBERT: Transformer-based model for Arabic lan-
guage understanding. In Proceedings of the 4th
Workshop on Open-Source Arabic Corpora and Pro-
cessing Tools, with a Shared Task on Offensive Lan-
guage Detection, pages 9–15, Marseille, France. Eu-
ropean Language Resource Association.

Maria Jesus Aranzabe, Aitziber Atutxa, Kepa Ben-
goetxea, Arantza Diaz de Ilarraza, Iakes Goenaga,
Koldo Gojenola, and Larraitz Uria. 2015. Automatic
Conversion of the Basque Dependency Treebank to
Universal Dependencies. In Proceedings of the 14th
International Workshop on Treebanks and Linguistic
Theories (TLT14), pages 233–241.

Luisa Bentivogli, Raffaella Bernardi, Marco Marelli,
Stefano Menini, Marco Baroni, and Roberto Zam-
parelli. 2016. SICK through the SemEval Glasses.
Lesson learned from the evaluation of composi-
tional distributional semantic models on full sen-
tences through semantic relatedness and textual en-
tailment. Journal of Language Resources and Eval-
uation, 50:95–124.

Gosse Bouma, Djamé Seddah, and Daniel Zeman.
2021. From Raw Text to Enhanced Universal De-
pendencies: The Parsing Shared Task at IWPT 2021.
In Proceedings of the 17th International Conference
on Parsing Technologies and the IWPT 2021 Shared
Task on Parsing into Enhanced Universal Dependen-
cies (IWPT 2021), pages 146–157, Online. Associa-
tion for Computational Linguistics.

Y. J. Chu and T. H. Liu. 1965. On the Shortest Arbores-
cence of a Directed Graph. Science Sinica, 14:1396–
1400.

Jayeol Chun, Na-Rae Han, Jena D. Hwang, and
Jinho D. Choi. 2018. Building Universal Depen-
dency treebanks in Korean. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2018.
Simpler but more accurate semantic dependency
parsing. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 2: Short Papers), pages 484–490, Mel-
bourne, Australia. Association for Computational
Linguistics.

Jack Edmonds. 1967. Optimum Branchings. Journal
of Research of the National Bureau of Standards,
71B(4):233–240.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Proceedings of the 30th Interna-
tional Conference on Neural Information Processing
Systems, NIPS’16, page 1027–1035, Red Hook, NY,
USA. Curran Associates Inc.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A deep semantic natural language pro-
cessing platform. In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), pages 1–
6, Melbourne, Australia. Association for Computa-
tional Linguistics.

Goran Glavaš and Ivan Vulić. 2021. Is supervised
syntactic parsing beneficial for language understand-
ing tasks? an empirical investigation. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 3090–3104, Online. Associa-
tion for Computational Linguistics.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learning
word vectors for 157 languages. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise Phoneme Classification with Bidirectional
LSTM and Other Neural Network Architectures.
Neural Networks, 18(5):602–610.

56

Jan Hajič, Otakar Smrž, Petr Zemánek, Petr Pajas,
Jan Šnaidauf, Emanuel Beška, Jakub Kracmar, and
Kamila Hassanová. 2009. Prague arabic depen-
dency treebank 1.0. LINDAT/CLARIAH-CZ dig-
ital library at the Institute of Formal and Applied
Linguistics (ÚFAL), Faculty of Mathematics and
Physics, Charles University.

Katri Haverinen, Jenna Nyblom, Timo Viljanen,
Veronika Laippala, Samuel Kohonen, Anna Missilä,
Stina Ojala, Tapio Salakoski, and Filip Ginter. 2014.
Building the essential resources for finnish: The
turku dependency treebank. Lang. Resour. Eval.,
48(3):493–531.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy:
Industrial-strength Natural Language Processing in
Python.

Kiyoung Kim. 2020. Pretrained Language Models For
Korean. https://github.com/kiyoungkim1/
LMkor.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Mateusz Klimaszewski and Alina Wróblewska. 2021.
COMBO: A new module for EUD parsing. In Pro-
ceedings of the 17th International Conference on
Parsing Technologies and the IWPT 2021 Shared
Task on Parsing into Enhanced Universal Dependen-
cies (IWPT 2021), pages 158–166, Online. Associa-
tion for Computational Linguistics.

Yongjie Lin, Yi Chern Tan, and Robert Frank. 2019.
Open sesame: Getting inside BERT’s linguistic
knowledge. In Proceedings of the 2019 ACL Work-
shop BlackboxNLP: Analyzing and Interpreting Neu-
ral Networks for NLP, pages 241–253, Florence,
Italy. Association for Computational Linguistics.

Robert Mroczkowski, Piotr Rybak, Alina Wróblewska,
and Ireneusz Gawlik. 2021. HerBERT: Efficiently
pretrained transformer-based language model for
Polish. In Proceedings of the 8th Workshop on Balto-
Slavic Natural Language Processing, pages 1–10,
Kiyv, Ukraine. Association for Computational Lin-
guistics.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference
on International Conference on Machine Learning,
ICML’10, page 807–814, Madison, WI, USA. Om-
nipress.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learn-
ing Library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D. Manning. 2020. Stanza: A
python natural language processing toolkit for many
human languages. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 101–108,
Online. Association for Computational Linguistics.

Piotr Rybak and Alina Wróblewska. 2018. Semi-
Supervised Neural System for Tagging, Parsing and
Lematization. In Proceedings of the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies, pages 45–54.

Stefan Schweter. 2020. BERTurk - BERT models for
Turkish.

Natalia Silveira, Timothy Dozat, Marie-Catherine
de Marneffe, Samuel Bowman, Miriam Connor,
John Bauer, and Chris Manning. 2014. A gold stan-
dard dependency corpus for English. In Proceedings
of the Ninth International Conference on Language
Resources and Evaluation (LREC’14), pages 2897–
2904, Reykjavik, Iceland. European Language Re-
sources Association (ELRA).

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. Journal of Machine Learning Re-
search, 15:1929–1958.

Milan Straka. 2018. UDPipe 2.0 prototype at CoNLL
2018 UD shared task. In Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies, pages 197–207,
Brussels, Belgium. Association for Computational
Linguistics.

Emma Strubell, Patrick Verga, David Belanger, and
Andrew McCallum. 2017. Fast and Accurate En-
tity Recognition with Iterated Dilated Convolutions.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2670–2680, Copenhagen, Denmark. Association for
Computational Linguistics.

Umut Sulubacak, Memduh Gokirmak, Francis Tyers,
Çağrı Çöltekin, Joakim Nivre, and Gülşen Eryiğit.
2016. Universal Dependencies for Turkish. In Pro-
ceedings of COLING 2016, the 26th International

57

Conference on Computational Linguistics: Techni-
cal Papers, pages 3444–3454, Osaka, Japan. The
COLING 2016 Organizing Committee.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Sam Bowman, Dipanjan Das,
and Ellie Pavlick. 2019. What do you learn from
context? probing for sentence structure in contextu-
alized word representations. In International Con-
ference on Learning Representations.

Antti Virtanen, Jenna Kanerva, Rami Ilo, Jouni Luoma,
Juhani Luotolahti, Tapio Salakoski, Filip Ginter, and
Sampo Pyysalo. 2019. Multilingual is not enough:
BERT for Finnish.

Alex Warstadt, Yu Cao, Ioana Grosu, Wei Peng, Ha-
gen Blix, Yining Nie, Anna Alsop, Shikha Bordia,
Haokun Liu, Alicia Parrish, Sheng-Fu Wang, Jason
Phang, Anhad Mohananey, Phu Mon Htut, Paloma
Jeretic, and Samuel R. Bowman. 2019. Investi-
gating BERT’s knowledge of language: Five anal-
ysis methods with NPIs. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2877–2887, Hong Kong,
China. Association for Computational Linguistics.

Alina Wróblewska. 2018. Extended and Enhanced Pol-
ish Dependency Bank in Universal Dependencies
Format. In Proceedings of the Second Workshop on
Universal Dependencies (UDW 2018), pages 173–
182.

Alina Wróblewska and Katarzyna Krasnowska-Kieraś.
2017. Polish evaluation dataset for compositional
distributional semantics models. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 784–792, Vancouver, Canada. Association for
Computational Linguistics.

Fisher Yu and Vladlen Koltun. 2016. Multi-Scale Con-
text Aggregation by Dilated Convolutions. CoRR,
abs/1511.07122.

Daniel Zeman, Jan Hajič, Martin Popel, Martin Pot-
thast, Milan Straka, Filip Ginter, Joakim Nivre, and
Slav Petrov. 2018. CoNLL 2018 shared task: Mul-
tilingual parsing from raw text to universal depen-
dencies. In Proceedings of the CoNLL 2018 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 1–21, Brussels, Belgium.
Association for Computational Linguistics.

Daniel Zeman, Joakim Nivre, Mitchell Abrams, Noëmi
Aepli, Željko Agić, Lars Ahrenberg, Gabrielė Alek-
sandravičiūtė, Lene Antonsen, Katya Aplonova,
Maria Jesus Aranzabe, Gashaw Arutie, Masayuki
Asahara, Luma Ateyah, Mohammed Attia, Aitz-
iber Atutxa, Liesbeth Augustinus, Elena Badmaeva,
Miguel Ballesteros, Esha Banerjee, Sebastian Bank,
Verginica Barbu Mititelu, Victoria Basmov, Colin

Batchelor, John Bauer, Sandra Bellato, Kepa Ben-
goetxea, Yevgeni Berzak, Irshad Ahmad Bhat,
Riyaz Ahmad Bhat, Erica Biagetti, Eckhard Bick,
Agnė Bielinskienė, Rogier Blokland, Victoria Bo-
bicev, Loïc Boizou, Emanuel Borges Völker, Carl
Börstell, Cristina Bosco, Gosse Bouma, Sam Bow-
man, Adriane Boyd, Kristina Brokaitė, Aljoscha
Burchardt, Marie Candito, Bernard Caron, Gauthier
Caron, Tatiana Cavalcanti, Gülşen Cebiroğlu Ery-
iğit, Flavio Massimiliano Cecchini, Giuseppe G. A.
Celano, Slavomír Čéplö, Savas Cetin, Fabri-
cio Chalub, Jinho Choi, Yongseok Cho, Jayeol
Chun, Alessandra T. Cignarella, Silvie Cinková,
Aurélie Collomb, Çağrı Çöltekin, Miriam Con-
nor, Marine Courtin, Elizabeth Davidson, Marie-
Catherine de Marneffe, Valeria de Paiva, Elvis
de Souza, Arantza Diaz de Ilarraza, Carly Dicker-
son, Bamba Dione, Peter Dirix, Kaja Dobrovoljc,
Timothy Dozat, Kira Droganova, Puneet Dwivedi,
Hanne Eckhoff, Marhaba Eli, Ali Elkahky, Binyam
Ephrem, Olga Erina, Tomaž Erjavec, Aline Eti-
enne, Wograine Evelyn, Richárd Farkas, Hector
Fernandez Alcalde, Jennifer Foster, Cláudia Fre-
itas, Kazunori Fujita, Katarína Gajdošová, Daniel
Galbraith, Marcos Garcia, Moa Gärdenfors, Se-
bastian Garza, Kim Gerdes, Filip Ginter, Iakes
Goenaga, Koldo Gojenola, Memduh Gökırmak,
Yoav Goldberg, Xavier Gómez Guinovart, Berta
González Saavedra, Bernadeta Griciūtė, Matias Gri-
oni, Normunds Grūzı̄tis, Bruno Guillaume, Céline
Guillot-Barbance, Nizar Habash, Jan Hajič, Jan Ha-
jič jr., Mika Hämäläinen, Linh Hà Mỹ, Na-Rae
Han, Kim Harris, Dag Haug, Johannes Heinecke, Fe-
lix Hennig, Barbora Hladká, Jaroslava Hlaváčová,
Florinel Hociung, Petter Hohle, Jena Hwang,
Takumi Ikeda, Radu Ion, Elena Irimia, O. lájídé
Ishola, Tomáš Jelínek, Anders Johannsen, Fredrik
Jørgensen, Markus Juutinen, Hüner Kaşıkara, An-
dre Kaasen, Nadezhda Kabaeva, Sylvain Kahane,
Hiroshi Kanayama, Jenna Kanerva, Boris Katz,
Tolga Kayadelen, Jessica Kenney, Václava Ket-
tnerová, Jesse Kirchner, Elena Klementieva, Arne
Köhn, Kamil Kopacewicz, Natalia Kotsyba, Jolanta
Kovalevskaitė, Simon Krek, Sookyoung Kwak,
Veronika Laippala, Lorenzo Lambertino, Lucia
Lam, Tatiana Lando, Septina Dian Larasati, Alexei
Lavrentiev, John Lee, Phuong Lê Hồng, Alessandro
Lenci, Saran Lertpradit, Herman Leung, Cheuk Ying
Li, Josie Li, Keying Li, KyungTae Lim, Maria Li-
ovina, Yuan Li, Nikola Ljubešić, Olga Loginova,
Olga Lyashevskaya, Teresa Lynn, Vivien Macke-
tanz, Aibek Makazhanov, Michael Mandl, Christo-
pher Manning, Ruli Manurung, Cătălina Mărăn-
duc, David Mareček, Katrin Marheinecke, Héc-
tor Martínez Alonso, André Martins, Jan Mašek,
Yuji Matsumoto, Ryan McDonald, Sarah McGuin-
ness, Gustavo Mendonça, Niko Miekka, Mar-
garita Misirpashayeva, Anna Missilä, Cătălin Mi-
titelu, Maria Mitrofan, Yusuke Miyao, Simonetta
Montemagni, Amir More, Laura Moreno Romero,
Keiko Sophie Mori, Tomohiko Morioka, Shin-
suke Mori, Shigeki Moro, Bjartur Mortensen,
Bohdan Moskalevskyi, Kadri Muischnek, Robert

58

Munro, Yugo Murawaki, Kaili Müürisep, Pinkey
Nainwani, Juan Ignacio Navarro Horñiacek, Anna
Nedoluzhko, Gunta Nešpore-Bērzkalne, Luong
Nguyễn Thi., Huyền Nguyễn Thi. Minh, Yoshi-
hiro Nikaido, Vitaly Nikolaev, Rattima Nitisaroj,
Hanna Nurmi, Stina Ojala, Atul Kr. Ojha, Adédayò.
Olúòkun, Mai Omura, Petya Osenova, Robert
Östling, Lilja Øvrelid, Niko Partanen, Elena Pas-
cual, Marco Passarotti, Agnieszka Patejuk, Guil-
herme Paulino-Passos, Angelika Peljak-Łapińska,
Siyao Peng, Cenel-Augusto Perez, Guy Perrier,
Daria Petrova, Slav Petrov, Jason Phelan, Jussi
Piitulainen, Tommi A Pirinen, Emily Pitler, Bar-
bara Plank, Thierry Poibeau, Larisa Ponomareva,
Martin Popel, Lauma Pretkalnin, a, Sophie Prévost,
Prokopis Prokopidis, Adam Przepiórkowski, Tiina
Puolakainen, Sampo Pyysalo, Peng Qi, Andriela
Rääbis, Alexandre Rademaker, Loganathan Ra-
masamy, Taraka Rama, Carlos Ramisch, Vinit Rav-
ishankar, Livy Real, Siva Reddy, Georg Rehm, Ivan
Riabov, Michael Rießler, Erika Rimkutė, Larissa Ri-
naldi, Laura Rituma, Luisa Rocha, Mykhailo Ro-
manenko, Rudolf Rosa, Davide Rovati, Valentin
Ros, ca, Olga Rudina, Jack Rueter, Shoval Sadde,
Benoît Sagot, Shadi Saleh, Alessio Salomoni, Tanja
Samardžić, Stephanie Samson, Manuela Sanguinetti,
Dage Särg, Baiba Saulı̄te, Yanin Sawanakunanon,
Nathan Schneider, Sebastian Schuster, Djamé Sed-
dah, Wolfgang Seeker, Mojgan Seraji, Mo Shen,
Atsuko Shimada, Hiroyuki Shirasu, Muh Shohibus-
sirri, Dmitry Sichinava, Aline Silveira, Natalia Sil-
veira, Maria Simi, Radu Simionescu, Katalin Simkó,
Mária Šimková, Kiril Simov, Aaron Smith, Isabela
Soares-Bastos, Carolyn Spadine, Antonio Stella,
Milan Straka, Jana Strnadová, Alane Suhr, Umut
Sulubacak, Shingo Suzuki, Zsolt Szántó, Dima
Taji, Yuta Takahashi, Fabio Tamburini, Takaaki
Tanaka, Isabelle Tellier, Guillaume Thomas, Li-
isi Torga, Trond Trosterud, Anna Trukhina, Reut
Tsarfaty, Francis Tyers, Sumire Uematsu, Zdeňka
Urešová, Larraitz Uria, Hans Uszkoreit, Andrius
Utka, Sowmya Vajjala, Daniel van Niekerk, Gert-
jan van Noord, Viktor Varga, Eric Villemonte de la
Clergerie, Veronika Vincze, Lars Wallin, Abigail
Walsh, Jing Xian Wang, Jonathan North Washing-
ton, Maximilan Wendt, Seyi Williams, Mats Wirén,
Christian Wittern, Tsegay Woldemariam, Tak-sum
Wong, Alina Wróblewska, Mary Yako, Naoki Ya-
mazaki, Chunxiao Yan, Koichi Yasuoka, Marat M.
Yavrumyan, Zhuoran Yu, Zdeněk Žabokrtský, Amir
Zeldes, Manying Zhang, and Hanzhi Zhu. 2019.
Universal dependencies 2.5. LINDAT/CLARIAH-
CZ digital library at the Institute of Formal and Ap-
plied Linguistics (ÚFAL), Faculty of Mathematics
and Physics, Charles University.

59

A COMBO Implementation

COMBO is a Python package that uses the Py-
Torch (Paszke et al., 2019) and AllenNLP (Gardner
et al., 2018) libraries. The COMBO models used
in the evaluation presented in Section 3 are trained
with the empirically set default parameters speci-
fied below. The training parameters can be easily
configured and adjusted to the specifics of an indi-
vidual model.

A.1 Network Hyperparameters

Embeddings An internal character-based word
embedding is calculated with three convolutional
layers with 512, 256 and 64 filters with dilation
rates equal to 1, 2 and 4. All filters have the kernel
size of 3. The internal word embedding has a size
of 64 dimensions. All external word embeddings
are reduced to 100-dimensional vectors by a single
FC layer. As only words are used as input features
in the system evaluation, the local feature embed-
ding is a concatenation of the 64-dimensional inter-
nal and 100-dimensional external word embedding.
The global feature vectors are computed by two
biLSTM layers with 512 hidden units.

Prediction modules The tagger uses a FC net-
work with a hidden layer of the size 64 to predict
UPOS and FC networks with 128-dimensional hid-
den layers to predict XPOS and UFEATS.
The lemmatiser uses three convolutional layers
with 256 filters and dilation rates equal to 1, 2 and
4. All filters have the kernel size of 3. The fourth
convolutional layer with the number of filters equal
to the number of character instances in training data
is used to predict the probability of each character.
The final layer filters have the kernel size of 1. The
256-dimensional embeddings of input characters
are concatenated with the global feature vectors
reduced to 32 dimensions with a single FC layer.
The arc prediction module uses 512-dimensional
head, and dependent embeddings and the labelling
module uses 128-dimensional vectors.

COMBO-vectoriser currently outputs 64-
dimensional UPOS and 128-dimensional DEPREL

embeddings.

Activation function FC and CNN layers use hy-
perbolic tangent and rectified linear unit (Nair and
Hinton, 2010) activation functions, respectively.

A.2 Regularisation
Dropout technique for Variational RNNs (Gal
and Ghahramani, 2016) with 0.33 rate is applied
to the local feature embeddings and on top of
the stacked biLSTM estimating global feature em-
beddings. The same dropout, for output and re-
current values, is used in the context of each biL-
STM layer. The FC layers use the standard dropout
(Srivastava et al., 2014) with 0.25 rate. Moreover,
the biLSTM and convolutional layers use L2 regu-
larisation with the rate of 1×10−6, and the trainable
embeddings use L2 with the rate of 1× 10−5.

A.3 Training
The cross-entropy loss is used for all parts of
the system. The final loss is the weighted sum of
losses with the following weights for each task:

• 0.05 for predicting UPOS and LEMMA,
• 0.2 for predicting UFEATS and (enh)HEAD,
• 0.8 for predicting (enh)DEPREL.

The whole system is optimised with ADAM
(Kingma and Ba, 2015) with the learning rate of
0.002 and β1 = β2 = 0.9. The model is trained
for a maximum of 400 epochs, and the learning
rate is reduced twice by the factor of two when
the validation score reaches a plateau.

B External Data Summary

Tables 4 and 5 list the UD dependency treebanks
and BERT models used in the evaluation experi-
ments presented in Section 3.

C Evaluation of UPOS and UDEPREL

The comparison of the universal parts of speech
predicted by the tested systems in English, Korean
and Polish data is shown in the charts in Figures 6,
7 and 8, respectively. The comparison of the qual-
ity of the predicted universal dependency types in
English, Korean and Polish data is presented in
Figures 9, 10 and 11, respectively.

60

Language Language Type UD Treebank #Words #Trees Reference
English isolating English-EWT 254,856 16,622 Silveira et al. (2014)
Arabic fusional Arabic-PADT 282,384 7,664 Hajič et al. (2009)
Polish fusional Polish-PDB 350,036 22,152 Wróblewska (2018)
Finnish agglutinative Finnish-TDT 202,453 15,136 Haverinen et al. (2014)
Korean agglutinative Korean-Kaist 350,090 27,363 Chun et al. (2018)
Turkish agglutinative Turkish-IMST 57,859 5,635 Sulubacak et al. (2016)
Basque agglutinative (fusional Basque-BDT 121,443 8,993 Aranzabe et al. (2015)

verb morphology)

Table 4: The UD treebanks used in the evaluation experiments.

Language BERT model Reference
Arabic bert-base-arabertv2 Antoun et al. (2020)
Basque berteus-base-cased Agerri et al. (2020)
English bert-base-cased Devlin et al. (2019)
Finnish bert-base-finnish-cased-v1 Virtanen et al. (2019)
Korean bert-kor-base Kim (2020)
Polish herbert-base-cased Mroczkowski et al. (2021)
Turkish bert-base-turkish-cased Schweter (2020)

Table 5: The BERT models used in the evaluation experiments.

ADJ
ADP

ADV
AUX

CCONJ
DET

IN
TJ

NOUN
NUM

PA
RT

PRON

PROPN

PUNCT

SCONJ
SYM

VERB X
0

20

40

60

80

100
spaCy stanza COMBOBERT

Figure 6: Evaluation of predicted universal parts of speech (UPOS) in the English test set (F-1-scores).

ADJ
ADP

ADV
AUX

CCONJ
DET

IN
TJ

NOUN
NUM

PRON

PROPN

PUNCT

SCONJ
SYM

VERB X
0

20

40

60

80

100
spaCy stanza COMBOBERT

Figure 7: Evaluation of predicted universal parts of speech (UPOS) in the Korean test set (F-1-scores).

61

ADJ
ADP

ADV
AUX

CCONJ
DET

IN
TJ

NOUN
NUM

PA
RT

PRON

PROPN

PUNCT

SCONJ
SYM

VERB X
0

20

40

60

80

100
spaCy stanza COMBOBERT

Figure 8: Evaluation of predicted universal parts of speech (UPOS) in the Polish test set (F-1-scores).

ac
l
ad

vc
l

ad
vm

od
am

od
ap

po
s

au
x
ca

se cc
cc

om
p

co
mpo

un
d
co

nj co
p
csu

bj de
t

dis
co

urs
e
ex

pl
fixe

d flat

go
esw

ith iob
j

lis
t
mark

nm
od
ns

ub
j

nu
mmod ob

j
ob

l

pa
rat

ax
is
pu

nc
t

rep
ara

nd
um roo

t

vo
ca

tiv
e

xc
om

p
0

20

40

60

80

100
spaCy stanza COMBOBERT

Figure 9: Evaluation of predicted grammatical functions (UDEPREL) in the English test set (F-1-scores).

ac
l
ad

vc
l

ad
vm

od
am

od
ap

po
s

au
x

ca
se cc

cc
om

p

co
mpo

un
d

co
nj co

p
csu

bj de
p de

t

dis
co

urs
e

dis
loc

ate
d
fixe

d flat iob
j
mark

nm
od

ns
ub

j

nu
mmod ob

j
ob

l
pu

nc
t

roo
t

xc
om

p
0

20

40

60

80

100
spaCy stanza COMBOBERT

Figure 10: Evaluation of predicted grammatical functions (UDEPREL) in the Korean test set (F-1-scores).

ac
l
ad

vc
l

ad
vm

od
am

od
ap

po
s

au
x

ca
se cc

cc
om

p
co

nj co
p
csu

bj de
t

dis
co

urs
e
ex

pl
fixe

d flat iob
j

lis
t
mark

nm
od

ns
ub

j

nu
mmod ob

j
ob

l

orp
ha

n

pa
rat

ax
is
pu

nc
t

roo
t

vo
ca

tiv
e

xc
om

p
0

20

40

60

80

100
spaCy stanza COMBOBERT

Figure 11: Evaluation of predicted grammatical functions (UDEPREL) in the Polish test set (F-1-scores).

62

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 63–71
November 7–11, 2021. ©2021 Association for Computational Linguistics

ExcavatorCovid: Extracting Events and Relations from Text Corpora for
Temporal and Causal Analysis for COVID-19

Bonan Min1, Ben Rozonoyer1, Haoling Qiu1, Alex Zamanian1,
Nianwen Xue2, and Jessica MacBride1

1Raytheon BBN Technologies
2Brandeis University

bonan.min@raytheon.com

Abstract

Timely responses from policy makers to mit-
igate the impact of the COVID-19 pandemic
rely on a comprehensive grasp of events, their
causes, and their impacts. These events are re-
ported at such a speed and scale as to be over-
whelming. In this paper, we present Excava-
torCovid, a machine reading system that in-
gests open-source text documents (e.g., news
and scientific publications), extracts COVID-
19 related events and relations between them,
and builds a Temporal and Causal Analysis
Graph (TCAG). Excavator will help govern-
ment agencies alleviate the information over-
load, understand likely downstream effects of
political and economic decisions and events re-
lated to the pandemic, and respond in a timely
manner to mitigate the impact of COVID-19.
We expect the utility of Excavator to out-
live the COVID-19 pandemic: analysts and
decision makers will be empowered by Ex-
cavator to better understand and solve com-
plex problems in the future. A demonstration
video is available at https://vimeo.com/
528619007.

1 Introduction

Timely responses from policy makers to mitigate
the impact of the COVID-19 pandemic rely on
a comprehensive grasp of events, their causes,
and their impacts. Since the beginning of the
COVID-19 pandemic, an enormous amount of ar-
ticles are being published every day, that report
many events 1 and studies related to COVID. It
is very difficult, if not impossible, to keep track
of these developing events or to get a comprehen-
sive overview of the temporal and causal dynamics
underlying these events.

To aid the policy makers in overcoming the in-
formation overload, we developed ExcavatorCovid
(or Excavator for short), a system that will ingest

1We define an event as any occurrence, action, process or
state of affairs, following (O’Gorman et al., 2016).

open-source text sources (e.g., news articles and
scientific publications), extract COVID-19 related
events and relations between them, and build a
Temporal and Causal Analysis Graph (TCAG). Ex-
cavator combines the following NLP techniques:

• Extracting events (§3) for types in our com-
prehensive COVID-19 event taxonomy (§2).
Each event will have time and location if avail-
able in text, allowing analyses targeted at spe-
cific times or geographic regions of interest.

• Extracting three types of temporal and causal
relations (§4) between pairs of events.

• Constructing a TCAG (§5) by assembling all
events and relations, to provide a comprehen-
sive overview of the events related to COVID-
19 as well as their causes and impacts.

• Supporting trend and correlation analysis of
events, via visualizing event popularity time
series (§ 6) in the TCAG visualization.

Excavator produces a TCAG that is in a
machine-readable JSON format and is also human-
understandable (visualized via a web-based inter-
active User Interface), to support varied analytical
and decision making needs. We hope that Excava-
tor will aid government agencies in efforts to un-
derstand likely downstream effects of political and
economic decisions and events related to the pan-
demic, and respond in a timely manner to mitigate
the impact of COVID-19. The benefit of Excavator
is realized through a comprehensive visualization
of events and how they affect each other. We expect
the utility of Excavator to outlive the COVID-19
pandemic: analysts and decision makers will be
empowered by Excavator to better understand and
solve complex problems in the future.

We first present our COVID-19 event taxonomy,
and then we present details about event extraction,
causal and temporal relation extraction, measuring

63

Figure 1: A partial illustration of the COVID-19 event taxonomy.

event popularity using news text as “quantitative
data”, and the approach for constructing a TCAG.
We then describe the system demonstration, present
a quantitative analysis of the extractions, and con-
clude with recommended use cases.

2 Building a COVID-19 Event Taxonomy

COVID-19 affects many aspects of our political,
economic, and personal lives. A comprehensive
analysis requires an event taxonomy that catego-
rizes the events related to COVID-19 in many sec-
tors and domains. We developed a COVID-19
event taxonomy using a hybrid approach of man-
ual curation with automated support: first, we run
Stanza (Qi et al., 2020) on a large sample (10%)
of the Aylien coronavirus news dataset (§ 7) to
tag verb and noun phrases that are likely to trigger
events. Second, we represent each phrase as the
average of the BERT (Devlin et al., 2019) contex-
tualized embedding vectors of the subwords within
each phrase, and then run committee-based cluster-
ing (Pantel and Lin, 2002) over the vector represen-
tations of the phrases to discover salient clusters.
Finally, we review the frequently appearing clusters
and define event types related to COVID-19.

The event taxonomy includes 76 event types.
Each type comes with a name and a short descrip-
tion. Figure 1 illustrates several branches of the
event taxonomy 2. The events come from a wide
range of domains. We also manually added hy-
ponymy relations via is_a links (e.g., COVID-19
is_a Virus) between pairs of event types.

3 Extracting Events

We developed a neural network model for extract-
ing events defined in the COVID-19 event taxon-
omy (the event classification stage) and extracting

2The complete taxonomy is available at https:
//github.com/BBN-E/LearnIt/blob/master/
inputs/domains/CORD_19/ontology/covid_
event_ontology.yaml.

Figure 2: The BERT-based sequence tagging model for
event classification and argument extraction. Figure (a)
shows the architecture of the model, which takes a se-
quence of words x1, x2, ..., xn as input and outputs a se-
quence of tags y1, y2, ..., yn. Figure (b) and (c) shows
an example for each of the two stages. “PolicyInt” is
short for “PolicyIntervention”.

the location and time arguments (the event argu-
ment extraction stage), if they are mentioned in
text, for each event mention. The structured repre-
sentation (events with location and/or time) enables
analyses of events targeting a specific time or lo-
cation. Both stages use a BERT-based sequence
tagging model. Figure 2(a) shows the model archi-
tecture. Given a sequence of tokens as input, the
model extracts a sequence of tags, one per each
token. We use the commonly used Begin-Inside-
Outside (BIO) tags for both event types and event
argument role types for the event classification and
argument attachment tasks respectively.

Event classification: a sequence tagging model
is trained to predict BIO tags of event types such
that it identifies the event trigger span as well as
the event type. Figure 2(b) shows an example.

Event argument extraction: similarly, another
sequence tagging model is trained to predict BIO

64

Type Counts Type Counts
COVID-19 2114 SocialDistancingMeasures 412

Virus 1028 TravelRestrictions 403
Pandemic 596 Disease 378

Unemployment 506 Death 355
Shortage 502 Lockdown 321

Table 1: Top-10 frequent events in the training dataset.

tags of argument role types, such that it identifies
token spans of event arguments as well as their
argument role types, with respect to a trigger that
has already been identified in the event classifi-
cation stage and marked in the input sentence in
“< t > ... < /t >”. Figure 2(c) shows an example.

We run these two models in a pipeline: the event
classification model is applied first to find event
triggers and classify their types, then the event ar-
gument extraction model is applied to find location
and time arguments for each event mention.

Training data curation. We use LearnIt rapid
customization for event extraction (Chan et al.,
2019) to curate a dataset for training the event clas-
sification model. Our developer spent about 13
minutes per event type to find, expand, and filter
potential event triggers in a held-out 10% of the
Aylien coronavirus news corpus. Statistics of the
curated data set are shown in Table 1 (we only show
the top-10 most frequent event types for brevity). In
total, there are 11814 mentions in 7159 sentences.

To train the argument extraction model, we use
the related event-argument annotation from the
ACE 2005 dataset (Doddington et al., 2004). We
focus on location and time arguments 3 and ig-
nore other roles. At decoding time, after extracting
the argument mentions for events, we apply the
AWAKE (Boschee et al., 2014) entity linking sys-
tem to resolve each location argument to a canon-
ical geolocation, and use SERIF (Boschee et al.,
2005) to resolve each time argument to a canonical
time and then convert it to the month level. This
allows us to perform analyses of events targeting a
specific geolocation or month of interest.

4 Extracting Temporal and Causal
Relations

We develop two approaches for extracting temporal
and causal relations: a pattern-based approach and
a neural network model. We take the union of the

3For example, Place and Time event argument roles in
ACE can be used to train an argument-role model to extract
location and time arguments, respectively.

Type Subtype Definition
Causes Cause Y happens because of X.

Catalyst If X, intensity of Y increases.
Precondition X must have occured for Y to happen.

Mitigates Mitigation If X, intensity of Y decreases.
Preventative If X happens, Y can’t happen.

Before Before/after X happens before/after Y.

Table 2: Causal and temporal relations between event
X and Y.

outputs from both approaches to maximize recall.
The list of causal and temporal relations extracted
by the systems is shown in Table 2. Our extractors
extract relations at the subtype level. However, we
decided to merge the subtypes into types because
(a) a user survey shows that users prefer to have a
simplified definition of causality that only includes
“event X causes (positively impacts) event Y" and
“X mitigates (reduces/prevents) Y", because finer-
grained distinctions at sub-type level are difficult
and less useful, and (b) merging the subtypes into
types improves accuracy to near or above 0.8 as
shown in Table 4, comparing to slightly below 0.7
at the sub-type level due to extraction approaches
struggling to differentiate between the sub-types.

Pattern-based relation extraction. We applied
the temporal and causal relation extraction patterns
from LearnIt (Min et al., 2020). A pattern is either
a lexical pattern, which is a sequence of words
between a pair of events, e.g.,“X leads to Y” 4, or a
proposition pattern, which is the (nested) predicate-
argument structure that connects the pair of events.
For example, “verb:cause[subject=X] [object=Y]”
is the proposition counterpart of the lexical pattern
“X causes Y”.

Neural relation extraction. We developed a
mention pooling (Baldini Soares et al., 2019) neu-
ral model for causal and temporal relation extrac-
tion. Figure 3 shows the model architecture. Tak-
ing a sentence in which a pair of event mention
spans are marked as input, the model first encodes
the sentence with BERT (Devlin et al., 2019) 5.
For each of the left and right event mentions, it
then uses average pooling over the BERT contex-
tualized vectors of the words in the span to obtain
fixed-dimension vectors V1 and V2 as the span rep-
resentations. It then concatenates the input em-
beddings V1 and V2 with the element-wise differ-
ence |V1 − V2| to generate the pair representation

4X and Y refer to the left and right arguments of a relation.
5The BERT-Base model is used.

65

V = (V1, V2, |V1 − V2|). V is passed into a lin-
ear layer followed by a softmax layer to make the
relation prediction. The model is trained with a
blended dataset consisting of the Entities, Events,
Simple and Complex Cause Assertion Annotation
datasets 6 released by LDC 7, and 1.5K temporal
relation instances generated by applying the Lear-
nIt temporal relation extraction patterns to 10,000
sampled Gigaword (Parker et al., 2011) articles.

Figure 3: The neural model for causal and temporal
relation extraction.

5 Constructing a TCAG

We aggregate all extracted events and causal and
temporal relations across the corpus to construct a
TCAG. The TCAG is visualized in the interactive
visualization, in which each node is an event type
and each edge is a causal or temporal relation 8.

We use a simple approach to aggregate events:
by default, all event mentions sharing the same
type are grouped into a single node named by the
type; we resort to the UI to allow the user to se-
lectively focus on a specific location and/or time,
such that the UI will only show a TCAG involving
event mentions and causal relations between pairs
of events for the location and/or time of interest.

6 Measuring Event Popularity through
Time

The TCAG only provides a qualitative analysis
of the temporal and causal relations between the
COVID-related events. It will be more informative
if we can measure the popularity of events through
time to enable trend analysis (e.g., does lockdown
go up or down between January and May, 2020?)

6The catalog IDs of the LDC datasets are LDC2019E48,
LDC2019E61, LDC2019E70, LDC2019E82, LDC2019E83.

7www.ldc.upenn.edu
8is_a relations are also added as dashed edges in the

TCAG.

and correlation analysis (e.g., will a stricter lock-
down improve or deteriorate the economy?).

In order to support these analyses, we produce a
timeseries of a popularity score for each event type
over time (a.k.a., event timeline). Extending our
prior work (Min and Zhao, 2019), we define the
popularity score for event type e at time t as:

Popularity(e)t =
1

T

∑

t′∈[t−T
2
,t+T

2
]

Ne,t′

cMt′

in which Ne,t is the frequency of event e at month t.
We calculate the moving average centered at each t
with a sliding window of T = 3 months to reduce
noise. Mt is the total number of articles published
in month t. c = 1/500 is a normalizing constant.
The raw event frequency counts can be inflated due
to the increasing level of media activity. Therefore,
we divide the raw counts by cMt to normalize the
counts so that they are comparable across different
months.

7 System Demonstration

Datasets. We run Excavator on the following two
corpora to produce a TCAG for COVID-19: the
first corpus is 1.2 million articles 9 from the Aylien
Coronavirus News Dataset 10, which contains 1.6
million COVID-related articles published between
November 2019 and July 2020 that are from ∼440
news sources. We only kept the articles that are
published between January and May 2020, since
the corpus contains fewer articles in other months.
The second corpus is the COVID-19 Open Re-
search Dataset (Wang et al., 2020). It contains
coronavirus-related research from PubMed’s PMC
corpus, a corpus maintained by the WHO, and
bioRxiv and medRxiv pre-prints. As of 11/08/2020,
it contains over 300,000 scholarly articles.

We combine these two corpora because news and
research articles are complementary: news are rich
in real-world events and are up to date, while an-
alytical articles contain more causal relationships.
Therefore, combining them is likely to lead to a
more comprehensive analysis and new insights.

Overall statistics of extractions. Excavator ex-
tracted 6.2 million event mentions of 59 types. Ta-
ble 3 shows the event types that appear more than
50,000 times. We randomly sampled 100 event

9These articles do not overlap with the held-out set for
training data curation.

10https://aylien.com/blog/free-coronavirus-news-dataset

66

Type Counts Type Counts
COVID-19 2772.3 Travel 111.8

Death 730.0 FearOrPanic 94.6
Pandemic 689.2 Closures 92.3
Lockdown 417.2 TravelRestrictions 76.9
Isolation* 195.4 Shortage 68.3

DiseaseSpread 145.4 Conflict 55.5
Testing 130.7 Virus 54.8

Treatment 112.8 Symptom 54.0

Table 3: Frequent events extracted from the corpora
(ranked by frequency reversely; numbers are in thou-
sands). *Isolation refers to IsolationOrConfinement.

Type Count Precision
Causes 193,694 0.78

Mitigates 30,452 0.87
Before 2,030 0.81

Table 4: Causal and temporal relations extracted.

mentions, manually reviewed them, and found that
the extracted events are 83% accurate. Excavator
extracted 226,176 causal and temporal relations
from the two corpora. A summary of the extracted
relations and their precision 11 are shown in Ta-
ble 4.

TCAG Visualization We developed an interac-
tive visualization of the TCAG. Figure 4 shows
a small part of the TCAG centered on the event
Lockdown. Each node represents an event type in
our COVID event taxonomy for which Excavator
is able to extract events and track their popularity
scores (§ 6) through time. The three types of re-
lational edges (Causes, Mitigates and Before) are
shown in different colors. The size of the nodes
and the thickness of the edges indicate the rela-
tive frequency of the event types or relations in
the log scale, respectively. For example, Figure 4
shows that Death is mentioned more frequently
than Lockdown, and the causal relation {Lock-
down, Causes, EconomicCrisis} appears more fre-
quently than {Lockdown, Mitigates (“reduces”),
AccessToHealthcare}. To support analysis focus-
ing on a single event, we color the focused event
in blue, events that cause or precede the focused
event in orange, and events that the focused event
causes or precedes in green.

Event popularity timeseries visualization For
each node (event) in the TCAG visualization, we
show its event popularity timeseries visualization
on the side. Figure 5 shows 3 screenshots of the

11Estimated by manually reviewing 40 instances per type

Figure 4: A screenshot of a partial TCAG centered
on Lockdown. Green, pink, and purple edges shows
Cause, Mitigate and Before relations, respectively.
Blue, orange and green nodes show the focused node
and nodes with incoming and outgoing edges (with re-
spect to the focused node), respectively.

event popularity timeseries (§ 6) visualization be-
tween January and May 2020 for Lockdown, Eco-
nomicCrisis and COVID-19 respectively.

8 Recommended Use Cases

We describe 3 recommended use cases below.
More details are in our demonstration video.

Use case 1: causal and temporal analysis. We
can get a panoramic view of the underlying ca-
sual and temporal dynamics between events related
to COVID from the overall TCAG. We can start
by analyzing the causal or temporal relations cen-
tered at an event of interest. For example, Figure 4
shows a diverse range of effects and consequences
of Lockdown, such as EconomicCrisis (economic),
Shortage (supply-chain), FearOrPanic (mental), etc.
Interestingly, the graph also reveals surprises such
as {Lockdown, Causes, Death}: the UI shows sup-
porting evidence such as “lockdown exacerbates
deaths and chronic health problems associated with
poverty, ...”. Furthermore, the TCAG shows that
Lockdown mitigates DiseaseSpread but it also has
a negative impact on the Economy, which will in-
form the decision makers that they will need to
understand the economic trade-offs when imple-
menting the Lockdown policy.

We can also analyze longer-distance causal path-
67

Figure 5: Event popularity timeseries (timeline) between 01-05/2020 for Lockdown, EconomicCrisis and COVID-
19. X-axis shows months between January and May 2020. Y-axis shows event popularity scores.

ways consisting of two or more causal/temporal
edges. For example, our demo video shows that
COVID-19 causes or precedes (Before) Lockdown,
and that Lockdown causes or precedes Economic-
Crisis. This helps us understand details about how
COVID causes EconomicCrisis.

Use case 2: trend and correlation analysis. We
can inspect the event timeline for a node or an edge
to perform a trend analysis and a correlation anal-
ysis, respectively. Figure 5 shows screenshots of
the event popularity timeseries between January
and May 2020 for Lockdown, EconomicCrisis and
COVID-19. First, the user can click on a single
event to perform a trend analysis: the popularity
of Lockdown goes up continuously, indicating an
upward trend in implementing lockdown policies
in more geographic regions. The user can also click
on a edge to perform a correlation analysis for a pair
of events: when the user clicks on the edge {Lock-
down, Causes, EconomicCrisis}, the UI shows a
strong correlation between the two upward curves.
For another edge “Lockdown mitigates COVID-
19”, the UI shows a negative correlation near the
end: as Lockdown rises, COVID-19 slightly falls
towards the end.

Use case 3: analyses targeted at geolocations.
The event timeline visualization also allows the
user to see the timeline for geolocations such as
each U.S. state individually, instead of the aggre-
gate for the entire U.S.. Figure 6 is a screenshot
showing the 10 timelines for Lockdown for the
top-10 most frequently mentioned U.S. states. The
screenshot shows that the curves for California and
New York go much higher than other states. This
roughly matches the stricter lockdown policies im-
plemented in the two states during this time period,
compared with other states. Such targeted analysis

is made possible because our events have location
and time arguments. We can also make the TCAG
only show events and relations for a specific state,
if a user selects a state of interest in the UI.

Figure 6: Event popularity timeseries in 01-05/2020 for
Lockdown, for top-10 frequently mentioned US states.

9 Related Work

Extracting events. Event extraction has been
studied using feature-based approaches (Huang
and Riloff, 2012; Ji and Grishman, 2008), or neural
networks (Chen et al., 2015; Nguyen et al., 2016a;
Wadden et al., 2019; Liu et al., 2020). GDELT (Lee-
taru and Schrodt, 2013) creates an event database
for the conflict and mediation domain. It has
very few event types related to COVID-19. To
adapt event extraction to new domains, Chen et
al. (2019) developed a user-in-the-loop rapid event
customization system. Nguyen et al. (2016b) pro-
posed a neural model for event type extension given
seed examples. Peng et al. (2016) developed a min-
imally supervised approach using triggers gathered
from ACE annotation guideline.

Extracting causal and temporal relations.
There are a lot of work in temporal (D’Souza

68

and Ng, 2013; Chambers et al., 2014; Ning et al.,
2018b; Meng and Rumshisky, 2018; Han et al.,
2019; Vashishtha et al., 2020; Wright-Bettner et al.,
2020) and causal (Bethard and Martin, 2008; Do
et al., 2011; Riaz and Girju, 2013; Roemmele and
Gordon, 2018; Hashimoto, 2019) relation extrac-
tion. Mirza and Tonelli (2016) and Ning et al.
(2018a) extract both in a single framework.

Constructing Causal Graphs from Text. Ei-
dos (Sharp et al., 2019) uses a rule-based approach
to extract causal relations to build a causal analysis
graph, that has limited coverage on events related
to COVID-19. LearnIt (Min et al., 2020) enables
rapid customization of causal relation extractors.
LearnIt does not focus on causal relations involving
COVID-related events. This work also differs from
these two in that we extract event arguments and
temporal relations, and track event popularity.

10 Conclusion and Future Work

We present Excavator, a machine reading sys-
tem that automatically constructs a Temporal and
Causal Analysis Graph for COVID-19 by reading
open-source text documents such as news and sci-
entific publications. Our next steps are to integrate
Modal Dependency Parsing (Yao et al., 2021) for
event factuality assessment, and cross-lingual trans-
fer learning (Nguyen et al., 2021) to make Excava-
tor applicable to more languages.

Acknowledgements

This research is based upon work supported in part
by the Office of the Director of National Intelli-
gence (ODNI), Intelligence Advanced Research
Projects Activity (IARPA), via Contract No.: 2021-
20102700002. The views and conclusions con-
tained herein are those of the authors and should
not be interpreted as necessarily representing the
official policies, either expressed or implied, of
ODNI, IARPA, or the U.S. Government. The U.S.
Government is authorized to reproduce and dis-
tribute reprints for governmental purposes not with-
standing any copyright annotation therein.

References
Livio Baldini Soares, Nicholas FitzGerald, Jeffrey

Ling, and Tom Kwiatkowski. 2019. Matching the
blanks: Distributional similarity for relation learn-
ing. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics,

pages 2895–2905, Florence, Italy. Association for
Computational Linguistics.

Steven Bethard and James H. Martin. 2008. Learn-
ing semantic links from a corpus of parallel tempo-
ral and causal relations. In Proceedings of ACL-08:
HLT, Short Papers, pages 177–180, Columbus, Ohio.
Association for Computational Linguistics.

Elizabeth Boschee, Marjorie Freedman, Saurabh Khan-
walkar, Anoop Kumar, Amit Srivastava, and Ralph
Weischedel. 2014. Researching persons & organiza-
tions: Awake: From text to an entity-centric knowl-
edge base. In 2014 IEEE International Conference
on Big Data (Big Data), pages 1030–1039. IEEE.

Elizabeth Boschee, Ralph Weischedel, and Alex Zama-
nian. 2005. Automatic information extraction. In
Proceedings of the International Conference on In-
telligence Analysis, volume 71. Citeseer.

Nathanael Chambers, Taylor Cassidy, Bill McDowell,
and Steven Bethard. 2014. Dense event ordering
with a multi-pass architecture. Transactions of the
Association for Computational Linguistics, 2:273–
284.

Yee Seng Chan, Joshua Fasching, Haoling Qiu, and Bo-
nan Min. 2019. Rapid customization for event ex-
traction. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics: System Demonstrations, pages 31–36, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and
Jun Zhao. 2015. Event extraction via dynamic multi-
pooling convolutional neural networks. In ACL-
IJCNLP2-2015, pages 167–176, Beijing, China. As-
sociation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Quang Do, Yee Seng Chan, and Dan Roth. 2011. Min-
imally supervised event causality identification. In
Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing, pages
294–303.

George R Doddington, Alexis Mitchell, Mark A Przy-
bocki, Lance A Ramshaw, Stephanie M Strassel, and
Ralph M Weischedel. 2004. The automatic content
extraction (ace) program-tasks, data, and evaluation.
In Lrec, volume 2, pages 837–840. Lisbon.

Jennifer D’Souza and Vincent Ng. 2013. Classifying
temporal relations with rich linguistic knowledge.
In Proceedings of the 2013 Conference of the North

69

American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 918–927.

Rujun Han, I-Hung Hsu, Mu Yang, Aram Galstyan,
Ralph Weischedel, and Nanyun Peng. 2019. Deep
structured neural network for event temporal rela-
tion extraction. In Proceedings of the 23rd Confer-
ence on Computational Natural Language Learning
(CoNLL), pages 666–106, Hong Kong, China. Asso-
ciation for Computational Linguistics.

Chikara Hashimoto. 2019. Weakly supervised mul-
tilingual causality extraction from Wikipedia. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2988–
2999, Hong Kong, China. Association for Computa-
tional Linguistics.

Ruihong Huang and Ellen Riloff. 2012. Modeling tex-
tual cohesion for event extraction. In AAAI-CAI,
AAAI’12, pages 1664–1670. AAAI Press.

Heng Ji and Ralph Grishman. 2008. Refining event ex-
traction through cross-document inference. In ACL-
HLT-2008, pages 254–262, Columbus, Ohio. Asso-
ciation for Computational Linguistics.

Kalev Leetaru and Philip A Schrodt. 2013. Gdelt:
Global data on events, location, and tone, 1979–
2012. In ISA annual convention, volume 2, pages
1–49. Citeseer.

Jian Liu, Yubo Chen, Kang Liu, Wei Bi, and Xiaojiang
Liu. 2020. Event extraction as machine reading com-
prehension. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1641–1651, Online. Associa-
tion for Computational Linguistics.

Yuanliang Meng and Anna Rumshisky. 2018. Context-
aware neural model for temporal information extrac-
tion. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 527–536, Melbourne,
Australia. Association for Computational Linguis-
tics.

Bonan Min, Manaj Srivastava, Haoling Qiu, Prasan-
nakumar Muthukumar, and Joshua Fasching. 2020.
Learnit: On-demand rapid customization for event-
event relation extraction. In Proceedings of the
AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 13630–13631.

Bonan Min and Xiaoxi Zhao. 2019. Measure country-
level socio-economic indicators with streaming
news: An empirical study. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1249–1254, Hong Kong,
China. Association for Computational Linguistics.

Paramita Mirza and Sara Tonelli. 2016. Catena: Causal
and temporal relation extraction from natural lan-
guage texts. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers, pages 64–75.

Minh Van Nguyen, Tuan Ngo Nguyen, Bonan Min,
and Thien Huu Nguyen. 2021. Crosslingual transfer
learning for relation and event extraction via word
category and class alignments. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Gr-
ishman. 2016a. Joint event extraction via recurrent
neural networks. In NAACL-HLT-2016, pages 300–
309, San Diego, California. Association for Compu-
tational Linguistics.

Thien Huu Nguyen, Lisheng Fu, Kyunghyun Cho, and
Ralph Grishman. 2016b. A two-stage approach for
extending event detection to new types via neural
networks. In WRepL4NLP, pages 158–165, Berlin,
Germany. Association for Computational Linguis-
tics.

Qiang Ning, Zhili Feng, Hao Wu, and Dan Roth. 2018a.
Joint reasoning for temporal and causal relations. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2278–2288, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Qiang Ning, Hao Wu, Haoruo Peng, and Dan Roth.
2018b. Improving temporal relation extraction with
a globally acquired statistical resource. In Proceed-
ings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers), pages 841–851, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Tim O’Gorman, Kristin Wright-Bettner, and Martha
Palmer. 2016. Richer event description: Integrating
event coreference with temporal, causal and bridg-
ing annotation. In Proceedings of the 2nd Work-
shop on Computing News Storylines (CNS 2016),
pages 47–56, Austin, Texas. Association for Com-
putational Linguistics.

Patrick Pantel and Dekang Lin. 2002. Document clus-
tering with committees. In Proceedings of the 25th
annual international ACM SIGIR conference on Re-
search and development in information retrieval,
pages 199–206.

Robert Parker, David Graff, Junbo Kong, Ke Chen, and
Kazuaki Maeda. 2011. English gigaword fifth edi-
tion, 2011. Linguistic Data Consortium, Philadel-
phia, PA, USA.

Haoruo Peng, Yangiu Song, and Dan Roth. 2016.
Event detection and co-reference with minimal su-
pervision. In EMNLP-2016.

70

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D. Manning. 2020. Stanza: A
Python natural language processing toolkit for many
human languages. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations.

Mehwish Riaz and Roxana Girju. 2013. Toward a bet-
ter understanding of causality between verbal events:
Extraction and analysis of the causal power of verb-
verb associations. In Proceedings of the SIGDIAL
2013 Conference, pages 21–30, Metz, France. Asso-
ciation for Computational Linguistics.

Melissa Roemmele and Andrew Gordon. 2018. An
encoder-decoder approach to predicting causal rela-
tions in stories. In Proceedings of the First Work-
shop on Storytelling, pages 50–59, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Rebecca Sharp, Adarsh Pyarelal, Benjamin Gyori,
Keith Alcock, Egoitz Laparra, Marco A. Valenzuela-
Escárcega, Ajay Nagesh, Vikas Yadav, John Bach-
man, Zheng Tang, Heather Lent, Fan Luo, Mithun
Paul, Steven Bethard, Kobus Barnard, Clayton Mor-
rison, and Mihai Surdeanu. 2019. Eidos, INDRA,
& delphi: From free text to executable causal mod-
els. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics (Demonstrations), pages 42–
47, Minneapolis, Minnesota. Association for Com-
putational Linguistics.

Siddharth Vashishtha, Adam Poliak, Yash Kumar Lal,
Benjamin Van Durme, and Aaron Steven White.
2020. Temporal reasoning in natural language infer-
ence. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 4070–4078,
Online. Association for Computational Linguistics.

David Wadden, Ulme Wennberg, Yi Luan, and Han-
naneh Hajishirzi. 2019. Entity, relation, and event
extraction with contextualized span representations.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5784–
5789, Hong Kong, China. Association for Computa-
tional Linguistics.

Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar,
Russell Reas, Jiangjiang Yang, Doug Burdick,
Darrin Eide, Kathryn Funk, Yannis Katsis, Rod-
ney Michael Kinney, Yunyao Li, Ziyang Liu,
William Merrill, Paul Mooney, Dewey A. Murdick,
Devvret Rishi, Jerry Sheehan, Zhihong Shen, Bran-
don Stilson, Alex D. Wade, Kuansan Wang, Nancy
Xin Ru Wang, Christopher Wilhelm, Boya Xie, Dou-
glas M. Raymond, Daniel S. Weld, Oren Etzioni,
and Sebastian Kohlmeier. 2020. CORD-19: The
COVID-19 open research dataset. In Proceedings
of the 1st Workshop on NLP for COVID-19 at ACL
2020, Online. Association for Computational Lin-
guistics.

Kristin Wright-Bettner, Chen Lin, Timothy Miller,
Steven Bethard, Dmitriy Dligach, Martha Palmer,
James H. Martin, and Guergana Savova. 2020.
Defining and learning refined temporal relations in
the clinical narrative. In Proceedings of the 11th In-
ternational Workshop on Health Text Mining and In-
formation Analysis, pages 104–114, Online. Associ-
ation for Computational Linguistics.

Jiarui Yao, Haoling Qiu, Jin Zhao, Bonan Min, and Ni-
anwen Xue. 2021. Factuality assessment as modal
dependency parsing. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 1540–1550, Online. Associa-
tion for Computational Linguistics.

71

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 72–78
November 7–11, 2021. ©2021 Association for Computational Linguistics

KOAS: Korean Text Offensiveness Analysis System
San-Hee Park1∗ Kang-Min Kim3∗ Seonhee Cho1∗ Jun-Hyung Park1

Hyuntae Park2 Hyuna Kim1 Seongwon Chung1 SangKeun Lee1,2
1 Department of Computer Science and Engineering 2 Department of Artificial Intelligence

Korea University, Seoul, Republic of Korea
3 Department of Data Science, The Catholic University of Korea, Bucheon, Republic of Korea

carpediem20@korea.ac.kr kangmin89@catholic.ac.kr
{ehcho8564, irish07, pht0639}@korea.ac.kr
{kiipo0623, syc1013, yalphy}@korea.ac.kr

Abstract

Warning: This manuscript contains a certain
level of offensive expression.

As communication through social media plat-
forms has grown immensely, the increasing
prevalence of offensive language online has
become a critical problem. Notably in Korea,
one of the countries with the highest Internet
usage, automatic detection of offensive expres-
sions has recently been brought to attention.
However, morphological richness and complex
syntax of Korean causes difficulties in neural
model training. Furthermore, most of previous
studies mainly focus on the detection of abusive
language, disregarding implicit offensiveness
and underestimating a different degree of in-
tensity. To tackle these problems, we present
KOAS, a system that fully exploits both con-
textual and linguistic features and estimates an
offensiveness score for a text. We carefully de-
signed KOAS with a multi-task learning frame-
work and constructed a Korean dataset for of-
fensive analysis from various domains. Refer
for a detailed demonstration. 1

1 Introduction
Online communities and social media have become the
mainstream platforms of communication. This has also
led to unwanted developments – an increasing use of
offensive language through online platforms. Conse-
quently, analyzing texts and detecting offensive expres-
sions has become a critical issue (Nobata et al., 2016).
However, manual detection of offensive texts is infeasi-
ble owing to the increasing popularity of social networks
(Kennedy et al., 2017). Notably in South Korea, high
internet accessibility and social media usage2 have stim-
ulated a dire need for a system that analyzes Korean text
and its offensiveness (Moon et al., 2020a).

Despite the recent success of offensive language de-
tection on English text (Mishra et al., 2019), handling

∗ These authors contributed equally to this work.
1https://www.youtube.com/watch?v=

xtQv7GKOaeg (The KOAS link will be updated later.)
2https://datareportal.com/reports/

digital-2020-south-korea

Figure 1: (a) Illustration of an example of offensive sen-
tence without any explicit profanity, which would be
classified as “non-abusive” in abusive language detec-
tion. (b) Illustration of sentences with different intensity
of offensiveness that is not distinguished properly in the
discrete classification tasks.

Korean texts is quite challenging. Owing to the high-
context cultural characteristics of Korean language cul-
ture (Merkin, 2009), Korean offensive expressions tend
to be expressed in a subtle and figurative way without
explicit abusive expressions as illustrated in Figure 1(a).
Additionally, large vocabulary and the complex syntax
as a morphologically rich and agglutinative language
(Song, 2006) often hinders the model’s learning (Kim
et al., 2018; Passban et al., 2018).

Another substantial problem in text analysis is that
the intensity of offensiveness in text is often neglected.
As shown in Figure 1(b), the sentence may address
the different intensity depending on the degree of fre-
quency and explicitness of the offensive expression
(Jay and Janschewitz, 2008; Jay, 2009). However, most
researches focus on simply classifying sentences into
discrete, sometimes binary, categories (Kennedy et al.,
2017; Patwa et al., 2020; Mishra et al., 2019) and treat
sentences with different intensity as the same type, “neg-
ative”, or “abusive” for instance.

In this demo, we present KOAS, a system that esti-
mates the score of offensiveness in Korean text. Since
the degree of offensiveness is different from of abu-
sive detection or sentiment analysis, we develop a scor-
ing function for offensiveness. The score is to quantify
how much negative feelings each sentence can cause to
readers, or how offensively it can be read. To this end,
KOAS internally conducts two classification tasks, abu-
sive language detection and sentiment analysis. An of-
fensiveness score is then elicited from the outputs of two
internal tasks. While computing the score, KOAS inte-

72

Figure 2: This is a flowchart of KOAS, from taking a Ko-
rean text input to eliciting the offensiveness score. yse

and yab denote output vectors of the sentiment analysis
and abusiveness detection respectively.

grates the semantic perspective where it detects explicit
abusive expressions and semantic perspective where it
captures implicit nuance and tone of the text.

Since the notion of continuous degree of offensive-
ness has not been researched in depth yet, there are
no appropriate datasets to evaluate offensiveness score.
Therefore, we construct new datasets for the abusive lan-
guage detection and sentiment classification and utilize
them for evaluating our systems for the offensiveness
analysis. To handle Korean data, we utilize a refined
morpheme-level tokenization method, which has an ef-
fect of data augmentation and subword regularization.
We summarize our contributions as follows.

• We present a novel demonstration system that an-
alyzes the offensiveness intensity of Korean text
based on the abusive language and sentiment infor-
mation.

• We construct and publicly release a novel dataset
for abusive language detection and the sentiment
analysis of Korean text.

• Our experiments demonstrate that the multi-task
learning of the abusive language detection and the
sentiment analysis helps improve the performance
of both tasks.

2 System Design

The architecture of KOAS is shown in Figure 2. The
system mainly consists of two parts: a classification
model and an offensiveness scoring function. We will
describe them in detail in the following subsection.

Model Architecture The overall model architecture
was inspired by the gated multi-task learning framework
(Kim et al., 2019). We denote the proposed neural net-
work as CNNMTL and compare it with the baseline
of the pipelined vanilla CNN (Kim, 2014). CNNMTL

jointly learns two text analysis tasks - abusive language
detection and sentiment analysis. The model is trained
with two tasks, learning both linguistic perspective and
semantic perspectives simultaneously. This leads to a
more computationally efficient model with better per-
formance than training two separate models for each
task. Utilizing task-specific layers as well as a shared
layer has proven to be effective in learning not only
task-dependent features but also useful common fea-
tures (Kim et al., 2019; Misra et al., 2016; Liu et al.,
2017).

The neural model of KOAS consists of an embedding
layer, two task-specific convolution layers for the senti-
ment analysis and abusive language detection, a shared
convolution layer, and two softmax layers.

The embedding layer transforms an arbitrary-length
input sentence into a matrix of embeddings, denoted as
S = w1 ⊕ w2 ⊕ ...⊕ ws, where S ∈ Rs×k, ⊕ denotes
the concatenation operator, and s and k are the num-
ber of words and the dimension of word embedding,
respectively. Then, the embedding matrix is fed into the
three convolution layers. The features hse, hab, hsh are
obtained from the convolution layers. All the convolu-
tion layers are followed by ReLU, max pooling, and
dropout layers. The features are then concatenated and
fed into the softmax layers. Additionally, we employ a
gate mechanism (Hochreiter and Schmidhuber, 1997;
Chung et al., 2014) when incorporating task-private con-
volution output to the other task. We introduce two gates
Gs2a and Ga2s, which control the flow of features from
the sentiment analysis task to the abusive language de-
tection task and vice versa, respectively. The gates share
useful features and prevent irrelevant information from
being propagated. This is calculated by

Gs2a(hse) = σ(Ws2ahse + bs2a), (1)

where Ws2a and bs2a denote learnable weights and bi-
ases, respectively, and σ represents the sigmoid function.
Ws2a is trained to borrow private features of sentiment
analysis task taking hse, which is the output of convolu-
tional layer for sentiment analysis.

yab = Linear(hab ⊕ hsh ⊕Gs2a(hse)), (2)

ˆyab = softmax(yab) (3)
73

where hab and hsh denote output of the convolutional
layer for the abusive language detection and the shared
convolutional layer for the both task respectively, and
⊕ denotes the vector concatenation. All features are
concatenated as the input of the fully connected layer.
The output for abusive language detection yab can be
derived by Eq. 2. Thereafter, the probability of abusive
detection ˆyab is calculated using the softmax function,
as shown in Eq. 3. The same method was applied to the
sentiment analysis task.

Text Offensiveness The score for text offensiveness
is based on the following rules:

• The score of offensiveness represents the degree of
negative feelings (e.g. anger, annoyance and fear)
that the text may arouse in readers.

• Some abusive expressions may be used as an em-
phasis or exclamation whereas most abuse expres-
sion itself can arouse displeasure regardless of the
context.

Therefore, negative tones and abusive expression in
the text have a positive correlation with offensiveness,
whereas a positive tone has a negative correlation. Based
on these hypotheses, we propose a new method for the
quantification of offensiveness:

O = σ(α× (yneg −max(0, ypos)) + β × yab) (4)

where yneg and ypos represent the output values for
negative and positive input sentences, respectively. α
and β are hyperparameters that determine the weights of
sentiment polarity and abusive expression, respectively
and we empirically set α to be 0.456 and β to 0.758. 3

The proposed method uses yneg and ypos, and the
model’s prediction of negative and positive polarity. We
prevent ypos to be negative, we limit minimum value
to zero by applying max function. We use the output
value. yab and yneg represent the degree of how explic-
itly a profanity appears and how intensely the negative
sentiment is expressed, respectively. We have empiri-
cally verified that the score becomes correlated with
the human feedback of offensiveness. Our experiments
demonstrate the practicality of the score when applied
to real-world data.

3 Evaluation
3.1 Dataset
Data Construction To ensure that KOAS to handles
sentences from various domains, we gathered our train-
ing data from three different sources, which covers var-
ious domains – YouTube4, Naver Movie review5 and

3We empirically set initial α and β to 0.5 and 0.8. Then
we tuned α and β as trainable parameters using the Korean
Toxic speech corpus (Moon et al., 2020b) with labeled toxic
sentences.

4https://youtube.com
5https://github.com/e9t/nsmc

Abusive Language Sentiment
Abusive Non-abusive Pos. Neu. Neg.

27% 73% 13% 63% 24%

Table 1: Statistics of dataset label for each task. Pos.,
Neu. and Neg. indicate positive, neutral and negative
polarities respectively.

Sentence
Original

볼수록재수없네

(The more I see him,
the worse I get him.)

Morpheme
(Mecab) 볼수록재수없네

Morpheme
(Komoran) 보ㄹ수록재수없네

Table 2: Original sentence in train set is augmented by
two different tokenizers, Mecab and Komoran, based on
different parsing rules.

dcinside6. We scraped comments from a popular Ko-
rean online community, expecting our train dataset to be
close to a raw expression for practicality. Then, we re-
moved duplicate comments and filtered out non-Korean
sentences. The collected dataset consists of 46,853 Ko-
rean sentences and was labeled by three annotators on
predefined criteria for abusive language (Koo and Seo,
2012) and sentiment following the instruction (Nakov
et al., 2016).

Sentences are categorized into binary classes whether
they contain abusive language and three classes for sen-
timent polarity: positive, neutral and negative. Table 1
shows the composition of the classes and the definition
of data distribution. The dataset could be downloaded
from the link7. We hope our corpus can be used for anal-
ysis and modeling on Korean abusiveness expression.

Preprocessing Korean is an agglutinative language
(Song, 2006) in which words are constructed with an
agglutination of morphemes, and has a syntactic struc-
ture different from English. Thus, jamo-level (Stratos,
2017) or morpheme-level tokenization rather than sim-
ple word-level tokenization, has been used on the Ko-
rean dataset (Park et al., 2018). We applied morpheme-
aware subword tokenization, which has proven to be
the best tokenization method for Koreans (Park et al.,
2020b). To tokenize words at the morpheme level, we
utilize KoNLPy, an open-source library for Korean text
that provides a number of different tokenizers with dif-
ferent parsing rules and methods. In the training process,
we augmented two types of tokenized sentences from
each sentence in Korean text with two different tokeniz-
ers, Mecab and Komoran, as illustrated in Table 2. Not
only does it augment the size of training data around

6https://www.dcinside.com/
7https://drive.google.com/file/d/1YZ_

tuJzs5CBaO0pNY7Cb1Xa0rRR3GQX-/view?usp=
sharing

74

Positive Negative

Comment Offensiveness
score Comment Offensiveness

score

Profanity

존나행복하다시발
(I’m fucking happy) 3.71

지랄이야시발
(Fucking hell) 51.89

미친존나재밌네
(It’s crazy funny) 19.98

시발나가죽어라
(Fuck off and die) 71.70

개예쁘다
(Fucking pretty) 38.37

게이년
(Gay bitch) 97.78

No Profanity

밝은것만보자,우리
(Let’s look on the bright

side)
4.06

갈비뼈순서뒤집히고싶어?
(Do you want to reverse the

order of your ribs?)
56.59

무대찢었다
(That was awesome) 19.48

얼굴못생겼어
(You look ugly) 72.36

걱정하지마다잘될거야
(Don’t worry, it’ll be fine) 36.36

찐따가좋댄다
(Do you like it? looser) 81.60

Table 3: Qualitative examples about four combinations, positive-negative and profanity-no profanity. The profanity
words are in bold.

Test A@1 Dataorg Dataaug
AD SC AD SC

Baseline
CNN (Kim, 2014) 90.52 73.36 90.61 77.54

Ours
CNNMTL 90.82 80.21 91.24 79.02
CNNMTL w/o Gs2a 90.92 79.95 91.79 79.92
CNNMTL w/o Ga2s 90.81 79.81 91.33 78.68
CNNMTL w/o G 89.37 77.03 90.64 79.14

Table 4: Model performance on each setting of gate
mechanism with the original data, Dataorg and with
the augmented and over-sampled data Dataaug. “w/o”
and “w/o G” represents “without” and “without Gs2a

and Ga2s”. AD denotes model’s performance in abusive
language detection task, and SC in sentiment analysis.
The best results are in bold.

10% on average, but also has the effect of subword regu-
larization (Kudo, 2018; Park et al., 2020a). Accordingly,
our model utilizes various sets of subtoken candidates,
that yield robustness to typos or slangs.

3.2 Experimental Settings

We first split the dataset into a train set (28,111), vali-
dation set (9,370), and test set (9,370). To alleviate the
class imbalance problem in the train dataset, we over-
sampled the minority class dependeding on the dataset
size and class proportions (Chawla et al., 2002). We
experiment with over-sampling with two different insuf-
ficient labels, non-abusive and negative.

3.3 Results

Internal Tasks Table 4 presents the performance of
our model on two internal tasks. We test the model
performance on the variants of gate mechanism and
with different preprocessing steps. There are three main
findings: (1) Multi-task learning framework between
two tasks generally improves the performance of the
model. We observe that CNNMTL obtain higher test
accuracy than vanilla CNN’s, especially in sentiment
analysis. (2) Among four types of multi-task learning
architecture, CNNMTL without Gs2a is found to be the
most effective. Additionally, we empirically validate
that the augmented data with over-sampling on non-
abusive labels works well according to the Dataaug
results. (3) With the model accuracy over 90% in abusive
language detection and over 80% in sentiment analysis,
KOAS has the potential of being competently extended
to the other downstream applications where a detailed
analysis on offensiveness is required.

Text Offensiveness To validate the legitimacy of the
computed text offensiveness score, we measured the
Pearson correlation between the predicted score and hu-
man feedback on offensiveness. We randomly chose 300
sentences from the test set, and labeled each sentence in
three classes, regardless of whether the sentence is not
offensive, mildly offensive or strongly offensive. The
score from the model’s prediction has a Pearson correla-
tion coefficient of 0.62, which implies that the score has
a positive correlation with human feedback.

Qualitative Examples To test our system KOAS,
we classify six types of real-life sentences: positive-

75

Figure 3: KOAS user interface : the system receives “못생긴놈아닥쳐 (Shut up, ugly bastard)” as input. Offensive-
ness score is nearly 95% with abusive and negative prediction.

abusive, neutral-abusive, negative-abusive, positive-non
abusive, neutral-non abusive, negative-non abusive. Ta-
ble 3 presents some qualitative examples with offen-
siveness score about four types. In general, sentences
containing swear words have higher offensiveness score
by the abusive detection. We see that our system reflects
sentiment polarity, we observe different offensiveness
scores, even they exhibit similar profanity such as “존
나행복하다시발”-“I’m so fucking happy ” and “시발
나가죽어라”-“Fuck off and die”, one is 3.71, and the
other is 71.70 in Table 3. It relies on words that ap-
pear together. We test various negative and non-abusive
expressions even they don’t contain swear words. it
tends to detect implicit negative tone, such as “얼굴
못생겼어”-“Your face is ugly”, which obtained 72.36,
compared to positive and non-abusive examples such as
“밝은것만보자,우리”-“Let’s look on the bright side”,
which obtained 4.06. On the other hands, some exam-
ples with various negative tones (e.g. sarcastic tone)
show still challenging to detect such as “성형많이 해
서 존나 예쁘다’-“She’s so pretty with a lot of plastic
surgery".

4 Demonstration

KOAS has an intuitive and simplified interface, where
users can type any Korean sentence and check the of-
fensiveness of the input sentence. When KOAS receives
a sentence, it internally conducts abusive language de-
tection and sentiment analysis, and then computes the
offensiveness score. The logit value of the sentence
containing an abusive expression and the most likely
sentiment polarity is shown at the bottom, as well as the
offensiveness score. Figure 3 shows a user’s input inter-
face of KOAS. There is a status bar in the middle of the

screen, so users can check the level of offensive intensity.
When the score is higher than a predefined moderate
threshold, messages like “This comment might have ma-
licious intent.” and crucial threshold, warning messages
like “This comment is malicious and at the risk of being
deleted.” appear on the screen. In this work, we set the
moderate threshold to be 40 and crucial threshold to be
72.

5 Conclusion

In this paper, we have proposed KOAS, a novel system
that efficiently estimates the offensiveness score of Ko-
rean text. We expect KOAS to attenuate the usage of
offensive languages by providing a real-time feedback to
writers about their writing. KOAS has notable technical
novelty and social contributions, including (1) tackling
morphological richness and complex syntax of Korean,
(2) incorporating linguistic and contextual analysis to
capture the offensive nuance of text and (3) effectively
analyzing the offensiveness of text. Our CNN-based sys-
tem is lightweight, practical and applicable to various
hardware environments compared to transformer-based
system.

Some usecases we expect are as follows: First, for
the people unfamiliar with Korean, the KOAS system
can be used to prevent unintended attacks when they
post Korean articles and help them recognize attacks in
Korean sites. Second, site administrators who need to
block offensive comments can port the KOAS system
to automatically block comments that exceed a certain
score. Finally, our datasets can be utilized for further
research on Korean text analysis, including Korean lan-
guage understanding and automatic labeling. We expect
that our proposed system will be readily applicable to

76

various downstream applications, including education,
game, real-time chatting and social media platforms.

6 Future Work
Following experiments and qualitative examples, we
have found that real-world sentences containing var-
ious negative tones without abuses are still challeng-
ing because of their implicit offensiveness. We plan to
build our system on recent language models such as
KoBERT8 and KoELECTRA9, which is expected to
make our system highly reliable and robust.

7 Acknowledgements
We thank the anonymous reviewers for their helpful
comments. This work was supported by the National
Research Foundation of Korea (NRF) grant funded by
the Korea government (MSIT) (2021R1A2C3010430)
and the Basic Research Program through the National
Research Foundation of Korea (NRF) grant funded by
the Korea government (MSIT) (2020R1A4A1018309).

References
Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall,

and W Philip Kegelmeyer. 2002. Smote: synthetic mi-
nority over-sampling technique. Journal of artificial
intelligence research, 16:321–357.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence mod-
eling. In NIPS 2014 Workshop on Deep Learning,
December 2014.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Timothy Jay. 2009. Do offensive words harm people?
Psychology, public policy, and law.

Timothy Jay and Kristin Janschewitz. 2008. The prag-
matics of swearing. Journal of Politeness Research.
Language, Behaviour, Culture.

George Kennedy, Andrew McCollough, Edward Dixon,
Alexei Bastidas, John Ryan, Chris Loo, and Saurav
Sahay. 2017. Technology solutions to combat online
harassment. In Proceedings of the First Workshop on
Abusive Language Online, Vancouver, BC, Canada.
Association for Computational Linguistics.

Kang-Min Kim, Yeachan Kim, Jungho Lee, Ji-Min Lee,
and SangKeun Lee. 2019. From small-scale to large-
scale text classification. In The World Wide Web
Conference.

Kwang-Young Kim, Seo-Young Jeong, Jung-Hoon Park,
Seok-Hyoung Lee, Hye-Jin Lee, Jae-Wook Seol,
Chul-Su Lim, and Jung-Sun Yoon. 2018. Perfor-
mance comparison of korean keyword-based docu-
ment classifiers using convolutional neural networks.
International Journal of Applied Engineering Re-
search.
8https://github.com/SKTBrain/KoBERT
9https://github.com/monologg/KoELECTRA

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP).

H Koo and E Seo. 2012. A study on injurious comment
spam-its typology and suggestions for improvement.
Korean Language Research, null (30), pages 5–32.

Taku Kudo. 2018. Subword regularization: Improving
neural network translation models with multiple sub-
word candidates. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Association for
Computational Linguistics.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2017.
Adversarial multi-task learning for text classification.
arXiv preprint arXiv:1704.05742.

Rebecca S Merkin. 2009. Cross-cultural communica-
tion patterns-korean and american communication.
Journal of intercultural communication, 20.

Pushkar Mishra, Helen Yannakoudakis, and Ekaterina
Shutova. 2019. Tackling online abuse: A survey of
automated abuse detection methods. arXiv preprint
arXiv:1908.06024.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and
Martial Hebert. 2016. Cross-stitch networks for
multi-task learning. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 3994–4003.

Jihyung Moon, Won Ik Cho, and Junbum Lee.
2020a. Beep! korean corpus of online news com-
ments for toxic speech detection. arXiv preprint
arXiv:2005.12503.

Jihyung Moon, Won Ik Cho, and Junbum Lee. 2020b.
BEEP! Korean corpus of online news comments for
toxic speech detection. In Proceedings of the Eighth
International Workshop on Natural Language Pro-
cessing for Social Media, pages 25–31, Online. Asso-
ciation for Computational Linguistics.

Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio Se-
bastiani, and Veselin Stoyanov. 2016. SemEval-2016
task 4: Sentiment analysis in Twitter. In Proceedings
of the 10th International Workshop on Semantic Eval-
uation (SemEval-2016), pages 1–18. Association for
Computational Linguistics.

Chikashi Nobata, Joel Tetreault, Achint Thomas, Yashar
Mehdad, and Yi Chang. 2016. Abusive language
detection in online user content. In Proceedings of
the 25th international conference on world wide web,
pages 145–153.

Jungsoo Park, Mujeen Sung, Jinhyuk Lee, and Jaewoo
Kang. 2020a. Adversarial subword regularization
for robust neural machine translation. arXiv preprint
arXiv:2004.14109.

Kyubyong Park, Joohong Lee, Seongbo Jang, and Da-
woon Jung. 2020b. An empirical study of tokeniza-
tion strategies for various korean nlp tasks. arXiv
preprint arXiv:2010.02534.

Sungjoon Park, Jeongmin Byun, Sion Baek, Yongseok
Cho, and Alice Oh. 2018. Subword-level word vector
representations for korean. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers).

77

Peyman Passban, Qun Liu, and Andy Way. 2018. Im-
proving character-based decoding using target-side
morphological information for neural machine trans-
lation. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers). Association for
Computational Linguistics.

Parth Patwa, Gustavo Aguilar, Sudipta Kar, Suraj
Pandey, Srinivas PYKL, Björn Gambäck, Tanmoy
Chakraborty, Thamar Solorio, and Amitava Das.
2020. SemEval-2020 task 9: Overview of sentiment
analysis of code-mixed tweets. In Proceedings of the
Fourteenth Workshop on Semantic Evaluation, pages
774–790, Barcelona (online). International Commit-
tee for Computational Linguistics.

Jae Jung Song. 2006. The Korean language: Structure,
use and context. Routledge.

Karl Stratos. 2017. A sub-character architecture
for korean language processing. arXiv preprint
arXiv:1707.06341.

78

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 79–86
November 7–11, 2021. ©2021 Association for Computational Linguistics

RepGraph: Visualising and Analysing Meaning Representation Graphs

Jaron Cohen∗ Roy Cohen∗ Edan Toledo∗ Jan Buys
Department of Computer Science

University of Cape Town
{CHNJAR003, CHNROY002, TLDEDA001}@myuct.ac.za jbuys@cs.uct.ac.za

Abstract

We present RepGraph, an open source visu-
alisation and analysis tool for meaning repre-
sentation graphs. Graph-based meaning rep-
resentations provide rich semantic annotations,
but visualising them clearly is more challeng-
ing than for fully lexicalized representations.
Our application provides a seamless, unifying
interface with which to visualise, manipulate
and analyse semantically parsed graph data
represented in a JSON-based serialisation for-
mat. RepGraph visualises graphs in multi-
ple formats, with an emphasis on showing the
relation between nodes and their correspond-
ing token spans, whilst keeping the represen-
tation compact. Additionally, the web-based
tool provides NLP researchers with a clear, vi-
sually intuitive way of interacting with these
graphs, and includes a number of graph anal-
ysis features. The tool currently supports the
DMRS, EDS, PTG, UCCA, and AMR seman-
tic frameworks. A live demo is available at
https://repgraph.vercel.app/.

1 Introduction

Broad-coverage semantic graphs provide richer
representations of sentence meaning than surface-
level syntax or lexicalised semantic dependencies
(Oepen et al., 2019). The breadth of meaning repre-
sentation approaches now includes a large number
of semantic graph frameworks — each with their
own respective strengths and weaknesses at encod-
ing the meaning of natural language (Koller et al.,
2019). Recently, a growing body of work has fo-
cused on parsing to or generating from graph-based
meaning representations (Hershcovich et al., 2017;
Buys and Blunsom, 2017; Zhang et al., 2019; Song
et al., 2018). The outputs of many other syntactic
and semantic analysis tasks can also be represented
as graphs, where labelled nodes correspond to to-
ken spans and edges to relations between these
spans (Jiang et al., 2020).

∗ These authors contributed equally to this work

Figure 1: Hierarchical visualisation of the EDS graph
for the sentence “Champagne and dessert followed.”

Visualisations of constituency trees, syntactic
dependency trees and semantic dependency graphs
are well established for teaching, analysing and pre-
senting the outputs of those representations. How-
ever there is no similar established standard for
visualising broad-coverage semantic graphs, due
to diverging approaches to representing semantics
in different frameworks, as well as the challenges
involved in visualising both the graph and the cor-
respondence to the sentence it represents clearly.

To stem the “Balkanisation” caused by
framework-specific approaches, CoNLL 2019 and
2020 hosted shared tasks on Cross-Framework
Meaning Representation Parsing (MRP; Oepen
et al., 2019, 2020). These tasks provided a uniform
abstract graph representation with a JSON-based
serialization format and standardized datasets.
However, current visualisation tools are either
framework-specific or fail to represent graphs
clearly and consistently across frameworks (§5).

RepGraph is an open source, web-based visu-
alisation and analysis tool for meaning representa-
tion graphs, with support for multiple frameworks.

79

The tool provides three novel visualisation formats,
each designed to better elicit specific inherent qual-
ities of the graphs (§3). In contrast to previous
approaches, two of our visualisations (hierarchical
and tree-like) represent the graph and sentence to-
kens in an integrated manner, clearly showing the
relationship between nodes and the tokens or token
spans they correspond to. The third (flat) is akin to
existing dependency graph visualisations.

The tool provides a unified, intuitive and feature-
rich platform for interacting with meaning repre-
sentation graphs. Analysis functionality includes:
displaying subgraphs, searching graphs by node la-
bel or subgraph, comparing graphs visually, testing
graph properties such as planarity, and providing
dataset-level statistics (§4).

RepGraph is targeted towards everyone work-
ing with meaning representation graphs, including:
researchers developing parsers or generators; com-
putational linguists performing semantic analysis;
NLP practitioners using graphs in downstream ap-
plications; and students learning about these repre-
sentations. Parsing is not currently integrated, but
parser output can easily be processed. RepGraph
is also not intended to be an annotation tool; such
functionality is orthogonal to what we provide.

Five semantic graph frameworks are currently
supported: Dependency Minimal Recursion Se-
mantics (DMRS; Copestake, 2009), Elementary
Dependency Structures (EDS; Oepen and Lønning,
2006), Prague Tectogrammatical Graphs (PTG;
Hajič et al., 2012), Universal Conceptual Cognitive
Annotation (UCCA; Abend and Rappoport, 2013)
and Abstract Meaning Representation (AMR; Ba-
narescu et al., 2013). Some framework-specific
normalisations are performed to improve compat-
ibility and enable a unified approach to visualisa-
tion. While our development focused on English
datasets, most of the frameworks also support other
languages, and the tool can easily be extended to
support additional frameworks.1

2 System Description

A semantic graph is a triple (T,N,E), where N
is a set of nodes, E ⊆ N ×N is a set of directed
edges, and T ⊂ N is a set of top nodes (Oepen
et al., 2019).

Nodes may optionally have zero or more prop-
erties with associated values. The relationship be-

1A demo video is available at https://vimeo.com/
user136369092/repgraph

tween the graph nodes and the input string is re-
ferred to as anchoring or alignment. We assume
that the input is tokenized; a graph node may be
anchored to a token, a token span, or a set of token
spans.2 The alignment is not annotated in all frame-
works; we assume that it can be obtained, using an
aligner, for (most) graph nodes.

The alignment between the nodes and input to-
kens forms the basis of the design of our hierar-
chical and tree-like visualisation formats. We also
distinguish between surface nodes, which repre-
sent the lexical items (tokens) they are aligned to
directly, and abstract nodes, which represent the se-
mantic contribution of grammatical constructions.

This distinction is annotated explicitly in DMRS
and EDS (which are based on the same under-
lying annotations), but we extend it to the other
frameworks based on the alignments and frame-
work properties.

2.1 System Architecture

The system consists of a web-based front-end user-
interface through which users upload a file contain-
ing a bank of MRP graphs in the Uniform Graph
Interchange Format, which is serialised in JSON
Lines format (Oepen et al., 2019). The file is
then uploaded to and parsed by the back-end of
the RepGraph application to create a transitory
structure of the dataset. The user can then pro-
ceed to the main screen of the application (Fig.
2). The main libraries used are React3, visx4, and
material-UI5 for the front end, and Spring-Boot6

for the backend. The source code can be found at
https://github.com/RepGraph/RepGraph.

3 Graph Visualisation

Our application provides three distinct visualisa-
tions of meaning representation graphs in all the
supported frameworks, providing users with multi-
ple perspectives of the same semantic information.

As can be seen in Figures 1–3, the visualisations
use colour and annotations to represent the various
elements of the graphs — for example, surface and
abstract nodes are differentiated and shown in dif-
ferent colours. An expandable legend is provided

2The anchoring is annotated at character level in the MRP
data. We tokenise the input in a manner that is consistent with
the given annotations.

3https://reactjs.org/
4https://github.com/airbnb/visx
5https://material-ui.com/
6https://spring.io/

80

Figure 2: The RepGraph Main Page with an EDS graph visualised in the Tree-like format. The main elements on
the page are captioned.

to explain the different colours (see Fig. 2).
The user can modify the default colours and spac-

ing of the visualisations from the settings in the
panel on the left of the main page. The placement
of the edges and edge labels can also be manip-
ulated easily by dragging them with the mouse.
The examples in the figures, as well as the demo
data provided in application, come from the sample
annotations of Wall Street Journal (WSJ) corpus
sentences provided for MRP 2020.7

We next discuss each of the visualisations, and
in particular how node placement is calculated for
each of them (§3.1 - 3.3). Then we discuss how
edge placement is determined across all the visu-
alisations to minimise collisions (§3.4), and nor-
malisations to make the anchoring more consistent
across frameworks (§3.5).

3.1 Hierarchical

The Hierarchical layout (Fig. 1) focuses on show-
ing the natural hierarchy that occurs between the
anchors of the semantic nodes in the graph. Nodes
with larger spans envelop nodes whose spans they
subsume in their range of tokens. Horizontal bars
(brackets) are placed below the semantic nodes in
the graph to represent the alignment with their span
of tokens in the input sentence. Tokens are dis-
played in the bottom row. For example, in Fig. 1,
the top-most node with the label udef_q has a
bracket covering the token span “Champagne and
dessert” below it.

7http://svn.nlpl.eu/mrp/2020/public/
sample.tgz

3.2 Tree-like

The Tree-like visualisation (Fig. 2), places em-
phasis on each node’s number of descendants. A
tree-like structure is created by having nodes with
a larger number of descendants positioned above
nodes with a lower number of descendants. The an-
choring of nodes that are positioned at the bottom
of the graph (directly above the tokens) is repre-
sented with a dotted line to the tokens(s) they span.
These nodes are positioned vertically in line with
the start of their token span. The alignment of other
nodes is not indicated visually. The node placement
is computed by running a topological sort on each
node in order to get a list of its descendants, which
is used to determine its level in the tree.

3.3 Flat

The flat visualisation (Fig. 3), orders nodes hori-
zontally based on the first token alignment. Ties be-
tween nodes that are aligned to the same first token
are broken by prioritising nodes with smaller span
lengths. Edges are curved above and below the
linear plane according to whether they are directed
right or left. No tokens are shown in this format.
The span(s) of each node and its corresponding text
phrase(s) are present inside a tool-tip that appears
when they are hovered upon. This visualisation
is similar to the way that dependency graphs are
traditionally visualised (albeit using graph nodes
rather than tokens as basic elements).

81

Figure 3: Example of the flat visualisation of the PTG
graph for the sentence “Champagne and dessert fol-
lowed.”

3.4 Edge Handling

Edges are created as Quadratic Bézier Curves de-
fined through 3 points (P0, P1 and P2):

B(t) = (1−t)2P0+2(1−t)tP1+t2P2, 0 ≤ t ≤ 1

where P0 is the edge’s source node position and P2

is the edge’s target node position.
We designed a set of edge handling heuristics

that determine the value of P1 for each graph edge,
with the aim to minimise overlap between edges,
edge labels and nodes. The heuristics take into ac-
count attributes of edges and their source and target
nodes that include their distance, whether they are
in the same row or column, and the relative posi-
tions of other nodes. Users can also drag edges and
edge labels with their mouse pointer, manipulating
the value of P1.

3.5 Framework Normalisation

In order to visualise and analyse graphs across all
frameworks in a standardised way, we performed
framework-specific normalisations that capture la-
tent information whilst ensuring accuracy of the
graph visualisations.

We extract DMRS annotations from the Red-
woods treebank8 using PyDelphin.9 Tokenisation
and some additional normalisations were derived
from the Redwoods syntactic layer.

For the other frameworks we use the data pro-
vided by the MRP 2020 shared task (Oepen et al.,
2020). Input sentences were tokenised with Stan-
ford CoreNLP (Manning et al., 2014).10

8http://svn.delph-in.net/erg/tags/
1214/

9https://github.com/delph-in/pydelphin
10https://stanfordnlp.github.io/

CoreNLP/

In EDS, nodes with the CARG property (named
entities) are treated as surface rather than abstract
nodes, and displayed as such in the visualisation.

PTG graphs may contain nodes without token
alignments. We align those nodes to their leftmost
aligned children, or if that is not possible, their
leftmost aligned parents. These induced alignments
are use only to determine the node layout, and are
not displayed visually.

UCCA nodes do not have explicit labels. We
treat nodes with spans as surface nodes; their labels
are implicitly derived from their spans, using the
corresponding token strings as labels. Abstract
nodes (nodes without annotated spans) implicitly
derive their spans as the union of the spans of their
descendent nodes. We do not assign labels to them.

AMR annotations do not include node spans. As
our hierarchical and tree-like visualisations require
node spans, an AMR aligner is used to obtain align-
ments. The rule-based JAMR Aligner11 (Flanigan
et al., 2014) is integrated into our tool to process
only AMR graphs that are uploaded without align-
ments - this does not impact the language support
of the other frameworks. All aligned nodes are
designated as surface nodes. Nodes that are left
unaligned by the aligner are aligned in the same
way as PTG to determine the layout.

Multiple Spans Graphs in the UCCA and PTG
frameworks have nodes that are anchored to multi-
ple, potentially discontiguous token spans. These
nodes are handled as follows: If the multiple spans
are contiguous, node are aligned to the union of
their spans. Otherwise, dummy nodes are created
for each additional non-adjacent span; the regu-
lar node corresponds to the left-most span. Each
dummy node is placed above its aligned token span
and distinguished visually. It takes the label of its
original node, with additional information to iden-
tify which span it refers to and from which node it
was created. When the user hovers over the original
node, the dummy nodes are highlighted.

4 Graph Analysis Features

4.1 Subgraph Display

The subgraph display tool allows users to examine
specific subgraphs of the currently visualised graph.
Users can choose between two types of subgraphs:
adjacent and descendent. Upon selection of a sub-
graph type, the user selects a node on the graph

11https://github.com/jflanigan/jamr

82

Figure 4: The Graph Comparison Tool showing which nodes and edges in the two UCCA graphs are similar (green)
or dissimilar (red).

visualisation and clicks the display button to view
the resulting subgraph.

Adjacent subgraphs are created from the nodes
directly adjacent to the selected node. This allows
users to focus in on the immediate neighbourhood
of a node.

Descendent subgraphs are created from the se-
lected node’s descendants in the graph. This allows
users to focus on a single node and the propagation
of its descendants through the graph.

4.2 Subgraph Search

We provide two ways for users to find graphs match-
ing specific patterns in large datasets:

Search by Node Label Set The user can enter
one or more node labels as a query to search for all
graphs in the dataset which contain all of these node
labels. This gives the user the ability to quickly find
sentences and graphs containing nodes of interest
and see how they are used in different graphs.

Search by Subgraph Pattern The user can also
visually select a connected subgraph of the current
graph by clicking to select the desired nodes and
edges. After selection, the search will return all
other graphs that contain this subgraph, and the
user can visualise any of these graphs.

4.3 Graph Comparison

The graph comparison interface, seen in Fig. 4,
is broken up into two vertically-separated side-by-
side panels that enable direct comparison between
two graphs. The user selects a graph from the
dataset for each side, toggles the comparison set-

tings, and clicks compare. The similarities and
differences between the graphs are displayed visu-
ally through colouring the nodes and edges. If the
same node label appears in both graphs, all nodes
with that label are deemed as similar, even when
the number of nodes with that label differ between
the two graphs.12 The tool also provides the option
to only compare surface or abstract nodes. Two
modes of graph comparison are provided:

Standard Comparison Nodes are compared us-
ing only their labels, whereas edges are matched
if both the edge labels and the labels of the nodes
they are incident to are equal.

Strict Comparison This mode additionally re-
quires that the concatenation of the token spans
corresponding to each node has to be the same (as
strings) in order for the nodes to match.

4.4 Graph Properties
A number of graph properties can be evaluated on
the current graph.

Planarity An important property of a semantic
graph is whether it is planar, also referred to as
non-crossing (Kuhlmann and Oepen, 2016). To de-
termine planarity, the nodes are ordered in a similar
manner as for the flat visualisation (§3.3), except
that nodes with the exact same span are placed be-
low one another in the same horizontal position,
and have their edges transferred to the node rep-
resenting their position in the linear ordering. All

12This contrasts to Smatch (Cai and Knight, 2013) which
finds a 1-to-1 alignment between the nodes to measure graph
overlap, while for visualisation purposes we rather show all
possible correspondences.

83

edges are represented as arcs above the nodes.
Nodes with no token alignment are excluded

from the construction as it is assumed they can be
placed anywhere to avoid causing conflicts. Edges
between nodes in the same linear ordering posi-
tion are also excluded as they have no impact on
potential crossing edges.

The check for planarity, once the linear order-
ing has been established, follows the definition of
planarity outlined in (Gómez-Rodríguez and Nivre,
2010). After running the planarity test, the modi-
fied graph can be visualised. Crossing edges are
highlighted in red.

Graph Connectivity A graph is connected if an
undirected path exists between every pair of nodes
(Kuhlmann and Oepen, 2016). AMR graphs are
always connected, but this is not guaranteed for
the other frameworks. Graph connectivity is deter-
mined using a variation of Breadth First Search.

Longest Directed and Undirected Path(s) Our
tool also has functionality to find the longest di-
rected or undirected paths in any graph. The
longest path is highlighted on the graph. If there are
multiple longest paths, the user can cycle through
them. The paths are found using derivations of
Topological Sort and Breadth First Search. Before
the longest path is derived, the graph is checked for
cycles using a derivation of Depth First Search.

4.5 Dataset Statistics

The dataset statistics tool can produce a number
of global statistics on the current dataset, which
may be useful for comparing datasets. The statis-
tics included are a subset of the ones used by
Kuhlmann and Oepen (2016) to compare semantic
graph frameworks, and include average number of
nodes, average span of node, and percentage of
cyclic graphs, amongst others.

5 Related Work

The plethora of tools and visualisation options cur-
rently available are fragmented and often built with-
out semantic graphs in mind. In the context of
the MRP Shared Tasks, mtool13 was developed
to provide various functionality including format
conversion, graph analysis, and evaluation. How-
ever, mtool is a command-line only tool and does
not provide a simple and intuitive way to interact
with large datasets of semantic graphs. In terms
of graph visualisation, mtool supports the output

13https://github.com/cfmrp/mtool

(a) DMRS graph visualised with delphin-viz

(b) UCCA graph visualised with mtool

Figure 5: Visualisations provided by previous work

of graphs in DOT language that is compiled with
Graphviz.14 Unfortunately, since Graphviz is a
general-purpose visualization tool, the visualisa-
tions produced are often complex and inadequate
at capturing framework-specific assumptions. As
an example, the UCCA visualisation in Fig. 5b
lacks lexical information.

A number of other framework-specific visualisa-
tion tools exist, including for DMRS15 and AMR
(Saphra and Lopez, 2015), but are limited in terms
of their functionality and framework support. The
delphin-viz DMRS visualisation (Fig. 5a) is simi-
lar to our flat visualisation, but lacks the structure
conveyed by our other visualisations.

6 Conclusion

The proliferation of graph-based and span-based
meaning representations has created the need for
a general platform for analysing these represen-
tations. RepGraph provides such a unified plat-
form for the visualisation and analysis of semantic
graphs in multiple frameworks. The tool allows
users to explore and analyse these representations

14https://www.graphviz.org/
15http://delph-in.github.io/

delphin-viz/demo/

84

in an interactive and intuitive manner that is not pos-
sible with existing tools. Our work aims to make
meaning representations accessible to a broader
audience than researchers invested in a particular
framework, while providing new insights into these
representations through novel visualisations.

For future work, we plan to include support for
additional semantic frameworks, including span-
based representations such as semantic role la-
belling. We also intend to integrate parsers for
all supported frameworks. This will provide signif-
icant utility by allowing users to upload text files or
enter sentences directly, and use RepGraph straight
away rather than having to run a parser separately.

References
Omri Abend and Ari Rappoport. 2013. Universal Con-

ceptual Cognitive Annotation (UCCA). In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 228–238, Sofia, Bulgaria. Association
for Computational Linguistics.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Jan Buys and Phil Blunsom. 2017. Robust incremen-
tal neural semantic graph parsing. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1215–1226, Vancouver, Canada. Association
for Computational Linguistics.

Shu Cai and Kevin Knight. 2013. Smatch: an evalua-
tion metric for semantic feature structures. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 748–752, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Ann Copestake. 2009. Invited Talk: slacker seman-
tics: Why superficiality, dependency and avoidance
of commitment can be the right way to go. In
Proceedings of the 12th Conference of the Euro-
pean Chapter of the ACL (EACL 2009), pages 1–9,
Athens, Greece. Association for Computational Lin-
guistics.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell,
Chris Dyer, and Noah A. Smith. 2014. A discrim-
inative graph-based parser for the Abstract Mean-
ing Representation. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 1426–
1436, Baltimore, Maryland. Association for Compu-
tational Linguistics.

Carlos Gómez-Rodríguez and Joakim Nivre. 2010.
A transition-based parser for 2-planar dependency
structures. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 1492–1501, Uppsala, Sweden. Associa-
tion for Computational Linguistics.

Jan Hajič, Eva Hajičová, Jarmila Panevová, Petr Sgall,
Ondřej Bojar, Silvie Cinková, Eva Fučíková, Marie
Mikulová, Petr Pajas, Jan Popelka, Jiří Semecký,
Jana Šindlerová, Jan Štěpánek, Josef Toman, Zdeňka
Urešová, and Zdeněk Žabokrtský. 2012. Announc-
ing Prague Czech-English Dependency Treebank
2.0. In Proceedings of the Eighth International
Conference on Language Resources and Evaluation
(LREC’12), pages 3153–3160, Istanbul, Turkey. Eu-
ropean Language Resources Association (ELRA).

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2017. A transition-based directed acyclic graph
parser for UCCA. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1127–
1138, Vancouver, Canada. Association for Computa-
tional Linguistics.

Zhengbao Jiang, Wei Xu, Jun Araki, and Graham Neu-
big. 2020. Generalizing natural language analysis
through span-relation representations. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 2120–2133,
Online. Association for Computational Linguistics.

Alexander Koller, Stephan Oepen, and Weiwei Sun.
2019. Graph-based meaning representations: De-
sign and processing. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics: Tutorial Abstracts, pages 6–11, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Marco Kuhlmann and Stephan Oepen. 2016. Towards
a catalogue of linguistic graph Banks. Computa-
tional Linguistics, 42(4):819–827.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 55–60, Bal-
timore, Maryland. Association for Computational
Linguistics.

Stephan Oepen, Omri Abend, Lasha Abzianidze, Jo-
han Bos, Jan Hajic, Daniel Hershcovich, Bin Li,
Tim O’Gorman, Nianwen Xue, and Daniel Zeman.
2020. MRP 2020: The second shared task on
cross-framework and cross-lingual meaning repre-
sentation parsing. In Proceedings of the CoNLL

85

2020 Shared Task: Cross-Framework Meaning Rep-
resentation Parsing, pages 1–22, Online. Associa-
tion for Computational Linguistics.

Stephan Oepen, Omri Abend, Jan Hajic, Daniel Her-
shcovich, Marco Kuhlmann, Tim O’Gorman, Nian-
wen Xue, Jayeol Chun, Milan Straka, and Zdenka
Uresova. 2019. MRP 2019: Cross-framework mean-
ing representation parsing. In Proceedings of the
Shared Task on Cross-Framework Meaning Repre-
sentation Parsing at the 2019 Conference on Natural
Language Learning, pages 1–27, Hong Kong. Asso-
ciation for Computational Linguistics.

Stephan Oepen and Jan Tore Lønning. 2006.
Discriminant-based MRS banking. In Proceed-
ings of the Fifth International Conference on
Language Resources and Evaluation (LREC’06),
Genoa, Italy. European Language Resources
Association (ELRA).

Naomi Saphra and Adam Lopez. 2015. AMRICA: an
AMR inspector for cross-language alignments. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Demonstrations, pages 36–40,
Denver, Colorado. Association for Computational
Linguistics.

Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel
Gildea. 2018. A graph-to-sequence model for AMR-
to-text generation. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1616–
1626, Melbourne, Australia. Association for Compu-
tational Linguistics.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019. AMR parsing as sequence-to-
graph transduction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 80–94, Florence, Italy. Associa-
tion for Computational Linguistics.

86

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 87–95
November 7–11, 2021. ©2021 Association for Computational Linguistics

THERMOSTAT: A Large Collection of
NLP Model Explanations and Analysis Tools

Nils Feldhus Robert Schwarzenberg Sebastian Möller
German Research Center for Artificial Intelligence (DFKI)
Speech and Language Technology Lab, Berlin, Germany

{firstname.lastname}@dfki.de

Abstract

In the language domain, as in other domains,
neural explainability takes an ever more im-
portant role, with feature attribution meth-
ods on the forefront. Many such methods
require considerable computational resources
and expert knowledge about implementation
details and parameter choices. To facilitate re-
search, we present THERMOSTAT which con-
sists of a large collection of model explana-
tions and accompanying analysis tools. THER-
MOSTAT allows easy access to over 200k ex-
planations for the decisions of prominent state-
of-the-art models spanning across different
NLP tasks, generated with multiple explain-
ers. The dataset took over 10k GPU hours
(> one year) to compile; compute time that
the community now saves. The accompany-
ing software tools allow to analyse explana-
tions instance-wise but also accumulatively on
corpus level. Users can investigate and com-
pare models, datasets and explainers without
the need to orchestrate implementation details.
THERMOSTAT is fully open source, democra-
tizes explainability research in the language
domain, circumvents redundant computations
and increases comparability and replicability.

1 Introduction

Deep neural networks are state-of-the-art in natural
language processing (NLP) but due to their com-
plexity they are commonly perceived as opaque
(Karpathy et al., 2015; Li et al., 2017). For this rea-
son, explainability has seen heightened attention in
recent years (Belinkov and Glass, 2019; Wallace
et al., 2020; Danilevsky et al., 2020).

A prominent class of explainability methods, re-
ferred to as feature attribution methods (in the fol-
lowing used interchangeably with explainers), at-
tributes the output of a complex model to its input
features. Feature attribution methods arguably have
become a cornerstone of explainability research
in NLP: For example, Arras et al. (2016, 2017);
Atanasova et al. (2020); Chen et al. (2021); Neely

et al. (2021) analyze different model architectures
with feature attributions.

There is now also a large body of work compar-
ing explainers in the language domain. Explain-
ers are compared with count-based metrics (Po-
erner et al., 2018; De Cao et al., 2020; Tsang et al.,
2020; Nguyen and Martínez, 2020; Bodria et al.,
2021; Ding and Koehn, 2021; Yin et al., 2021; Hase
et al., 2021; Kokhlikyan et al., 2021; Zafar et al.,
2021; Sinha et al., 2021) and against human judge-
ment (Nguyen, 2018; Lertvittayakumjorn and Toni,
2019; Hase and Bansal, 2020; Prasad et al., 2020).
Feature attribution scores have also been incorpo-
rated into model training (Ross et al., 2017; Liu and
Avci, 2019; Erion et al., 2021; Pruthi et al., 2020).

The feature attribution maps produced and used
in the above cited works arguably are the most cru-
cial component of the studies. Unfortunately, none
of the above cited papers explicitly links to the gen-
erated attribution maps. Easy access to a wide vari-
ety of such feature attribution maps, across models,
datasets and explainers, however, holds a lot of
potential. A central hub

1. would increase the comparability and replica-
bility of explainability research,

2. would mitigate the computational burden,
3. would mitigate the implementational burden

since in-depth expert knowledge of the ex-
plainers and models is required.

Put differently, a central data hub containing a wide
variety of feature attribution maps and offering easy
access to them would (1) democratize explainabil-
ity research to a certain degree, and (2) contribute
to green NLP (Strubell et al., 2019) and green XAI
(Schwarzenberg et al., 2021) by circumventing re-
dundant computations.

For this reason, we compiled THERMOSTAT,1

an easily accessible data hub that contains a large
1The term Thermostat is inspired by the Greek word for

“warm” (“thermos”), hinting at heatmaps being a central appli-
cation of our contribution. “stat” can mean both (1) “immedi-
ately” referring to the immediate access of attribution maps,
and (2) “statistics” hinting at cumulative statistics applications.87

1 import thermostat
2 data = thermostat.load("imdb-bert-lig")
3 example = data[0]

4 example.render()

Figure 1: Code examples. Top: Loading a dataset and extracting a single instance. Bottom: Visualizing the
instance as a heatmap on token level.

quantity of feature attribution maps, from numer-
ous explainers, for multiple models, trained on dif-
ferent tasks. Alongside the dataset, we publish a
compatible library with analysis and convenience
functions. In this paper, we introduce the data hub,
showcase the ease of access and discuss use cases.

2 THERMOSTAT

THERMOSTAT is intended to be a continuous,
collaborative project. As new models, datasets
and explainers are published, we invite the
community to extend THERMOSTAT. In what
follows, we describe the current state which
is published under https://github.com/
DFKI-NLP/thermostat.

2.1 Demonstration
First, we demonstrate the ease of access. Down-
loading a dataset requires just two lines of code,
as illustrated in the snippet in Fig. 1, in which we
download the attribution maps as returned by the
(Layer) Integrated Gradients explainer (Sundarara-
jan et al., 2017) for BERT classifications (Devlin
et al., 2019) on the IMDb test set (Maas et al.,
2011). In addition to the list of feature attribu-
tions, the input IDs, the true label of every instance
given by the underlying dataset, and the logits of
the model’s predictions are shipped. Switching the
explainer, model or dataset only requires to change
the configuration identifier string (“imdb-bert-lig”
in Fig. 1). All configuration identifiers in THERMO-
STAT consist of three coordinates: dataset, model,
and explainer. A visualization tool which returns

heatmaps like the one shown in Fig. 1 is also con-
tained in the accompanying library.

The object that holds the data after download in-
herits from the Dataset class of the datasets
library (Lhoest et al., 2021). This is convenient, be-
cause data is cached and versioned automatically in
the background and processed efficiently in paral-
lel. Furthermore, datasets provides many con-
venience functions which can be applied directly,
such as filtering and sorting.

Let us see how this helps us to efficiently com-
pare models and explainers in THERMOSTAT. Let
us first compare models. In what follows we con-
sider BERT (Devlin et al., 2019) and ELECTRA
(Clark et al., 2020), both trained on the MultiNLI
(Williams et al., 2018) dataset. We are particularly
interested in instances that the two models disagree
on. Downloading the explanations and filtering for
disagreements is again only a matter of a few lines,
as demonstrated in Fig. 2a.

We derive explanations for the output neuron
with the maximum activation. In Fig. 2b, we
observe that the Occlusion (Zeiler and Fergus,
2014) explainer does not attribute much impor-
tance to the phrase “can be lost in an instant”.
This is plausible since the heatmap explains a
misclassification: the maximum output activation
stands for entailment, but the correct label is
contradiction and the phrase certainly is a
signal for contradiction. In contrast, in the
case of ELECTRA (Fig. 2c) which correctly clas-
sified the instance the signal phrase receives much
higher importance scores.

88

1 import thermostat
2 bert = thermostat.load("multi_nli-bert-occ")
3 electra = thermostat.load("multi_nli-electra-occ")
4 disagreement = [(b, e) for (b, e) in zip(bert, electra)
5 if b.predicted_label != e.predicted_label]
6 instance_bert, instance_electra = disagreement[51] # 51: short & interesting

(a) Code example that loads two THERMOSTAT datasets. We create a list of instances (disagreement) where the two models
(BERT and ELECTRA) do not agree with each other regarding the predicted labels. We then select a demonstrative instance
from it.

7 instance_bert.render()

(b) Heatmap visualization of the selected instance from
Fig. 2a. BERT predicted "entailment" for this example,
while the true label is "contradiction".

8 instance_electra.render()

(c) Heatmap visualization of the selected instance from
Fig. 2a. ELECTRA correctly predicted "contradiction" for
this example.

Figure 2: Code examples for comparing models instance-wise.

After we have now demonstrated how to com-
pare models, let us compare explainers across
datasets, as done in previous works. Here, we partly
replicate the experiments of Neely et al. (2021).
The authors compute the rank correlation in terms
of Kendall’s τ between feature attribution maps.
If two explainers mostly agree on the importance
rank of input features, the value should be high; low
otherwise. The authors find that the Integrated Gra-
dients explainer and the LIME (Ribeiro et al., 2016)
explainer have a higher τ value (agree more) for
a MultiNLI model (.1794) than when used to rank
features for an IMDb-trained classifier (.1050).

Fig. 3 demonstrates how THERMOSTAT allows
to conduct such experiments concisely. The output
of the experiment in Fig. 3 reproduces the findings
of Neely et al. (2021) to a reasonable degree, i.e. the
τ value for MultiNLI (.1033) is larger than the τ
value for IMDb (.0257).2

2.2 Maintenance
However, explainers such as LIME involve several
hyperparameters (number of samples, sampling
method, similarity kernel, ...) and thus results can
deviate for other choices. THERMOSTAT datasets
are versioned and for each version a configuration
file is checked in that contains the hyperparameter

2Neely et al. (2021) compare DistilBERT (Sanh et al.,
2020) based models, we compare BERT-based models. They
further constrain their evaluation to 500 instances while we
are calculating the values for the entire datasets.

choices.
If new best practices or bugs emerge, e.g. in

terms of hyperparameters, an updated dataset can
be uploaded in a new version. This increases com-
parability and replicability.

There is also a seamless integration with Hug-
ging Face’s datasets as mentioned above. This
is why explanation datasets that are published
through datasets can be used in THERMO-
STAT directly. When contributing new explana-
tion datasets, users simply add the metadata about
the three coordinates and make sure that the fields
listed in Fig. 1 are contained. As soon as the dataset
is published on the community hub, it can be down-
loaded and parsed by THERMOSTAT. More details
are provided in the repository.3

2.3 Current State
After discussing use and maintenance, we will now
present the current state of THERMOSTAT. Please
recall that THERMOSTAT is intended to be a contin-
uous, collaborative project.

With the publication of this paper, we contribute
the explanations listed in Tab. 1. In total, the com-
pute time for generating the explanations already
amounts to more than 10,000 GPU hours; computa-
tional resources that the community does not have

3Users contributing to THERMOSTAT should be aware that
the THERMOSTAT project follows the Code of Ethics of ACL
and ACM.

89

1 import thermostat
2 from scipy.stats import kendalltau
3 lime, ig = thermostat.load("imdb-bert-lime"), thermostat.load("imdb-bert-lig")
4 lime, ig = lime.attributions.flatten(), ig.attributions.flatten()
5 print(kendalltau(lime, ig))
6 # KendalltauResult(correlation=0.025657302000906455, pvalue=0.0)

Figure 3: Code example for investigating the rank correlation between LIME and (Layer) Integrated Gradients
explanations on IMDb + BERT. The analogous calculation of Kendall’s τ for MultiNLI is left out for brevity. We
simply state the value in the last line.

to invest repeatedly now.4 Please note that the table
is organized around the three coordinates: datasets,
models, and explainers, the choices of which we
discuss in the following.

Datasets Currently, four datasets are included in
THERMOSTAT, namely IMDb (sentiment analysis,
Maas et al., 2011), MultiNLI (natural language
inference, Williams et al., 2018), XNLI (natural
language inference, Conneau et al., 2018) and AG
News (topic classification, Zhang et al., 2015). We
chose these datasets, because arguably, they are
prominently used in NLP research.

We hypothesize that instances that the model did
not encounter at training time are more informative
than known inputs. This is why we concentrated
our computational resources on the respective test
splits. In total, these amount to almost 50,000 in-
stances already.

Models The second coordinate in THERMOSTAT

is the model. Currently, five model architectures
are included, namely ALBERT (Lan et al., 2020),
BERT (Devlin et al., 2019), ELECTRA (Clark
et al., 2020), RoBERTa (Liu et al., 2019), and XL-
Net (Yang et al., 2019). We chose community-
trained fine-tuned classifiers as they are aptly avail-
able through the transformers library (Wolf
et al., 2020), several of which are provided by
TextAttack (Morris et al., 2020). The repository
that we publish can be used to quickly include
new models, if they are provided through the
transformers library.

Explainers Provided through the Captum library
(Kokhlikyan et al., 2020), there are five prominent
feature attribution methods included in THERMO-
STAT. (Layer) Gradient x Activation (Shrikumar
et al., 2017) is an efficient method without hyper-
parameters. Integrated Gradients (Sundararajan

4To produce the feature attribution maps, we used up to 24
NVIDIA GPUs in parallel, namely GTX 1080Ti, RTX 2080Ti,
RTX 3090, Quadro RTX 6000 and RTX A6000.

et al., 2017), LIME (Ribeiro et al., 2016), Occlu-
sion (Zeiler and Fergus, 2014) and Shapley Value
Sampling (Castro et al., 2009) can be considered
computationally challenging and involve hyper-
parameters. The choice of parameters in THER-
MOSTAT follows best practices and, as mentioned
above, is well-documented and can be updated and
extended.

3 Related Work

To the best of our knowledge, the closest work to
our contribution is the Language Interpretability
Tool (LIT) by Tenney et al. (2020) which offers
a graphical interface for exploring saliency maps,
counterfactual generation and the visualization of
attention and embeddings. We also draw connec-
tions to Hoover et al. (2020) and Lal et al. (2021)
who developed interfaces for analyzing the atten-
tion mechanism and embeddings of Transformer
architectures. These again are visualization and
analysis tools and as such complementary to the
collection of explanations that is our primary con-
tribution. Thus, an interface that bridges THERMO-
STAT and LIT, for instance, is an interesting future
direction.

There exist libraries, such as Captum
(Kokhlikyan et al., 2020) or transformers-interpret
(Pierse, 2021), that facilitate the generation of
neural explanations. These libraries do not,
however, free the user of the computational burden,
nor are they easily accessible to non-technical
researchers.

As noted in Section 2, the datasets library
(Lhoest et al., 2021) functions as the backbone of
THERMOSTAT. The novelties our work brings with
it are (1) attributions from a variety of models that
took over 10,000 GPU hours to compute in total,
and (2) the support for explainability-specific visu-
alizations and statistics like heatmap visualization
and rank correlation between multiple explainers.

Finally, tangentially related to our work are

90

Dataset Split
(Subset)

in-
stances

#
classes

Explainers

IMDb Test 25000 2 LGxA LIG LIME Occ SVS
textattack/albert-base-v2-imdb (ALBERT)

textattack/bert-base-uncased-imdb (BERT)

monologg/electra-small-finetuned-imdb (ELECTRA)

textattack/roberta-base-imdb (RoBERTa)

textattack/xlnet-base-cased-imdb (XLNet)

MultiNLI Validation
Matched

9815 3 LGxA LIG LIME Occ SVS

prajjwal1/albert-base-v2-mnli (ALBERT)

textattack/bert-base-uncased-MNLI (BERT)

howey/electra-base-mnli (ELECTRA)

textattack/roberta-base-MNLI (RoBERTa)

textattack/xlnet-base-cased-MNLI (XLNet)

XNLI Test (en) 5010 3 LGxA LIG LIME Occ SVS
prajjwal1/albert-base-v2-mnli (ALBERT)

textattack/bert-base-uncased-MNLI (BERT)

howey/electra-base-mnli (ELECTRA)

textattack/roberta-base-MNLI (RoBERTa)

textattack/xlnet-base-cased-MNLI (XLNet)

AG News Test 7600 4 LGxA LIG LIME Occ SVS
textattack/albert-base-v2-ag-news (ALBERT)

textattack/bert-base-uncased-ag-news (BERT)

textattack/roberta-base-ag-news (RoBERTa)

Table 1: Overview of feature attribution maps in THERMOSTAT. Dark green cells (86 out of 90) denote available
configurations. Gray cells denote configurations that are work-in-progress.

datasets that supply explanations on top of texts
and labels, usually collected from human anno-
tators. e-SNLI (Camburu et al., 2018) probably
is the most famous example in this line of work.
The reader is referred to Wiegreffe and Marasović
(2021) for a concise survey. In contrast to our work,
the above mentioned papers present human ground
truths instead of machine-generated explanations.

4 Conclusion

We present THERMOSTAT, an easily accessible data
hub containing a large collection of NLP model
explanations from prominent and mostly expensive
explainers. We demonstrate the ease of access,
extensibility and maintainability. New datasets can
be added easily. Furthermore, we showcase an
accompanying library and outline use cases. Users
can compare models and explainers across a variety
of datasets.

THERMOSTAT democratizes explainability re-

search to a certain degree as it mitigates the com-
putational (environmentally and financially) and
implementational burden. Machine-generated ex-
planations become accessible to non-technical re-
searchers. Furthermore, comparability and replica-
bility are increased.

It becomes apparent when consulting the litera-
ture in Section 1 that interpretation beyond classi-
fication (e.g. machine translation) is still an open
problem (Wallace et al., 2020). Hence, we focus
on these four text classification problems that are
well-trodden paths.

Acknowledgements

We would like to thank Lisa Raithel, Steffen Cas-
tle, and David Harbecke for their valuable feed-
back. This work has been supported by the Ger-
man Federal Ministry of Education and Research
as part of the projects XAINES (01IW20005) and
CORA4NLP (01IW20010).

91

References
Leila Arras, Franziska Horn, Grégoire Montavon,

Klaus-Robert Müller, and Wojciech Samek. 2016.
Explaining predictions of non-linear classifiers in
NLP. In Proceedings of the 1st Workshop on Repre-
sentation Learning for NLP, pages 1–7, Berlin, Ger-
many. Association for Computational Linguistics.

Leila Arras, Grégoire Montavon, Klaus-Robert Müller,
and Wojciech Samek. 2017. Explaining recurrent
neural network predictions in sentiment analysis. In
Proceedings of the 8th Workshop on Computational
Approaches to Subjectivity, Sentiment and Social
Media Analysis, pages 159–168, Copenhagen, Den-
mark. Association for Computational Linguistics.

Pepa Atanasova, Jakob Grue Simonsen, Christina Li-
oma, and Isabelle Augenstein. 2020. A diagnostic
study of explainability techniques for text classifi-
cation. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 3256–3274, Online. Associa-
tion for Computational Linguistics.

Yonatan Belinkov and James Glass. 2019. Analy-
sis methods in neural language processing: A sur-
vey. In Transactions of the Association for Compu-
tational Linguistics, volume 7, pages 49–72.

Francesco Bodria, Fosca Giannotti, Riccardo Guidotti,
Francesca Naretto, Dino Pedreschi, and Salvatore
Rinzivillo. 2021. Benchmarking and survey of ex-
planation methods for black box models. arXiv
preprint arXiv:2102.13076.

Oana-Maria Camburu, Tim Rocktäschel, Thomas
Lukasiewicz, and Phil Blunsom. 2018. e-snli: Nat-
ural language inference with natural language expla-
nations. In Advances in Neural Information Process-
ing Systems, volume 31. Curran Associates, Inc.

Javier Castro, Daniel Gómez, and Juan Tejada. 2009.
Polynomial calculation of the shapley value based
on sampling. Comput. Oper. Res., 36(5):1726–1730.

Hanjie Chen, Song Feng, Jatin Ganhotra, Hui
Wan, Chulaka Gunasekara, Sachindra Joshi, and
Yangfeng Ji. 2021. Explaining neural network pre-
dictions on sentence pairs via learning word-group
masks. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 3917–3930, Online. Association for
Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: pre-
training text encoders as discriminators rather than
generators. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. XNLI: Evaluating

cross-lingual sentence representations. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 2475–2485,
Brussels, Belgium. Association for Computational
Linguistics.

Marina Danilevsky, Kun Qian, Ranit Aharonov, Yan-
nis Katsis, Ban Kawas, and Prithviraj Sen. 2020. A
survey of the state of explainable AI for natural lan-
guage processing. In Proceedings of the 1st Con-
ference of the Asia-Pacific Chapter of the Associa-
tion for Computational Linguistics and the 10th In-
ternational Joint Conference on Natural Language
Processing, pages 447–459, Suzhou, China. Associ-
ation for Computational Linguistics.

Nicola De Cao, Michael Sejr Schlichtkrull, Wilker
Aziz, and Ivan Titov. 2020. How do decisions
emerge across layers in neural models? interpreta-
tion with differentiable masking. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 3243–
3255, Online. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Shuoyang Ding and Philipp Koehn. 2021. Evaluating
saliency methods for neural language models. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5034–5052, Online. Association for Compu-
tational Linguistics.

Gabriel Erion, Joseph Janizek, Pascal Sturmfels, Scott
Lundberg, and Su-In Lee. 2021. Improving perfor-
mance of deep learning models with axiomatic at-
tribution priors and expected gradients. Nature Ma-
chine Intelligence, pages 1–12.

Peter Hase and Mohit Bansal. 2020. Evaluating ex-
plainable AI: Which algorithmic explanations help
users predict model behavior? In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5540–5552, Online. As-
sociation for Computational Linguistics.

Peter Hase, Harry Xie, and Mohit Bansal. 2021. Search
methods for sufficient, socially-aligned feature im-
portance explanations with in-distribution counter-
factuals. arXiv preprint arXiv:2106.00786.

Benjamin Hoover, Hendrik Strobelt, and Sebastian
Gehrmann. 2020. exBERT: A Visual Analysis Tool
to Explore Learned Representations in Transformer
Models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:

92

System Demonstrations, pages 187–196, Online. As-
sociation for Computational Linguistics.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. 2015.
Visualizing and understanding recurrent networks.
arXiv preprint arXiv:1506.02078.

Narine Kokhlikyan, Vivek Miglani, Bilal Alsallakh,
Miguel Martin, and Orion Reblitz-Richardson. 2021.
Investigating sanity checks for saliency maps with
image and text classification. arXiv preprint
arXiv:2106.07475.

Narine Kokhlikyan, Vivek Miglani, Miguel Martin,
Edward Wang, Bilal Alsallakh, Jonathan Reynolds,
Alexander Melnikov, Natalia Kliushkina, Carlos
Araya, Siqi Yan, and Orion Reblitz-Richardson.
2020. Captum: A unified and generic model in-
terpretability library for pytorch. arXiv preprint
arXiv:2009.07896.

Vasudev Lal, Arden Ma, Estelle Aflalo, Phillip Howard,
Ana Simoes, Daniel Korat, Oren Pereg, Gadi Singer,
and Moshe Wasserblat. 2021. InterpreT: An interac-
tive visualization tool for interpreting transformers.
In Proceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: System Demonstrations, pages 135–
142, Online. Association for Computational Linguis-
tics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Piyawat Lertvittayakumjorn and Francesca Toni. 2019.
Human-grounded evaluations of explanation meth-
ods for text classification. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5195–5205, Hong Kong,
China. Association for Computational Linguistics.

Quentin Lhoest, Patrick von Platen, Thomas Wolf,
Albert Villanova del Moral, Yacine Jernite, Suraj
Patil, Mariama Drame, Julien Chaumond, Julien
Plu, Lewis Tunstall, Joe Davison, Simon Bran-
deis, Teven Le Scao, Victor Sanh, Kevin Can-
wen Xu, Nicolas Patry, Angelina McMillan-Major,
Philipp Schmid, Sylvain Gugger, Clément Delangue,
Théo Matussière, Lysandre Debut, Stas Bekman,
and François Lagunas. 2021. huggingface/datasets:
1.8.0.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2017. Un-
derstanding neural networks through representation
erasure. arXiv preprint arXiv:1612.08220.

Frederick Liu and Besim Avci. 2019. Incorporating
priors with feature attribution on text classification.

In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
6274–6283, Florence, Italy. Association for Compu-
tational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 142–150, Port-
land, Oregon, USA. Association for Computational
Linguistics.

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. 2020. TextAttack: A frame-
work for adversarial attacks, data augmentation, and
adversarial training in NLP. In Proceedings of the
2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations,
pages 119–126, Online. Association for Computa-
tional Linguistics.

Michael Neely, Stefan F. Schouten, Maurits J. R.
Bleeker, and Ana Lucic. 2021. Order in the
court: Explainable ai methods prone to disagree-
ment. arXiv preprint arXiv:2105.03287.

Anphi Nguyen and María Rodríguez Martínez. 2020.
On quantitative aspects of model interpretability.
arXiv preprint arXiv:2007.07584.

Dong Nguyen. 2018. Comparing automatic and hu-
man evaluation of local explanations for text clas-
sification. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 1069–
1078, New Orleans, Louisiana. Association for Com-
putational Linguistics.

Charles Pierse. 2021. transformers-interpret v0.5.1.
GitHub. Accessed: 2021-06-29.

Nina Poerner, Hinrich Schütze, and Benjamin Roth.
2018. Evaluating neural network explanation meth-
ods using hybrid documents and morphosyntactic
agreement. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 340–350, Mel-
bourne, Australia. Association for Computational
Linguistics.

Grusha Prasad, Yixin Nie, Mohit Bansal, Robin Jia,
Douwe Kiela, and Adina Williams. 2020. To what
extent do human explanations of model behavior
align with actual model behavior? arXiv preprint
arXiv:2012.13354.

93

Danish Pruthi, Bhuwan Dhingra, Livio Baldini Soares,
Michael Collins, Zachary C. Lipton, Graham Neu-
big, and William W. Cohen. 2020. Evaluating expla-
nations: How much do explanations from the teacher
aid students? arXiv preprint arXiv:2012.00893.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. "why should i trust you?": Explain-
ing the predictions of any classifier. In Proceedings
of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD
’16, page 1135–1144, New York, NY, USA. Asso-
ciation for Computing Machinery.

Andrew Slavin Ross, Michael C. Hughes, and Finale
Doshi-Velez. 2017. Right for the right reasons:
Training differentiable models by constraining their
explanations. In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelli-
gence, IJCAI-17, pages 2662–2670.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2020. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Robert Schwarzenberg, Nils Feldhus, and Sebastian
Möller. 2021. Efficient explanations from empirical
explainers. arXiv preprint arXiv:2103.15429.

Avanti Shrikumar, Peyton Greenside, and Anshul Kun-
daje. 2017. Learning important features through
propagating activation differences. In Proceedings
of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine
Learning Research, pages 3145–3153. PMLR.

Sanchit Sinha, Hanjie Chen, Arshdeep Sekhon,
Yangfeng Ji, and Yanjun Qi. 2021. Perturbing inputs
for fragile interpretations in deep natural language
processing. arXiv preprint arXiv:2108.04990.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 3645–3650, Florence, Italy.
Association for Computational Linguistics.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Pro-
ceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Ma-
chine Learning Research, pages 3319–3328. PMLR.

Ian Tenney, James Wexler, Jasmijn Bastings, Tolga
Bolukbasi, Andy Coenen, Sebastian Gehrmann,
Ellen Jiang, Mahima Pushkarna, Carey Radebaugh,
Emily Reif, and Ann Yuan. 2020. The language in-
terpretability tool: Extensible, interactive visualiza-
tions and analysis for NLP models. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstra-
tions, pages 107–118, Online. Association for Com-
putational Linguistics.

Michael Tsang, Sirisha Rambhatla, and Yan Liu. 2020.
How does this interaction affect me? interpretable
attribution for feature interactions. In Advances in
Neural Information Processing Systems, volume 33,
pages 6147–6159. Curran Associates, Inc.

Eric Wallace, Matt Gardner, and Sameer Singh. 2020.
Interpreting predictions of NLP models. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing: Tutorial Abstracts,
pages 20–23, Online. Association for Computational
Linguistics.

Sarah Wiegreffe and Ana Marasović. 2021. Teach me
to explain: A review of datasets for explainable nlp.
arXiv preprint arXiv:2102.12060.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural In-
formation Processing Systems, volume 32. Curran
Associates, Inc.

Fan Yin, Zhouxing Shi, Cho-Jui Hsieh, and Kai-
Wei Chang. 2021. On the faithfulness measure-
ments for model interpretations. arXiv preprint
arXiv:2104.08782.

Muhammad Bilal Zafar, Michele Donini, Dylan Slack,
Cedric Archambeau, Sanjiv Das, and Krishnaram
Kenthapadi. 2021. On the lack of robust inter-
pretability of neural text classifiers. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 3730–3740, Online. Associa-
tion for Computational Linguistics.

Matthew D. Zeiler and Rob Fergus. 2014. Visualizing
and understanding convolutional networks. In Com-
puter Vision – ECCV 2014, pages 818–833, Cham.
Springer International Publishing.

94

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems, volume 28. Curran Associates, Inc.

95

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 96–105
November 7–11, 2021. ©2021 Association for Computational Linguistics

LMDIFF: A Visual Diff Tool to Compare Language Models

Hendrik Strobelt
IBM Research

MIT-IBM Watson AI Lab
hendrik@strobelt.com

Benjamin Hoover
IBM Research

MIT-IBM Watson AI Lab
benjamin.hoover@ibm.com

Arvind Satyanarayan
MIT CSAIL

Massachusetts Institute of Technology
arvindsatya@mit.edu

Sebastian Gehrmann
Google Research

Harvard University
gehrmann@google.com

Abstract

While different language models are ubiqui-
tous in NLP, it is hard to contrast their out-
puts and identify which contexts one can han-
dle better than the other. To address this ques-
tion, we introduce LMDIFF, a tool that visu-
ally compares probability distributions of two
models that differ, e.g., through finetuning, dis-
tillation, or simply training with different pa-
rameter sizes. LMDIFF allows the generation
of hypotheses about model behavior by inves-
tigating text instances token by token and fur-
ther assists in choosing these interesting text
instances by identifying the most interesting
phrases from large corpora. We showcase the
applicability of LMDIFF for hypothesis gener-
ation across multiple case studies. A demo is
available at http://lmdiff.net.

1 Introduction

Interactive tools play an important role when ana-
lyzing language models and other machine learning
models in natural language processing (NLP) as
they enable the qualitative examination of exam-
ples and help assemble anecdotal evidence that
a model exhibits a particular behavior in certain
contexts. This anecdotal evidence informs hypothe-
ses that are then rigorously studied (e.g., Tenney
et al., 2019; Belinkov and Glass, 2019; Rogers
et al., 2020). Many such tools exist, for example to
inspect attention mechanisms (Hoover et al., 2020;
Vig, 2019), explain translations through nearest
neighbors (Strobelt et al., 2018), investigate neuron
values (Dalvi et al., 2019; Strobelt et al., 2017),
and many more that focus on the outputs of mod-
els (e.g., Cabrera et al., 2019). There also exist
multiple frameworks that aggregate methods em-
ployed in the initial tools to enable others to extend

or combine them (Pruksachatkun et al., 2020; Wal-
lace et al., 2019; Tenney et al., 2020).

However, notably absent from the range of avail-
able tools are those that aim to compare distribu-
tions produced by different models. While compar-
isons according to performance numbers are com-
mon practice in benchmarks (Wang et al., 2018;
Hu et al., 2020; Gehrmann et al., 2021), there ex-
ists only rudimentary support in existing tools for
inspecting how model outputs compare for specific
tasks or documents. Yet, this problem motivates
many current studies, including questions about
how models handle gendered words, whether do-
main transfer is easy between models, what hap-
pens during finetuning, where differences lie be-
tween models of different sizes, or how multilin-
gual and monolingual models differ.

To fill this gap, we introduce LMDIFF: an in-
teractive tool for comparing language models by
qualitatively comparing per-token likelihoods. Our
design provides a global and a local view: In the
global step, we operate on an entire corpus of texts,
provide aggregate statistics across thousands of
data points, and help users identify the most in-
teresting examples. An interesting example can
then be further analyzed in the local view. Fine-
grained information about the model outputs for
the chosen example is visualized, including the
probability of each token and the difference in rank
within each model’s distribution. Similar to other
visual tools, LMDIFF helps form hypotheses that
can then be tested through rigorous statistical anal-
yses. Across six case studies, we demonstrate how
it enables an effective exploration of model differ-
ences and motivates future research. A deployed
version of LMDIFF with six corpora and nine mod-
els is available at http://lmdiff.net/ and

96

Global View

Instance View

(f)

(a)

(b)

(c)

(d)

(e)

Figure 1: LMDIFF interface. The Global View (a,b) allows finding interesting examples which are then selected
for in-depth investigation in the Instance View (c-f).

its code is released at https://github.com/
HendrikStrobelt/LMdiff (Apache 2.0 li-
cense) with support to easily add additional models,
corpora, or evaluation metrics.

2 Methods

LMDIFF compares two models m{1,2} by ana-
lyzing their probability distributions at the posi-
tion of each token X̂1:N in a specific text. A
correct token’s probability distribution pmj(Xi =

X̂i|X1:i−1) is easily influenced the scaling factor
β in the function p = softmax(βx) used to con-
vert logits x into probabilities p (though two distri-
butions are still comparable if both use the same
β). For this reason, we also include the correct to-
ken’s rank in pmj(Xi|X1:i−1). From the probabili-
ties and ranks, we derive eight measures of global
difference (comparison over a corpus) and eight
measures of local difference (comparison over an
example). The global measures are the (1) differ-
ence in rank of each token, (2) the difference in
rank after clamping a rank to a maximum of 50,
(3) the difference in probability of each token, and
(4) the number of different tokens within the top-
10 predicted tokens.1 For each measure, we allow
filtering by its average or maximum in a sequence.

1Other metrics like the KL-Divergence were omitted from
the final interface since the numbers were too hard to interpret.

To compare two models on a single example, we
either directly visualize pm1(Xi = X̂i), pm2(Xi =
X̂i), pm1(Xi = X̂i)−pm2(Xi = X̂i), or the equiv-
alent measures but focusing on the rank instead of
the probability. As for the global measures, we
present rank differences in both an unclamped and
a clamped version. The clamped version surfaces
more interesting examples; e.g., the difference be-
tween a token of rank 1 and 5 is more important
than the rank difference between 44 and 60. The
visual interface maps the difference to a blue-red
scale (see Figure 1d) and visualizations of a single
model to a gray scale.

2.1 Visual Interface

Figure 1 shows the LMDIFF interface. The user
starts their investigation by specifying the two mod-
els m1 and m2 and a target text d. This target may
either be entered into the free-text field (1a) or cho-
sen from the list of suggested interesting text snip-
pets (1b, see Section 2.2). Upon selection of the
text, the likelihoods, ranks, and difference metrics
for m1 and m2 for each token of d are computed.

Users can compare results using the instance
view, which leverages multiple visual idioms to
show aspects of the models’ performance. The step
plots (Figure 1c) show the absolute values for like-
lihoods and ranks, with color indicating the model.

97

Dataset Description

WinoBias
(Zhao et al., 2018)

Collection of 3,160 sentences using different resolution systems to understand gender bias
issues. We include two versions: (a) just sentence, (b) sentence with addendum (e.g., “he
refers to doctor”)

CommonsenseQA
(Talmor et al., 2019)

Collection of 12,102 questions with one correct answer and four distractor answers. For
our use cases, we concatenate the question and the correct answer to one single string.

MRPC (Dolan et al., 2004) Collection of 5,801 sentence pairs collected from newswire articles.

GPT2-GEN
(Radford et al., 2019a)

Collection of generated sentences from GPT-2 models. For each model the dataset contains
250K random samples (temperature 1, no truncation) and 250K samples generated with
Top-K 40 truncation. We use the subset GPT-2-762M k40.

Short Jokes (Moudgil, 2017) Collection of 231,657 short jokes provided as Kaggle challenge for humor understanding.

BioLang
(Liechti et al., 2017)

Collection of 12 million abstracts and captions from open access Europe PubMedCentral
processed by the EMBO SourceData project

Model

GPT-2 (Radford et al., 2019b) The decoder of a Transformer trained on OpenWebText
DistilGPT-2 A smaller Transformer trained to replicate GPT-2 output
GPT-2-ArXiv GPT-2 finetuned on a large arxiv dataset
GPT-2-ArXiv-NLP GPT-2 finetuned only on arxiv NLP papers

BERT-base-uncased
(Devlin et al., 2018)

Masked language model with case-insensitive tokenization.

DistilBERT (Sanh et al., 2019) A smaller Transformer trained to replicate BERT output
DistilBERT-SST-2 distilBERT finetuned on the SST-2 (Socher et al., 2013) dataset

GPT-2-German GPT-2 trained on various German texts
GPT-2-German-Faust The German GPT-2 model finetuned on Faust I & II

Table 1: The default corpora and models found in the deployed version of LMDIFF. All models were taken from
Huggingface’s model hub. Horizontal lines group tokenization-compatible models.

Upon selecting a distance metric, it is mapped onto
the text (1d) using a red-white-blue diverging color
scheme: white for no or minimal distance, red/blue
for values in favor of a corresponding model. For
instance, a token is colored blue if the rank of that
token under model m2 is lower than under m1 or
its likelihood higher. The highlighting on hover
between both plots (1c+d) is synchronized, to help
spot examples where the measures diverge.

The histogram (1e) indicates the distribution of
measures for the text. If the centroid of the his-
togram leans decidedly to one side, it indicates that
one model is better at reproducing the given text
(observe the shift for red in Figure 1e). The token
detail view (1f), shows all difference measures for
a selected token and allows for a direct comparison
of the top-k predictions for each model at the token
position. E.g., in Figure 1f, the token “that” has
rank 1 in model m1 but rank 2 in m2. Clicking
tokens makes the detail view for those tokens stick
to the bottom of the page to enable investigations
of multiple tokens in the same sequence.

2.2 Finding Interesting Candidates
To facilitate searching for interesting texts, we ex-
tract examples from a large corpus of texts for
which the two models differ the most. The cor-
pus is prepared via an offline preprocessing step
in which the differences between the models are
scored according to the methods outlined above.
Each example is compared using different aggrega-
tion methods, like averaging, finding the median,
the upper quartile, or the top-k of differences in
likelihoods, ranks, and clamped ranks. The 50
highest-ranking text snippets for each measure are
considered as interesting. The interface (Figure 1b)
shows a histogram of the distribution of a measure
over the entire corpus and indicates through black
stripes where interesting outlier samples are located
fall on the histogram. That way, users can get an
overview of how the two models compare across
the corpus while also being able to view the most
interesting samples.

3 Supported Data and Models

The deployed version of LMDIFF currently sup-
ports six datasets and nine models, detailed in Ta-
ble 1. All pretrained models were taken from Hug-

98

Figure 2: The global view on the CommonsenseQA
dataset when comparing GPT-2 and DistilGPT-2. The
histogram depicts the distribution of a specific measure
(Average Clamped 50 Rank) over the reference corpus.
The short black lines depict the values of the 20 highest
values.

gingface’s model hub2. Section 5 explains how to
use LMDIFF with many more custom models and
datasets.

4 Case Studies

As discussed above, this tool aims to generate hy-
potheses by discovering anecdotal evidence for cer-
tain model behavior. It will not be able to give
definite proofs for discovered hypotheses, which
should instead be explored more in-depth in follow-
up studies. As such, in this section, we provide
examples of new kinds of questions that LMD-
IFF helps investigate and explore further questions
inspired by past findings.

4.1 Which model is better at commonsense
reasoning?

Prompt-based approaches have become a popu-
lar way to test whether a model can perform a
task (Brown et al., 2020). A relevant question to
this is whether models can perform tasks that re-
quire memorization of commonsense knowledge
(e.g., the name of the company that develops Win-
dows, or the colors of the US flag) (Jiang et al.,
2020). For our case study, we format the Common-
senseQA (Talmor et al., 2019) dataset to follow a
“Question? Answer” schema, such that we can com-
pare the probability of the answer under different
models. Comparing GPT-2 (red) and its distilled
variant DistilGPT-2 (blue), we can observe in Fig-
ure 2 that overall, GPT-2 performs much better on
the task, commonly ranking the correct answer be-
tween 1 and 5 ranks higher in its distribution. An
interesting example shown in Figure 3 paints a par-

2https://huggingface.co/models

Figure 3: A commonsenseQA example in which GPT-
2 performs much better than DistilGPT-2. Showing
Clamped Rank difference.

Figure 4: Comparing GPT-2 vs DistilGPT-2 on GPT-2
generated text shows that it is easy to spot which model
produced it.

ticularly grim picture for DistilGPT-2 — while the
standard model ranks the correct answer third, the
distilled variant ranks it 466th. This leads to the
questions of why this bit of knowledge (and those
of other outliers) was squashed in the distillation
process, whether there is commonality between the
forgotten knowledge, and it motivates the develop-
ment of methods that prevent this from happening.

4.2 Which model produced a text?

Prior work has investigated different ways to de-
tect whether a text was generated by a model or
written by a human, either by training classifiers on
samples from a model (Zellers et al., 2019; Brown
et al., 2020) or directly using a models probability
distribution (Gehrmann et al., 2019). A core in-
sight from these works was that search algorithms
(beam search, top-k sampling, etc.) tend to sam-
ple from the head of a models’ distribution. That
means that it is visually easy to detect if a model
generated a text. With LMDIFF, we extend upon
this insight to point to which model generated a
text — if a model generated a text, the text should
be consistently more likely under that model than
under other similar models. While our tool does
not allow us to test this hypothesis at scale, we can

99

Figure 5: Winobias example with addendum for GPT-
2 vs DistilGPT-2 showing Clamped Rank difference.
Interesting since him/her probability rank switches be-
tween models and only distil fails at the addendum task.

find clear anecdotal evidence shown in Figure 4. In
the figure, we compare the probabilities of GPT-2
and DistilGPT-2 on a sample of GPT-2 generated
text. We observe the consistent pattern that GPT-
2 assigns an equal or higher likelihood to almost
every token in the text.

4.3 Which model is more prone to be
overconfident in coreference?

We next investigate whether one model has learned
spurious correlations in coreference tasks, us-
ing our augmented version of the WinoBias
dataset (Zhao et al., 2018). Since we are comparing
language models, we modified the text to add the
string “[pronoun] refers to the [profession]”. We
can then use the detail view to look at the prob-
abilities of the pronoun in the original sentence
and the probability of the disambiguating mention
of the profession. In our example (Figure 5), we
again compare GPT-2 (red) and DistilGPT-2 (blue).
Curiously, the distillation process flipped the or-
der of the predicted pronouns “him” and “her”.
Moreover, DistilGPT-2 fails to complete the sec-
ond sentence while GPT-2 successfully predicts
“Tailor” as the most probable continuation, indi-
cating that DistilGPT-2 did not strongly associate
the pronoun with the profession. This case study
motivates further investigation of cases where dis-
tillation does not maintain the expected ranking
of continuations. A similar effect has previously
been detected in distillation processes for computer
vision models (Hooker et al., 2020).

4.4 What predictions are affected the most by
finetuning?

Other, more open-ended, qualitative comparisons
that are enabled through LMDIFF aim to under-
stand how a model changes when it is finetuned on
a specific task or documents from a specific domain.
The finetuning process can impact prediction both
in the downstream domain and in not anticipated,
unrelated other domains.

Figure 6: GPT-2 vs GPT-Arxiv-nlp on an abstract of an
NLP paper.

Figure 7: GPT2-German vs GPT2-German-Faust on
a snippet from the 1668 book “Simplicius Simplicis-
simus” using the Clamped Rank difference.

In Domain In Figure 6, we show a comparison
between GPT-2 and GPT-2-ArXiv-NLP on an ab-
stract of an NLP paper, highlighting the probabil-
ity difference. As expected, NLP-specific terms
(WMT BLEU, model, attention, etc.) tend to be
more likely under the finetuned model. But, inter-
estingly, the name of languages and Transformer
are both more likely under the original model. This
finding may warrant a deeper investigation for pos-
sible causes and whether this phenomenon persists
across other contexts.

Out of Domain Out-of-domain tests can be use-
ful for checking whether the finetuning process led
to some transfer learning, or to test for catastrophic
forgetting. In our case study, we compare GPT-2-
German before and after finetuning on Goethe’s

100

Faust part I (1808) and II (1832). We hypothesized
that the contemporary model would not be able to
handle other works of literature from a similar time-
period as well as the Faust-model, and thus tested
on various snippets from books of the years 1200
to 1900. Our sample from the book Simplicius
Simplicissimus (1668) (Figure 7) is representative
of the consistent finding that GPT-2-German per-
forms better than the Faust variant. This could have
many reasons — the model may have overfit on the
Faust-style of writing, the investigated periods of
literature may differ too much, or they may differ
too little from contemporary German.

4.5 Finding dataset errors

While not the original goal of LMDIFF, we ob-
served that in some cases the outlier detection
method could also be used to find outlier data in-
stead of examples where models differ significantly.
One such example occurred when comparing GPT-
ArXiv to GPT-2 on the BioLang dataset. It appears
that GPT-2 is much better at modeling repetitive,
nonsensical character sequences which were thus
surfaced through the algorithm (see Appendix A).

5 System Description

All comparisons in LMDIFF begin with three pro-
vided arguments: a dataset containing the interest-
ing phases to analyze, and two comparable Trans-
former models. LMDIFF wraps Huggingface Trans-
formers (Wolf et al., 2020) and can use any of their
pretrained autoregressive or masked language mod-
els from their model hub3 or a local directory. Two
models are comparable if they use the same tok-
enization scheme and vocabulary. This is required
such that a phrase passed to either of them will have
an identical encoding, with special tokens added in
the same locations.

LMDIFF then does the work of recording each
model’s predictions across the dataset into an Anal-
ysisCache. Each token in each phrase of the dataset
is analyzed for its “rank” and “probability”. We
define a token’s rank as the affinity of the LM to
predict the token relative to all other tokens, where
a rank of 1 indicates it is the most favorable to-
ken, and the probability is computed from a direct
softmax of the token’s logit. Other useful infor-
mation is also stored, such as the top-10 tokens
(and their probabilities) that would have been pre-
dicted in that token’s spot. This information can

3https://huggingface.co/models

then be compared to other caches and explored in
the visual interface. The interface can also be used
independently of cache files to compare models on
individual inputs.

The modular design separating datasets, mod-
els, and their caches makes it easy to compare the
differences between many different models on dis-
tinct datasets. Once a cache has been made of a
(model, dataset_D) pair, it can be compared to any
other cache of a (comparable_model, dataset_D)
pair within seconds. More information is provided
in Appendix B.

Adding models and datasets It is easy to load
additional models and datasets. First, ensure that
the model can be loaded through the Hugging-
face AutoModelWithLMHead and AutoTokenizer

function from_pretrained(...) which supports
loading from a local directory. The following script
prepares two models and a dataset for comparison:

python scripts/preprocess.py all \
[OPTIONS] M1 M2 DATASET \
--output-dir OUT

- M1 = Path (or name) of HF model 1
- M2 = Path (or name) of HF model 2
- DATASET = Path to dataset.txt
- OUT = Where to store outputs

The output configuration directory OUT can be
passed directly to the LMDIFF server and interface
which will automatically load the new data:

python backend/server/main.py \
--config DIR

- DIR = Contains preprocessed outputs

The interface works equally well to compare two
models on individual examples without a prepro-
cessed cache:

python backend/server/main.py \
--m1 MODEL1 --m2 MODEL2

6 Discussion and Conclusion

We presented LMDIFF, a tool to visually inspect
qualitative differences between language models
based on output distributions. We show in several
use cases how finding specific text snippets and an-
alyzing them token-by-token can lead to interesting
hypotheses.

We emphasize that LMDIFF by itself does not
provide any definite answers to these hypotheses by
itself – it cannot, for example, show which model

101

is generally better at a given task. To answer these
kind of questions, statistical analysis is required.

A design limitation of LMDIFF is that it relies
on compatible models. Because the tool is based
on per-token model outputs and apples-to-apples
comparisons of distributions, only models that use
the same tokenization scheme and vocabulary can
be compared in the instance view. In future work,
we will work toward extending the compatibility
by introducing additional tokenization-independent
measures and visualizations.

Another extension of LMDIFF may probe for
memorized training examples and personal infor-
mation using methods proposed by Carlini et al.
(2020). As shown in Sections 4.2 and 4.5, we
can already identify text that was generated by
a model and leverage patterns that a model has
learned. Adding support to filter a corpus by mea-
sures in addition to finding outliers may help with
the analysis of potentially memorized examples.

7 Acknowledgements

We thank Ankur Parikh and Ian Tenney for helpful
comments on an earlier draft of this paper. This
work was supported by the MIT-IBM Watson AI
Lab. This work has been developed in part during
the BigScience Summer of Language Models 2021.

References
Yonatan Belinkov and James Glass. 2019. Analysis

methods in neural language processing: A survey.
Transactions of the Association for Computational
Linguistics, 7:49–72.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, De-
cember 6-12, 2020, virtual.

Ángel Alexander Cabrera, Will Epperson, Fred
Hohman, Minsuk Kahng, Jamie Morgenstern, and
Duen Horng Chau. 2019. Fairvis: Visual analytics
for discovering intersectional bias in machine learn-
ing. In 2019 IEEE Conference on Visual Analytics
Science and Technology (VAST), pages 46–56. IEEE.

Nicholas Carlini, Florian Tramèr, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom B. Brown, Dawn Song, Úl-
far Erlingsson, Alina Oprea, and Colin Raffel. 2020.
Extracting training data from large language models.
CoRR, abs/2012.07805.

Fahim Dalvi, Avery Nortonsmith, Anthony Bau,
Yonatan Belinkov, Hassan Sajjad, Nadir Durrani,
and James Glass. 2019. NeuroX: A toolkit for an-
alyzing individual neurons in neural networks. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 33, pages 9851–9852.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Bill Dolan, Chris Quirk, and Chris Brockett. 2004.
Unsupervised construction of large paraphrase cor-
pora: Exploiting massively parallel news sources.
In COLING 2004: Proceedings of the 20th Inter-
national Conference on Computational Linguistics,
pages 350–356, Geneva, Switzerland. COLING.

Sebastian Gehrmann, Tosin Adewumi, Karmanya
Aggarwal, Pawan Sasanka Ammanamanchi,
Anuoluwapo Aremu, Antoine Bosselut, Khy-
athi Raghavi Chandu, Miruna-Adriana Clinciu,
Dipanjan Das, Kaustubh Dhole, Wanyu Du,
Esin Durmus, Ondřej Dušek, Chris Chinenye
Emezue, Varun Gangal, Cristina Garbacea, Tat-
sunori Hashimoto, Yufang Hou, Yacine Jernite,
Harsh Jhamtani, Yangfeng Ji, Shailza Jolly, Mi-
hir Kale, Dhruv Kumar, Faisal Ladhak, Aman
Madaan, Mounica Maddela, Khyati Mahajan,
Saad Mahamood, Bodhisattwa Prasad Majumder,
Pedro Henrique Martins, Angelina McMillan-
Major, Simon Mille, Emiel van Miltenburg, Moin
Nadeem, Shashi Narayan, Vitaly Nikolaev, Andre
Niyongabo Rubungo, Salomey Osei, Ankur Parikh,
Laura Perez-Beltrachini, Niranjan Ramesh Rao,
Vikas Raunak, Juan Diego Rodriguez, Sashank
Santhanam, João Sedoc, Thibault Sellam, Samira
Shaikh, Anastasia Shimorina, Marco Antonio
Sobrevilla Cabezudo, Hendrik Strobelt, Nishant
Subramani, Wei Xu, Diyi Yang, Akhila Yerukola,
and Jiawei Zhou. 2021. The GEM benchmark: Nat-
ural language generation, its evaluation and metrics.
In Proceedings of the 1st Workshop on Natural
Language Generation, Evaluation, and Metrics
(GEM 2021), pages 96–120, Online. Association for
Computational Linguistics.

Sebastian Gehrmann, Hendrik Strobelt, and Alexander
Rush. 2019. GLTR: Statistical detection and visu-
alization of generated text. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages
111–116, Florence, Italy. Association for Computa-
tional Linguistics.

Sara Hooker, Nyalleng Moorosi, Gregory Clark, Samy
Bengio, and Emily Denton. 2020. Characterising

102

bias in compressed models. ICML 2020 Workshop
on Human Interpretability in Machine Learning.

Benjamin Hoover, Hendrik Strobelt, and Sebastian
Gehrmann. 2020. exBERT: A Visual Analysis Tool
to Explore Learned Representations in Transformer
Models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 187–196, Online. As-
sociation for Computational Linguistics.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020. XTREME: A massively multilingual multi-
task benchmark for evaluating cross-lingual gener-
alisation. In International Conference on Machine
Learning, pages 4411–4421. PMLR.

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know. Trans. Assoc. Comput. Linguistics,
8:423–438.

Robin Liechti, Nancy George, Lou Götz, Sara El-
Gebali, Anastasia Chasapi, Isaac Crespo, Ioannis
Xenarios, and Thomas Lemberger. 2017. Source-
data: a semantic platform for curating and searching
figures. Nature methods, 14(11):1021–1022.

Michael McCloskey and Neal J Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. In Psychology of learn-
ing and motivation, volume 24, pages 109–165. El-
sevier.

Abhinav Moudgil. 2017. Kaggle: Short jokes - col-
lection of over 200,000 short jokes for humour re-
search.

Yada Pruksachatkun, Phil Yeres, Haokun Liu, Jason
Phang, Phu Mon Htut, Alex Wang, Ian Tenney, and
Samuel R. Bowman. 2020. jiant: A software toolkit
for research on general-purpose text understanding
models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 109–117, Online. As-
sociation for Computational Linguistics.

Alec Radford, Jong Wook Kim, and Jeff Wu. 2019a.
Gpt2 output dataset on github.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019b. Lan-
guage models are unsupervised multitask learners.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A primer in BERTology: What we know
about how BERT works. Transactions of the Associ-
ation for Computational Linguistics, 8:842–866.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. ArXiv,
abs/1910.01108.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Hendrik Strobelt, Sebastian Gehrmann, Michael
Behrisch, Adam Perer, Hanspeter Pfister, and
Alexander M Rush. 2018. Seq2Seq-Vis: A vi-
sual debugging tool for sequence-to-sequence mod-
els. IEEE transactions on visualization and com-
puter graphics, 25(1):353–363.

Hendrik Strobelt, Sebastian Gehrmann, Hanspeter Pfis-
ter, and Alexander M Rush. 2017. LSTMvis: A tool
for visual analysis of hidden state dynamics in recur-
rent neural networks. IEEE transactions on visual-
ization and computer graphics, 24(1):667–676.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4149–4158, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601, Florence, Italy. Association for Computational
Linguistics.

Ian Tenney, James Wexler, Jasmijn Bastings, Tolga
Bolukbasi, Andy Coenen, Sebastian Gehrmann,
Ellen Jiang, Mahima Pushkarna, Carey Radebaugh,
Emily Reif, and Ann Yuan. 2020. The language in-
terpretability tool: Extensible, interactive visualiza-
tions and analysis for NLP models. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstra-
tions, pages 107–118, Online. Association for Com-
putational Linguistics.

J. Vig. 2019. A multiscale visualization of attention in
the transformer model. ArXiv, abs/1906.05714.

Eric Wallace, Jens Tuyls, Junlin Wang, Sanjay Sub-
ramanian, Matt Gardner, and Sameer Singh. 2019.
AllenNLP interpret: A framework for explaining
predictions of NLP models. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP): System Demonstrations, pages
7–12, Hong Kong, China. Association for Compu-
tational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.

103

GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Rowan Zellers, Ari Holtzman, Hannah Rashkin,
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. 2019. Defending against neural fake
news. In Advances in Neural Information Process-
ing Systems 32: Annual Conference on Neural Infor-
mation Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, pages
9051–9062.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or-
donez, and Kai-Wei Chang. 2018. Gender bias in
coreference resolution: Evaluation and debiasing
methods. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), pages 15–20,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

A Additional Case Studies

A.1 Masked LMs break when fine-tuning on
different tasks

When finetuning an autoregressive language model,
the output representations are preserved since
downstream tasks often make use of the language
modeling objective. This is different for masked
language models like BERT. Typically, the con-
textual embeddings are combined with a new un-
trained head and thus, the language modeling is

Figure 8: DistilBERT-SST vs DistilBERT on a scien-
tific abstract.

Figure 9: Magic characters more likely under GPT2-
German-Faust

Figure 10: Tokens can be more likely under different
models depending on contexts.

ignored during finetuning. We demonstrate this
in Figure 8 where we compare DistilBERT (blue)
and DistilBERT-SST (red) on a recent abstract pub-
lished in Science. DistilBERT performs much bet-
ter, having a significantly higher probability for
almost every token in the text. Since the finetuned
model started with the same parameters, this is a
particular instance of catastrophic forgetting (Mc-
Closkey and Cohen, 1989). While this case is
somewhat obvious, LMDIFF can help identify do-
mains that are potentially more affected by this
phenomenon even for cases in which the language
modeling objective is not abandoned.

A.2 Data Outliers
We show one example of a data outlier, described in
Section 4.5, in Figure 11. The top-ranked examples
in the corpus all have severe encoding errors and
those examples should be removed from the corpus.

A.3 Language specific to finetuned model
The comparison of GPT2-German and GPT2-
German-Faust (see Section 4.4) also revealed more
patterns that indicate that the fine-tuning of the
model might have been successful. Figure 9 shows
an example where tokens related to the core text of
the Faust text are more likely under the fine-tuned
model than the wild-type GPT2-German. Tokens
like “Hexe” (witch) or “Geister” (ghosts) are core
characters in the Faust text.

Another interesting observation is that even the
104

Figure 11: BioLang with GPT-2 vs the GPT-2-ArXiv. GPT-2 is much better at modeling repeated patterns which
helps identify malformed examples.

Comparable?

Model A

Model B

Dataset D

AnalysisCache_AxD

AnalysisCache_BxD

Compare ranks and probabilities

Phrase Metrics

1 ...

2 ...

3 ...

YES

ComparisonResults

Figure 12: System diagram of the LMDIFF backend.

same tokens in different contexts can be more likely
under different models. The token “Faust” can re-
fer to the name of the main character in the story or
be the common German translation for “fist”. Fig-
ure 10 shows how the word is more likely under the
general language model if embedded in a fighting
context versus being embedded in a one-sentence
summary of the Faust story.

B System diagram for corpus analyses

Figure 12 describes how LMDIFF identifies com-
patibility between models and precomputed cor-
pora. The Dataset is a text file where each new
line contains a phrase to analyze. It also contains
a YAML header containing necessary information
like its name and a unique hash of the contents.
This dataset is processed by different Huggingface
Transformer Models that receive the contents of
the dataset as input and make predictions at every
token. The tokenizations and predictions for each
of the phrases are stored in the AnalysisCache,
which takes the form of an HDF5 file. Finally, any
two AnalysisCaches can be checked for comparabil-
ity. If they are comparable, the difference between
them can be summarized in a ComparisonResults
table and presented through the aforementioned

interface for inspection and exploration by the user.

105

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 106–113
November 7–11, 2021. ©2021 Association for Computational Linguistics

Semantic Context Path Labeling for Semantic Exploration of User
Reviews

Salah Aït-Mokhtar and Caroline Brun and Yves Hoppenot and Ágnes Sándor
Naver Labs Europe

6, Chemin de Maupertuis
38240 Meylan, France

firstname.lastname@naverlabs.com

Abstract

In this paper we present a prototype demon-
strator showcasing a novel method to perform
semantic exploration of user reviews. The sys-
tem enables effective navigation in a rich con-
textual semantic schema with a large number
of hierarchically structured classes indicating
relevant information. In order to identify in-
stances of the structured classes in the reviews,
we defined a new Information Extraction task
called Semantic Context Path (SCP) labeling,
which simultaneously assigns types and se-
mantic roles to entity mentions. Reviews can
thus rapidly be explored based on the fine-
grained and structured semantic classes. As
a proof-of-concept, we have implemented this
system for reviews on Points-of-Interest, in En-
glish and Korean.

1 Introduction

In this paper, we demonstrate a system that pro-
poses a novel approach for extracting rich and di-
verse information from informative texts, and al-
lowing effective semantic navigation among the
extracted categories. Our system is specifically
designed for exploring large quantities of user re-
views, which contain a wealth of useful informa-
tion for potential new users, difficult to exploit in
existing review platforms.

The users of our system can navigate in a rich
semantic schema representing a large number of
hierarchically structured information categories rel-
evant in the reviews, where top classes have multi-
ple layers of subclasses and attribute classes. The
semantic navigation can start from the top classes,
or directly from the attribute classes.

Mentions of the structured classes in the re-
views are automatically assigned labels that we
call Semantic Context Paths (SCPs), which de-
note their types and semantic roles. By seman-
tic roles, we mean classes for which the men-
tions instantiate attributes. For example, in the

sentence "See a good movie for $5!", the men-
tion $5 is assigned the SCP label ShowAndExhibi-
tion.Payment.PriceValue, which means that it is the
price of a movie show.

We implemented a supervised SCP tagging sys-
tem for POI reviews: (1) we created an SCP seman-
tic schema for the domain; (2) we labeled datasets
both for English and Korean using an annotation
tool that we developed for this task; and (3) we
developed and evaluated models for this IE task.

We demonstrate the novel exploration method
based on structured semantic classes through a ded-
icated exploration interface. It is not targeted at
end-users at this stage: our purpose is to showcase
the new approach in an intuitive way.

In the following sections, we first expose the
advantages of exploring user reviews through se-
mantic context paths compared to the methods used
in existing social media review sites (Section 2), we
then describe the SCP labeling task (Section 3) and
finally present our SCP tagging system on POI re-
views. We show that performing sequence labeling
relying on a state-of-the-art contextual language
model extracts with high accuracy great numbers
of SCPs from user reviews in multiple languages
(Section 4).

2 Semantic Exploration of User Reviews

Popular POI review sites like Google maps or Tri-
padvisor provide their users with multiple methods
for obtaining information on POIs. In this section,
we briefly describe the navigation methods offered
by existing major user review sites on POIs, and
compare them with navigation based on SCPs.

The most widespread way to explore reviews is
based on pre-selected frequent terms, as shown in
Figure 1.

The user can click on the terms, and thus rapidly
access the reviews containing them. However, the
main limitation is that the frequent terms are not
grouped semantically and thus similar information

106

Figure 1: Pre-selected terms in Google Maps

is handled separately (c.f. jacket and sweater). In
addition, important information can be conveyed
by clausal expressions like dress accordingly, and
therefore be missed by term detection algorithms.
Finally, in many cases, when talking about relevant
topics, like prices, booking, or the availability of
food on-site, linguistic expression is so heteroge-
neous that a method based on term frequency will
not detect them.

Keyword search is another way to explore re-
views, as shown in Figure 2.

Figure 2: Keyword search in Tripadvisor

Its advantage over the previous method is that
the user is not limited by a pre-selected set of terms.
However it is slower, since the user needs to enter
queries, and getting all the relevant information
may require multiple queries. Moreover, some
queries will fail either because the information
is absent or because the query keywords are not
matched, which can be frustrating due to the waste
of time.

Finally, a few sites propose pre-selected flat cat-
egories for navigation, as illustrated in figure 3.

This method provides fast access to information
by clicking on the categories, and improves pre-
selected term navigation. However, since the cat-
egories are not structured, they can be ambiguous.

Figure 3: Flat categories in Naver Places

E.g. “Price” merges all prices: admission price,
price of on-site food, or drink, price of a specific
onsite activity, etc.

Taken together, keyword based navigation lacks
the generality offered by structured search, how-
ever currently proposed structured search does not
disambiguate general categories. Compared to
these methods, the advantage of navigation based
on semantic context paths is that it provides rapid
and effective access to precise information on a
great diversity of topics.

3 Information Extraction with Semantic
Path Labeling

3.1 Presentation of the Task

We introduce Semantic Context Paths (SCPs) as
representations of entity mentions enriched with
contextual semantic labels. SCP labels encode
three types of information: (1) context-free seman-
tic types, as traditionally extracted by Named En-
tity Recognition (NER) systems, (2) hierarchically
represented context-free semantic types, tradition-
ally extracted by fine-grained NER systems, and
(3) context-dependent semantic roles specifying
the classes for which the mentions instantiate at-
tributes.

As an example, assume we want to extract var-
ious kinds of useful information from Point-of-
Interest reviews about recreation places (e.g. movie
theaters), such as food, prices, visitors, etc.

Figure 4 illustrates how SCP labeling is applied
on a real POI comment.

The proposed IE task goes beyond traditional
Named Entity Recognition (NER), which merely
assigns semantic categories to entity mentions (Ak-
bik et al., 2018; Pawar et al., 2017), even when the
set of categories is fine-grained and hierarchical
(Mai et al., 2018; Zhang et al., 2020). In contrast,
SCP labels also contain information on the seman-
tic content of the entities or concepts within the

107

Figure 4: An example of SCP tagging.

mentions, but at the same time also on their seman-
tic roles and types of relations within the text.

In the example in Figure 4, good price does not
have a simple PriceProperty label as it could have
in a classical NER system, but ShowAndExhibi-
tion.PriceProperty, which indicates that it is related
to mentions with the same root label, ShowAndEx-
hibition – in this example Regency Theatres and
movie, which are respectively tagged as ShowAn-
dExhibition.Loc, and ShowAndExhibition.Subject.

SCP tagging therefore presents the advantage of
extracting rich contextual information, while still
being a sequence labeling task.

3.2 Formal Definition of the Task

A semantic schema S is a tuple 〈C, I,R〉 where
C is a finite set of semantic classes, I ⊆ C is the
subset of instantiable classes, and R ⊂ C × C
is the set of attribute relations. R defines which
classes have attributes and their types: (ci, cj) ∈ R
means that class ci has an attribute of type cj . A
class c ∈ C is a top class iff @c′ ∈ C such that
(c′, c) ∈ R (i.e. c is not an attribute of another
class), and it is terminal iff @c′ ∈ C such that
(c, c′) ∈ R (i.e. it does not have attributes).

A Semantic Context Path (SCP) in S is
any non-empty and finite sequence of classes
p = c1.c2.c3...cn where c1 is a top class, and
∀ci, ci+1 ∈ p : (ci, ci+1) ∈ R. An SCP p =
c1.c2.c3...cn is acyclic iff ∀i, j ∈ {1, ..., n} : i 6=
j =⇒ ci 6= cj . An SCP p = c1.c2.c3...cn is
instantiable iff cn ∈ I . We use PS to denote the
set of all acyclic, instantiable paths of S.

We can now define the task of Semantic Con-
text Path tagging as follows: given a semantic
schema S and a tokenized text document d =
t1t2...tn, SCP tagging assigns a (possibly empty)
subset of PS to every token in d.

4 System Description

The semantic navigation system has two main com-
ponents: the IE component, which identifies men-
tions and labels them with SCPs off-line, and a
navigation component, which allows exploring the
reviews based on the structured classes. We de-
scribe these two components in the following sub-
sections.

4.1 Information Extraction Component
4.1.1 Model Description
We model the SCP labeling task as a multi-label
classification problem at the level of tokens: review
texts are tokenized, and each token can have one
or multiple SCP labels if it is part of a relevant
mention, or has the special label O otherwise. The
set of possible labels is therefore the set P (S) of all
acyclic, instantiable paths of a semantic schema S,
plus the special label O. We implement the model
as a neural network that jointly learns to predict
the final path labels and the individual classes that
make up the paths. Indeed, since there are many
paths that share common individual classes (i.e.
they have identical prefixes or suffixes), learning
to predict individual classes inside the paths can
alleviate the problem of data sparseness with regard
to (whole) path labels. Figure 5 below depicts the
model architecture.

Figure 5: Model architecture

First, the model assigns contextualized word em-
beddings to each token wi in the input text using
a pre-trained, transformer-based language model,
more exactly a RoBERTa model (Liu et al., 2019):

xi = RoBERTa(wi;w1w2...wn) (1)

The contextualized token representations are
then fed to a fully connected hidden layer:

hi = relu(W hxi + bh) (2)
108

From these hidden token representations hi, we
first compute the probabilities of all individual (flat)
classes of the semantic schema:

p(y(c)|hi, θ) = sigmoid(W cxi + bc) (3)

We then concatenate the class probability vector
with the hidden token representation hi (in eq. 2)
and feed the result to a linear layer with a sigmoid
activation in order to compute the probabilities of
the path (SCP) labels:

p(y|hi, θ) = sigmoid(W (hi ⊕ p(y(c)|hi, θ)) + b)
(4)

We train the model using the sum of the binary
cross-entropy losses of the individual class predic-
tions and whole path predictions.

4.1.2 Experiments
Dataset. The dataset is a collection of POI users’
comments1 in both English and Korean, randomly
sampled from three main categories: Food (food
places), Art & Entertainment, and Outdoor &
Recreation. Every comment has a main cate-
gory among these, and a set of one or more
sub-categories (e.g. Park for Outdoor & Recre-
ation, or Movie Theater for Art & Entertainment.)
Since there was no rich, off-the-shelf hierarchi-
cal semantic schema to represent useful informa-
tion types for POIs, we defined one from scratch,
based on a development subset of the data. The
final fined-grained schema comprises 42 seman-
tic classes, their combination leading to 185 vir-
tually instantiable semantic paths. For example,
Visit.Accessibility.Mobility.Device is an SCP as-
sociated with the mention wheelchair in "Most
parts are fine for wheelchairs."; ShowAndExhibi-
tion.Subject.Name is a SCP associated with the
mention Last Judgment in "The pride of the Gdansk
museum is a triptych of the Last Judgement by Hans
Memling (1433-1494)", etc. Annotation guide-
lines have been defined together with the semantic
schema.

We (the authors) annotated manually the English
version of the dataset according to the semantic
schema and the guidelines. Following the same

1The data was acquired legally through an agreement with
a company providing POI-based services. The dataset con-
tains a set of user comments with corresponding POI identi-
fiers, geolocation and categories. It does not contain any user
information. No crowd-workers have been involved in the
annotation process.

Dataset English Korean
split Train Test Train Test
docs 3000 1500 2498 498
tokens 49484 24641 55242 11126
mentions 5861 3026 5111 1023
labels 5914 3068 5302 1051

Table 1: Dataset Statistics: number of documents, to-
kens, annotated mentions and labels. There are approx-
imatively 2 annotated mentions per document on aver-
age.

schema and annotation guidelines, the Korean ver-
sion of the dataset was annotated by a native Ko-
rean speaker specialized in data annotation (hired
under a Naver employment contract). The distribu-
tion of SCP labels is unbalanced for both languages,
with a long tail of infrequent labels: 50% of the
observed path labels in the training set for Korean
had a maximum of 10 occurrences. Table 1 re-
ports some statistics regarding both versions of the
annotated dataset.

In order to assess the reliability of the annota-
tions, we calculated Krippendorff’s alpha (Hayes
and Krippendorff, 2007) on the English annotated
dataset. On a token-basis, we obtained a relatively
high agreement level, α = 0.838, which indicates
a good dataset reliability. This dataset is, to our
knowledge, one of the finest-grained annotated
datasets for information extraction.

Hyperparameters. We used the xlm-roberta-
large pretrained, transformer-based model from
HuggingFace transformers library (Wolf et al.,
2020) to produce the token contextualized em-
beddings (equation 1). Experiments with multi-
ple mono-lingual pre-trained language models ei-
ther showed similar performance (roberta-large for
English) or lower performance (bert-large for En-
glish, and kobert, kobart, koelectra and KR-BERT-
char16424 for Korean.) We used an initial learning
rate of 1e−5 with a scheduler, a batch size of 16,
and a maximum of 100 epochs, with an early stop-
ping strategy.

Evaluation. We evaluate the performance of the
models as fully-automatic information extraction
systems. The input contains raw text (user com-
ments), and the system needs to identify mentions
(and their boundaries) and tag them with SCP la-
bels. We measured performance using the tradi-
tional precision, recall, and f1 scores in their re-

109

laxed variants. That is, the boundaries of predicted
mentions do not need to match fully the ground-
truth mention spans: they are considered correct if
they have at least one common token with ground-
truth spans, and as long as the predicted SCP label
is entirely correct. This relaxed span evaluation is
motivated by the target application: in the UI for
exploring POI reviews (see section 4.2), when the
user navigates in the hierarchical semantic classes
and selects one class, mentions of that class are au-
tomatically displayed and highlighted within their
context (review snippets). Thus, the user can read
the immediate context, including any token missing
from the identified mention. Performance results
are shown in table 2.

English Korean
Model f1-avg (std) f1-best f1-avg (std) f1-best
En 76.87 (0.35) 77.40 – 64.43
Ko – 69.05 74.58 (0.45) 75.39
En+Ko – 78.16 76.14 (0.85) 77.66

Table 2: Performance of the information extraction
models on English and Korean test sets. Models En
and Ko were trained on the English and Korean training
datasets respectively, while model En+Ko was trained
on the union of the two training datasets, and yields
the best performance for both languages. Average f1
score from 10 runs is reported with standard deviation.
f1-best refers to the score of the best run. In cross- or
multi-lingual settings, only the model from the best run
for one of the two languages was tested on the other,
hence the missing f1-avg figures.

An interesting side result is that since the IE
component is built on top of a multilingual pre-
trained language model (xlm-roberta-large), it is
applicable to other languages in a zero-shot setting.
Although we have not performed a quantitative
evaluation on other languages than English and Ko-
rean, due to the lack of labeled data, a preliminary
qualitative evaluation shows promising results. An
example of SCP labeling of Arabic is provided in
Figure 6.

4.2 Exploration of User Reviews
We have designed an interface on top of Naver
map2 to demonstrate the application of SCP tag-
ging for exploring rich and detailed information
conveyed in user reviews. Currently, in the demo,
we cover two languages, English and Korean, but
since the system is operational for a great number
of other languages, these could be added as well.

2https://m.map.naver.com/

Figure 6: An example of SCP labeling in Arabic.

When a user opens the map, she first selects the
language, and the POI types (one or several) that
she would like to explore. The current system cov-
ers 3 POI types: Arts & Entertainment, Outdoors
& Recreation, and Food.

Hovering over a POI in the map makes its name
appear along with a circular chart displaying the
different topics (i.e. the top classes of the semantic
schema) that are covered by the reviews, as well
as the number of available reviews. The width
of the particular categories is determined by the
number of subcategories covered by the reviews
(c.f. Figure 7).

Figure 7: Visualizing on the map the different topics
covered by the reviews of a given POI.

In order to explore the reviews in more detail,
the user can click on the circular chart, which will
expand into a sunburst displaying all the subcate-
gories that have mentions in the reviews. As we
indicated in the introduction, the demo system is
not targeted at end users. We have chosen the sun-
burst interface since it allows a comprehensive and
straightforward visualization of a great number of
SCPs: the innermost circle contains the main cate-
gories, and each subsequent layer displays the sub-
categories in the same segment. Thus, at a glimpse,
the chart offers an overview of all the categories
and SCPs covered by a review. Moving the mouse
over any category opens a callout with the snippets

110

Figure 8: Visualizing snippets containing class mentions. In this example, besides a tip on the best time for
a general visit, we find information on time when you can dance (Recreation&Sport.Time), when you can get
specific drinks (Food&Drinks.Time), as well as on when you can listen to music (Show&Recreation.Time). In the
interface, snippets of one category can be visualized at a time by hovering over it; here we present the snippets of
several categories on the same figure for a concise presentation.

Figure 9: Categories extracted from Korean reviews on the Seoul Tower.

of the relevant user reviews (Figure 8).

If review snippets are not sufficient to understand
the information conveyed in the review, the user
can click on the callouts to access the full reviews
(Figure 10).

Figure 9 shows the categories extracted from
the Korean reviews on the Seoul Tower, and the
snippets about recommended visitor companions.

Figure 10: Full review texts for mentions of show time.

111

5 Conclusion

We have presented a new method for the semantic
exploration of user reviews.

The system underlying the demonstrator relies
on an IE component which identifies relevant men-
tions in the reviews and labels them with Semantic
Context Paths, denoting their types and semantic
roles. We have implemented an SCP tagger that
extracts information from user reviews on Points-
of-Interest. We have defined a dedicated semantic
schema, created datasets, and developed sequence
labeling models for the task. The IE component
was quantitatively evaluated on English and Ko-
rean, and showed promising qualitative results on
other languages.

We have designed a review exploration interface
exploiting the output of the SCP tagger. A sunburst
chart in the interface allows navigation among the
classes, and rapid access to relevant information
in the reviews. Future work includes integrating a
wider range of languages to the review exploration
interface.

References
David Ahn. 2006. The stages of event extraction. In

Proceedings of the Workshop on Annotating and
Reasoning about Time and Events, pages 1–8.

Alan Akbik, Duncan Blythe, and Roland Vollgraf.
2018. Contextual string embeddings for sequence
labeling. In Proceedings of the 27th International
Conference on Computational Linguistics, pages
1638–1649, Santa Fe, New Mexico, USA. Associ-
ation for Computational Linguistics.

Livio Baldini Soares, Nicholas FitzGerald, Jeffrey
Ling, and Tom Kwiatkowski. 2019a. Matching the
blanks: Distributional similarity for relation learn-
ing. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics,
pages 2895–2905, Florence, Italy. Association for
Computational Linguistics.

Livio Baldini Soares, Nicholas FitzGerald, Jeffrey
Ling, and Tom Kwiatkowski. 2019b. Matching the
Blanks: Distributional Similarity for Relation Learn-
ing. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics,
pages 2895–2905, Florence, Italy. Association for
Computational Linguistics.

Robert Bossy, Louise Deléger, Estelle Chaix,
Mouhamadou Ba, and Claire Nédellec. 2019.
Bacteria Biotope at BioNLP Open Shared Tasks
2019. In Proceedings of The 5th Workshop on
BioNLP Open Shared Tasks, pages 121–131, Hong

Kong, China. Association for Computational
Linguistics.

H. Cunningham, K. Humphreys, R. Gaizauskas, and
Y. Wilks. 1997. Software infrastructure for natural
language processing. In Proceedings of the Fifth
Conference on Applied Natural Language Process-
ing (ANLP-97).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Michael Glass and Alfio Gliozzo. 2018. Discover-
ing implicit knowledge with unary relations. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1585–1594, Melbourne, Aus-
ralia. Association for Computational Linguistics.

Andrew F Hayes and Klaus Krippendorff. 2007. An-
swering the call for a standard reliability measure
for coding data. Communication methods and mea-
sures, 1:77–89.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach. arXiv:1907.11692 [cs]. ArXiv:
1907.11692.

Khai Mai, Thai-Hoang Pham, Minh Trung Nguyen,
Tuan Duc Nguyen, Danushka Bollegala, Ryohei
Sasano, and Satoshi Sekine. 2018. An empirical
study on fine-grained named entity recognition. In
Proceedings of the 27th International Conference on
Computational Linguistics, pages 711–722, Santa
Fe, New Mexico, USA. Association for Computa-
tional Linguistics.

Arvind Neelakantan and Ming-Wei Chang. 2015. In-
ferring missing entity type instances for knowledge
base completion: New dataset and methods. arXiv
preprint arXiv:1504.06658.

Sachin Pawar, Girish K. Palshikar, and Pushpak Bhat-
tacharyya. 2017. Relation extraction : A survey.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. Brat: A web-based tool for nlp-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
EACL ’12, pages 102–107, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,

112

Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-Art Natural Language Process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Shanchan Wu and Yifan He. 2019. Enriching pre-
trained language model with entity information for
relation classification. CoRR, abs/1905.08284.

Wuti Xiong, Fei Li, Ming Cheng, Hong Yu, and
Donghong Ji. 2019. Bacteria Biotope Relation Ex-
traction via Lexical Chains and Dependency Graphs.
In Proceedings of The 5th Workshop on BioNLP
Open Shared Tasks, pages 158–167, Hong Kong,
China. Association for Computational Linguistics.

Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki
Takeda, and Yuji Matsumoto. 2020. LUKE: Deep
Contextualized Entity Representations with Entity-
aware Self-attention. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 6442–6454, On-
line. Association for Computational Linguistics.

Qi Zhang, Chao Liu, Ying Chi, Xuansong Xie, and Xi-
ansheng Hua. 2019. A Multi-Task Learning Frame-
work for Extracting Bacteria Biotope Information.
In Proceedings of The 5th Workshop on BioNLP
Open Shared Tasks, pages 105–109, Hong Kong,
China. Association for Computational Linguistics.

Tao Zhang, Congying Xia, Chun-Ta Lu, and Philip
Yu. 2020. MZET: Memory augmented zero-shot
fine-grained named entity typing. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 77–87, Barcelona, Spain (Online).
International Committee on Computational Linguis-
tics.

113

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 114–123
November 7–11, 2021. ©2021 Association for Computational Linguistics

Beyond Accuracy: A Consolidated Tool for Visual Question Answering
Benchmarking

Dirk Väth* and Pascal Tilli* and Ngoc Thang Vu
University of Stuttgart

Germany
{dirk.vaeth, pascal.tilli, thang.vu}@ims.uni-stuttgart.de

Abstract
On the way towards general Visual Question
Answering (VQA) systems that are able to an-
swer arbitrary questions, the need arises for
evaluation beyond single-metric leaderboards
for specific datasets. To this end, we pro-
pose a browser-based benchmarking tool for
researchers and challenge organizers, with an
API for easy integration of new models and
datasets to keep up with the fast-changing land-
scape of VQA. Our tool helps test general-
ization capabilities of models across multiple
datasets, evaluating not just accuracy, but also
performance in more realistic real-world sce-
narios such as robustness to input noise. Ad-
ditionally, we include metrics that measure bi-
ases and uncertainty, to further explain model
behavior. Interactive filtering facilitates dis-
covery of problematic behavior, down to the
data sample level. As proof of concept, we per-
form a case study on four models. We find that
state-of-the-art VQA models are optimized for
specific tasks or datasets, but fail to general-
ize even to other in-domain test sets, for exam-
ple they cannot recognize text in images. Our
metrics allow us to quantify which image and
question embeddings provide most robustness
to a model. All code1 is publicly available.

1 Introduction

VQA refers to the multi-modal task of answering
free-form, natural language questions about images
- a task sometimes referred to as a visual Turing
test (Xu et al., 2018). The number and variety of
datasets for evaluating such systems has continued
to increase over the last years (Antol et al., 2015;
Hudson and Manning, 2019; Agrawal et al., 2018;
Kervadec et al., 2021; Johnson et al., 2017). These
datasets aim to test models’ abilities with respect to
different skills, such as commonsense or external
knowledge reasoning, visual reasoning, or read-
ing text in images. Traditionally, evaluation relies

* Authors contributed equally
1https://github.com/patilli/vqa_benchmarking

Figure 1: Tool landing page with aggregated metrics
for each model (larger version in Appendix A). Statis-
tics can be expanded per model to view performance
on each dataset.

solely on answering accuracy. However, it is mis-
leading to believe that a single number, like high
accuracy on a given benchmark, corresponds to a
system’s ability to answer arbitrary questions with
high quality. Each dataset contains biases which
state-of-the-art deep neural networks are prone to
exploit, resulting in higher accuracy scores (Goyal
et al., 2017; Das et al., 2017; Agrawal et al., 2016;
Jabri et al., 2016). Thus, most VQA models, if eval-
uated on multiple benchmarks at all, are re-trained
per dataset to achieve higher numbers in special-
ized leaderboards. Further shortcomings of current
leaderboards include ignoring prediction cost and
robustness, as discussed in (Ethayarajh and Juraf-
sky, 2020) for NLP. In VQA, we need even more
specialized evaluation due to the challenges inher-
ent to open-ended, multi-modal reasoning.

In order to successfully develop VQA systems
that are able to answer arbitrary questions with
human-like performance, we should overcome
the previously mentioned shortcomings of current
leaderboards as one of the first essential steps. To
this end, we propose a benchmarking tool, to our
knowledge the first of its kind in the VQA domain,
that goes beyond current leaderboard evaluations.
It follows the four following principles:

1. Realism To better simulate real-world condi-
tions, we test robustness to semantic-preserving
input perturbations to images and questions.

114

2. Generalizability We include six carefully
chosen benchmark datasets, each evaluating differ-
ent abilities as well as model behavior on changing
distributions to test model generalizability. Ad-
ditionally, we provide easy python interfaces for
adding new benchmarking datasets and state-of-the-
art models as they arise. The full tool is released
under an open-source license.

3. Explainability To provide more insight into
model behavior and overcome the problem of
single-metric comparisons, we measure scores such
as biases and uncertainty, in addition to accuracy.

4. Interactivity Aggregated statistics can be
drilled down and filtered, providing interactive ex-
ploration of model behavior from a global dataset
perspective down to individual data samples. The
above functionalities not only support detailed
model comparison, but also facilitate development
and debugging of models in the VQA domain.

As proof of concept, we integrate several pop-
ular and state-of-the-art models from public code
repositories and investigate their abilities and weak-
nesses. Through our case study, we demonstrate
that all of these models fail to generalize, even to
other in-domain test sets. Our metrics quantify the
influence of model architecture decisions, which ac-
curacy cannot capture, such as the effect of image
and question embeddings on model robustness.

2 Related Work

VQA Benchmarks Benchmarks often emphasize
certain sub-tasks of the general VQA problem. For
example, CLEVR (Johnson et al., 2017) tests visual
reasoning abilities such as shape recognition and
spatial relationships between objects, rather than
real-world scenarios. Other approaches change the
answer distributions of existing datasets, such as
VQA-CP (Agrawal et al., 2018) originating from
VQA2 (Goyal et al., 2017) or GQA-OOD from
GQA (Kervadec et al., 2021). These changes are
intended to mitigate learnable bias. Another ap-
proach to mitigating biases was proposed by Hud-
son and Manning (2019), who created a dataset for
real world visual reasoning with a tightly controlled
answer distribution. Kervadec et al. (2021) went
one step further by analyzing and changing the
test sets to evaluate on rarely occurring question-
answer pairs rather than on frequent ones. Finally,
Li et al. (2021) proposed an adversarial benchmark-
ing dataset to evaluate system robustness.

Metrics For more automated, dataset-level in-
sight, many methods try to analyze single aspects
of VQA models. For example, Halbe (2020) use
feature attribution to assess the influence of indi-
vidual question words on model predictions. Das
et al. (2017) compare human attention to machine
attention to explore whether they focus on the same
image regions. To measure robustness w.r.t. ques-
tion input, Huang et al. (2019) collect a dataset of
semantically relevant questions, and rank them by
similarity, feeding the top-3 into the network to
observe changes in prediction.

Identifying Biases Agrawal et al. (2016) mea-
sured multiple properties: generalization to novel
instances as selected by dissimilarity, question un-
derstanding based on length and POS-tags, and
image understanding by selecting a subset of ques-
tions which share an answer but have different im-
ages. Another approach to analyze bias towards
one modality is to train a uni-modal network that
excludes the other modality in the training phase
(Cadene et al., 2019). However, this requires train-
ing one model per modality and cannot be applied
easily to all architectures, e.g. to attention mecha-
nisms computed on joint feature spaces.

Robustness and Adversarial Examples Adver-
sarial examples originate from image classification,
where perturbations barely visible to a human fool
the classifier and cause sudden prediction changes
(Szegedy et al., 2014). The same idea was later
applied to NLP, where, e.g., appending distracting
text to the context in a question answering scenario
resulted in F1-score dropping by more than half
(Jia and Liang, 2017).

Benchmarking Tools Liu et al. (2021) propose
a leaderboard for NLP tasks to compare model per-
formance. They differentiate among several NLP
tasks and datasets. All methods are applied post-
hoc to analyze the predictions a model outputs.
Other benchmarking tools, for example, focus on
runtime comparisons (Shi et al., 2016; Liu et al.,
2018). Our benchmarking tool not only analyzes
system outputs, but also modifies input modalities
as well as feature spaces and provides metrics be-
yond just accuracy.

3 VQA Benchmark Tool

Our tool facilitates global evaluation of model
performance w.r.t general and specific tasks
(generalizability), such as real-world images and

115

reading capabilities. To simplify integration of fu-
ture benchmark datasets and models, we provide a
well-documented python API. We measure model-
inherent properties, such as biases and uncertainty
(explainability) as well as robustness against in-
put perturbations (realism). Model behavior can
be further inspected using interactive diagrams
and filtering methods for all metrics, supporting
sample-level exploration of suspicious model be-
havior (interactivity). All data is collected post-
hoc and can be explored in a web application, elim-
inating the need to re-train existing models.

3.1 Datasets

In this section, we describe the datasets supported
out-of-the-box. These serve the principle of bench-
marking generalizability, by including real-world
scenarios as well as task-specific and even syn-
thetic datasets. Where labels are publicly available,
we rely on test sets, otherwise on validation sets
(marked with ∗). To reduce computational cost
and resources (including environmental impact),
we limit each dataset to a maximum of ∼15,000
randomly drawn samples , which is referred to in
the following paragraphs as a sub-set.

VQA2∗ This dataset (Goyal et al., 2017) repre-
sents a balanced version of the vanilla VQA dataset
(Antol et al., 2015). It is intended to mirror real-
world scenarios and used as the de-facto baseline
for model comparisons.

GQA The GQA dataset (Hudson and Manning,
2019), derived from Visual Genome (Krishna et al.,
2017), is designed to test models’ real-word vi-
sual reasoning capabilities, in particular, robust-
ness, consistency and semantic understanding of
vision and language. Similar to VQA2, it also pro-
vides a balanced version.

GQA-OOD According to Kervadec et al. (2021),
evaluating on rare instead of frequent question-
answer pairs is better suited for measuring reason-
ing abilities. Hence, they introduce the GQA-OOD
dataset as a new split of the original GQA dataset
to evaluate out-of-distribution questions with im-
balanced distributions.

CLEVR∗ CLEVR (Johnson et al., 2017) is a syn-
thetic dataset, containing images of multiple geo-
metric objects in different colors, materials and
arrangements. It aims to test models’ visual rea-
soning abilities by asking questions that require a

model to identify objects based on attributes, pres-
ence, count, and spacial relationships.

OK-VQA∗ Marino et al. (2019) introduce a
dataset that requires external knowledge to answer
its questions, thereby motivating the integration of
additional knowledge pools.

Text VQA∗ Singh et al. (2019) consider the prob-
lem of understanding text in images, an important
problem to consider in VQA benchmarking sys-
tems, as one application of VQA is intended to aid
the visually impaired.

3.2 Metrics
In addition to the evaluation of accuracy across
datasets with different distributions and focuses, we
implement metrics such as bias of models towards
one modality and uncertainty (explainability), as
well as robustness to noise and adversarial ques-
tions (realism). All metrics are in range [0, 100].

Accuracy Our tool supports multiple ground
truth answers with different scores per sample, pro-
viding the flexibility to evaluate for single-answer
accuracy as well as e.g. the official VQA2 accu-
racy measure acc(a) = min(1, #humans(a)

3) (Antol
et al., 2015).

Modality Bias Here, we refer to a model’s fo-
cus on one modality over the other. Given an
image of a zoo and the question “What animals
are shown?”, if we replace this picture with a
fruit bowl, we would expect the model to change
its prediction. However, if the prediction stays
unaltered, the model’s answer cannot depend on
the image input. For each prediction on altered
inputs (i′, q) or (i, q′), we evaluate how many
times the answer a′ of the replacement pairs is the
same as answer a predicted on the original inputs
(i, q). Averaging across N trials yields a Monte-
Carlo estimate of the bias towards one modality as
1/N

∑
q′ 1f(q,i)=f(q′,i). Heuristics, such as ensur-

ing no overlap between subjects and objects of q
and q′, help reduce cases where q′ would just be a
rephrasing of q. High values in modality bias corre-
spond to models ignoring input from one modality
for many samples, e.g. a question bias of 100 indi-
cates a model that completely ignores images.

Robustness to Noise An important considera-
tion when deploying a model in the real world, is its
susceptibility to noise. Noise might be induced nat-
urally by data acquisition methods (VQA-setting:

116

camera), for example a color-question should not
be affected by subtle tone shifts between two cam-
eras. On the question side, semantic-preserving
input changes can be induced through paraphrases,
synonyms or region-dependent spelling.

For measuring robustness to noise in images, we
support adding Gaussian-, Poisson-, salt&pepper-
and speckle-noise to the original input image. We
also support adding Gaussian noise in image fea-
ture space. To obtain a realistic input range, we
calculate the standard deviation from 500 randomly
sampled image feature vectors. After multiple tri-
als, we average how often the prediction on the
noisy inputs matches the original prediction. Ap-
plying noise to the original image input tests the
robustness of the image feature extractor, which, in
many models, is external and thus easy to swap and
interesting to compare. On the other hand, apply-
ing noise in feature space tests model robustness
towards noisy feature extractors.

Measuring robustness to question noise is done
by adding Gaussian noise in embedding space, a
reasonable approach under the assumption that sim-
ilar vectors in embedding space have similar mean-
ing. Again, multiple trials are performed.

High values in robustness correspond to models
unaffected by noise in one modality for many sam-
ples, e.g. a question robustness of 100 indicates
a model that never changed its predictions due to
noise added in question embedding space.

Robustness to Adversarial Questions Semanti-
cally Equivalent Adversarial Ruless (SEARs) alter
textual input according to a set of rules, while pre-
serving original semantics (Ribeiro et al., 2018).
For the questions in the VQA dataset, the authors
come up with the four rules that most affect the
predictions in their tests, using a combination of
Part-of-Speech (POS)-Tags and vocabulary entries:

• Rule 1 WP VBZ→WP’s

• Rule 2 What NOUN→Which NOUN

• Rule 3 color→ colour

• Rule 4 ADV VBZ→ ADV’s

High values in robustness against SEARs cor-
respond to models unaffected by adversarial ques-
tions, e.g. a robustness of 100 indicates a model
that never changed its predictions due to the appli-
cation of any of the above rules. Therefore, higher
values are preferable.

Uncertainty To measure model certainty, we
leverage the dropout-based Monte-Carlo method
(Gal and Ghahramani, 2016). Forwarding a sample
multiple times with active dropout, the averaged
output vector 1

N

∑N
n=1 f(x).

3.3 Views
We support inspection of the included metrics at
different levels of granularity, from comparisons
across multiple datasets to filtering of individual
samples (interactivity). On each level, we sup-
plement the accuracy measure by additional met-
rics helpful for understanding and debugging VQA
models (explainability).

Gobal View The global view (see figure 1) acts
as the main entry to our tool. At a glance, it shows a
leaderboard with statistics averaged on all datasets,
providing users with an impression of the models’
performance and properties across tasks and dis-
tributions. All columns are sortable to allow easy

Figure 2: Expanded details on the overview page
(larger version in Appendix A).

comparisons between models for each metric. Each
row in the overview table describes a model’s aver-
age performance and can be expanded to provide
additional information on a per-dataset level (see
figure 2).

Metrics View Clicking a model row in the global
view navigates to the metrics view, which provides
graphs on all metrics and datasets for the selected
model in detail (see figure 3). Users have the choice
to change dataset and metric via selection boxes.
For easy comparison between datasets of different
sizes, all values are recorded in percentages of the
dataset.

Filter View Our tool supports searching for pat-
terns of suspicious model behavior by providing a

117

Figure 3: Metric view, showing bias towards images on
the GQA dataset for the MDETR model (larger version
in Appendix A).

filter view (see figure 4). Once model, dataset and
metric are selected, users are presented a list of all
samples within the chosen range. The range can
be adjusted using a slider, which updates the list of
matching data samples in real-time.

Figure 4: Filter view. Enables filtering for unexpected
model behavior on sample level (larger version in Ap-
pendix A).

Sample View Finally, once the desired range of
samples has been filtered, clicking a data sample
navigates to the sample view (see figure 5). There,
the original input image and question are displayed,
along with ground truth and the model’s top-3 pre-
dictions. Additionally, the scores and answers for
each single metric are shown. For example, if ap-
plying noise to the image changed the prediction
multiple times, we show all the answers that were
predicted using those noisy inputs.

4 Case Study

As a case study, we explore a range of models
from well-established, previously high ranking en-
tries in the VQA2 competition to more recent,
transformer-based architectures and report the in-
sights we gained by inspecting them with our tool.

Figure 5: Sample view with Image Bias Word Space
metric. Similar cards exist for each metric (larger ver-
sion in Appendix A).

4.1 Evaluated Models

We chose a widely used VQA-baseline BAN,
two transformer-based architectures MDETR and
MCAN, and MMNASNET.

BAN (Kim et al., 2018) is a strong baseline using
bilinear attention. It won third place in the VQA2
2018 challenge and was still in the top-10 entries
in 2019. We use the 8-layer version.

MCAN (Yu et al., 2019) improves BAN with a
co-attention feature fusion mechanism.

MMNASNET Yu et al. (2020) is a more recent
state-of-the-art model constructed using neural ar-
chitecture search. It is one of the top-10 entries of
the VQA2 2020 challenge.

MDETR (Kamath et al., 2021) is a state-of-the
art transformer using more recent question (Liu
et al., 2019) and image embedding approaches (Car-
ion et al., 2020). MDETR achieves competitive
accuracies on both GQA and CLEVR.

4.2 Results and Lessons Learned

Table 1 contains the aggregated results of all mod-
els, averaged across the development (sub-)splits
of all datasets. For details about the computation
of each metric, see section 3.2. Table 2 shows
model accuracy per dataset. Unsurprisingly, mod-
els performed best when evaluated on the develop-
ment (sub-)split of the dataset they were originally
trained on, and worse on datasets they were not
trained on. These performance drops are observ-
able for all models, suggesting that VQA models
cannot yet generalize well across tasks. Low per-
formance of current highly ranked VQA models

118

Average Results
Model Accuracy Modality Bias Robustness Image Robustness SEARs Uncer- Parameters

Image Quest. Image Feature Question tainty
MCAN 41.30 4.83 2.57 99.98 81.09 63.14 58.45 31.77 201,723,191
MMNASNET 40.80 4.67 2.51 99.99 79.90 65.18 59.65 31.75 211,166,871
BAN-8 38.62 5.21 3.31 99.99 82.22 70.09 53.53 66.10 112,167,258
MDETR 38.82 4.77 2.60 36.33 90.10 100.00 100.00 24.58 185,847,022

Table 1: Average results of our evaluated models across all development (sub-)splits. We split the columns modality
bias and robustness against image modifications into two sub-columns. These columns should be read as the
modality bias (lower values are better) measured for the image space and question space. Robustness (higher
values are better) against image changes is divided into alterations on the image itself as well as modifications
inside image feature space . All metrics are in range [0, 100].

on new datasets can partially be attributed to their
fixed answer spaces. This implies the need for more
research into systems that are able to generate an-
swers instead of treating VQA as a multiple-choice
problem. However, even changing distributions
of the same dataset leads to a large performance
drop, as we observe, for example, in GQA and
its out-of-distribution variants, GQA-OOD-HEAD
and GQA-OOD-TAIL. By swapping the original
GQA dataset for the GQA-OOD-TAIL distribution,
MDETR accuracy decreased by more than 11, 6%.
That out-of-distribution testing causes such high
losses in accuracy indicates models are still relying
on biases learned from the training dataset.

All systems struggled to read text in images,
in fact, the highest accuracy score on TextVQA
was only 8.81%, achieved by MMNASNET. This
might be improved by extending existing VQA-
architectures with additional inputs, e.g. from opti-
cal character recognition, or adapting the training
of currently used image feature extractors.

Applying noise in image space has almost no
impact on models using bottom-up-topdown fea-
ture extraction (Anderson et al., 2018), in contrast
to MDETR, the only model using an alternative
approach. In feature space, all models are sim-
ilarly stable, which could imply that the feature
extractor in MDETR could be made more robust
by augmenting training with noisy images.

All models show highest modality bias and low
accuracy on the CLEVR dataset. Given that no
models were trained on synthetic images or ques-
tions involving such complex selection and spatial
reasoning, this hints at the models not understand-
ing either modality well. Inspection using the filter
view on modality biases provides more evidence
of understanding problems here, showing that for
example BAN-8 nearly always guesses yes or no,
regardless of the question asked or the image given.

In general, BAN-8 displays the highest modality
bias, indicating more recent models have become
better at jointly reasoning over image and text.

SEAR and question robustness metrics show that
RoBERTa (Liu et al., 2019) provides substantial ro-
bustness to question perturbation; there were zero
cases causing MDETR to change predictions, sug-
gesting that context-aware embeddings should be a
standard consideration for future VQA models.

Our metrics show that state-of-the-art VQA mod-
els are optimized for specific tasks or datasets,
but fail to generalize even across other in-domain
datasets. In order to be successful in real-world ap-
plications, systems must demonstrate a variety of
abilities, not merely good performance on a single-
purpose test set.

5 Conclusion

Our proposed benchmarking tool is the first of its
kind in the domain of VQA and addresses the prob-
lems of current single-metric leaderboards in this
domain. It provides easy to use and fast compar-
ison of integrated models on a global level. The
performance of each model is evaluated across mul-
tiple special-purpose as well as general-purpose
datasets to test generalizability and capabilities.
Each model can be quantified by metrics such as ac-
curacy, biases, robustness, and uncertainty, reveal-
ing strengths and weaknesses w.r.t to given tasks,
i.e. measuring the properties models offer as well
as their real-world robustness. Exploration via fil-
tering can be used to identify suspicious behaviour
down to single data sample level. Through this, our
tool provides deeper insights into the strengths and
weaknesses of each model across tasks and metrics
and how architectural choices can affect behavior,
encouraging researchers to develop VQA systems
with rich sets of abilities that stand up to real-world

119

Model CLEVR GQA GQA-OOD-ALL GQA-OOD-HEAD GQA-OOD-TAIL OK-VQA TextVQA VQA2
MCAN 32.87 44.58 41.67 44.78 36.59 35.46 8.49 85.94
MMNASNET 31.95 44.50 40.24 42.01 37.35 35.09 8.81 86.51
BAN-8 28.64 41.86 38.95 40.97 35.65 32.88 8.40 81.60
MDETR 25.44 61.42 55.76 59.43 49.76 9.83 4.70 44.22

Table 2: Accuracy across the development (sub-)splits of different datasets. Bold entries mark best accuracy per
model and coincides in all cases with the dataset it was trained on.

environments. The open-source tool itself can be
installed as a package and extended with new mod-
els, datasets and metrics using our python API.

In the future, we plan to extend this tool with
new datasets as they are released. Moreover, we are
looking for more metrics for model evaluation as
well as more detailed dataset analysis, e.g. answer
space overlap. Last but not least, interactivity could
be extended towards live model feedback, allowing
to change inputs, e.g. the image noise level, and
observe model outputs at runtime.

6 Acknowledgement

This research was funded by the Cluster of Ex-
cellence EXC 2075 "Data-Integrated Simulation
Science" at the University of Stuttgart.

References
Aishwarya Agrawal, Dhruv Batra, and Devi Parikh.

2016. Analyzing the behavior of visual question an-
swering models. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1955–1960.

Aishwarya Agrawal, Dhruv Batra, Devi Parikh, and
Aniruddha Kembhavi. 2018. Don’t just assume;
look and answer: Overcoming priors for visual ques-
tion answering. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition,
pages 4971–4980.

Peter Anderson, Xiaodong He, Chris Buehler, Damien
Teney, Mark Johnson, Stephen Gould, and Lei
Zhang. 2018. Bottom-up and top-down attention for
image captioning and visual question answering. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 6077–6086.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C Lawrence Zitnick,
and Devi Parikh. 2015. Vqa: Visual question an-
swering. In Proceedings of the IEEE international
conference on computer vision, pages 2425–2433.

Remi Cadene, Corentin Dancette, Matthieu Cord, Devi
Parikh, et al. 2019. Rubi: Reducing unimodal biases
for visual question answering. In Advances in neu-
ral information processing systems, pages 841–852.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve,
Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. 2020. End-to-end object detection with
transformers. In European Conference on Computer
Vision, pages 213–229. Springer.

Abhishek Das, Harsh Agrawal, Larry Zitnick, Devi
Parikh, and Dhruv Batra. 2017. Human attention in
visual question answering: Do humans and deep net-
works look at the same regions? Computer Vision
and Image Understanding, 163:90 – 100. Language
in Vision.

Kawin Ethayarajh and Dan Jurafsky. 2020. Utility is
in the eye of the user: A critique of nlp leaderboard
design. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 4846–4853.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a
bayesian approximation: Representing model uncer-
tainty in deep learning. In international conference
on machine learning, pages 1050–1059.

Yash Goyal, Tejas Khot, Douglas Summers-Stay,
Dhruv Batra, and Devi Parikh. 2017. Making the
v in vqa matter: Elevating the role of image under-
standing in visual question answering. In Proceed-
ings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 6904–6913.

Shaunak Halbe. 2020. Exploring weaknesses of vqa
models through attribution driven insights. ACL
2020, page 64.

Jia-Hong Huang, Cuong Duc Dao, Modar Alfadly, and
Bernard Ghanem. 2019. A novel framework for ro-
bustness analysis of visual qa models. In Proceed-
ings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pages 8449–8456.

Drew A Hudson and Christopher D Manning. 2019.
Gqa: A new dataset for real-world visual reasoning
and compositional question answering. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 6700–6709.

Allan Jabri, Armand Joulin, and Laurens Van
Der Maaten. 2016. Revisiting visual question an-
swering baselines. In European conference on com-
puter vision, pages 727–739. Springer.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2021–2031.

120

Justin Johnson, Bharath Hariharan, Laurens Van
Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
Ross Girshick. 2017. Clevr: A diagnostic dataset
for compositional language and elementary visual
reasoning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
2901–2910.

Aishwarya Kamath, Mannat Singh, Yann LeCun, Is-
han Misra, Gabriel Synnaeve, and Nicolas Car-
ion. 2021. Mdetr–modulated detection for end-
to-end multi-modal understanding. arXiv preprint
arXiv:2104.12763.

Corentin Kervadec, Grigory Antipov, Moez Baccouche,
and Christian Wolf. 2021. Roses are red, violets are
blue... but should vqa expect them to? In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 2776–2785.

Jin-Hwa Kim, Jaehyun Jun, and Byoung-Tak Zhang.
2018. Bilinear attention networks. In Advances
in Neural Information Processing Systems, pages
1564–1574.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-
son, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A Shamma, et al.
2017. Visual genome: Connecting language and vi-
sion using crowdsourced dense image annotations.
International journal of computer vision, 123(1):32–
73.

Linjie Li, Jie Lei, Zhe Gan, and Jingjing Liu. 2021.
Adversarial vqa: A new benchmark for evaluat-
ing the robustness of vqa models. arXiv preprint
arXiv:2106.00245.

Ling Liu, Yanzhao Wu, Wenqi Wei, Wenqi Cao, Semih
Sahin, and Qi Zhang. 2018. Benchmarking deep
learning frameworks: Design considerations, met-
rics and beyond. In 2018 IEEE 38th Interna-
tional Conference on Distributed Computing Sys-
tems (ICDCS), pages 1258–1269. IEEE.

Pengfei Liu, Jinlan Fu, Yang Xiao, Weizhe Yuan,
Shuaicheng Chang, Junqi Dai, Yixin Liu, Zihui-
wen Ye, and Graham Neubig. 2021. Explainaboard:
An explainable leaderboard for nlp. arXiv preprint
arXiv:2104.06387.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Kenneth Marino, Mohammad Rastegari, Ali Farhadi,
and Roozbeh Mottaghi. 2019. Ok-vqa: A visual
question answering benchmark requiring external
knowledge. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recogni-
tion, pages 3195–3204.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Semantically Equivalent Adversar-
ial Rules for Debugging NLP models. Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics, pages 856–865.

Shaohuai Shi, Qiang Wang, Pengfei Xu, and Xi-
aowen Chu. 2016. Benchmarking state-of-the-art
deep learning software tools. In 2016 7th Inter-
national Conference on Cloud Computing and Big
Data (CCBD), pages 99–104. IEEE.

Amanpreet Singh, Vivek Natarjan, Meet Shah,
Yu Jiang, Xinlei Chen, Devi Parikh, and Marcus
Rohrbach. 2019. Towards vqa models that can read.
In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 8317–
8326.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. 2014. Intriguing properties of neural
networks. In International Conference on Learning
Representations.

Xiaojun Xu, Xinyun Chen, Chang Liu, Anna Rohrbach,
Trevor Darrell, and Dawn Song. 2018. Fooling vi-
sion and language models despite localization and
attention mechanism. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition, pages 4951–4961.

Zhou Yu, Yuhao Cui, Jun Yu, Meng Wang, Dacheng
Tao, and Qi Tian. 2020. Deep multimodal neu-
ral architecture search. In Proceedings of the
28th ACM International Conference on Multimedia,
pages 3743–3752.

Zhou Yu, Jun Yu, Yuhao Cui, Dacheng Tao, and
Qi Tian. 2019. Deep modular co-attention networks
for visual question answering. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 6281–6290.

A Appendix

Figure 6: Zoom into Figure 3.

121

Figure 7: Figure 1 in full size.

Figure 8: Figure 4 in full size.

122

Figure 9: Figure 5 in full size.

123

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 124–133
November 7–11, 2021. ©2021 Association for Computational Linguistics

Athena 2.0: Contextualized Dialogue Management
for an Alexa Prize SocialBot

Juraj Juraska, Kevin K. Bowden, Lena Reed, Vrindavan Harrison,
Wen Cui, Omkar Patil, Rishi Rajasekaran, Angela Ramirez, Cecilia Li,
Eduardo Zamora, Phillip Lee, Jeshwanth Bheemanpally, Rohan Pandey,

Adwait Ratnaparkhi and Marilyn Walker
University of California Santa Cruz, Santa Cruz, CA

jjuraska, kkbowden, lireed, vharriso, wcui7, opatil,
rrajasek, aramir62, yli331, ezamora9, plee35, jbheeman,

rspandey, adratnap, mawalker@ucsc.edu

Abstract

Athena 2.0 is an Alexa Prize SocialBot that
has been a finalist in the last two Alexa Prize
Grand Challenges. One reason for Athena’s
success is its novel dialogue management strat-
egy, which allows it to dynamically construct
dialogues and responses from component mod-
ules, leading to novel conversations with every
interaction. Here we describe Athena’s system
design and performance in the Alexa Prize dur-
ing the 20/21 competition. A live demo of
Athena as well as video recordings will pro-
voke discussion on the state of the art in con-
versational AI.

1 Introduction

There has been tremendous progress over the last
10 years on conversational AI, and a number of
practical systems have been deployed. The Alexa
Prize competition seeks to stimulate research and
development on conversational AI for open-domain
topic-oriented dialogue (Fang et al., 2018; Liang
et al., 2020; Finch et al., 2020; Harrison et al., 2020;
Pichl et al., 2020; Curry et al., 2018). However, the
longstanding tension between hand-scripting the
dialogue interaction, and producing systems that
scale to new domains and types of interaction still
remains (Eric and Manning, 2017; Cervone et al.,
2019) Neural end-to-end spoken dialogue systems
are not yet at a point where they perform well in
interactions with real users (Paranjape et al., 2020;
Gopalakrishnan et al., 2020; Dinan et al., 2019).

Athena’s dialogue management architecture
aims to be scalable and dynamic, by supporting
many different interactions for every topic, and by
constructing system utterances by concatenating
multiple dialogue acts that achieve different pur-
poses (Stent, 2000). A key aspect of Athena is the
existence of multiple Response Generators (RGs)
for each topic, which can be flexibly interleaved

during a particular interaction, as illustrated in Fig-
ure 1.1 This approach contrasts with the commonly
used approach of handcrafting conversation flow-
graphs for each topic, a static directed graph where
the nodes are the system utterances, and outgoing
edges are represent possible user replies. This ap-
proach has not changed for over 20 years (Seneff
et al., 1998; Glass and Weinstein, 2001; Buntschuh
et al., 1998), and its strengths and limitations are
well known. Flow-graphs are hand constructed
and thus do not scale well. However, each system
response can assume a fixed prior context, which
allows it to support fluent and coherent dialogues
with sufficient handcrafting.

In contrast, the ability of Athena’s Dialogue
Manager (DM) to interleave RGs allows Athena
to dynamically construct conversations that never
follow the same path. However, this more flexible
approach requires RGs to pay the overhead cost of
continuously adapting to the current context, as de-
scribed in Section 3. By eschewing a graph-based
representation of dialogue state, Athena’s DM is
flexible enough to use RG responses in contexts
that were not planned out prior to the conversa-
tion starting, and that do not need to follow rigid
guidelines. We believe this modular dialogue man-
agement approach promises to scale to deeper and
richer conversations, while at the same time allow
new conversational topics to be easily added to and
integrated into the system.

2 Athena Architecture and Overview

Figure 2 details Athena’s architecture. Athena is
built using the Cobot framework provided by Ama-
zon (Khatri et al., 2018). It runs as an on-demand
application that is initiated by an “Alexa, let’s chat”
user request to any Alexa-enabled device, such as

1In accordance with the Alexa Prize rules on user privacy,
these conversations are between team members and Athena.

124

Figure 1: A subdialogue in which Athena discusses music with the user, interweaving the responses of 3 different
RGs. Responses from the KG-based RG are highlighted in blue, responses from the entity-based indexing RG (fun
facts) in green, and those from the flow-based RG in purple.

an Amazon Echo or the Alexa app installed on
a phone. During the Alexa Prize, Athena partici-
pates in about 9K conversations a week. The Cobot
framework provides support for automatically scal-
ing to large volumes of user traffic.

The inputs to Athena are the ASR hypotheses
for a user’s turn from Amazon, and a conversation
ID that is used to retrieve the conversation history
and state information from a back-end database.
The ASR hypothesis is fed into a natural language
understanding (NLU) pipeline that produces a set
of NLU features for the user utterance and conver-
sation context. The NLU consists of Cobot’s mod-
ule for topic classification, and Athena modules
for utterance segmentation, dialogue act tagging,
named entity recognition and linking, and corefer-
ence resolution (Harrison et al., 2020; Patil et al.,
2021). The right-hand side of Figure 2 indicates
how Athena’s RGs use knowledge bases and fun
facts databases organized by topic and named entity.
Athena uses the Wikidata Knowledge Graph to aid
in Named Entity Resolution and for Knowledge-
Graph based RGs. These are essential for creating
an intelligent and versatile conversational agent
(Fang et al., 2018; Chen et al., 2018).

Based on the NLU features and conversation
context, the Dialogue Manager (DM) calls specific
Response Generators (RGs) to populate a response

pool. The DM then applies a trained neural re-
sponse ranker to select from the response pool gen-
erated by the RGs. Finally, Athena’s responses are
spoken by Amazon’s text-to-speech service.

3 Dialogue Management

A Dialogue Manager (DM) for open-domain con-
versation faces a particularly challenging task due
to the universe of possible valid responses at each
point of a conversation. While goal-oriented di-
alogues have a clear task completion objective
which the DM can optimize when making deci-
sions (Walker et al., 2001, 1997; Walker, 2000),
the DM for open-domain dialogues does not have
an obvious way to measure the appropriateness of
possible candidate responses.

Athena’s DM architecture can be decomposed
into a number of sub-components, corresponding
to phases of dialogue management, oriented as a
pipeline. The DM sub-modules in Figure 3 are
described in more detail in Harrison et al. (2020).

The Topic Manager in Figure 3 is responsible
for classifying user utterances into topics, and the
implementation of the DM’s topic hierarchy. The
topic hierarchy is a partially ordered list of topics
in order of predicted “goodness” learned from past
conversations, using a scoring function that com-
bines user ratings and the number of turns per topic

125

Figure 2: Athena’s system architecture.

Figure 3: Dialogue manager architecture.

per conversation, as described in Section 5. The
topic hierarchy is a parameter for system-initiative
topic initiations as well as suggesting topics for
users to initiate. This makes it extremely easy to
change which topics are promoted at any time, e.g.,
for collecting more data on a particular topic. It
can also be personalized for each user. For exam-
ple, if when asked about weekend activities, the
user describes playing in a baseball league, we can
prioritize talking about sports. This information
persists across conversations. If the user is also an
avid painter, but our system did not get a chance to
discuss painting in the previous conversation, we
will prioritize it when the user returns.

The interface between the DM and the RGs in
Figure 3, is a contract-based approach. The DM
passes a set of response conditions to the RGs,
which the RGs must meet for their response to be
considered. This approach allows Athena to have
many RG types (see Section 4).

The Response Ranker is based on a BERT-based
ranker fine-tuned on hand-annotated Alexa Prize

conversation data (Wolf et al., 2019; Devlin et al.,
2018). The current tuning set size is ~10K utter-
ances. Annotation involves ranking candidate re-
sponses within a context of five turns. We have
repeatedly annotated additional data and retrained
our response ranker, which is useful when, for ex-
ample, new RGs are added to Athena.

4 Response Generation

Athena uses four types of RGs: Flow-RGs,
Knowledge-Graph RGs, Entity-Based Indexing
RGs, and Neural NLG RGs.

4.1 Flow-RG
Flow-RG is a framework that we developed with
the objective of creating robust and modular flow-
based RGs. This is still the most reliable way to
provide the DM with a pool of possible responses
at each turn of the dialogue, even though such flows
have to be handcrafted. Flow-based RGs exhibit
context-awareness and fluency superior to other
RG types, such as retrieval-based or neural. This
RG design naturally has a rather limited support
for user initiative, which we make up for with other
RGs in Athena, and by ensuring the responses from
different RGs get smoothly interwoven across mul-
tiple turns, as well as within a single turn.

An RG defined in this framework has three com-
ponents. First, a flow graph consisting of nodes
specifying the responses, and edges determining
which node of the flow to move on to given the
current user utterance and dialogue state. Flow-RG
enforces each next turn in the flow graph to be con-
ditioned on the dialogue act(s) of the user utterance,
while other features of the utterance – such as its
sentiment, or the presence of a named entity or a
particular keyword – are deemed secondary and

126

Figure 4: Illustration of response composition in Flow-RG.

are optional in branching conditions.2 This reduces
the chance of Athena’s subsequent response ignor-
ing the user’s intent, which can be anything from
expressing an opinion, to requesting information,
to merely acknowledging Athena’s response in the
previous turn. The second component comprises
response segment templates, while the third com-
ponent is a set of callback functions that generate
more context-dependent response segments.

A flow graph can be broken down into smaller
miniflows that are independent and can possibly
be executed in an arbitrary order. Each RG then
typically handles a single topic, with multiple mini-
flows being responsible for different subtopics. An
example of multiple miniflows forming a cohesive
dialogue can be seen in Appendix A.
Response Composition. The response in each
turn is assembled from one or more segments spec-
ified in the corresponding node. Each segment
is defined either (1) in the form of a set of tem-
plates, or (2) as a callback function that returns a
set of templates. While both offer an easy way to
use paraphrases for increased diversity of the re-
sponses, the latter is more robust in that it can use
the previous context and more of the NLU infor-
mation about the user utterance. Figure 4 shows
the process of a response being assembled from
three segments, two of which are different types of
callback function: one fills a template slot with a
value from the associated knowledge source, while
the other initiates a new miniflow and composes

2The other NLU features, such as named entities or
anaphora, often only affect the choice of content in the next
system response rather than its type/DA, and they do not have
a value at each turn, unlike the DA feature.

the response text recursively, which ultimately cor-
responds to the last segment in the example.

When composing a response, each segment’s fi-
nal set of texts is sampled from, and all of them are
concatenated. This is repeated until up to five differ-
ent response candidates are composed. These are
eventually all returned to the DM, which picks one
of them that is not too similar to any of Athena’s
previous responses.

Interweaving with Other RGs. Every topic in
Athena has a corresponding Flow-RG, and most
topics also have one or two other RGs that can in-
teract with its Flow-RG to dynamically construct a
topical sub-dialogue. In line with the DM’s way of
response building, the final response in Flow-RG
is split into three parts: an opener, a body, and a
hand-off. This response structure is particularly
useful for creating seamless transitions whether it
is between miniflows, or between two RGs. To
this end, Flow-RG sets the response from an end-
ing miniflow as the opener (typically, some form
of acknowledgement of the user’s response, or a
short answer), and the body and hand-off parts are
reserved for the intro response provided by a new
miniflow. The same mechanism is used for cer-
tain transitions from Flow-RG to a different RG,
mainly: 1) when the flow’s content is exhausted,
and transitions thus to a fallback response chosen
by the DM that initiates a new topic, and 2) when a
leaf node of the miniflow is reached, and the DM
decides to switch to a different RG on the same
topic. The latter is utilized in the DM’s interweav-
ing strategy, wherein a flow-based RG takes turns
with an entity-centric or fun fact-based RG in han-

127

dling a subdialogue on the same topic.
Flow-RG makes it possible for a flow to resume

after a few turns handled by a different RG on
the same topic. The flow can simply begin a new
miniflow, if there is at least one miniflow that has
not yet been visited. Resumption is also possible in
the middle of a miniflow, which allows a different
RG to chime in for up to two turns (such as EVI
answering an on-topic factual question that the flow
has no answer prepared for), and then have the
miniflow pick up where it left off.

ATHENA Okay, can’t wait to get to know a thing or two
about you. Valentine’s day is on Sunday. Do you
have a Valentine?

USER yes my wife
ATHENA Cool! I wish I could meet a socialbot that I could

fall in love with; then they’d be my Valentine.
Anyway, I’ve always wanted to go on a vacation
and to travel. What’s a place that you’ve always
wanted to travel to?

USER paris sounds great
ATHENA The Eiffel Tower is a masterpiece of architecture.

For me, I think the great wall of china is at the
top of my list of travel destinations. It seems like
it would be amazing to walk along it. So, Is there
a particular reason why you want to go to paris?

USER the food is really bomb
ATHENA Delicious food is always a good reason to go

somewhere. Hey, I’m curious, Do you prefer
flying? or road trips?

USER I like flying generally
ATHENA That’s an interesting answer. I’d like to go on the

road. You can see so much during a roadtrip, it
would be cool to watch the world go by. Hmm,
Do you like to relax during vacations?

Figure 5: Introduction Flow-RG subdialogue, just be-
fore Valentine’s day.

Introduction RG. The Introduction Flow-RG,
which every user experiences, has a strong effect
on the user’s overall experience (see Figure 5).
The Introduction front-loads the conversation with
getting-to-know-you content, by learning the user’s
name and asking icebreaker questions, such as
favorite travel destinations, and weekend activi-
ties. The Introduction also brings up relevant cur-
rent events, such as holidays, and gives the user
a chance to ask Athena questions. Some of these
turns will be the same for most users, e.g., asking
for their name. Other content will change based
on proximity to significant events in the year or
the current day of the week, while some content
changes randomly, for example, asking different
questions related to vacation preferences. Content
related to particular holidays as illustrated in Fig-
ure 5 are set up on a calendar and automatically

started and stopped. The introduction also changes
significantly for repeat users to indicate that we
remember them, and provide a novel experience.

4.2 Knowledge Graph-Based RGs
The goal of the Knowledge Graph-based RGs (KG
RGs) is to create deep knowledge-grounded con-
versations, where Athena always has more to say,
by traversing relations in the Wikidata knowledge
graph. Athena has four KG RGs covering movies,
music, sports and TV, with conversations anchored
around KG nodes (named entities). Each topic
attempts to continue the conversation by either re-
sponding with a fact about an entity in context, or
by selecting an entity from a set of fallback entities.
When the system has either run out of facts on a
particular entity, or has been on the same entity
for a number of turns above a threshold, the RG
attempts to traverse one or more relation edges, to
a related entity, to continue the conversation. An
example for the TV KG RG is in Figure 1.

ATHENA Is there a television show that you like?
USER Friends is one of my favorites

Entity linking: Friends -> entity: Friends, wiki_id: Q79784
ATHENA Friends is a great show. Why do you like it?
USER It is really funny
ATHENA What character do you like the most?
USER I love Rachel
ATHENA I really like how Jennifer Aniston plays Rachel

Green. Did you know that she won a Prime-
time Emmy Award for Outstanding Lead Ac-
tress in a Comedy Series for her role?

USER No, that’s interesting

Table 1: Conversation using the knowledge graph.

Each topic has one to three entity types which
the RG can respond about and each entity has a set
of relations that can be used to generate responses.
Each relation can only be used once for a particular
entity, but can be reused when the RG has switched
to a new entity. One limitation of the KG RGs is
the need to select “interesting” relations and write
templates by hand (Moon et al., 2019).

4.3 Entity-Based Indexing RGs
Entity-Based Indexing RGs are topical retrieval-
based generators where the focus of the response
is on “fun facts” for entities in a topic. Table 2
indicates how many fun facts these RGs have for
each topic, and provides examples.

4.4 Neural NLG RGs
We have also developed and experimented with
several different neural NLGs, including neural

128

Figure 6: Distribution of ratings for each topic for the period from January 1st to June 16th.

Topic #Facts Example
Animals 90 I read this surprising fact about koalas. The finger-

prints of a koala are so indistinguishable from hu-
mans that they have on occasion been confused at a
crime scene. Imagine having your fingerprints con-
fused with a koala, how strange!

Comic
Books

26 Batman and Robin are the best superhero sidekick
team. Once, after Batman and Robin rescued it from
a slaughterhouse, DC comics included a Bat-cow.

Harry
Potter

21 Fred and George Weasley were such tricksters.
When Fred and George Weasley bewitched snow-
balls to hit Professor Quirrell’s turban, they were
unwittingly hitting Voldemort in the face.

Movies 54 One of my favorite movie series of all time are the
James Bond movies. Before signing on as James
Bond, Daniel Craig wasn’t sure he wanted to play
the role.

Music 31 I like to think that when music is played, it makes
everyone happier, even animals. Researchers at the
University of Leicester found that cows produce 3%
more milk when they listen to relaxing music.

Nature 15 I like learning more about nature. It’s actually really
dark in the Amazon Forest! The forest is so thick
that only 1% of sunlight can make it through.

Video
Games

20 Here’s a fact I discovered recently about World of
Warcraft. A lot of famous people played World of
Warcraft, including Vin Diesel, Mila Kunis and even
Robin Williams. Isn’t that cool?

Table 2: Fun facts for popular entity-based RG topics.

NLGs that generate from meaning representations
and are thus topic specific (Juraska et al., 2019;
Harrison et al., 2019; Oraby et al., 2019).

We also developed a neural NLG that we call
Discourse-Driven NRG (DD-NRG) that generates
directly from the conversation context and can
be used for any topic (Rajasekaran, 2020; Tosh,
2020). We also systematically tested two topic-
agnostic neural NLGs provided by Amazon, the
PD-NRG (Hedayatnia et al., 2020) and a model
called Topical-NRG that was trained on the Alexa
Prize conversations of all finalists in the 19/20 com-
petition. We found that it was difficult to control
the quality of the neural RG outputs and guaran-
tee their coherence, so we only deployed them to
collect experimental data for short periods. We are
currently experimenting with methods for control-
lable generation for these RGs (Reed et al., 2020;
Harrison et al., 2019; Juraska and Walker, 2021).

5 Evaluation and Analysis

The two criteria that are specified in the Alexa Prize
Grand Challenge that systems aim to optimize are
length of conversation and user ratings. The Grand
Prize will go to a system that achieves conversa-
tions of at least 20 minutes with average ratings
of 4.0 on a scale of 1 to 5.3

Over the 4 years our team has been in the com-
petition, we have found that interactions with users
are vulnerable to noise due to the competition setup
(Bowden et al., 2019a,b; Harrison et al., 2020).
Users often get into the Alexa Prize skill by acci-
dent leading to many conversations of only 1 or 2
turns (Shalyminov et al., 2018). Surprisingly, even
for single turn conversations, some users still pro-
vide ratings. To improve our analysis of system
performance, we remove these very short conver-
sations from the data. Table 3 show the ratings,
lengths in turns, and durations, during the semi-
finals and the finals. On June 25th, before entering
the finals, the average rating across all the systems
in the semi-finals was 3.41 and the median duration
was 2.12.

Ratings Turns Time
Mean Median Mean Median Median

Semifinals 3.62 4.0 17 24 2.46
Finals 3.71 4.0 18 24 2.01

Table 3: Athena’s performance during the semi-finals
and the finals for rating, length and duration.

Obviously, user’s interactions with different RGs
and topics affect their conversations and therefore
their ratings. While only about 20% of users actu-
ally provide ratings, over the course of this year,
we collected about 38K conversations with ratings.
The distribution of ratings by topic presence in con-

3https://www.amazon.science/academic-
engagements/alexa-prize-socialbot-grand-challenge-4-
finalists-announced

129

Figure 7: Z-scores for Athena topics for the period from June 1st to June 16th.

versations from January to June are in Figure 6.
The purple and red bars indicate proportions of the
topic that occur in conversations with ratings of 4
and 5 respectively. This suggests that the highest
performing topics include animals, comic books,
Harry Potter, hobbies, and video games, and that
only a few topics are actually performing poorly,
such as dinosaurs, news and sports.

However, presence in a conversation is a rather
imprecise indicator of topic quality. In order to
better understand the contribution of each topic
to Athena’s overall ratings, we developed a novel
scoring function that aims to optimize topic selec-
tion over the prizes’ user ratings and conversation
duration criteria. Thus, our scoring function gives
credit based on the number of utterances in a con-
versation that are contributed by each topic in the
conversation. The number of utterances is multi-
plied by the conversation rating and summed for
each topic over all rated conversations. This sum
is then normalized to produce its Z-score. The
plot shown in Figure 7 indicates for each topic,
how many standard deviations its performance is
above or below the Athena’s mean performance for
two weeks in June, 2021. This plot indicates that
the topics that contribute most to long dialogues
that are more highly rated include movies, animals,
video games, music and hobbies, all of which are
1 or more standard deviations above the mean in
performance. Walker et al. (2021) discusses the
impact of topic selection and dialogue behaviors
on user ratings and conversation length.

We also investigated the impact of personaliza-
tion on the dialogue manager with an A/B study
run over 22 days. The A system has the fully per-
sonalized dialogue manager, while B utilizes our
previously existing heuristic topic selection strat-

egy. We selected conversations of 6 turns or more
to allow personalization to have an effect and also
filter out conversations that never perform topic
promotion; thus, we only inspect conversations
that differ due to the topic selection strategy. After
filtering, personalization occurred in roughly 25%
of conversations. Our results, shown in Table 4,
indicate a statistically significant increase in both
user rating and conversation length.

personalized heuristic p-value
convs 1066 614 —
rating 4.02 3.85 .007
length 38.07 35.07 .016

Table 4: Personalized topic selection vs. heuristic topic
selection over 22 days.

6 Conclusion

This paper describes Athena, and its design and
performance in the Alexa Prize Grand Challenge 4.
Our system demonstration will illustrate both the
strengths and the weaknesses of Athena and pro-
vide the basis for discussion about the state of the
art of open-domain conversational AI.

Acknowledgements

We would like to thank Christian Benavidez,
Yaqing Cao, James Graupera, Colin Harmon,
Venkatesh Nagubandi, Meltem Ozcan, Diego Pe-
dro, Navya Rao, Stephanie Rich, Jasiel Rivera-
Trinadad and Aditya Tarde for helping with fun
facts, Wikidata queries and prosody markup.

References
Kevin K Bowden, Jiaqi Wu, Wen Cui, Juraj Juraska,

Vrindavan Harrison, Brian Schwarzmann, Nicholas
130

Santer, Steve Whittaker, and Marilyn Walker. 2019a.
Entertaining and opinionated but too controlling: a
large-scale user study of an open domain alexa prize
system. In Proceedings of the 1st International Con-
ference on Conversational User Interfaces, pages 1–
10.

Kevin K Bowden, Jiaqi Wu, Wen Cui, Juraj Juraska,
Vrindavan Harrison, Brian Schwarzmann, Nick San-
ter, and Marilyn Walker. 2019b. Slugbot: Develop-
ing a computational model and framework of a novel
dialogue genre. arXiv preprint arXiv:1907.10658.

Bruce Buntschuh, C. Kamm, G. DiFabbrizio,
A. Abella, M. Mohri, S. Narayanan, I. Zeljkovic,
R.D. Sharp, J. Wright, S. Marcus, J. Shaffer,
R. Duncan, and J.G. Wilpon. 1998. VPQ: A
spoken language interface to large scale directory
information. In Proc. of ICSLP, Sydney, Australia.

Alessandra Cervone, Chandra Khatri, Rahul Goel,
Behnam Hedayatnia, Anu Venkatesh, Dilek
Hakkani-Tur, and Raefer Gabriel. 2019. Natural
language generation at scale: A case study for
open domain question answering. In arXiv preprint
arXiv:1903.08097.

Chun-Yen Chen, Dian Yu, Weiming Wen, Yi Mang
Yang, Jiaping Zhang, Mingyang Zhou, Kevin Jesse,
Austin Chau, Antara Bhowmick, Shreenath Iyer,
et al. 2018. Gunrock: Building a human-like social
bot by leveraging large scale real user data. Alexa
Prize Proceedings.

Amanda Cercas Curry, Ioannis Papaioannou, Alessan-
dro Suglia, Shubham Agarwal, Igor Shalyminov,
Xinnuo Xu, Ondřej Dušek, Arash Eshghi, Ioannis
Konstas, Verena Rieser, et al. 2018. Alana v2: En-
tertaining and informative open-domain social dia-
logue using ontologies and entity linking. Alexa
Prize Proceedings.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv:1810.04805 [cs]. ArXiv: 1810.04805.

Emily Dinan, Samuel Humeau, Bharath Chintagunta,
and Jason Weston. 2019. Build it break it fix it for
dialogue safety: Robustness from adversarial human
attack. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4537–4546.

Mihail Eric and Christopher D Manning. 2017. Key-
value retrieval networks for task-oriented dialogue.
In SIGDIAL 2017: Session on Natural Language
Generation for Dialog Systems.

Hao Fang, Hao Cheng, Maarten Sap, Elizabeth Clark,
Ari Holtzman, Yejin Choi, Noah A Smith, and Mari
Ostendorf. 2018. Sounding board: A user-centric
and content-driven social chatbot. NAACL HLT
2018, page 96.

Sarah E Finch, James D Finch, Ali Ahmadvand, Xi-
angjue Dong, Ruixiang Qi, Harshita Sahijwani,
Sergey Volokhin, Zihan Wang, Zihao Wang, Jinho D
Choi, et al. 2020. Emora: An inquisitive social chat-
bot who cares for you. Alexa Prize Proceedings.

James Glass and Eugene Weinstein. 2001. Speech-
Builder: Facilitating spoken dialogue system devel-
opment. In Eurospeech, pages 1335–1338.

Karthik Gopalakrishnan, Behnam Hedayatnia, Long-
shaokan Wang, Yang Liu, and Dilek Hakkani-Tür.
2020. Are neural open-domain dialog systems ro-
bust to speech recognition errors in the dialog his-
tory? an empirical study. Proc. Interspeech 2020,
pages 911–915.

Vrindavan Harrison, Juraj Juraska, Wen Cui, Lena
Reed, Kevin K Bowden, Jiaqi Wu, Brian Schwarz-
mann, Abteen Ebrahimi, Rishi Rajasekaran, Nikhil
Varghese, et al. 2020. Athena: Constructing
dialogues dynamically with discourse constraints.
Alexa Prize Proceedings.

Vrindavan Harrison, Lena Reed, Shereen Oraby, and
Marilyn Walker. 2019. Maximizing stylistic control
and semantic accuracy in nlg: Personality variation
and discourse contrast. DSNNLG 2019, page 1.

Behnam Hedayatnia, Karthik Gopalakrishnan,
Seokhwan Kim, Yang Liu, Mihail Eric, and
Dilek Hakkani-Tur. 2020. Policy-driven neural
response generation for knowledge-grounded dialog
systems. In Proceedings of the 13th International
Conference on Natural Language Generation, pages
412–421.

Juraj Juraska, Kevin K Bowden, and Marilyn Walker.
2019. ViGGO: A video game corpus for data-to-
text generation in open-domain conversation. In
Proceedings of the 12th International Conference on
Natural Language Generation.

Juraj Juraska and Marilyn Walker. 2021. Attention is
indeed all you need: Semantically attention-guided
decoding for data-to-text nlg. In International Con-
ference on Natural Language Generation, INLG.

Chandra Khatri, Behnam Hedayatnia, Anu Venkatesh,
Jeff Nunn, Yi Pan, Qing Liu, Han Song, Anna Got-
tardi, Sanjeev Kwatra, Sanju Pancholi, et al. 2018.
Advancing the state of the art in open domain dia-
log systems through the alexa prize. arXiv preprint
arXiv:1812.10757.

Kaihui Liang, Austin Chau, Yu Li, Xueyuan Lu, Dian
Yu, Mingyang Zhou, Ishan Jain, Sam Davidson, Josh
Arnold, Minh Nguyen, et al. 2020. Gunrock 2.0: A
user adaptive social conversational system. Proceed-
ings of the Alexa Prize: Social Bot Grand Challenge
3.

Seungwhan Moon, Pararth Shah, Anuj Kumar, and Ra-
jen Subba. 2019. Opendialkg: Explainable conver-
sational reasoning with attention-based walks over

131

knowledge graphs. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 845–854.

Shereen Oraby, Vrindavan Harrison, Abteen Ebrahimi,
and Marilyn Walker. 2019. Curate and generate: A
corpus and method for joint control of semantics and
style in neural nlg. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 5938–5951.

Ashwin Paranjape, Abigail See, Kathleen Kenealy,
Haojun Li, Amelia Hardy, Peng Qi, Kaushik Ram
Sadagopan, Nguyet Minh Phu, Dilara Soylu, and
Christopher D Manning. 2020. Neural generation
meets real people: Towards emotionally engaging
mixed-initiative conversations. Proceedings of the
Alexa Prize: Social Bot Grand Challenge 3.

Omkar Patil, Lena Reed, Kevin K. Bowden, Juraj
Juraska, Wen Cui, Vrindavan Harrison, Rishi Ra-
jasekaran, Angela Ramirez, Cecilia Li, Phillip Lee,
Eduardo Zamora, Jeshwanth Bheemanpally, Rohan
Pandey, Adwait Ratnaparkhi, and Marilyn Walker.
2021. Athena 2.0: Discourse and user modeling
in open domain dialogue. Proceedings of the Alexa
Prize.

Jan Pichl, CTU FEE, Petr Marek, Jakub Konrád, Mar-
tin Matulík, and Jan Šedivỳ. 2020. Alquist 2.0:
Alexa prize socialbot based on sub-dialogue models.
Proceedings of the Alexa Prize: Social Bot Grand
Challenge 3.

Rishi Rajasekaran. 2020. Transfer-learning approaches
towards controllable response generation for conver-
sational agents. PDF Download.

Lena Reed, Vrindavan Harrison, Shereen Oraby, Dilek
Hakkani-Tur, and Marilyn Walker. 2020. Learn-
ing from mistakes: Combining ontologies via self-
training for dialogue generation. In Proceedings
of the 21st Annual Meeting of the Special Interest
Group on Discourse and Dialogue (SIGDIAL 2020).

Stephanie Seneff, Ed Hurley, Raymond Lau, Christine
Pao, Philipp Schmid, and Victor Zue. 1998. Galaxy-
ii: A reference architecture for conversational sys-
tem development. In Fifth International Conference
on Spoken Language Processing.

Igor Shalyminov, Ondřej Dušek, and Oliver Lemon.
2018. Neural response ranking for social conversa-
tion: A data-efficient approach. In Proceedings of
the 2018 EMNLP Workshop SCAI: The 2nd Interna-
tional Workshop on Search-Oriented Conversational
AI, pages 1–8.

A. Stent. 2000. Rhetorical structure in dialog. In Proc.
of the first international conference on Natural lan-
guage generation-Volume 14, pages 247–252. Asso-
ciation for Computational Linguistics.

Zachary Tosh. 2020. Developing knowledge-grounded
natural language generation models for the dstc9
competition. PDF Download.

M. Walker, J. Aberdeen, J. Boland, E. Bratt, J. Garo-
folo, L. Hirschman, A. Le, S. Lee, S. Narayanan,
K. Papineni, B. Pellom, J. Polifroni, A. Potami-
anos, P. Prabhu, A. Rudnicky, G. Sanders, S. Seneff,
D. Stallard, and S. Whittaker. 2001. DARPA com-
municator dialog travel planning systems: The june
2000 data collection. In EUROSPEECH 2001.

M. A. Walker, D. Litman, C. A. Kamm, and A. Abella.
1997. PARADISE: A general framework for evaluat-
ing spoken dialogue agents. In Proc. of the 35th An-
nual Meeting of the Association for Computational
Linguistics, ACL/EACL 97, pages 271–280.

Marilyn Walker, Colin Harmon, James Graupera, Da-
van Harrison, and Steve Whittaker. 2021. Develop-
ing paradise for open domain dialogue systems. In
International Workshop on Spoken Dialogue System
Technology. Springer.

Marilyn A. Walker. 2000. An application of reinforce-
ment learning to dialogue strategy selection in a spo-
ken dialogue system for email. Journal of Artificial
Intelligence Research, 12:387–416.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

A Appendix

A: I’d like to hear your ideas on this. If you could choose
one food to live on for your entire life, which food would
it be? Why?
U: i think nachos
A: That’s an interesting answer! If I was a human, I would
eat Sweet potatoes. Sweet potatoes are a really nutritious
food. You can eat them in a variety of ways like baked,
fries, or twice baked. Anyway, that’s my thoughts on the
matter.
A: Okay. I was curious about your opinion on this. If
you had the option, would you rather spend time in the
mountains, or, at the beach
U: i like the beach more
A: Choosing the beach is a good choice! If I was a human,
I would spend time at the ocean - I would walk on the
beach, search for shells, and relax in the sun. Anyhow,
that’s where my minds at, let’s move forward.

Table 5: Two examples of Athena’s attempt to increase
topical depth by asking different types of playful ques-
tions. We crowdsourced 2.5k playful questions, which
were then curated for quality. All of this content was
also updated to match Athena’s self-aware personality,
e.g., If I was human. “A” denotes Athena and “U” the
user turns.

132

A: But most people seem to find dinosaurs really interest-
ing. There are dinosaur movies and whole floors of natural
history museums dedicated to dinosaurs. Personally, I
find it fascinating that modern birds are descended from a
particular family of dinosaurs.
U: hella cool
A: Definitely. I was surprised to hear how much work
went into creating the movie Land Before Time. Over 600
background paintings were made for the film. The artists
had to create a believable environment in which there was
almost no foliage. Most paintings depicted beautiful but
barren wastelands.
U: surprising
A: Right? My favorite dinosaur is the Tyrannosaurus
Rex. It’s huge and ferocious, but the little arms make
it somewhat adorable. What about you? What’s your
favorite dinosaur?
U: i’m not sure i have to say a t. rex
A: Okay. There are lots of movies about dinosaurs. One
of the most famous dinosaur movies is Jurassic Park, old
but classic. Are there any dinosaur movies that you love?
U: i have to say jurassic park because that’s the only one
i’ve seen
A: Awesome! That one is well known! I seem to remem-
ber people saying the dinosaurs were very vivid
U: i never knew that
A: yeah, I love to collect these fun facts! But anyways,
I’m interested in your opinion. Would you rather ride on
the back of a pterodactyl or brontosaurus as your primary
means of transportation?
U: i have to say brontosaurus and i hate heights
A: Choosing a Brontosaurus you say, great pick! I would
rather ride a pterodactyl so I could experience flight as well
as move around more efficiently. Riding a brontosaurus
would be thrilling because of their size but less practical
than a pterodactyl. So, okay. Do you know why dinosaurs
are extinct?
U: yeah cause i’m eat your head it right
A: Ah nice, you must be super smart. Let me tell you what
I heard.The mass extinction of dinosaurs is a scientific
mystery, but most hypotheses include an extraterrestrial
impact or a massive bout of volcanism. What do you think
happened?
U: i’d say aliens
A: I’d like to hear your ideas on this. Let’s say you are
trapped on Jurassic World alone with the dinosaurs, what
would you do to survive?
U: i’m not sure i just say find sheltering something and
start there
A: It’s a hard question! I would try to become closer to
the younger dinosaurs so that they would grow up with
me and feel more comfortable with me. I would also try
to help them by finding food and shelter for them. At any
rate, Dinosaurs had a lot of different ways to attack other
dinosaurs and to defend themselves. To help fight meat
eaters such as the Allosaurus or Spinosaurus, many plant
eaters had natural weapons at their disposal.

Table 6: An example conversation about Dinosaurs,
one of our more niche topics. We use a variety of differ-
ent miniflows to increase our topical depth. “A” denotes
Athena and “U” the user turns.

A: One thing that really interests me is people’s hobbies.
Can you give me some info about swimming?
U: it’s pretty fun
A: Right? Sounds totally tubular. Why do you like swim-
ming?
U: it’s because i can kind of just feel like i can move
around and do a lot of stuff i can’t do on land
A: Cool! How did you first get started with swimming?
U: i took swimming lessons
A: I realize you might be totally in love with swimming,
but I’m curious. Is there any part of the hobby you don’t
like?
U: tough lessons
A: Well swimming sounds interesting, thanks for telling
me all about your hobby. A lot of people have cool hobbies,
but what about me? What kind of hobby do you think I
would like?
U: maybe writing
A: Alright. Why do you think writing is a good fit for me?
U: because you like expressing yourself seems like
A: Ok. I see. Do you need any special equipment or skills
to get into writing?
U: just paper and pen and imagination
A: I see. Thank you for recommending writing to me, I’ll
try to find out more about the hobby in the future!

Table 7: An example of Athena engaging the user about
their hobby, swimming, which we previously learned
about in the Introduction RG. “A” denotes Athena and
“U” the user turns.

133

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 134–142
November 7–11, 2021. ©2021 Association for Computational Linguistics

SPRING Goes Online: End-to-End AMR Parsing and Generation

Rexhina Blloshmi
Sapienza University of Rome
blloshmi@di.uniroma1.it

Michele Bevilacqua
Sapienza University of Rome
bevilacqua@di.uniroma1.it

Edoardo Fabiano
Sapienza University of Rome

edoardo10x@gmail.com

Valentina Caruso
Babelscape, Italy

caruso@babelscape.com

Roberto Navigli
Sapienza University of Rome
navigli@diag.uniroma1.it

Abstract
In this paper we present SPRING Online Ser-
vices, a Web interface and RESTful APIs
for our state-of-the-art AMR parsing and gen-
eration system, SPRING (Symmetric PaRs-
Ing aNd Generation). The Web interface
has been developed to be easily used by the
Natural Language Processing community, as
well as by the general public. It provides,
among other things, a highly interactive vi-
sualization platform and a feedback mecha-
nism to obtain user suggestions for further im-
provements of the system’s output. Moreover,
our RESTful APIs enable easy integration of
SPRING in downstream applications where
AMR structures are needed. Finally, we make
SPRING Online Services freely available at
http://nlp.uniroma1.it/spring and, in addition,
we release extra model checkpoints to be used
with the original SPRING Python code.1

1 Introduction

Abstract Meaning Representation (Banarescu et al.,
2013, AMR) is a popular formalism for repre-
senting the semantics of natural language in a
readable and hierarchical way. AMR pairs En-
glish sentences with graph-based logical formu-
las which are easily accessible by both humans
and machines, while abstracting away from many
syntactic variations. Because of the formalism’s
ambition to be comprehensive, AMR graphs are
complex objects that require a parser – an auto-
matic algorithm that transduces a natural language
utterance into an AMR graph – to subsume multi-
ple traditional Natural Language Processing tasks:
Word Sense Disambiguation (Bevilacqua et al.,
2021b; Barba et al., 2021), Semantic Role Labeling
(Màrquez et al., 2008; Conia et al., 2021; Blloshmi
et al., 2021), Named Entity Recognition (Yadav
and Bethard, 2018), Entity Linking (Ling et al.,
2015; Tedeschi et al., 2021), and Coreference Res-
olution (Kobayashi and Ng, 2020). Owing to this

1https://github.com/SapienzaNLP/spring

complexity, AMR parsing, as well as its specu-
lar counterpart, i.e., AMR generation, are hard to
solve. However, the richness of the information
included in AMR graphs, as well as their obvious
applications as an interface between human and
machines, make both AMR parsing and generation
very rewarding problems to solve. As a matter
of fact, AMR has been successfully applied to di-
verse downstream applications, such as Machine
Translation (Song et al., 2019), Text Summariza-
tion (Hardy and Vlachos, 2018; Liao et al., 2018),
Human-Robot Interaction (Bonial et al., 2020a), In-
formation Extraction (Rao et al., 2017) and, more
recently, Question Answering (Lim et al., 2020; Bo-
nial et al., 2020b; Kapanipathi et al., 2021). How-
ever, since AMR graphs for such applications are
obtained automatically through an AMR parser,
the benefits of AMR integration are highly corre-
lated with the performance of the underlying parser
across various data distributions and domains.

In recent years, AMR parsing and generation
models have become more reliable than they used
to be, thanks to both the availability of pretrained
language models (Devlin et al., 2019; Lewis et al.,
2020) and the continuous improvements in the
AMR-specific model architectures (Zhou et al.,
2020; Cai and Lam, 2020; Fernandez Astudillo
et al., 2020). However, most of the existing mod-
els make use of cumbersome, data-specific tech-
niques and components which not only limit the
out-of-distribution generalizability, but also make
it difficult to integrate such models in the pipeline
of downstream applications. In our recent paper,
SPRING (Bevilacqua et al., 2021a), we proposed
a solution through a simple, end-to-end approach
with no heavy inbuilt data processing assumptions.
Our model achieved unprecedented performance in
AMR parsing and generation, both in- and out-of-
distribution.

To make SPRING accessible to the community,
thereby lowering the entry point to AMR applica-

134

tion research, we present SPRING Online Services
which include:

• a Web interface to easily produce and visual-
ize an AMR graph for a given sentence and,
vice versa, a sentence for a given AMR graph
in PENMAN (Goodman, 2020) notation.

• RESTful APIs to programmatically request
AMR parsing and generation services.

• a bidirectional SPRING model also trained on
Bio-AMR, resulting in much stronger perfor-
mances for biomedical applications.

• a feedback mechanism which allows users to
submit modifications to the system’s outputs
– aided by the visualization – which we col-
lect to enable future enhancements of AMR
systems using active learning (Settles, 2009).

2 SPRING

In this Section we revisit the details of SPRING as
in Bevilacqua et al. (2021a) along with the alter-
ations we employ for this demonstration.

2.1 Task Formulation

SPRING is a simple sequence-to-sequence model
that operates either as a parser, aiming to produce
a linearized AMR graph given a sentence, or as a
data-to-text generator, generating a sentence from
an input linearized AMR graph. Formally, a sen-
tence is represented as a sequence of tokens s =
〈BOS, w1, w2, . . . , wn,EOS〉 where each word wi
belongs to the vocabulary V , and BOS,EOS ∈
V are special beginning-of-sentence and end-of-
sentence tokens, respectively. For example, the sen-
tence You told me to wash the dog is represented
as 〈BOS,‘You’, ‘told’, ‘me’, ‘to’, ‘wash’, ‘the’,
‘dog’, EOS〉. Similarly, a linearized graph is also a
sequence g = 〈BOS, g1, g2, . . . , gm,EOS〉, where
gi ∈ V . The graph of the aforementioned sentence
is shown in Figure 1. Note that both sentence and
graph tokens are drawn from the same vocabulary.

SPRING is at its heart a function Pθ (with θ
being the parameters) that takes as input a source
string σ in V ∗ =

⋃∞
i=1 V

i and a partial target string
τ ∈ V ∗. Then Pθ outputs a next-token probability
distribution over V . Applying this basic function
repeatedly, we can assign a probability (P ∗) to any
string of tokens given another one by factorising
it in a left-to-right way as a product of conditional

AMR GRAPH

tell-01

you wash-01

I dog

:ARG0 :ARG1

:ARG2

:ARG0 :ARG1

SNT You told me to wash the dog

DFS (<R0> tell-01 :ARG0 (<R1> you)
:ARG1 (<R3> wash-01 :ARG0 <R2> :ARG1
(<R4> dog)) :ARG2 (<R2> i))

Figure 1: The AMR graph for the sentence (SNT) “You
told me to wash the dog.” with its DFS linearization.

probabilities. This can be applied both to the pars-
ing (by using s as σ, and the progressively built
linearization g as τ ; Eq. 1) and generation (ex-
changing σ and τ ; Eq. 2):

P ∗θ (g|s) =
m+1∏

i=1

Pθ(gi | τ = g0:i−1, σ = s) (1)

P ∗θ (s|g) =
n+1∏

i=1

Pθ(si | τ = s0:i−1, σ = g) (2)

To train the model we optimize the parameters to
minimize, with mini-batch gradient descent, the so-
called negative log likelihood Lθ (the negative log
conditional probability) over a dataset D collecting
sentence-graph pairs, both for parsing (LPAR

θ(1)
) and

generation (LGEN
θ(2)

):

argmin
θ(1),θ(2)

LPAR
θ(1)

(D) +LGEN
θ(2)

(D) =

argmin
θ(1),θ(2)

−
∑

〈s,g〉∈D
logP ∗

θ(1)
(g|s) + logP ∗

θ(2)
(s|g)

(3)
Note that when θ(1) is different from θ(2), the

two objective terms are optimized separately. In-
stead, when we enforce θ(1) = θ(2) we have a
model that is not only symmetric, but can also per-
form both AMR parsing and generation at the same
time. As we will see, this results in negligible per-
formance drops compared to the disjoint models
that we presented in Bevilacqua et al. (2021a).

Once we have the trained model, the predicted
output is the string ending in EOS with the high-
est probability in P ∗θ . Unfortunately, finding this
optimal string is intractable when |V | is large; in
practice, however, we can perform an approximate
decoding with histogram beam search.

135

2.2 Architecture

The SPRING model is based on the Transformer
architecture (Vaswani et al., 2017), a sequence-to-
sequence neural network that, briefly, i) uses at-
tention instead of recurrence to encode sequences,
ii) is made up of an encoder module that embeds
σ, and a decoder that, based on both the encoder
output and τ , produces the final distribution output.
Key to the high performances of SPRING is the
fact that its parameters are not randomly initialized,
but, instead, are adopted from those of a large pre-
trained encoder-decoder model, i.e., BART (Lewis
et al., 2020). Owing to this, SPRING can ex-
ploit the extensive knowledge BART encompasses,
gained through optimization on large amounts of
raw text with an unsupervised denoising objective.

2.3 Linearization

As we have mentioned, the bare SPRING model
can translate from and into linearized AMR graphs.
PENMAN, i.e., the format that is used to distribute
the AMR meaning bank, is an example of a lin-
earization. In Bevilacqua et al. (2021a) we ex-
perimented with different fully graph-isomorphic
linearization techniques. The linearization that
worked best was the one based on the Depth-First
Search (DFS) graph traversal algorithm, enhanced
with the use of special tokens to represent the vari-
ables, e.g., <R0>, <R1>, . . . , <Rn> (Figure 1).
Thus, we use the DFS-based linearization here.

One problem when performing parsing is that,
since we do not enforce constraints in decoding,
the predicted linearization may not be readable
back into a valid AMR. In practice, the outputs
are almost always valid, or can be made so with
little modification. Thus, in parsing only, we per-
form light, non content-modifying postprocessing,
mainly to ensure the validity of the linearization
produced, e.g., restoring parenthesis parity and re-
moving duplicate edges. Differently from Bevilac-
qua et al. (2021a), here we do not employ a third-
party Entity Linker so as to avoid response delay.

2.4 Vocabulary

We modify the BART vocabulary in order to
make it suitable for AMR-specific concepts (e.g.
amr-unkwown, date-entity), frames (e.g.
say-01) and relations (e.g. :ARG1, :time), as
well as special pointer tokens used in the DFS lin-
earization. The final vocabulary V is the union of
the original BART vocabulary and our additions.

Finally, we adjust the tokenization rules so that
they do not split AMR additional tokens into multi-
ple sub-words and adjust the encoder and decoder
embedding matrices to include the new symbols.
To this end, we add a vector for each newly added
token which we initialize as the average of the vec-
tors of the sub-word constituents. This is useful
for obtaining compact sequences of tokens, allow-
ing for faster decoding and response time of the
SPRING Online Services.

3 SPRING Online Services

Here we describe the functionalities of the Web in-
terface (Section 3.1) and those of the RESTful APIs
(Section 3.2). We further provide the architectural
details and libraries used in Appendix A.

3.1 Web Interface

The main functionalities of the Web interface in-
clude switching between parsing and generation
modalities, visual inspection of SPRING results
view and the feedback mechanism we develop to
enable users to validate SPRING predictions.

3.1.1 Modality Selector
The modality can be set on the initial homepage
by choosing Text or PENMAN from the Tab menu,
with Text being the default option. When the
Text option is chosen, the user is required to pro-
vide a plaintext sentence and they will then be redi-
rected to the SPRING parser Results View (shown
in Figure 2). On the other hand, when the PENMAN
option is chosen, the user is required to type or
copy a valid AMR graph in PENMAN notation. In
the case when the PENMAN provided is valid, the
user is redirected to the SPRING generator Results
View. Otherwise, when the graph is not valid, the
user is notified by a warning which points to the
error line number of the PENMAN.

3.1.2 SPRING Results View
The Results View is similar for both parsing and
generation, and we only exchange the query (input)
box and the result (output) box.

A. Query box. As in the Modality Selector
phase, also here, in the parsing modality the query
box takes as input a plaintext sentence as input,
while in generation the query box requires the in-
put to be a valid PENMAN. A user can parse or
generate from different inputs in this view while
remaining in the same modality. To switch from

136

Figure 2: User interface of the SPRING parser Results View when the English sentence "After seeing that YouTube
video I wonder, what does the fox say?" is typed as input.

parsing to generation or vice versa, the user should
go back to the initial homepage.

B. Result box. When parsing a sentence, the Re-
sult box will be filled with the predicted graph in
PENMAN format. This box is editable to enable
user feedback (see Section 3.1.3). When generat-
ing from an AMR graph, the Result box shows the
generated sentence which can also be modified by
the user and submitted to the feedback system.

C. AMR view panel. This is a key component
of the Results View, which visualizes an AMR as a
hierarchical graph with labeled nodes and labeled
edges. We devise a custom node and edge layout
meant to enhance readability even in the case of big
graphs with a lot of coreference edges. For exam-
ple, there might be overlapping edges, edge labels
or nodes in the graph. To increase visibility, the
user can click/hover on an edge or edge label, and
it will be highlighted and brought to the foreground.
The same applies to nodes, and in addition, click-
ing/hovering over nodes will also highlight and
bring to the foreground every incoming and outgo-
ing edge, thus identifying all the local relations of
a concept. The graph view is resizeable in order
to better handle big AMR graphs, and the user is
also able to zoom in/out for ease of reading. There
are 4 types of node, indicated by different colors,
comprising: i) predicate concept nodes, ii) non-
predicate concept nodes, iii) constant nodes and
iv) wiki nodes. Both predicate and non-predicate
nodes are labeled with a variable name (in the high-

lighted corner) and the concept they represent. The
variable makes it easy to locate the node in the
PENMAN box on the left Panel.

Futhermore, both predicate and wiki nodes are
associated with an onhover/onclick tooltip
box that further defines them. The tooltip associ-
ated with the wiki node contains information taken
from the corresponding BabelNet2 (Navigli and
Ponzetto, 2010; Navigli et al., 2021) concept, dis-
playing a short entity description and image (when
applicable), also redirecting the user to the corre-
sponding BabelNet page when clicking on it. This
choice is motivated by the fact that BabelNet con-
cepts function as a hub of information beyond that
of Wikipedia, which paves the way for future in-
tegration of other resources in AMR. The tooltip
of the predicate node, instead, provides details on
the predicate definition and arguments taken from
the PropBank framesets (Palmer et al., 2005). In
addition, we display an example sentence contain-
ing the predicate in the specified sense. The user
is redirected to the PropBank predicate page when
clicking the tooltip. We mean the extra information
shown by the tooltip component to be useful for
the user to identify potential parsing mistakes in
the output of the system, and ideally to use the pro-
vided feedback mechanism to suggest corrections.

3.1.3 Feedback Mechanism
One key functionality of SPRING Online Services
that requires user interaction is the Feedback Mech-

2Version 5.0.

137

anism. It is included in both parsing and generation
modalities. With this feature, we aim to obtain
a manual validation of SPRING output graphs or
sentences, aided by the visualization. More specif-
ically, when a user recognizes a mistake of the
SPRING parser, including both missing or extra
nodes and edges, or wrongly labeled ones, they
are allowed to suggest modifications. In SPRING
parser modality, multiple modifications are al-
lowed in the left-panel PENMAN box, which are
updated simultaneously in the right AMR view
panel when the UPDATE button is pressed, and
a user can then navigate through their own mod-
ifications by means of the Prev and Next but-
tons. To submit a final modification request, a
user is provided with the SUGGEST AN EDIT
button. The modifications are accepted if they lead
to a correctly-formed graph. When this is the case,
we save the modification request in a database for
further validation. In contrast, when a mistake is
found the user is warned about the line in PEN-
MAN where it occurs. In the SPRING generator
instead, only the predicted sentence is allowed to
be modified, assuming that the input graph by the
user is correct and does not need further modifica-
tion. If this is not the case, the user can query the
system with another AMR to obtain a new result.
This feedback mechanism paves the way to future
advancements in the field:

• enabling the use of active learning for improv-
ing system performance;

• collecting human validated SPRING output
which can be further used as synthetic data for
enhancing AMR systems;

• providing evidence of common SPRING mis-
takes which can aid studies on interpretation
and reinforcement of AMR systems’ knowl-
edge.

Since data collection requires time and consider-
able interaction of users with our services, we leave
the exploration of methods for including such data
in AMR tasks as future work. Moreover, we plan
to release the accumulated data periodically and
on-request to the community.

3.2 RESTful APIs

The RESTful APIs we provide can be used ef-
fectively to query the SPRING services program-
matically. Our APIs are simple and, differently

from our Web interface, do not allow modifi-
cation requests of the SPRING output. The
APIs can be accessed through GET or POST
requests. In fact, the APIs consist of two
endpoints, namely, /api/text-to-amr and
/api/amr-to-text, to parse into or generate
from an AMR graph, respectively. The former
requires a sentence string parameter and the
output is a JSON object containing the PENMAN
graph, while the latter expects a valid string serial-
ized PENMAN graph, and the response is a JSON
object containing the sentence. To ease the usage
of the RESTful APIs, the full documentation is ac-
cessible through the SPRING Web interface, i.e.,
API-Doc from the header menu bar.

4 Evaluation

For the purposes of this demo, we examine differ-
ent variants of SPRING to ensure: i) high perfor-
mance, ii) high generalizability across domains,
and iii) efficient and light SPRING Online Ser-
vices.

Datasets. To deal with i) and ii), we perform
experiments with the AMR 3.0 (LDC2020T023)
benchmark – currently the largest AMR-annotated
corpus which includes and corrects both of its pre-
vious inferior-sized versions, i.e., AMR 2.0 and
AMR 1.0. In addition to this, motivated by AMR-
based approaches in biomedical applications (Rao
et al., 2017; Bonial et al., 2020b), we jointly train
and evaluate SPRING in the Bio-AMR4 corpus
(May and Priyadarshi, 2017) as well.

Systems. While Bevilacqua et al. (2021a) train
one specular model for each of the AMR tasks
(henceforth SPRINGuni, denoting unidirectional),
to satisfy the point iii) above, we train a version of
SPRING that handles both AMR parsing and gener-
ation with the same model (henceforth SPRINGbi,
denoting bidirectional). This allows us to load into
memory only one model to perform both tasks,
thus decreasing the potential overload of the server
where the demo resides, as well as enabling lower
memory footprint for users employing SPRING
with our Python code. To train SPRING variants,
we employ the same hyperparameters as in Bevilac-
qua et al. (2021a). In addition, we summarize the
state-of-the-art systems on AMR 3.0.

3catalog.ldc.upenn.edu/LDC2020T02
4amr.isi.edu/download.html

138

Pa
rs

in
g Lyu et al. (2020) 75.8

Zhou et al. (2021) 81.2

SPRING (Bevilacqua et al., 2021a) 83.0

G
en

er
at

io
n Zhang et al. (2020) 34.3

T5 Fine-Tune (Ribeiro et al., 2021) 41.6
STRUCTADAPT-RGCN (Ribeiro et al., 2021) 48.0

SPRING (Bevilacqua et al., 2021a) 44.9

Table 1: Comparison with literature on AMR 3.0.

AMR 3.0 Bio-AMR

Train dataset Dev Test Dev Test

Pa
rs

in
g SPRINGuni AMR 3.0 83.9 82.6 60.6 60.6

SPRINGbi AMR 3.0 83.6 82.3 60.5 59.2

SPRINGuni Bio+AMR 3.0 83.9 82.5 80.0 80.1
SPRINGbi Bio+AMR 3.0 84.1 82.7 79.5 80.2

G
en

er
at

io
n SPRINGuni AMR 3.0 45.0 44.9 22.9 19.4

SPRINGbi AMR 3.0 43.9 44.5 21.1 17.1

SPRINGuni Bio+AMR 3.0 45.3 45.7 39.5 43.5
SPRINGbi Bio+AMR 3.0 44.3 45.0 38.5 42.0

Table 2: SPRING variants in AMR 3.0 and Bio-AMR.

Results. We report Smatch (Cai and Knight,
2013) and BLEU (Papineni et al., 2002) scores for
AMR parsing and generation, respectively. In Ta-
ble 1 we summarize the performances of recent
systems in the literature on the AMR 3.0 pars-
ing and generation tasks. In parsing, SPRING
achieves the highest results across the board. In
fact, we note that Zhou et al. (2021) was published
after Bevilacqua et al. (2021a), yet SPRING re-
mains the best-performing parser in the literature
to date. In generation, instead, SPRING attains
considerably higher results than Zhang et al. (2020)
and T5 Fine-Tune (Ribeiro et al., 2021) models.
In fact, while the latter has a comparable archi-
tecture to that of SPRING due to its use of the
pretrained sequence-to-sequence T5 model (Raffel
et al., 2019), SPRING nevertheless outperforms it
by 3.3 BLEU points. SPRING obtains lower results
than the recent STRUCTADAPT-RGCN (Ribeiro
et al., 2021) model, which, however, achieved those
results at the expense of a more complex archi-
tecture with a higher number of parameters than
SPRING. In Table 2 we report the performance of
SPRING variants, i.e., SPRINGuni and SPRINGbi,
trained on AMR 3.0 or on the concatenation of
Bio-AMR and AMR 3.0 (Bio+AMR 3.0) and when
evaluated in development and test splits of each.
Notice that the results of SPRINGuni in AMR 3.0
parsing are different from those reported in Table

1, since here, as we recall from Section 2.3, we do
not perform Entity Linking in postprocessing for
the purpose of simplicity. Firstly, SPRING models
trained on Bio+AMR 3.0 achieve the highest results
overall. Then, SPRINGbi performs on a par with or
slightly worse than SPRINGuni in parsing and gen-
eration, respectively. We choose the best model for
the SPRING Online Services based on the Smatch
score on the development set of AMR 3.0, i.e,
SPRINGbi trained on Bio+AMR 3.0 for both pars-
ing and generation jointly. This model allows for
the achievement of all the goals we set at the begin-
ning of this Section: performance, generalizability
and efficiency. Furthermore, we release the addi-
tional model checkpoints to be used with the orig-
inal SPRING Python code, available at https:
//github.com/SapienzaNLP/spring.

5 Related Work

With a view to demonstrating the progress made
in AMR, over the years different Web services for
state-of-the-art AMR systems (Konstas et al., 2017;
Damonte et al., 2017; Damonte and Cohen, 2019)
have been developed. Similarly to SPRING, Kon-
stas et al. (2017), proposed an encoder-decoder
system to perform both parsing and generation by
relying on data augmentation techniques. This sys-
tem is associated with a demo5 to only parse into
or generate from AMR and does not provide extra
functionalities, RESTful APIs, or any interaction
with the users. Similarly, Damonte et al. (2017) and
Damonte and Cohen (2019) do not provide other
functionalities in their demos beside parsing (Da-
monte et al., 2017, AMREager)6 and generation
(Damonte and Cohen, 2019, AMRGen)7. However,
SPRING outperforms the aforementioned systems
by more than 20 points in both, Smatch for AMR
parsing and BLEU for AMR generation. In addi-
tion, through SPRING Online Services we provide
a highly-interactive Web interface, RESTful APIs,
and the feedback mechanism.

6 Conclusion

With this paper we make available SPRING On-
line Services, with which we bring state-of-the-
art AMR systems into the hands of the commu-
nity, providing a highly interactive interface and
easily integrable APIs. Our SPRING system ob-

5Inactive link: www.ikonstas.net/index.php?page=demos
6AMREager: bollin.inf.ed.ac.uk/amreager.html
7AMRGen: bollin.inf.ed.ac.uk/amrgen.html

139

tains results in the same ballpark as the state of
the art in both AMR-to-Text and Text-to-AMR,
using the same weights for both. Moreover, our
model obtains very strong results in the biomedi-
cal domain, providing a powerful tool for building
applications. In the future, we intend to extend the
services across languages following techniques as
in Blloshmi et al. (2020) and Procopio et al. (2021).
We make SPRING Online Services available at
http://nlp.uniroma1.it/spring.

Acknowledgments
The authors gratefully acknowledge
the support of the ERC Consolida-
tor Grant MOUSSE No. 726487, the
ELEXIS project No. 731015 and the
European Language Grid project No.
825627 (Universal Semantic Anno-
tator, USeA) under the European
Union’s Horizon 2020 research and
innovation programme.

References
Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Edoardo Barba, Luigi Procopio, and Roberto Nav-
igli. 2021. ConSeC: Word Sense Disambiguation
as Continuous Sense Comprehension. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing (EMNLP), Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Michele Bevilacqua, Rexhina Blloshmi, and Roberto
Navigli. 2021a. One SPRING to Rule Them Both:
Symmetric AMR Semantic Parsing and Genera-
tion without a Complex Pipeline. Proceedings
of the AAAI Conference on Artificial Intelligence,
35(14):12564–12573.

Michele Bevilacqua, Tommaso Pasini, Alessandro Ra-
ganato, and Roberto Navigli. 2021b. Recent trends
in word sense disambiguation: A survey. In Pro-
ceedings of the Thirtieth International Joint Con-
ference on Artificial Intelligence, IJCAI 2021, Vir-
tual Event / Montreal, Canada, 19-27 August 2021,
pages 4330–4338. ijcai.org.

Rexhina Blloshmi, Simone Conia, Rocco Tripodi, and
Roberto Navigli. 2021. Generating senses and roles:

An end-to-end model for dependency- and span-
based semantic role labeling. In Proceedings of the
Thirtieth International Joint Conference on Artificial
Intelligence, IJCAI 2021, Virtual Event / Montreal,
Canada, 19-27 August 2021, pages 3786–3793. ij-
cai.org.

Rexhina Blloshmi, Rocco Tripodi, and Roberto Navigli.
2020. XL-AMR: Enabling cross-lingual AMR pars-
ing with transfer learning techniques. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
2487–2500, Online. Association for Computational
Linguistics.

Claire Bonial, Lucia Donatelli, Mitchell Abrams,
Stephanie M. Lukin, Stephen Tratz, Matthew Marge,
Ron Artstein, David Traum, and Clare Voss. 2020a.
Dialogue-AMR: Abstract Meaning Representation
for dialogue. In Proceedings of the 12th Lan-
guage Resources and Evaluation Conference, pages
684–695, Marseille, France. European Language Re-
sources Association.

Claire Bonial, Stephanie M. Lukin, David Doughty,
Steven Hill, and Clare Voss. 2020b. InfoForager:
Leveraging semantic search with AMR for COVID-
19 research. In Proceedings of the Second Interna-
tional Workshop on Designing Meaning Representa-
tions, pages 67–77, Barcelona Spain (online). Asso-
ciation for Computational Linguistics.

Deng Cai and Wai Lam. 2020. AMR parsing via graph-
sequence iterative inference. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1290–1301, Online. As-
sociation for Computational Linguistics.

Shu Cai and Kevin Knight. 2013. Smatch: an evalua-
tion metric for semantic feature structures. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 748–752, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Simone Conia, Andrea Bacciu, and Roberto Navigli.
2021. Unifying cross-lingual semantic role label-
ing with heterogeneous linguistic resources. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 338–351, Online. Association for Computa-
tional Linguistics.

Marco Damonte and Shay B. Cohen. 2019. Structural
neural encoders for AMR-to-text generation. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 3649–3658,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Marco Damonte, Shay B. Cohen, and Giorgio Satta.
2017. An incremental parser for Abstract Mean-

140

ing Representation. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 1, Long Pa-
pers, pages 536–546, Valencia, Spain. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Ramón Fernandez Astudillo, Miguel Ballesteros,
Tahira Naseem, Austin Blodgett, and Radu Flo-
rian. 2020. Transition-based parsing with stack-
transformers. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages
1001–1007, Online. Association for Computational
Linguistics.

Michael Wayne Goodman. 2020. Penman: An open-
source library and tool for AMR graphs. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics: System Demonstra-
tions, pages 312–319, Online. Association for Com-
putational Linguistics.

Hardy Hardy and Andreas Vlachos. 2018. Guided neu-
ral language generation for abstractive summariza-
tion using Abstract Meaning Representation. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 768–
773, Brussels, Belgium. Association for Computa-
tional Linguistics.

Pavan Kapanipathi, Ibrahim Abdelaziz, Srinivas Ravis-
hankar, Salim Roukos, Alexander Gray, Ramón Fer-
nandez Astudillo, Maria Chang, Cristina Cornelio,
Saswati Dana, Achille Fokoue, Dinesh Garg, Alfio
Gliozzo, Sairam Gurajada, Hima Karanam, Naweed
Khan, Dinesh Khandelwal, Young-Suk Lee, Yunyao
Li, Francois Luus, Ndivhuwo Makondo, Nandana
Mihindukulasooriya, Tahira Naseem, Sumit Neelam,
Lucian Popa, Revanth Gangi Reddy, Ryan Riegel,
Gaetano Rossiello, Udit Sharma, G P Shrivatsa Bhar-
gav, and Mo Yu. 2021. Leveraging Abstract Mean-
ing Representation for knowledge base question an-
swering. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
3884–3894, Online. Association for Computational
Linguistics.

Hideo Kobayashi and Vincent Ng. 2020. Bridging res-
olution: A survey of the state of the art. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 3708–3721, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin
Choi, and Luke Zettlemoyer. 2017. Neural AMR:

Sequence-to-sequence models for parsing and gener-
ation. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 146–157, Vancouver,
Canada. Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Kexin Liao, Logan Lebanoff, and Fei Liu. 2018. Ab-
stract Meaning Representation for multi-document
summarization. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 1178–1190, Santa Fe, New Mexico, USA. As-
sociation for Computational Linguistics.

Jungwoo Lim, Dongsuk Oh, Yoonna Jang, Kisu Yang,
and Heuiseok Lim. 2020. I know what you asked:
Graph path learning using AMR for commonsense
reasoning. In Proceedings of the 28th Interna-
tional Conference on Computational Linguistics,
pages 2459–2471, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Xiao Ling, Sameer Singh, and Daniel S. Weld. 2015.
Design challenges for entity linking. Transactions
of the Association for Computational Linguistics,
3:315–328.

Chunchuan Lyu, Shay B. Cohen, and Ivan Titov. 2020.
A differentiable relaxation of graph segmentation
and alignment for AMR parsing. Arxiv preprint,
abs/2010.12676.

Lluís Màrquez, Xavier Carreras, Kenneth C. Litkowski,
and Suzanne Stevenson. 2008. Special issue in-
troduction: Semantic role labeling: An introduc-
tion to the special issue. Computational Linguistics,
34(2):145–159.

Jonathan May and Jay Priyadarshi. 2017. SemEval-
2017 task 9: Abstract Meaning Representation
parsing and generation. In Proceedings of the
11th International Workshop on Semantic Evalua-
tion (SemEval-2017), pages 536–545, Vancouver,
Canada. Association for Computational Linguistics.

Roberto Navigli, Michele Bevilacqua, Simone Conia,
Dario Montagnini, and Francesco Cecconi. 2021.
Ten years of babelnet: A survey. In Proceedings
of the Thirtieth International Joint Conference on
Artificial Intelligence, IJCAI 2021, Virtual Event /
Montreal, Canada, 19-27 August 2021, pages 4559–
4567. ijcai.org.

Roberto Navigli and Simone Paolo Ponzetto. 2010. Ba-
belNet: Building a very large multilingual semantic
network. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics,

141

pages 216–225, Uppsala, Sweden. Association for
Computational Linguistics.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated cor-
pus of semantic roles. Computational Linguistics,
31(1):71–106.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Luigi Procopio, Rocco Tripodi, and Roberto Navigli.
2021. SGL: Speaking the graph languages of se-
mantic parsing via multilingual translation. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
325–337, Online. Association for Computational
Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Arxiv preprint, abs/1910.10683.

Sudha Rao, Daniel Marcu, Kevin Knight, and Hal
Daumé III. 2017. Biomedical event extraction us-
ing Abstract Meaning Representation. In BioNLP
2017, pages 126–135, Vancouver, Canada,. Associa-
tion for Computational Linguistics.

Leonardo F. R. Ribeiro, Yue Zhang, and Iryna
Gurevych. 2021. Structural adapters in pretrained
language models for amr-to-text generation. Arxiv
preprint, abs/2103.09120.

Burr Settles. 2009. Active learning literature survey.
Computer Sciences Technical Report 1648, Univer-
sity of Wisconsin–Madison.

Linfeng Song, Daniel Gildea, Yue Zhang, Zhiguo
Wang, and Jinsong Su. 2019. Semantic neural ma-
chine translation using AMR. Transactions of the
Association for Computational Linguistics, 7:19–31.

Simone Tedeschi, Simone Conia, Francesco Cecconi,
and Roberto Navigli. 2021. Named Entity Recogni-
tion for Entity Linking: What works and what’s next.
In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2021), Punta Cana, Dominican Republic.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, NIPS’17, page 6000–6010, Red Hook, NY,
USA. Curran Associates Inc.

Vikas Yadav and Steven Bethard. 2018. A survey on re-
cent advances in named entity recognition from deep
learning models. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 2145–2158, Santa Fe, New Mexico, USA. As-
sociation for Computational Linguistics.

Yan Zhang, Zhijiang Guo, Zhiyang Teng, Wei Lu,
Shay B. Cohen, Zuozhu Liu, and Lidong Bing. 2020.
Lightweight, dynamic graph convolutional networks
for AMR-to-text generation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 2162–2172,
Online. Association for Computational Linguistics.

Jiawei Zhou, Tahira Naseem, Ramón Fernandez As-
tudillo, and Radu Florian. 2021. AMR parsing with
action-pointer transformer. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 5585–5598, On-
line. Association for Computational Linguistics.

Qiji Zhou, Yue Zhang, Donghong Ji, and Hao Tang.
2020. AMR parsing with latent structural infor-
mation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4306–4319, Online. Association for Computa-
tional Linguistics.

142

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 143–152
November 7–11, 2021. ©2021 Association for Computational Linguistics

FAIRSEQ S2: A Scalable and Integrable Speech Synthesis Toolkit

Changhan Wang?, Wei-Ning Hsu?, Yossi Adi, Adam Polyak, Ann Lee,
Peng-Jen Chen, Jiatao Gu, Juan Pino

Facebook AI
{changhan,wnhsu,adiyoss,adampolyak,annl,

pipibjc,jgu,juancarabina}@fb.com

Abstract

This paper presents FAIRSEQ S2, a FAIRSEQ
extension for speech synthesis. We implement
a number of autoregressive (AR) and non-AR
text-to-speech models, and their multi-speaker
variants. To enable training speech synthesis
models with less curated data, a number
of preprocessing tools are built and their
importance is shown empirically. To facilitate
faster iteration of development and analysis, a
suite of automatic metrics is included. Apart
from the features added specifically for this
extension, FAIRSEQ S2 also benefits from the
scalability offered by FAIRSEQ and can be
easily integrated with other state-of-the-art
systems provided in this framework. The code,
documentation, and pre-trained models will be
made available at https://github.com/
pytorch/fairseq/tree/master/
examples/speech_synthesis.

1 Introduction

Speech synthesis is the task of generating speech
waveforms with desired characteristics, including
but not limited to textual content (Hunt and Black,
1996; Zen et al., 2009; Shen et al., 2018; Ping
et al., 2017; Li et al., 2019), speaker identity (Jia
et al., 2018; Cooper et al., 2020), and speaking
styles (Wang et al., 2018; Skerry-Ryan et al., 2018;
Akuzawa et al., 2018; Hsu et al., 2018). It is also
more often referred to as Text-to-Speech (TTS)
when text is used as input to the system. Along with
automatic speech recognition (ASR) and machine
translation (MT), these language technologies have
advanced rapidly over the past few years (Tan
et al., 2021). Traditionally, these tasks may be
used in conjunction to form a system (e.g., com-
bining the three for speech-to-speech translation),
but they rarely leverage each other during train-
ing. As a result, each application used to have its
own dedicated open-source toolkit, for example,

?

Equal contribution.

Kaldi (Povey et al., 2011) and HTK (Young et al.,
2002) for ASR, HTS (Zen et al., 2007), Merlin (Wu
et al., 2016), STRAIGHT (Kawahara et al., 1999),
and WORLD (Morise et al., 2016) for speech syn-
thesis, and Moses (Koehn et al., 2007) for MT.

Recently, there are growing interactions among
these systems in the learning process. For example,
Hayashi et al. (2018) and Rosenberg et al. (2019)
propose to leverage speech synthesis systems to
generate paired text and speech data for ASR train-
ing; Tjandra et al. (2017), Hori et al. (2019), and
Baskar et al. (2019) chain ASR and TTS together
to form a loop for semi-supervised learning with
cycle-consistency loss; Weiss et al. (2017), Li et al.
(2020), and Jia et al. (2019) demonstrate that it is
possible to build an end-to-end system translating
speech into text or speech in a target language.

Beyond text-based systems, there is also an
emerging research topic that explores the use of
units discovered from self-supervised speech rep-
resentation learning (Oord et al., 2017; Baevski
et al., 2019; Harwath et al., 2019; Hsu et al., 2021)
to replace text for representing the lexical con-
tent in numerous applications, such as language
modeling (Lakhotia et al., 2021), speech resynthe-
sis (Polyak et al., 2021), image captioning (Hsu
et al., 2020), and translation (Tjandra et al., 2020;
Hayashi and Watanabe, 2020). This line of research
bypasses the need for text and makes technologies
applicable even to unwritten languages. However,
to interpret the output of such systems - a sequence
of learned units, a unit-to-speech model is required.
This brings up the need of a framework for broader
speech synthesis systems that can alternatively take
learned units as input. These research directions
can benefit from having a single toolkit with differ-
ent state-of-the-art language technologies.

In this paper, we introduce FAIRSEQ S2, a
FAIRSEQ (Ott et al., 2019) extension for speech
synthesis. FAIRSEQ is a popular open-source se-
quence modeling toolkit based on PyTorch (Paszke

143

et al., 2019) that allows researchers and developers
to train custom models. It offers great support for
training large models on large scale data, and pro-
vides a number of state-of-the-art models for lan-
guage technologies. We extend FAIRSEQ to support
speech synthesis in this work. In particular, we im-
plement a number of popular text-to-spectrogram
models, with interface to both signal processing-
based and neural vocoders. Multi-speaker vari-
ants of those models are also implemented. While
speech synthesis often relies on subjective metrics
such as mean opinion scores for benchmarking,
we implemented a suite of widely used automatic
evaluation metrics to facilitate faster iteration on
model development. Last but not least, we support
a number of text and audio preprocessing mod-
ules, which allow developers to quickly build a
new dataset from less curated in-the-wild data for
speech synthesis.

The main contribution of this work is threefold.
First, we implement a number of state-of-the-art
models and provide pre-trained checkpoints and
recipes, which can be used by researchers as base-
lines or as building blocks in applications such
as text-to-speech translation. Second, we create
pre-processing tools that enable developers to use
customized data to build a TTS model, and demon-
strate the effectiveness of these tools empirically.
Lastly, as part of the FAIRSEQ codebase, this speech
synthesis extension allows easy integration with nu-
merous state-of-the-art MT, ASR, ST, LM, and self-
supervised systems already built on FAIRSEQ. We
provide an example by building a unit-to-speech
system that can be used for text-free research.

The rest of the paper is organized as follows:
Section 2 describes the features of FAIRSEQ S2.
Experiments are presented in Section 3. Related
work is discussed in Section 4, and we conclude
this work in Section 5.

2 Features

Fairseq Models FAIRSEQ provides a collection
of MT (Ng et al., 2019), ST (Wang et al., 2020), un-
supervised speech pre-training and ASR (Baevski
et al., 2020b; Hsu et al., 2021) models that demon-
strate state-of-the-art performance on standard
benchmarks. They are open-sourced with pre-
trained checkpoints and can be integrated or ex-
tended easily for other tasks.

Speech Synthesis Extension FAIRSEQ S2 adds
state-of-the-art text-to-spectrogram prediction mod-

els, Tacotron 2 (Shen et al., 2018) and Trans-
former (Li et al., 2019), which are AR with encoder-
decoder model architecture. For the latest advance-
ments on fast non-AR modeling, we provide Fast-
Speech 2 (Ren et al., 2019, 2020) as an example.
All our models support the multi-speaker setting
via pre-trained (Jia et al., 2018) or jointly trained
speaker embeddings (Arik et al., 2017; Chen et al.,
2020). Note that the former enables synthesizing
speech for speakers unseen during training. For
FastSpeech 2, pitch and speed are controllable
during inference. For spectrogram-to-waveform
conversion (vocoding), FAIRSEQ S2 has a built-in
Griffin-Lim (Griffin and Lim, 1984) vocoder for
fast model-free generation. It also provides ex-
amples for using external model-based vocoders,
such as WaveGlow (Prenger et al., 2019) and HiFi-
GAN (Kong et al., 2020).

Speech Preprocessing. Recent advances in neu-
ral generative models have demonstrated that
neural-based TTS models, can synthesize high-
quality, natural and intelligible speech. However,
such models usually require high-quality, and clean
speech data (Zhang et al., 2021). In order to enable
leveraging noisy data for TTS training, we propose
a speech preprocessing pipeline to enhance and
filter data. The proposed pipeline is comprised
of three main components: i) Background noise
removal, ii) Voice Activity Detector (VAD), and
iii) Outlier filtering using both Signal-to-Noise Ra-
tio (SNR) and Character Error Rate (CER).

First, a speech enhancement model is applied
over input recordings to remove background noise.
We used the speech enhancement model proposed
by (Defossez et al., 2020) where the ith convo-
lutional layer has 2i−1 ∗ 64 output channels. As
suggested by the authors, we additionally used a
dry/wet knob, i.e. the final output is dry · x+ (1−
dry) · ŷ, where x is the noisy input signal and ŷ is
the output of the enhancement model. We exper-
iment with dry ∈ {0.0, 0.01, 0.05, 0.1} and find
0.01 to perform the best.

Next, we apply VAD to remove silence from the
denoised utterances, as silence can vary in length
significantly which causes increasing uncertainty
and therefore degrades TTS performance. Silence
regions at the beginning and end of the utterances
are completely removed. In case we encounter
a silence segment in the middle of the signal in
where its length is greater than 300ms we replace
it with a 300ms artificially generated silence (since

144

completely removing silence regions produces un-
natural speech). Silence regions of less than 300ms
are left unchanged. We use the open-source imple-
mentation of the Google WebRTC VAD (Wiseman,
2016), of which four aggressiveness levels {0, 1,
2, 3} can be set. A higher aggressiveness level
removes more silences but comes at the risk of re-
moving partial speech. The aggressiveness level
corresponds to the size of the processing window
(a larger processing window will make the VAD
work at a coarser level and remove silence frames
more aggressively).

Lastly, we notice that in extremely noisy record-
ings (SNR close to zero), the generated denoised
samples are often not intelligible enough to train
a TTS or contain distortion artifacts. In addition,
when setting the VAD aggressiveness level high,
speech may be truncated along with silence. To
remedy this, we proposed two outliers filtering
methods. The first approach is based on SNR es-
timation. We approximate the noise by subtract-
ing the output of the enhancement model from the
input-noisy speech, then we compute the SNR be-
tween the two. The second approach is based on
applying an Automatic Speech Recognition (ASR)
over the denoised speech and compute the CER
against the target transcription.

Computation FAIRSEQ is implemented in Py-
Torch (Paszke et al., 2019) and provides efficient
batching, gradient accumulation, mixed precision
training (Micikevicius et al., 2017), model paral-
lelism, multi-GPU as well as multi-machine train-
ing for computational efficiency on large-scale ex-
periments and enabling training gigantic models.

Quantitative Metrics We provide automatic
metrics for fast evaluation in model development.
Similarly to (Polyak et al., 2020), we report Gross
Pitch Error (GPE) (Nakatani et al., 2008), Voicing
Decision Error (VDE) (Nakatani et al., 2008), and
F0 Frame Error (FFE) (Chu and Alwan, 2009)
to evaluate F0 reconstructions of the generated
speech. We additionally, report Mel Cepstral Dis-
tortion (MCD), Mel Spectral Distortion (MSD),
and CER to evaluate both the overall similarity to
the target speech and content intelligibility (Weiss
et al., 2021).

(i) GPE GPE is an objective metric which mea-
sures the portion of voiced audio frames with a

pitch error of more than 20%.

GPE(p, p̂,v, v̂) =∑
t 1[|pt − p̂t| > 0.2 · pt]1[vt]1[v̂t]∑

t 1[vt]1[v
′
t]

(1)

where pt,p
′
t are the pitch frames from the target

and generated signals, vt, v̂t are the voicing deci-
sions from the target and generated signals, and 1
is the indicator function.

(ii) VDE VDE measures the portion of frames
with voicing decision error,

VDE(v, v̂) =
∑T−1

t=1 1[vt 6= v̂t]

T
, (2)

where T is the total number of frames.

(iii) FFE Combining GPE and VDE, FFE mea-
sures the percentage of frames that contain a de-
viation of more than 20% in pitch value or have a
voicing decision error.

FFE(p, p̂,v, v̂) = VDE(v, v̂)

+

∑T−1
t=1 1[|pt − p̂t| > 0.2 · pt]1[vt]1[v̂t]

T
.

(3)

(iv) MCD/MSD These are defined as the root
mean squared error of the synthesized speech
against the reference speech computed on the 13-
dimensional MFCC features for MCD and log-mel
spectral features for MSD. Since the reference and
the synthesized speech may not be aligned frame-
by-frame, instead of zero-padding the shorter one
and assuming they are frame-wise aligned as done
in Skerry-Ryan et al. (2018), we follow Weiss et al.
(2021) and use dynamic time warping (Berndt and
Clifford, 1994) to align the frames from the two
sequences. The main difference between these two
metrics lies in the features they compute distortion
on: MFCC features aim to capture phonetic infor-
mation while removing speaker information, while
log-mel spectral features encode both, and hence
MCD addresses phonetic similarity more.

(v) CER CER is computed between the transcrip-
tion of the generated audio against the input text us-
ing an ASR system publicly available in FAIRSEQ.

Visualization FAIRSEQ integrates Tensorboard1

for monitoring holistic metrics during model train-
ing. It also has VizSeq (Wang et al., 2019) inte-
gration for offline sequence-level error analysis,

1https://github.com/tensorflow/
tensorboard

145

MCD CER (S/D/I) MOS

Orig. Audio - 3.3 (0.2/0.5/2.5) 4.53±0.05

TFM

Char 4.2 6.0 (1.1/1.6/3.2) 4.09±0.06
g2pE 3.9 5.2 (1.1/1.2/2.9) 4.18±0.06
espk 4.4 5.3 (0.7/1.1/3.5) 4.17±0.06
Unit 3.4 6.2 (1.6/1.4/3.2) 4.18±0.05

FS2 g2pE 3.9 4.9 (1.2/0.8/2.9) 4.15±0.09
Unit 3.4 7.9 (2.7/2.2/3.1) 3.99±0.05

Table 1: Evaluation on LJSpeech. We compare au-
toregressive model (“TFM") with non-autoregressive
model (“FS2"), as well as 3 different types of inputs:
characters (“char"), phonemes (“g2pE" and “espk")
and HuBERT units (“unit").

where transcript and target/predicted speech are vi-
sualized in Jupyter Notebook interface. FAIRSEQ

S2 further adds generated spectrogram and wave-
form samples to Tensorboard for model debugging.

3 Experiments

We evaluate our models in three settings: single-
speaker synthesis, multi-speaker synthesis and
multi-speaker synthesis using noisy data.

3.1 Experimental Setup

We use either characters, phonemes or discovered
units as input representations. To convert texts into
phonemes, we employ g2pE (Park, 2019) or Phone-
mizer (Bernard, 2015) with espeak-ng1 backend.
We use the Montreal Forced Aligner (McAuliffe
et al., 2017) to obtain phonemes with frame du-
rations for FastSpeech 2 training, which is based
on the same pronunciation dictionary (CMUdict)
as g2pE. For discovered units, we extract frame-
level units using a Base HuBERT model trained
on LibriSpeech1 and collapse consecutive units of
the same kind. We use the run length of identi-
cal units before collapsing as target duration for
FastSpeech 2 training. We use a reduction factor
(number of frames each decoder step predicts) of 4
for Transformer and 1 for FastSpeech 2 by default.

We resample audios to 22,050Hz and extract
log-Mel spectrogram with FFT size 1024, window
length 1024 and hop length 256. We optionally pre-
process audios to improve model training: denois-
ing (“DN"), level-2 or level-3 VAD (“VAD-2" or
"VAD-3"), filtering by SNR> 15 and CER< 10%

1https://github.com/espeak-ng/
espeak-ng

1https://dl.fbaipublicfiles.com/
hubert/hubert_base_ls960.pt

Audio Preprocessing Hours CER (dev)

Raw 44 0.8
DN+VAD-1 33 1.0
DN+VAD-2 32 1.2
DN+VAD-3 26 6.8

DN+VAD-3 + FLT 20 1.6

Table 2: Audio preprocessing settings on VCTK. FLT
removes samples with CER > 10%.

(“FLT") and volume normalization (“VN").
We use MCD and CER for automatic evalua-

tion. MCD is computed on Griffin-Lim vocoded
reference and model output spectrograms. We use
vocoded references as opposed to the original ones
to eliminate the error introduced by the vocoder
and focus the evaluation on spectrogram predic-
tion. HiFiGAN vocoders trained on each dataset
are used to generate waveforms for CER evaluation.
The large wav2vec 2.0 (Baevski et al., 2020a) ASR
model, which achieves WERs of 1.8% and 3.3% on
Librispeech test-clean and test-other, respectively
and is provided in FAIRSEQ1, is used both for CER
filtering and evaluation. GPE, VDE, and FFE are
not reported here, because these metrics are more
meaningful when prosody modeling is taken into
account (Polyak et al., 2020; Skerry-Ryan et al.,
2018; Wang et al., 2018). For subjective evaluation,
we conduct a Mean Opinion Score (MOS) test us-
ing the CrowdMOS package (Ribeiro et al., 2011)
using the recommended recipes for detecting and
discarding inaccurate scores. We randomly sample
100 speech utterances from the test set and collect
manual scores using a crowd sourcing framework.
The same samples are used across all tested meth-
ods. Each sample is rated by at least 10 raters
on a scale from 1 to 5 with 1.0 point increments.
Overall, scores for each tested method are averaged
across more than 1000 manual annotations. We re-
port both average MOS scores together with a 95%
confidence interval (CI95).

3.2 Single-Speaker Synthesis on LJSpeech

LJSpeech (Ito and Johnson, 2017) is a single-
speaker TTS corpus with 13,100 English speech
samples (around 24 hours) from audiobooks. We
follow the setting in Ren et al. (2020) to use 349
samples (with document title LJ003) for valida-
tion, 523 samples (with document title LJ001 and
LJ002) for testing and the rest for training.

1https://dl.fbaipublicfiles.com/
fairseq/wav2vec/wav2vec_vox_960h_pl.pt

146

Audio Spk. Red. MCD CER MOS

Original - - - 1.8 4.27±0.07

Raw LUT 2 4.9 65.2 1.77±0.08
4 3.3 12.1 2.77±0.08

DN+VAD-3 LUT 2 3.6 9.8 3.34±0.06
4 3.4 6.9 3.30±0.06

LUT 2 3.6 9.7 3.38±0.06
DN+VAD-3 4 3.4 6.0 3.42±0.05

+FLT Emb 2 3.6 7.6 3.38±0.06
4 3.5 5.8 3.25±0.08

Table 3: Evaluation on VCTK. We use Trans-
former with character inputs, and compare 3 audio pre-
processing settings and 2 types of speaker embeddings.

Audio MCD CER MOS

Original - 3.0 4.0±0.057

VN 5.3 21.0 2.97±0.081
DN+VAD-2+VN 5.5 14.2 3.22±0.065

DN+VAD-2+FLT+VN 5.4 12.7 3.17±0.056

Table 4: Evaluation on Common Voice English por-
tion (top 200 speakers only). We use Transformer
model with phoneme (g2pE) inputs and compare 3 au-
dio preprocessing settings.

On this de-facto standard benchmark, we com-
pare autoregressive model (Transformer, “TFM")
with non-autoregressive model (FastSpeech 2,
“FS2"), as well as 3 different types of inputs: char-
acters, phonemes (from g2pE or espeak-ng) and
HuBERT units. We see from Table 1 that Fast-
Speech 2 performs comparably well to Transformer
with phoneme inputs (g2pE), both achieving 4.2
MOS. However, the latter does not require input-
output alignments for model training and supports
more types of inputs—it achieves 4.1 MOS with
characters (no need for phonemization), and 4.2
MOS with simpler phonemes (espeaker-ng). The
task falls into the re-synthesis setting with unit in-
puts. We notice that FastSpeech 2 performs worse
(4.0 vs. 4.2 on MOS) in this setting, likely due to
the finer-grained inputs and its simplified attention
mechanism.

3.3 Multi-Speaker Synthesis on VCTK

VCTK (Veaux et al., 2017) is a multi-speaker En-
glish TTS dataset that contains 44 hours of read
speech from 109 speakers with various English
accents1. We randomly sample 50 utterances for
validation and 100 utterances for testing, and use

1https://datashare.ed.ac.uk/handle/
10283/3443

the rest for training.
Speech recordings from VCTK include consid-

erable amount of silence as shown in Figure 1
(raw); therefore, silence removal is considered a
standard preprocessing step for VCTK (Jia et al.,
2018; Cooper et al., 2020). Figure 1 shows silence-
removed spectrograms with three VAD aggressive-
ness levels. We see that a higher aggressiveness
level removes more silence, but may also truncate
the speech. The dataset durations after silence re-
moval and filtering with CER < 10% are listed in
Table 2, along with the validation CER.

We use this dataset to study how audio-
preprocessing and speaker representation affect
the performance of TTS. We train a transformer
TTS model with a reduction factor (i.e. how many
frames each decoding step predicts) of 2 or 4 on
three sets of audio: raw data (Raw), DN+VAD-
3, and DN+VAD-3+FLT. A speaker embedding
lookup table (LUT) is used by default. In addition,
we train models on DN+VAD-3+FLT with a fixed
embedding (Emb) for each speaker inferred from
a pre-trained speaker verification model (Heigold
et al., 2016), which would enable synthesizing the
voice of an unseen speaker. Results in Table 3 show
that increasing the reduction factor from 2 to 4 im-
proves the performance consistently. Specifically,
we found that without VAD, the model fails to train
when using a reduction factor of 2. Finally, we
found that using a pre-trained speaker embedder
achieves similar performance than using a learnable
lookup table, while enabling synthesizing speech
for unseen speakers.

3.4 Multi-Speaker Synthesis using Noisy
Data from Common Voice

Common Voice (Ardila et al., 2020) is a multi-
speaker speech corpus with around 4.2K hours of
read speech in 40 languages (version 4). It is crowd-
sourced from around 78K voice contributors in
various accents, age groups and genders. We use
its English portion and select data from the top 200
speakers by duration (total 226 hours).

The audio data in this corpus is expectedly noisy
given the lack of curated recording environments.
We explore if speech processing can counteract
the negative factors (background noise, long si-
lence, variable volume across clips, etc.) during
recordings and improve model training. Specifi-
cally, we examine 3 preprocessing settings with
Transformer model and phoneme (g2pE) inputs:

147

Multi-Spk Non-AR ASR MT ST Speech Audio Auto.
TTS TTS Pre-training Preprocess Metrics

coqui TTS1 X X
OpenSeq2seq2† X X
ESPnet-TTS3 X X X X X X‡ X‡

NeMo4 X X X X
FAIRSEQ S2 X X X X X X X X

Table 5: Comparison of FAIRSEQ S2 with counterpart speech synthesis toolkits (as of June 2021). 1 GitHub:
coqui-ai/TTS. 2 Kuchaiev et al. (2018a). 3 Hayashi et al. (2020). 4 GitHub: NVIDIA/NeMo. † Archived and no
longer updated. ‡ Supporting only VAD for audio preprocessing and MCD for automatic metric.

Figure 1: A VCTK example. With VAD level 3, the first word “But” is detected as silence and cut off.

VN, DN+VAD-2+VN and DN+VAD-2+FLT+VN.
As shown in Table 4, the original audio has 0.3/0.5
lower MOS than the LJSpeech/VCTK one, con-
firming its relatively low recording quality. Noise
and silence removal improve synthesis quality sig-
nificantly by 0.2 MOS (DN+VAD-2+* vs. VN).
Filtering by SNR and CER improves both model
fitting (-0.1 MCD) and intelligibility (-1.5 CER)
given the removal of difficult training examples.

4 Related Work

There are many existing open-source repositories
for speech synthesis. The most prominent toolkits
for conventional statistical parametric speech syn-
thesis (SPSS) include HMM/DNN-based Speech
Synthesis System (HTS) (Zen et al., 2007) and
Merlin (Wu et al., 2016). These rely heavily on fea-
ture engineering and use signal processing-based
vocoders like STRAIGHT (Kawahara et al., 1999)
and WORLD (Morise et al., 2016) to synthesize
waveforms from acoustic features (e.g., fundamen-
tal frequency, spectral envelope, and aperiodic in-
formation). Recently, end-to-end models that take
minimally pre-processed features (characters and
mel-spectrograms) have achieved superior perfor-
mance compared to conventional systems (Shen
et al., 2018), especially when paired with neural
vocoders (Prenger et al., 2019; Kong et al., 2020).
There are a number of open-source implementa-

tions available on Github 1, however, these reposi-
tories are solely for text-to-speech synthesis, and
mostly support one model only.

ESPnet (Watanabe et al., 2018; Hayashi et al.,
2020), NeMo, and OpenSeq2Seq (Kuchaiev et al.,
2018b) are the most similar toolkits that also sup-
port multiple tasks. As listed in Table 5, FAIRSEQ

S2 provides more audio preprocessing tools and au-
tomatic metrics for building and evaluating speech
synthesis models on custom datasets. As part of
FAIRSEQ, it can also be easily integrated with nu-
merous state-of-the-art models already provided
in FAIRSEQ for exploring novel ideas. For exam-
ple, we demonstrate that units discovered from a
self-supervised speech pre-training model can be
used to build a unit-to-speech system that converts
output from systems like unit LM (Lakhotia et al.,
2021) or image-to-unit (Hsu et al., 2020) to speech.

5 Conclusion

This paper introduces FAIRSEQ S2, a FAIRSEQ ex-
tension for speech synthesis. We believe this exten-
sion will allow researchers and developers to more
easily test novel ideas for language technologies by
providing great support for scalability, integrability,
and a wealth of tools for curating data as well as
automatically evaluating trained systems.

1coqui-ai/TTS, Kyubyoung/tacotron, NVIDIA/tacotron2,
Rayhane-mamah/Tacotron2, r9y9/deepvoice3_pytorch

148

References

Kei Akuzawa, Yusuke Iwasawa, and Yutaka Matsuo.
2018. Expressive speech synthesis via modeling
expressions with variational autoencoder. arXiv
preprint arXiv:1804.02135.

Rosana Ardila, Megan Branson, Kelly Davis, Michael
Kohler, Josh Meyer, Michael Henretty, Reuben
Morais, Lindsay Saunders, Francis Tyers, and Gre-
gor Weber. 2020. Common voice: A massively-
multilingual speech corpus. In Proceedings of the
12th Language Resources and Evaluation Confer-
ence, pages 4218–4222, Marseille, France. Euro-
pean Language Resources Association.

Sercan Arik, Gregory Diamos, Andrew Gibiansky,
John Miller, Kainan Peng, Wei Ping, Jonathan
Raiman, and Yanqi Zhou. 2017. Deep voice 2:
Multi-speaker neural text-to-speech. arXiv preprint
arXiv:1705.08947.

Alexei Baevski, Steffen Schneider, and Michael Auli.
2019. vq-wav2vec: Self-supervised learning of
discrete speech representations. arXiv preprint
arXiv:1910.05453.

Alexei Baevski, Henry Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020a. wav2vec 2.0: A frame-
work for self-supervised learning of speech represen-
tations. arXiv preprint arXiv:2006.11477.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020b. wav2vec 2.0: A frame-
work for self-supervised learning of speech represen-
tations. In Advances in Neural Information Process-
ing Systems, volume 33, pages 12449–12460. Cur-
ran Associates, Inc.

Murali Karthick Baskar, Shinji Watanabe, Ramon
Astudillo, Takaaki Hori, Lukáš Burget, and Jan
Černockỳ. 2019. Semi-supervised sequence-to-
sequence asr using unpaired speech and text. arXiv
preprint arXiv:1905.01152.

Mathieu Bernard. 2015. Phonemizer. https://
github.com/bootphon/phonemizer.

Donald J Berndt and James Clifford. 1994. Using dy-
namic time warping to find patterns in time series. In
KDD workshop, volume 10, pages 359–370. Seattle,
WA, USA:.

Mingjian Chen, Xu Tan, Yi Ren, Jin Xu, Hao Sun,
Sheng Zhao, Tao Qin, and Tie-Yan Liu. 2020. Mul-
tispeech: Multi-speaker text to speech with trans-
former. arXiv preprint arXiv:2006.04664.

Wei Chu and Abeer Alwan. 2009. Reducing f0 frame
error of f0 tracking algorithms under noisy con-
ditions with an unvoiced/voiced classification fron-
tend. In ICASSP.

Erica Cooper, Cheng-I Lai, Yusuke Yasuda, Fuming
Fang, Xin Wang, Nanxin Chen, and Junichi Ya-
magishi. 2020. Zero-shot multi-speaker text-to-
speech with state-of-the-art neural speaker embed-
dings. In ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 6184–6188. IEEE.

Alexandre Defossez, Gabriel Synnaeve, and Yossi Adi.
2020. Real time speech enhancement in the wave-
form domain. INTERSPEECH.

Daniel Griffin and Jae Lim. 1984. Signal estimation
from modified short-time fourier transform. IEEE
Transactions on acoustics, speech, and signal pro-
cessing, 32(2):236–243.

David Harwath, Wei-Ning Hsu, and James Glass.
2019. Learning hierarchical discrete linguistic units
from visually-grounded speech. arXiv preprint
arXiv:1911.09602.

Tomoki Hayashi and Shinji Watanabe. 2020. Disc-
retalk: Text-to-speech as a machine translation prob-
lem. arXiv preprint arXiv:2005.05525.

Tomoki Hayashi, Shinji Watanabe, Yu Zhang, Tomoki
Toda, Takaaki Hori, Ramon Astudillo, and Kazuya
Takeda. 2018. Back-translation-style data augmen-
tation for end-to-end asr. In 2018 IEEE Spoken Lan-
guage Technology Workshop (SLT), pages 426–433.
IEEE.

Tomoki Hayashi, Ryuichi Yamamoto, Katsuki Inoue,
Takenori Yoshimura, Shinji Watanabe, Tomoki Toda,
Kazuya Takeda, Yu Zhang, and Xu Tan. 2020.
Espnet-tts: Unified, reproducible, and integrat-
able open source end-to-end text-to-speech toolkit.
In ICASSP 2020-2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 7654–7658. IEEE.

Georg Heigold, Ignacio Moreno, Samy Bengio, and
Noam Shazeer. 2016. End-to-end text-dependent
speaker verification. In 2016 IEEE International
Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 5115–5119. IEEE.

Takaaki Hori, Ramon Astudillo, Tomoki Hayashi,
Yu Zhang, Shinji Watanabe, and Jonathan Le Roux.
2019. Cycle-consistency training for end-to-end
speech recognition. In ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 6271–6275.
IEEE.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hu-
bert Tsai, Kushal Lakhotia, Ruslan Salakhutdi-
nov, and Abdelrahman Mohamed. 2021. Hubert:
Self-supervised speech representation learning by
masked prediction of hidden units. arXiv preprint
arXiv:2106.07447.

Wei-Ning Hsu, David Harwath, Christopher Song, and
James Glass. 2020. Text-free image-to-speech syn-
thesis using learned segmental units. arXiv preprint
arXiv:2012.15454.

149

Wei-Ning Hsu, Yu Zhang, Ron J Weiss, Heiga Zen,
Yonghui Wu, Yuxuan Wang, Yuan Cao, Ye Jia,
Zhifeng Chen, Jonathan Shen, et al. 2018. Hierar-
chical generative modeling for controllable speech
synthesis. arXiv preprint arXiv:1810.07217.

Andrew J Hunt and Alan W Black. 1996. Unit selec-
tion in a concatenative speech synthesis system us-
ing a large speech database. In 1996 IEEE Inter-
national Conference on Acoustics, Speech, and Sig-
nal Processing Conference Proceedings, volume 1,
pages 373–376. IEEE.

Keith Ito and Linda Johnson. 2017. The lj
speech dataset. https://keithito.com/
LJ-Speech-Dataset.

Ye Jia, Ron J Weiss, Fadi Biadsy, Wolfgang Macherey,
Melvin Johnson, Zhifeng Chen, and Yonghui Wu.
2019. Direct speech-to-speech translation with a
sequence-to-sequence model. Proc. Interspeech
2019, pages 1123–1127.

Ye Jia, Yu Zhang, Ron J Weiss, Quan Wang, Jonathan
Shen, Fei Ren, Zhifeng Chen, Patrick Nguyen,
Ruoming Pang, Ignacio Lopez Moreno, et al. 2018.
Transfer learning from speaker verification to mul-
tispeaker text-to-speech synthesis. arXiv preprint
arXiv:1806.04558.

Hideki Kawahara, Ikuyo Masuda-Katsuse, and Alain
De Cheveigne. 1999. Restructuring speech rep-
resentations using a pitch-adaptive time–frequency
smoothing and an instantaneous-frequency-based f0
extraction: Possible role of a repetitive structure in
sounds. Speech communication, 27(3-4):187–207.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source
toolkit for statistical machine translation. In Pro-
ceedings of the 45th annual meeting of the associ-
ation for computational linguistics companion vol-
ume proceedings of the demo and poster sessions,
pages 177–180.

Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. 2020.
Hifi-gan: Generative adversarial networks for effi-
cient and high fidelity speech synthesis. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 17022–17033. Curran Associates,
Inc.

Oleksii Kuchaiev, Boris Ginsburg, Igor Gitman, Vi-
taly Lavrukhin, Carl Case, and Paulius Micikevi-
cius. 2018a. Openseq2seq: extensible toolkit for dis-
tributed and mixed precision training of sequence-to-
sequence models. In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), pages 41–
46.

Oleksii Kuchaiev, Boris Ginsburg, Igor Gitman, Vi-
taly Lavrukhin, Carl Case, and Paulius Micikevicius.

2018b. OpenSeq2Seq: Extensible toolkit for dis-
tributed and mixed precision training of sequence-
to-sequence models. In Proceedings of Workshop
for NLP Open Source Software (NLP-OSS), pages
41–46, Melbourne, Australia. Association for Com-
putational Linguistics.

Kushal Lakhotia, Evgeny Kharitonov, Wei-Ning Hsu,
Yossi Adi, Adam Polyak, Benjamin Bolte, Tu-Anh
Nguyen, Jade Copet, Alexei Baevski, Adelrahman
Mohamed, et al. 2021. Generative spoken lan-
guage modeling from raw audio. arXiv preprint
arXiv:2102.01192.

Naihan Li, Shujie Liu, Yanqing Liu, Sheng Zhao, and
Ming Liu. 2019. Neural speech synthesis with trans-
former network. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, pages 6706–6713.

Xian Li, Changhan Wang, Yun Tang, Chau Tran,
Yuqing Tang, Juan Pino, Alexei Baevski, Alexis
Conneau, and Michael Auli. 2020. Multilingual
speech translation with efficient finetuning of pre-
trained models. arXiv preprint arXiv:2010.12829.

Michael McAuliffe, Michaela Socolof, Sarah Mi-
huc, Michael Wagner, and Morgan Sonderegger.
2017. Montreal forced aligner: Trainable text-
speech alignment using kaldi. In Interspeech, vol-
ume 2017, pages 498–502.

Paulius Micikevicius, Sharan Narang, Jonah Alben,
Gregory Diamos, Erich Elsen, David Garcia, Boris
Ginsburg, Michael Houston, Oleksii Kuchaiev,
Ganesh Venkatesh, et al. 2017. Mixed precision
training. arXiv preprint arXiv:1710.03740.

Masanori Morise, Fumiya Yokomori, and Kenji Ozawa.
2016. World: a vocoder-based high-quality speech
synthesis system for real-time applications. IE-
ICE TRANSACTIONS on Information and Systems,
99(7):1877–1884.

Tomohiro Nakatani et al. 2008. A method for funda-
mental frequency estimation and voicing decision:
Application to infant utterances recorded in real
acoustical environments. Speech Communication.

Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott,
Michael Auli, and Sergey Edunov. 2019. Facebook
FAIR’s WMT19 news translation task submission.
In Proceedings of the Fourth Conference on Ma-
chine Translation (Volume 2: Shared Task Papers,
Day 1), pages 314–319, Florence, Italy. Association
for Computational Linguistics.

Aaron van den Oord, Oriol Vinyals, and Koray
Kavukcuoglu. 2017. Neural discrete representation
learning. arXiv preprint arXiv:1711.00937.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

150

Jongseok Park, Kyubyong & Kim. 2019. g2pe.
https://github.com/Kyubyong/g2p.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. In Ad-
vances in neural information processing systems,
pages 8026–8037.

Wei Ping, Kainan Peng, Andrew Gibiansky, Ser-
can O Arik, Ajay Kannan, Sharan Narang, Jonathan
Raiman, and John Miller. 2017. Deep voice 3:
Scaling text-to-speech with convolutional sequence
learning. arXiv preprint arXiv:1710.07654.

Adam Polyak, Yossi Adi, Jade Copet, Eugene
Kharitonov, Kushal Lakhotia, Wei-Ning Hsu, Ab-
delrahman Mohamed, and Emmanuel Dupoux.
2021. Speech resynthesis from discrete disentan-
gled self-supervised representations. arXiv preprint
arXiv:2104.00355.

Adam Polyak, Lior Wolf, Yossi Adi, and Yaniv Taig-
man. 2020. Unsupervised cross-domain singing
voice conversion. arXiv preprint arXiv:2008.02830.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko
Hannemann, Petr Motlicek, Yanmin Qian, Petr
Schwarz, et al. 2011. The kaldi speech recogni-
tion toolkit. In IEEE 2011 workshop on automatic
speech recognition and understanding, CONF. IEEE
Signal Processing Society.

Ryan Prenger, Rafael Valle, and Bryan Catanzaro.
2019. Waveglow: A flow-based generative net-
work for speech synthesis. In ICASSP 2019-
2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages
3617–3621. IEEE.

Yi Ren, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao,
Zhou Zhao, and Tie-Yan Liu. 2020. Fastspeech
2: Fast and high-quality end-to-end text to speech.
arXiv preprint arXiv:2006.04558.

Yi Ren, Yangjun Ruan, Xu Tan, Tao Qin, Sheng Zhao,
Zhou Zhao, and Tie-Yan Liu. 2019. Fastspeech:
Fast, robust and controllable text to speech. In Ad-
vances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Flávio Ribeiro, Dinei Florêncio, Cha Zhang, and
Michael Seltzer. 2011. Crowdmos: An approach for
crowdsourcing mean opinion score studies. In 2011
IEEE international conference on acoustics, speech
and signal processing (ICASSP), pages 2416–2419.
IEEE.

Andrew Rosenberg, Yu Zhang, Bhuvana Ramabhad-
ran, Ye Jia, Pedro Moreno, Yonghui Wu, and Zelin
Wu. 2019. Speech recognition with augmented syn-
thesized speech. In 2019 IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU),
pages 996–1002. IEEE.

Jonathan Shen, Ruoming Pang, Ron J Weiss, Mike
Schuster, Navdeep Jaitly, Zongheng Yang, Zhifeng
Chen, Yu Zhang, Yuxuan Wang, Rj Skerrv-Ryan,
et al. 2018. Natural tts synthesis by condition-
ing wavenet on mel spectrogram predictions. In
2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages
4779–4783. IEEE.

RJ Skerry-Ryan, Eric Battenberg, Ying Xiao, Yuxuan
Wang, Daisy Stanton, Joel Shor, Ron Weiss, Rob
Clark, and Rif A Saurous. 2018. Towards end-to-
end prosody transfer for expressive speech synthesis
with tacotron. In international conference on ma-
chine learning, pages 4693–4702. PMLR.

Xu Tan, Tao Qin, Frank Soong, and Tie-Yan Liu. 2021.
A survey on neural speech synthesis. arXiv preprint
arXiv:2106.15561.

Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura.
2017. Listening while speaking: Speech chain by
deep learning. In 2017 IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU),
pages 301–308. IEEE.

Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura.
2020. Speech-to-speech translation without text.

Christophe Veaux, Junichi Yamagishi, Kirsten Mac-
Donald, et al. 2017. Superseded-cstr vctk corpus:
English multi-speaker corpus for cstr voice cloning
toolkit.

Changhan Wang, Anirudh Jain, Danlu Chen, and Ji-
atao Gu. 2019. VizSeq: a visual analysis toolkit
for text generation tasks. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP): System Demonstrations, pages
253–258, Hong Kong, China. Association for Com-
putational Linguistics.

Changhan Wang, Yun Tang, Xutai Ma, Anne Wu,
Dmytro Okhonko, and Juan Pino. 2020. Fairseq s2t:
Fast speech-to-text modeling with fairseq. In Pro-
ceedings of the 1st Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics and the 10th International Joint Conference
on Natural Language Processing: System Demon-
strations, pages 33–39.

Yuxuan Wang, Daisy Stanton, Yu Zhang, RJ-Skerry
Ryan, Eric Battenberg, Joel Shor, Ying Xiao, Ye Jia,
Fei Ren, and Rif A Saurous. 2018. Style tokens:
Unsupervised style modeling, control and transfer
in end-to-end speech synthesis. In International
Conference on Machine Learning, pages 5180–5189.
PMLR.

Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki
Hayashi, Jiro Nishitoba, Yuya Unno, Nelson En-
rique Yalta Soplin, Jahn Heymann, Matthew Wies-
ner, Nanxin Chen, et al. 2018. Espnet: End-
to-end speech processing toolkit. arXiv preprint
arXiv:1804.00015.

151

Ron J Weiss, Jan Chorowski, Navdeep Jaitly, Yonghui
Wu, and Zhifeng Chen. 2017. Sequence-to-
sequence models can directly translate foreign
speech. arXiv preprint arXiv:1703.08581.

Ron J Weiss, RJ Skerry-Ryan, Eric Battenberg,
Soroosh Mariooryad, and Diederik P Kingma. 2021.
Wave-tacotron: Spectrogram-free end-to-end text-to-
speech synthesis. In ICASSP 2021-2021 IEEE Inter-
national Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pages 5679–5683. IEEE.

John Wiseman. 2016. Python interface to the webrtc
voice activity detector. https://github.com/
wiseman/py-webrtcvad.

Zhizheng Wu, Oliver Watts, and Simon King. 2016.
Merlin: An open source neural network speech syn-
thesis system. In SSW, pages 202–207.

Steve Young, Gunnar Evermann, Mark Gales, Thomas
Hain, Dan Kershaw, Xunying Liu, Gareth Moore, Ju-
lian Odell, Dave Ollason, Dan Povey, et al. 2002.
The htk book. Cambridge university engineering de-
partment, 3(175):12.

Heiga Zen, Takashi Nose, Junichi Yamagishi, Shinji
Sako, Takashi Masuko, Alan W Black, and Keiichi
Tokuda. 2007. The hmm-based speech synthesis
system (hts) version 2.0. In SSW, pages 294–299.
Citeseer.

Heiga Zen, Keiichi Tokuda, and Alan W Black. 2009.
Statistical parametric speech synthesis. speech com-
munication, 51(11):1039–1064.

Chen Zhang, Yi Ren, Xu Tan, Jinglin Liu, Kejun
Zhang, Tao Qin, Sheng Zhao, and Tie-Yan Liu.
2021. Denoispeech: Denoising text to speech
with frame-level noise modeling. In ICASSP 2021-
2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages
7063–7067. IEEE.

152

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 153–159
November 7–11, 2021. ©2021 Association for Computational Linguistics

Press Freedom Monitor: Detection of Reported Press and Media Freedom
Violations in Twitter and News Articles

Tariq Yousef 1 Antje Schlaf 2 Janos Borst 3

Andreas Niekler 3 Gerhard Heyer 1

1Institute for Applied Informatics (InfAI)
2European Centre for Press and Media Freedom (ECPMF)

3Leipzig University
{yousef,heyer@infai.org} {antje.schlaf@ecpmf.eu} {borst,aniekler@informatik.uni-leipzig.de}

Abstract

Freedom of the press and media is of vital im-
portance for democratically organised states
and open societies. We introduce the Press
Freedom Monitor, a tool that aims to detect re-
ported press and media freedom violations in
news articles and tweets. It is used by press
and media freedom organisations to support
their daily monitoring and to trigger rapid re-
sponse actions. The Press Freedom Monitor
enables the monitoring experts to get a swift
overview of recently reported incidents and
it has performed impressively in this regard.
This paper presents our work on the tool, start-
ing with the training phase, which comprises
defining the topic-related keywords to be used
for querying APIs for news and Twitter con-
tent and evaluating different machine learning
models based on a training dataset specifically
created for our use case. Then, we describe the
components of the production pipeline, includ-
ing data gathering, duplicates removal, coun-
try mapping, case mapping and the user in-
terface. We also conducted a usability study
to evaluate the effectiveness of the user inter-
face, and describe improvement plans for fu-
ture work.

1 Introduction

Press freedom is under constant and increasing at-
tack, even in Europe. Therefore, now more than
ever, it is important to monitor developments and
advocate for measures to protect press and media
freedom. Mapping Media Freedom1 (MMF) is a
project and platform which identifies and docu-
ments threats, violations and restrictions faced by
media workers across Europe and beyond. The
documented incidents include physical attacks,
threats of violence made online and offline, le-
gal actions aimed at silencing critical coverage
and moves to block access to information or re-
porting on incidents or denying access to inde-

1https://www.mappingmediafreedom.org

pendent and government-critical media platforms.
These incidents are published as alerts on MMF
and combined with analysis reports they provide an
overview of the current state and development of
press and media freedom in Europe. This project
is run by the Media Freedom Rapid Response
(MFRR2), a rapid response mechanism against
press and media freedom violations in the European
Union member states and candidate countries3. It
provides legal support, shelter, public advocacy and
information to protect journalists and media work-
ers. The alliance is led by the European Centre for
Press and Media Freedom (ECPMF) in conjunc-
tion with ARTICLE 19, the European Federation
of Journalists (EFJ), Free Press Unlimited (FPU),
the Institute for Applied Informatics at the Univer-
sity of Leipzig (InfAI), International Press Insti-
tute (IPI) and CCI/Osservatorio Balcani e Caucaso
Transeuropa (OBCT). The project commenced in
2020. It is funded by the European Commission.
The MMF alerts guide MFRR to directly engage
with and help at-risk journalists and media workers
The alerts are submitted mainly by the MFRR mon-
itoring experts, as well as an international network
of local partners. However, MMF is also a crowd-
sourced platform that enables anyone to upload an
alert, which is then verified by the expert network
before publication to guarantee the reliability of the
cases and the comprehensiveness of the published
details. In order to support the labour-intensive
manual monitoring of incidents, we developed the
Press Freedom Monitor which regularly monitors
and automatically detects reports about press and
media freedom violations in vast amounts of on-
line published text sources, namely news articles
and tweets. The automatic detection is based on
a trained deep learning model. These detected in-
cident reports are then verified by the monitoring
experts who create and publish an MMF alert in-

2https://www.mfrr.eu
3Further referred here as "MFRR" region

153

cluding comprehensive details and trigger further
response actions.
The advantage of integrating automatic extraction
processes is that they can use a wider range of
sources and provide a faster alert mechanism. This
in turn means that more violations can be found
and more sources can be provided for each case,
allowing a more realistic and reliable assessment
of the press freedom situation. Table 1 shows some
examples of tweets or news headlines which are
considered to be reports of attacks and violations
and thus of interest for the experts. We divide our
work into a training phase where we describe the
data collection and the evaluation of the training
data created specifically for our use case, and a
production phase where we describe details of the
architecture.

This is a #BBC reporter being harassed and
chased by a mob. Scary stuff.
Orban-friendly owner gets Hungary independent
radio frequency
#Serbia’s #Govt #Group #condemns death
#threat to #writer and #journalist
A new law in #Germany makes journalists vul-
nerable to hacking and surveillance.
#Italy #Lazio Incredible, the regional administra-
tive court (TAR) order journalists to reveal their
sources!
NEWS | NI journalist Patricia Devlin has - for
the second time - received a threat via social
media to rape her young son
Demonstrators attack, obstruct #journalists cov-
ering #protests against #COVID19 lockdown in
#Germany

Table 1: Examples of Tweets and News Headings Con-
sidered as reported Attacks.

2 Related Work

Monitoring content published in social networks
to detect abuse, harassment, or freedom violations
has been the subject of several research projects.
(Hewitt et al., 2016), (Anzovino et al., 2018), (Şahi
et al., 2018), and (Rodríguez-Sánchez et al., 2020)
worked on the detection of misogynistic language
and hate speech towards women on Twitter. (O’Dea
et al., 2015) developed an approach to automat-
ically detect suicide-related tweets. (Bourgonje
et al., 2018) and (Rodríguez-Sánchez et al., 2020)
aimed to detect and analyse tweets that contain

racism, sexism and abusive language. The starting
point was always to define a list of keywords, hash-
tags, and accounts related to the topic and to collect
the relevant tweets using Twitter API. However, the
absence of domain-specific labelled corpora drove
many projects to manually create their own training
dataset to meet their needs.
All the works listed above consider historic or
archived data, whereas our crawling process runs
continuously and collects almost live tweets and
news multiple times a day. Furthermore, our
project is distinguished from others by not aiming
to detect direct abuses, harassment or freedom vio-
lations but reported attacks and violations directed
to the specific group of media actors, which include
journalists, media workers and media companies.

3 Training Phase

3.1 Data Collection

For the data gathering we use the free Twitter API4

and the free version of NewsAPI5. This enables
us to detect violations reported by various kinds
of stakeholders, including official accounts with
high publicity as well as private accounts, which
can be especially helpful in countries where press
freedom is restricted, and violations do not get
reported in publicly available news media. The
filters to query the Twitter API and the NewsAPI
were defined in collaboration with the monitoring
team at ECPMF, EFJ and IPI. We defined 147 key-
words and hashtags based on three groups: (A)
hashtags that are directly related to violations of
press and media freedom6, (B) keywords and hash-
tags related to media actors7 and press and media
freedom8 and (C) keywords and hashtags related
to attacks or violations9. The APIs were queried
to require a match from a group A element or a
combined match of group B and C elements. This
combination was defined in order to exclude gen-
eral content on media actors and press freedom as
well as attacks that were not related to press and
media freedom. Based on the experience of the
monitoring experts, we selected an additional 66
Twitter accounts which frequently report violations

4developer.twitter.com
5https://newsapi.org
6Such as #journalismisnotacrime or #JournoSafe
7Such as editor, journalist, reporter, photographer, camera

team, blogger, whistleblower, journalism, media company
8Such as #mediafreedom, #pressfreedom
9Such as arrested, attacked, censored, blocked access,

defamation, harassed, insulted surveillance, threatened

154

Training Validation
Model Precision Recall F1 Precision Recall F1
Logistic Regression 0.5802 0.7333 0.6479 0.9482 0.6868 0.7966
Decision Tree 0.5486 0.6494 0.5947 0.8809 0.5024 0.6398
k-Nearest Neighbors 0.6372 0.6000 0.6180 0.8799 0.4421 0.5885
Linear SVM 0.6640 0.6861 0.6749 0.9627 0.5889 0.7308
Random Forest 0.8426 0.4106 0.5521 0.9932 0.2286 0.3716
Transformer 0.7768 0.8274 0.8010 0.9736 0.7659 0.8571
Transformer + CNN 0.7769 0.8324 0.8036 0.9559 0.8059 0.8785

Table 2: Training and Validation Results for the Proposed Methods.

of press and media freedom.
The data collection process runs multiple times a
day and collects approximately 1,000 news articles
and 4,000 tweets per day.

3.2 Training

We aimed to train a binary classifier to be able to
tell if a tweet or news article is reporting about
press and media freedom violations or not. Due
to the absence of any publicly available training
dataset related to our purpose, we created our own
training data with the help of an annotation tool
developed particularly for this purpose.
ECPMF manually classified 6,005 news articles
and 8,192 tweets. Around 26% of them are clas-
sified as relevant. The inter-annotator agreement
was assessed for 997 news articles and 996 tweets
classified by two different human annotators. We
achieved a relative agreement of 84.55% for news
and 86.35% for tweets, and a substantial agreement
regarding Cohen’s kappa (Cohen, 1960) with 0.62
for news and 0.63 for tweets. We excluded from the
dataset the examples where the human annotators
disagreed.
In the training process, the models were trained
on news articles and tweets together. The size of
the training dataset was 13,809 texts (5,822 news
articles, 7,987 tweets) in total. The models were
trained on 90% of the training dataset and tested
on the remaining 10%. We trained each model on
four different training/testing splits and guaranteed
approximately the same percentage of examples
from each category. The models were validated
on 1,007 feedback items of unseen data created
manually by the monitoring experts.
We evaluated several classic machine learning mod-
els such as Logistic Regression, Decision Tree, k-
Nearest Neighbors, Linear SVM, and Random For-
est using TF-IDF representation. However, The re-

sults were not satisfactory. Additionally, we experi-
mented with convolutional neural networks (CNN)
trained on top of a distilled (Sanh et al., 2019) ver-
sion of the RoBERTa (Liu et al., 2019) model in
addition to the vanilla finetuning of the transformer
model. The structure of the CNN follows the archi-
tecture in (Kim, 2014). Table 2 shows the results.
As we can see, the deep learning models clearly out-
perform the classic machine learning approaches.
The CNN model achieved the highest average f1-
score and recall during the training and the valida-
tion on the new unseen texts and was selected to be
deployed and integrated into our pipeline.

4 Production Phase

The aim of the Press Freedom Monitor as an appli-
cation in production is threefold: First, and most
importantly, it should constantly monitor news and
tweets and present automatically-detected reports
about press freedom violations to the monitoring
experts in a convenient format. Second, the tool
should provide support for the monitoring experts
when searching for further items that report about
the same incident during the verification process.
Third, it should help to improve the model by col-
lecting manual feedback about the classified items,
which can be used as additional training data.
Figure 1 shows the process pipeline of the Press
Freedom Monitor in production. The data collec-
tion is performed continuously as described above.
The trained model is used to detect reported viola-
tions within the gathered data. In parallel, duplicate
removal, case mapping, and a country mapping
based on geocoding is performed to increase the
usability of the tool.

4.1 Geocoding and Country Mapping

MFRR is mainly interested in incidents happening
in European Member States and Candidate coun-

155

Classification
Model

Training Data

Prediction Duplicate Removal Case Mapping
Geocoding &

Country Mapping

NER

Press Freedom Monitor
User InterfaceManual Feedback

Data Collection Raw Data

Figure 1: System Architecture.

tries. As the location of the author might be com-
pletely unrelated to the location of the reported
incident, we aimed to identify locations mentioned
within the text. We use SpaCy10 to detect loca-
tions via named entities recognition and translate
them to latitude-longitude coordinates using the
OpenStreetMap API11. The coordinates can then
be mapped to countries and to the region of inter-
est. This country mapping was further extended
by recognising country adjectives (such as Italian
or French) as well as country names mentioned in
hashtags.

4.2 Duplicate Detection

Text reuse is very common among news agencies
(Clough et al., 2002). Similarly, twitter users tend
to reuse texts posted by other users or republish
their own tweets (Castillo et al., 2011). Since these
duplicates do not provide an added value to our
purpose, but require more resources for analysis
and review, they had to be removed from our pro-
duction pipeline. For this purpose, we employed
Locality Sensitive Hashing (LSH) (Rajaraman and
Ullman, 2011) based on min-hash signatures and
the Jaccard similarity.
As a similarity threshold, we chose 95% to toler-
ate minor differences. This guided us to detect
1.38% of the crawled news articles as duplicates.
Moreover, the fraction of duplicates in the collected
tweets was more significant, around 7.9%. The du-
plicate removal process runs parallel to the data
collection process multiple times a day, and it con-
siders all the texts that have been crawled in the
last ten days.

10https://spacy.io
11https://nominatim.org

4.3 Case Mapping

It is typical to find multiple news articles published
by several news agencies reporting on the same in-
cident or publishing updates on previous incidents.
Similarly, numerous people post tweets on the same
incident. Thus, when verifying a certain reported
incident, it would be helpful to see related items
that are reporting about the same incident. We call
this process "Case Mapping". For this purpose,
we employed semantic similarity to capture mean-
ings relatedness between each pair of texts even
if there are no exact matches among the tokens.
Moreover, we used SpaCy, which creates embed-
dings for each text by averaging the embeddings
of all tokens. Then it employs cosine similarity
between the two vectors to compute the similar-
ity score. We set 0.97 as the threshold score to
decide if two texts are related or not. We chose
this value experimentally after analysing the data
we have. For now, related news articles/tweets are
listed for every single item in the front end and can
be accessed by clicking on the button Show Related
Articles/Tweets.

4.4 User Interface

The user interface as shown in figure 2 is imple-
mented as a web application with restricted access
via login. The frontend is designed with regard to
the threefold aim of the final tool described above.
First, it presents the latest news articles and tweets
that have been classified as relevant, showing the
most recent at the top. A click on the item shows
the full article or tweet in its original context. Fur-
thermore, it provides several convenience filters:
A date filter allows the user to restrict the items
to certain time spans. The default threshold for

156

Figure 2: Press Freedom Monitor User Interface.

the prediction confidence is set to 80% and can be
adjusted via a slider based on personal preferences
connected to the time available to invest in order
to find relevant incidents. We developed a location
filter to support the filtering for MFRR’s region of
interest based on the country mapping described
above. As multiple countries or also no countries
might be mapped to a text, the location filter groups
them according to the number and proportion of lo-
cations mentioned that fall within the MFRR region
or outside the MFRR region. Though all groups
might contain incidents within the region of inter-
est, they differ highly in their contained portion.
Multiple choice checkboxes allow the expert to
adjust the items that are presented, based on their
personal preferences and time available.
The second aim of the tool is to provide support for
the monitoring experts when they verify an incident
and need multiple sources reporting about this inci-
dent. If the case mapping analysis described above
identifies items that are similar, a button named
Show related tweets/articles is shown and presents

the related items via a pop-up when clicked. The
search field can further help to find items for a spe-
cific incident when e.g. searching for names of
persons involved in the incident.
The third aim of the tool is to collect manual feed-
back to use it as further training data in order to
extend the training dataset and to prevent topic drift.
Therefore we implemented feedback buttons which
are shown directly beside the item, and which allow
the experts to give feedback in a convenient way
during their daily work. Beside the possibility to
rate an item as being relevant with regard to report-
ing about a press freedom violation (green coloured
feedback buttons) or not (red), there is a feedback
button for No alert but still relevant/interesting (or-
ange). Items rated as the latter, mainly contain
news, events or statements about press freedom
violations in general, which can neither be rated
as reporting about an explicit incident nor as com-
pletely irrelevant. These contents were excluded
from the evaluation and will be the subject of dis-
cussions with the monitoring experts on whether

157

or how to include such content in the future. As
the items can also be filtered based on their feed-
back, the feedback can also support the workflow
of multiple users. One expert can label the latest
detected items, whereas the other expert can filter
just for the items already rated as relevant and can
concentrate on verifying only these incidents. All
feedback manually labeled via the green feedback
buttons (reporting about a press freedom violation),
can be used as positive examples for future training.
However, this positive feedback can be further dis-
tinguished by the experts to differentiate between
relevant and irrelevant items regarding other as-
pects of their workflow.

4.5 System Evaluation

After the tool was implemented, the front end was
used to evaluate our real case scenario of content
that held the most interest for the monitoring part-
ners, namely content classified as relevant by the
model and reporting about press and media free-
dom violations within the MFRR region. However,
the evaluation went beyond this by manually apply-
ing different filter settings to the filters described
before. This was performed in order to also include
some evaluation of items not classified as relevant
by the model and potentially missed, as well as
items without detected locations or located outside
MFRR countries.
Altogether, ECPMF evaluated 2,572 items via the
implemented tool. This evaluated data contains
62% of items classified as relevant by the model
and 32% classified as not relevant based on the de-
fault confidence threshold of 0.8. Recall is impor-
tant to detect as many reported incidents as possible.
A low precision would lead to too much evaluation
effort for the monitoring partners. Using the key-
word filter only, we achieved a baseline of 0.64 for
precision and 0.31 for recall. When analysing the
evaluated data for a confidence threshold of 0.8,
the trained model achieved a recall of 0.87 and a
precision of 0.96 regarding the data that are rele-
vant to our interest. The evaluation showed that
the lowering of the threshold from 0.8 to 0.5 would
lead to a higher recall of 0.91 whilst retaining a
precision of 0.94, which is still excellent.

5 Usability Study

To evaluate the usability of the Press Freedom Mon-
itor, we conducted a usability study with 7 partic-
ipants. For this purpose, we used the Computer

System Usability Questionnaire (CSUQ) version3
(Lewis, 1995). The study showed a 79% overall sat-
isfaction among the monitoring experts; similarly,
the system usefulness achieved 79%, and infor-
mation quality 76%. Moreover, the user interface
quality achieved the highest score with 84%.

6 Language extension: Hungarian

By monitoring English language content, we al-
ready have broad geographical coverage. Extend-
ing the monitoring with additional languages can
detect incidents not detected via the monitoring in
the English language. We selected Hungarian as the
test language, based on the ongoing deterioration
in the field of press and media freedom in Hungary.
The creation of specific training data for additional
languages and the adaptation to language-specific
processes (such as NER or geocoding) was not
feasible in our project. Instead, we use Google
Translate12 to translate the texts to English and clas-
sify them with the model trained for English. To
cope with the challenge that the monitoring experts
might not speak Hungarian and therefore can not
understand the news articles or tweets that are pre-
sented, the frontend also shows the translated text
for each item first. This allows the experts to assess
the content even if they do not speak the language.
Again, each item can be clicked to show it in its
original context and language for further inspection.
Though the Hungarian version detects less content
than the English one based on the smaller amount
of news and tweets in Hungarian, it has already
proved to be a valuable source of information dur-
ing initial tests and usage. It detected an incident
in Hungary and an incident in Germany that were
not already known to the monitoring team and also
not detected by the English monitoring. The first
evaluation of 237 items resulted in a recall of 0.8
and precision of 0.95 when setting the confidence
threshold to 0.5.

7 Future Work

Future work includes the extension of the manual
feedback as well as the retraining of the models
including this feedback data. A common im-
provement request by the experts was to further
invest in displaying texts about the same incident
together. Thus, future work will involve clustering
based on incidents to enhance the case mapping
performance. However, we need to evaluate how

12https://cloud.google.com/translate

158

well clustering can perform in this already narrow
use case with high similarities between different
incidents. As the first step, we plan to use the
country mapping to present the incidents based
on mapped countries. This is already expected
to provide a better distinction between different
incidents and might result in a first improvement
with a good cost-benefit ratio. Furthermore, we
want to extend the Press Freedom Monitor with
additional languages.

Acknowledgment
This work is funded by the European Commission
within the Media Freedom Rapid Response project
and co-financed through public funding by the re-
gional parliament of Saxony, Germany.

References
Maria Anzovino, Elisabetta Fersini, and Paolo Rosso.

2018. Automatic identification and classification of
misogynistic language on twitter. In Natural Lan-
guage Processing and Information Systems, pages
57–64, Cham. Springer International Publishing.

Peter Bourgonje, Julian Moreno-Schneider, Ankit Sri-
vastava, and Georg Rehm. 2018. Automatic clas-
sification of abusive language and personal attacks
in various forms of online communication. In Lan-
guage Technologies for the Challenges of the Digital
Age, pages 180–191, Cham. Springer International
Publishing.

Carlos Castillo, Marcelo Mendoza, and Barbara
Poblete. 2011. Information credibility on twitter.
WWW ’11, page 675–684, New York, NY, USA. As-
sociation for Computing Machinery.

Paul Clough, Robert Gaizauskas, Scott S.L. Piao, and
Yorick Wilks. 2002. Measuring text reuse. In Pro-
ceedings of the 40th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 152–
159, Philadelphia, Pennsylvania, USA. Association
for Computational Linguistics.

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and Psychological
Measurement, 20(1):37–46.

Havvanur Şahi, Yasemin Kılıç, and Rahime Belen
Sağlam. 2018. Automated detection of hate speech
towards woman on twitter. In 2018 3rd Interna-
tional Conference on Computer Science and Engi-
neering (UBMK), pages 533–536.

Sarah Hewitt, T. Tiropanis, and C. Bokhove. 2016. The
problem of identifying misogynist language on twit-
ter (and other online social spaces). In Proceedings
of the 8th ACM Conference on Web Science, WebSci
’16, page 333–335, New York, NY, USA. Associa-
tion for Computing Machinery.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1746–1751,
Doha, Qatar. Association for Computational Lin-
guistics.

James R. Lewis. 1995. Ibm computer usability satis-
faction questionnaires: Psychometric evaluation and
instructions for use. Int. J. Hum.-Comput. Interact.,
7(1):57–78.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Bridianne O’Dea, Stephen Wan, Philip J. Batterham,
Alison L. Calear, Cecile Paris, and Helen Chris-
tensen. 2015. Detecting suicidality on twitter. In-
ternet Interventions, 2(2):183–188.

Anand Rajaraman and Jeffrey David Ullman. 2011.
Mining of massive datasets. Cambridge University
Press.

Francisco Rodríguez-Sánchez, Jorge Carrillo-de Al-
bornoz, and Laura Plaza. 2020. Automatic classi-
fication of sexism in social networks: An empiri-
cal study on twitter data. IEEE Access, 8:219563–
219576.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. ArXiv,
abs/1910.01108.

159

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 160–167
November 7–11, 2021. ©2021 Association for Computational Linguistics

UMR-Writer: A Web Application for Annotating Uniform Meaning
Representations

Jin Zhao1, Nianwen Xue1, Jens Van Gysel2, Jinho D. Choi3

1Brandeis University 2The University of New Mexico 3Emory University
{jinzhao,xuen}@brandeis.edu

jelvangysel@unm.edu
jinho.choi@emory.edu

Abstract
We present UMR-Writer, a web-based appli-
cation for annotating Uniform Meaning Rep-
resentations (UMR), a graph-based, cross-
linguistically applicable semantic representa-
tion developed recently to support the devel-
opment of interpretable natural language appli-
cations that require deep semantic analysis of
texts. We present the functionalities of UMR-
Writer and discuss the challenges in develop-
ing such a tool and how they are addressed.

1 Introduction

1.1 UMR Overview
Uniform Meaning Representation is a graph-based
cross-linguistically applicable semantic represen-
tation that was recently developed with the goal
of supporting interpretable natural language ap-
plications that require deep semantic analysis of
texts (Van Gysel et al., 2021). UMR has two com-
ponents: a sentence-level representation that is
adapted from Abstract Meaning Representation
(AMR) (Banarescu et al., 2013), and a document-
level representation that captures semantic relations
that potentially go beyond sentence boundaries.
Like AMR, the UMR sentence-level representa-
tion captures the argument structures of predicative
events, word senses, as well as semantic types of
named entities. It also adds a representation for
aspect and quantifier scope, which are not part of
AMR. At the document level, UMR represents tem-
poral (Zhang and Xue, 2018b,a; Yao et al., 2020)
and modal dependencies (Vigus et al., 2019) as
well as coreference. UMR abstracts away from
syntactic representations and preserves semantic
relations within and across sentences. Building
a corpus of UMRs could potentially be very use-
ful to NLP practitioners in multiple fields, such as
information extraction and machine translation.

Figure 1 is an example UMR for a short text
snippet. Like AMR, UMR is a node- and edge-
labeled directed graph, where the nodes represent

semantic concepts (including word senses, entity
types etc.) and edges represent relations (partic-
ipant roles and general semantic relations). The
solid lines represent sentence-level relations while
the dashed lines represent semantic relations that
go beyond sentence boundaries. The direction of
the arrows is always from parent to child, at both
the sentence- and document level. For instance, at
the sentence level, taste-01 is an eventive concept
labeled with the first sense of the lemma “taste” as
defined in PropBank (Palmer et al., 2005), and a
person concept with the name “Edmund Pope” is
its ARG0. The concept taste-01 also has an aspect
attribute with the value State. The pronoun “he”
in the third sentence is decomposed into a person
concept with a person attribute 3rd and number
attribute Singular, indicating third person singular.
At the document level, the person concept mapped
from the pronoun “he” refers to the same entity
as the person concept in the first sentence, as in-
dicated by the dashed line connecting these nodes.
The event taste-01 in the first sentence occurs be-
fore document creation time (DCT), as indicated
by the dashed line with the red :Before label, and
in the third sentence, the edge label :NEG indicates
that Edmund Pope (who corresponds to the person
node) as a conceiver/source has a full negative epis-
temic stance (Boye, 2012) towards the do event.

1.2 Challenges in Building a Tool for UMR
Annotation

As should be clear from the UMR example in Fig-
ure 1, UMR is a fairly complex representation that
has many dimensions, and we need to address a
number of challenges in order to develop a tool
that makes UMR annotation practical. First of all,
the UMR annotation scheme involves both closed
and open vocabularies. For instance, while the rela-
tions, attributes, and abstract concepts (e.g., entity
types such as person) can be selected from a closed
set with a few hundred items, sense-disambiguated

160

Figure 1: Uniform Meaning Representation

words (e.g., taste-01, convict-01) form open classes
that need to be stored in a lexicon that can be
dynamically updated during the annotation. This
means that UMR-Writer needs to store both types
of annotation resources to support UMR annotation
and arrange them in a way that is convenient for an-
notators to access. Second, as UMR is a graph and
thus a highly structured annotation object, UMR-
Writer needs to enforce the well-formedness of
UMR during the annotation process and does not
leave this responsibility to the users. Similarly,
UMR-Writer also needs to keep track of the vari-
ables that are crucial to the coreference aspect of
the UMR annotation and automatically generates
and updates the variables in response to user input.

Annotating document-level UMR adds to the
complexity of an UMR annotation tool. Like
any document-level annotation tool, UMR-Writer
needs to present the entire document, which
can be arbitrarily long. To make UMR anno-
tation tractable and promote annotation consis-
tency, UMR-Writer imposes an annotation proce-
dure in which the user will proceed in a sentence-
by-sentence manner. Another challenge in UMR
annotation is that the UMR document-level repre-
sentation, i.e., temporal and modal dependencies
and coreference, needs to make reference to vari-
ables for sentence-level concepts. There is also the
need sometimes for the user to make corrections
to the sentence-level annotation that will affect the

well-formedness of the document-level annotation.
We design UMR-Writer in a way that any changes
made at the sentence-level will result in an auto-
matic update of the document-level UMR if neces-
sary.

As the name suggests, UMR is intended to be a
semantic representation uniform across languages,
and UMR-Writer needs to support multi-lingual
annotation and address the challenges resulting
from this need. At a very basic level, UMR-Writer
needs to support the display of various writing sys-
tems for languages of the world, and this factored
heavily into our decision to develop a web-based
tool that handles multilingual functionalities by
piggy-backing on the web-browsers. Languages
are also diverse with regard to their linguistic fea-
tures, and the amount of linguistic resources avail-
able. For instance, some languages are morpho-
logically complex while other languages are mor-
phologically simpler. In terms of data sources,
some languages have data from formal genres with
well-defined sentence boundaries while other lan-
guages only have transcriptions of oral recordings
where sentence boundaries are not always as clear.
In terms of availability of annotation support re-
sources, high-resource languages like English and
Chinese have well-developed lexical resources like
PropBank frame files through years of research
(Palmer et al., 2005; Xue and Palmer, 2009; Xue,
2006) while low-resource languages may not have

161

frame files at all. UMR-Writer needs to be flexible
and allow this variability. To cope with languages
that have no linguistic resources at their disposal,
UMR-Writer allows UMR annotation of languages
without pre-existing computational resources such
as frame files or digital lexicons by providing a
lexicon-building feature that aids in the develop-
ment of linguistic resources as UMRs are annotated.
To assist less experienced annotators, UMR-Writer
presents PropBank frames with argument structure
information for each lemma (when available), in-
ferred from the surface forms of a word the user
selects. To promote annotation consistency, UMR-
Writer only allows the user to select UMR relations
from a pre-specified list. This eliminates invalid
concepts and roles in annotated UMRs.

2 Related Work

Fundamentally, UMR is a representation based on
relations between concepts, and there are a num-
ber of tools that support annotation for relations.
Some examples include Anafora (Chen and Styler,
2013), MAE (Stubbs, 2011; Rim, 2016), WebAnno
(Eckart de Castilho et al., 2016), and BRAT (Stene-
torp et al., 2012). Anafora is a web-based tool that
supports the annotation of relations between text
spans. MAE is a standalone tool that offers flexible
and versatile schema support for complex relation
sets. WebAnno supports semantic role labelling
or event annotations, and it enables the annota-
tion of semantic structures and the handling of rich
semantic tagsets. BRAT provides intuitive anno-
tation visualization to help users understand the
relations between text annotations. However, all of
these tools only support annotation based on text
spans, and not annotation that requires transform-
ing word tokens in the source text into concepts in
the annotated graph that take the form of (sense-
disambiguated) word lemmas, concatenated words,
or even abstract concepts that do not correspond to
any specific word token in the source text. In con-
trast, UMR-Writer allows the creation of concepts
that are transformations from word tokens in the
source text or purely new additions.

AMR Editor (Hermjakob, 2013) is a tool cre-
ated for AMR annotation and is most similar to
UMR-Writer. Like UMR-Writer, it also supports
the annotation of concepts that are different from
word tokens in the source text. It also makes use of
both closed sets of abstract concepts and relations
as well as open-class lexicons. However, it offers

limited support for languages other than English,
and does not support document-level annotation.

3 System Overview

UMR-Writer is implemented in JavaScript interact-
ing with HTML pages, and uses Flask as the server
side web framework. It is deployed at Heroku with
a Postgres database at the backend to store anno-
tated UMR graphs.1

UMR-Writer provides a Graphical User Inter-
face (GUI) that allows annotators to point and
select words from the source text, and then se-
lect and click to add concepts and relations to the
UMR graph. UMR-Writer has separate views for
sentence-level and document-level annotation, but
the two views share the same underlying data struc-
ture. At the sentence level, UMR-Writer makes
clear distinctions between the annotation of lexi-
calized and abstract concepts, named entity types,
attributes, and relations. At the document level,
UMR-Writer has separate functionalities for anno-
tating temporal and modal dependencies as well as
coreference. UMR-Writer allows the user to easily
switch between the sentence-level and document-
level views with a simple click.

3.1 Importing Source text into UMR-Writer
for Annotation

Annotators can upload their source data in the form
of single files for annotation from the upload page.
UMR-Writer can parse and render plain text format
as well as 6 output format variations of FLEx and
Toolbox, tools commonly used by field linguists.
In addition, the user can also upload an output file
exported by UMR-Writer to add more annotation
or make corrections. UMR-Writer extracts and re-
tains all information in the imported source file use-
ful for UMR annotation (e.g., morphological seg-
mentation, word-level and morpheme-level glosses,
paragraph boundaries, etc.). This is particularly im-
portant for field linguists annotating languages that
they are not native speakers of. Users have access
to all files they have uploaded in their individual
accounts. A short sample text comes with every
newly registered account for new users to try out
the the tool without having to first upload their own
data.

The upload page also has functionality that al-
lows PropBank-style frame files (Palmer et al.,

1https://github.com/jinzhao3611/
umr-annotation-tool

162

2005; Xue and Palmer, 2009) to be imported into
UMR-Writer to support the annotation of word
senses and lexicalized semantic roles. So far, En-
glish and Chinese frame files have already been
pre-loaded into UMR-Writer. Annotators for other
languages can upload their own lexicon as support
data so long as it is in the FLEx export format.

3.2 The View for Sentence-level UMR
Annotation

In this view, the user can iteratively build up the
sentence-level UMR graph and UMR-Writer will
automatically record the alignment between the
UMR concepts and word tokens in the source text.
The UMR graph is rendered in PENMAN notation
(Kasper, 1989; Goodman, 2020).

Figure 2: Sentence-level annotation

3.2.1 Building the Sentence-level UMR
Graph

The sentence-level UMR graph building process
starts with the user choosing a concept as the root
node of the graph. After that, the user iteratively
builds up the UMR graph by setting the parent,
choosing either a lexicalized or abstract concept
as its child, selecting a relation between the child
and the parent, and adding this “triple” to the UMR
graph. Alternatively, the user can also select an
attribute for the parent, set its value, and add it to

the UMR graph. Annotators can set the parent by
double-clicking the node in the partially completed
graph. In case corrections need to be made to the
UMR graph, the user can enter the editing/deleting
mode and modify the graph directly. Possible cor-
rections include making changes to concepts or
deleting subgraphs from the UMR graph.

Annotating lexicalized or abstract concepts
As seen in Figure 2, the view of the sentence-level
annotation varies based on the imported data. Mini-
mally, UMR-Writer presents a single tokenized sen-
tence for the user to annotate. When available, mor-
phemes and their glosses can also be displayed to
support UMR annotation. For example, in morpho-
logically complex languages like Sanapaná (Enlhet-
Enenlhet, Paraguay), information about which mor-
pheme within a word is the root is crucially impor-
tant to help annotators choose a lemma form as the
UMR concept. When a text span in the sentence
is selected, UMR-Writer automatically generates
a few concept options for the user to choose from.
These options include word senses (if the selected
text matches a word in the frame files), a lemma
form of the word (when there is no matching entry
in the frame files), or a concatenated form (when
multiple words are selected in the text span). An-
notators can also choose an abstract concept from
a pre-defined drop-down menu that does not map
to any word token but can be inferred from the
context. Finally, UMR-Writer provides short-hand
buttons for adding named entity concepts to the
UMR graph. Named entity concepts have inter-
nal structures that are predictable, but usually take
several actions to complete.

Annotating semantic relations The annotator
can select a semantic relation that relates a con-
cept to its parent in the UMR graph using a “Roles”
menu. The range of semantic relations includes
lexicalized participant roles such as :ARG0, non-
lexicalized roles such as :agent, as well as other
semantic relations that are not typically considered
participant roles (e.g., :poss, :name). More infor-
mation on where each set of participant roles is
used can be found in the UMR guidelines2.

Annotating UMR attributes Annotators can
choose the attribute type (e.g. :Aspect) from an
“Attributes” menu, and choose the corresponding
attribute value in a pop-up “Attribute Values” menu

2https://umr4nlp.github.io/web

163

to add the attribute to the UMR graph. For in-
stance, the values of :Aspect include both more
fine-grained values such as State and more coarse-
grained values such as Atelic Process, which are
organized in a lattice (Van Gysel et al., 2021). This
makes the tool more cross-linguistically general,
because some languages lack overt aspectual mark-
ing in their grammar, making fine-grained values
hard to distinguish, while in other languages more
fine-grained distinctions are overtly marked.

3.2.2 Token-Concept Alignments
As the user selects a text span to create a lexical-
ized concept, UMR-Writer automatically records
an alignment between the text span and the con-
cept in the UMR graph. As it is possible for some
concepts to be created out of more than one word
token or part of a word token in the source sen-
tence, or even no lexical material at all in the case
of abstract concepts, the mapping between word
tokens and UMR concepts will not be one-to-one.
This alignment is potentially useful for purposes of
improving UMR parsing accuracy or for linguists
who wish to study syntax-semantic mismatches.

3.3 View for Document-level Annotation

For both sentence-level and document-level annota-
tion, we assume an annotation procedure in which
a document is annotated sentence by sentence. The
sentence-level representation is annotated first, so
that the document-level annotation can make refer-
ence to the concepts and relations in the sentence-
level representation (Van Gysel et al., 2021). An
integrated document-level view of UMR-Writer
is shown in Figure 3: the completed sentence-
level annotations are displayed on the left, and the
document-level annotations in the middle column
are created by linking all child concepts in the cur-
rent sentence to a parent in the previous or in some
cases the following sentences. To do temporal an-
notation (Van Gysel et al., 2021), the user selects
a child and a parent which can be either an even-
tive or time concept, and then identifies the relation
(e.g., :Before, :After) between them based on con-
textual clues. Similarly, when annotating modal re-
lations, the annotator can select a parent and a child
and identify a relation that captures the epistemic
strength and polarity (e.g., :AFF, :NEG) between
the parent and child. For coreference annotation,
the annotator determines if the parent and the child
refer to the same entity/event or one designates a
subset of the other.

The document-level and sentence-level view of
UMR-Writer are tightly integrated in the sense that
any change in the sentence-level graph results in
the automatic update of the document-level graph.
This way, the burden of ensuring the integrity of
the UMR graph is shifted away from the user. This
is achieved by storing all the sentence-level UMR
graphs for a document in a single data structure.
When the user updates a node in a sentence-level
UMR graph, all document-level annotations mak-
ing reference to that node will be updated as well.

3.4 Support for Cross-lingual Annotation
A sentence-by-sentence annotation procedure at
both the sentence- and document-level is appealing
in that it makes the annotation more tractable for
the user and potentially for models trained on the re-
sulting annotated UMRs. However, data from some
languages cannot be cleanly segmented into “sen-
tences” that allow us to make the simplifying one-
line-per-sentence assumption when implementing
UMR-Writer. This is typically the case for data for
low-resource languages collected by field linguists,
who often segment and transcribe the recordings
from their fieldwork by intonation units. The ex-
ample in (1) shows the English gloss of three Sana-
paná intonation units from an oral history recording
(Van Gysel et al., 2020). Semantically, they form
one predicate-argument complex, but as they were
not uttered under a single intonation contour, they
would be represented as three lines in the text.

(1) a. Then the cuartelero bird went to eat.
b. In the lagoon.
c. Fish, and eels.

If we strictly follow the one-line-per-sentence
assumption during sentence-level annotation, in or-
der to capture the semantic relation between the
“eat” concept in (1a) and the “fish” concept in (1c),
we would have to posit an abstract, implicit con-
cept as its patient when annotating “eat”, and later
link it to the “fish” concept during document-level
annotation via coreference between these concepts.
We also need to do the same for the relation be-
tween “eat” and “lagoon”. This would be easy to
implement but cumbersome to the user. On the
other hand, if we allow the user to annotate seman-
tic relations from lines that are arbitrarily distant,
this would make implementation intractable and
error-prone. We adopt a compromise and allow the
user to annotate semantic relations between two ad-
jacent lines when annotating sentence-level UMR.

164

Figure 3: Document-level-annotation

This relieves the burden from the user to a large
extent while making the implementation tractable.

This example also illustrates the need to present
multiple sentences even for sentence-level anno-
tation to provide enough context for the user to
understand and properly annotate a sentence. Even
in the sentence-level view, UMR-Writer presents
all sentences in the document to serve as context
for the sentence being currently annotated.

3.4.1 Dynamic Updating of the Annotation
Lexicon

When a user creates UMR concepts from spans
of text in the source sentence, UMR-Writer sug-
gests possible concepts by lemmatizing the word
token and using the resulting lemma to query the
frame file lexicon and retrieve a list of senses for
this lemma as well as the semantic roles associated
with each sense. When this lemma is not in the
lexicon, UMR-Writer suggests using the lemma
as the concept. While lemmatization is relatively
straightforward and can be done algorithmically
for languages like English and Chinese, it cannot
be reliably done for morphologically complex low-
resource languages. As a result, UMR-Writer can-
not make accurate suggestions for these languages,
and the user has to edit the suggested lemma before
attaching it to the UMR graph. To avoid repeated
editing of the same word token, UMR-Writer al-
lows the user to enter a word token and its asso-
ciated lemma with different senses and argument
structure information into a database from a sep-
arate lexicon page. This way next time the user
encounters the same word or the different inflected

form of the same word, UMR-Writer will be able to
retrieve its lemma as a suggestion. When entering
the lemma for the word token, UMR-Writer can
also provide the lemmas for other variations of the
same word as a reminder to help the user choose
the correct lemma. Different users working on the
same language can also share the same lexicon.

4 How to Access UMR-Writer

UMR-Writer now has a demo version that allows
users to register an account and use it for their
own annotation.3 UMR-Writer was used in annota-
tion efforts for Kukama, Arapaho, Sanapaná, and
Navajo. UMR-Writer is intended to be a tool that
annotators can use to create data sets for NLP re-
searchers to train machine learning models, and
for linguists to study the semantic structures of
language. We intend to make it open-source and
make it available to the broader research commu-
nity. This tool will be released under creative com-
mons under version CC BY-NC. It has been tested
by about 30 annotators who are field linguists, com-
putational linguists, or other types of users with
UMR annotation tasks for various languages.

3The question of whether multiple users can access the
same document and generate multiple UMRs of the same sen-
tences or documents came up from our reviewers. Allowing
this would be useful for adjudication. For now, each annotator
uploads the same source file to their account, makes their own
annotation, and then shares the exported file with the other so
that IAA can be calculated. Adjudication is a non-trivial task
in the UMR annotation process, the specifics of which we are
currently working on.

165

5 Future Development

It would also be useful for UMR-Writer to be made
inter-operable with other platforms. For example,
FLEx, used by many field linguists for language
documentation, offers a convenient way of storing
texts, providing morphological glosses, and linking
these to the lexicon. Efforts will be made to inte-
grate and work more seamlessly with such common
field linguist tools.

We also plan to make UMR-Writer support more
languages. We will continue to improve the tool to
promote annotation efficiency and consistency as
ease of use as we receive feedback for users.

Acknowledgment

This work is supported by a grant from the IIS Di-
vision of National Science Foundation (Awards No.
1763926) entitled “Building a Uniform Meaning
Representation for Natural Language Processing”
awarded to Nianwen Xue). All views expressed
in this paper are those of the authors and do not
necessarily represent the view of the National Sci-
ence Foundation. We thank the collaborators of the
UMR project for feedback during the development
of this annotation tool.

References
Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for Sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Kasper Boye. 2012. Epistemic meaning: A crosslin-
guistic and functional-cognitive study, volume 43 of
Empirical Approaches to Language Typology. De
Gruyter Mouton, Berlin.

Wei-Te Chen and Will Styler. 2013. Anafora: A web-
based general purpose annotation tool. In Proceed-
ings of the 2013 NAACL HLT Demonstration Ses-
sion, pages 14–19, Atlanta, Georgia. Association for
Computational Linguistics.

Richard Eckart de Castilho, Éva Mújdricza-Maydt,
Seid Muhie Yimam, Silvana Hartmann, Iryna
Gurevych, Anette Frank, and Chris Biemann. 2016.
A web-based tool for the integrated annotation of se-
mantic and syntactic structures. In Proceedings of
the Workshop on Language Technology Resources
and Tools for Digital Humanities (LT4DH), pages
76–84, Osaka, Japan. The COLING 2016 Organiz-
ing Committee.

Michael Wayne Goodman. 2020. Penman: An open-
source library and tool for AMR graphs. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics: System Demonstra-
tions, pages 312–319, Online. Association for Com-
putational Linguistics.

Ulf Hermjakob. 2013. AMR Editor: A Tool to Build
Abstract Meaning Representations.

Robert T Kasper. 1989. A flexible interface for
linking applications to penman’s sentence genera-
tor. In Speech and Natural Language: Proceedings
of a Workshop Held at Philadelphia, Pennsylvania,
February 21-23, 1989.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The Proposition Bank: An Annotated Cor-
pus of Semantic Roles. Computational Linguistics,
31(1):71–106.

Kyeongmin Rim. 2016. Mae2: Portable annotation
tool for general natural language use. In Proc 12th
Joint ACL-ISO Workshop on Interoperable Semantic
Annotation, pages 75–80.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. brat: a web-based tool for NLP-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 102–107, Avignon, France. Association for
Computational Linguistics.

Amber Stubbs. 2011. Mae and mai: lightweight anno-
tation and adjudication tools. In Proceedings of the
5th linguistic annotation workshop, pages 129–133.

Jens E. L. Van Gysel, Roberto Álvarez, Florentino
Álvarez, Valenciano Cabrera, Cano Carlos, Cecilio
Teytaro, Esteban López, Regino Teytaro, and Marty
Adamsmith. 2020. Roberto Álvarez talking about
the history of the Sanapaná people / Roberto Álvarez
contando sobre la historia del pueblo Sanapaná. In
Jens E. L. Van Gysel (Collector): A documenta-
tion of historical narratives amongst the Sanapaná
(Enlhet-Enenlhet) of the Paraguayan Chaco. Lon-
don: Endangered Languages Archive. Session Date:
25 July 2019. Accessed: 28 June 2021.

Jens E. L. Van Gysel, Meagan Vigus, Jayeol Chun, Ken-
neth Lai, Sarah Moeller, Jiarui Yao, Tim O’Gorman,
Andrew Cowell, William Croft, Chu-Ren Huang,
Jan Hajič, James H. Martin, Stephan Oepen, Martha
Palmer, James Pustejovsky, Rosa Vallejos, and Nian-
wen Xue. 2021. Designing a Uniform Meaning Rep-
resentation for Natural Language Processing. KI -
Künstliche Intelligenz.

Meagan Vigus, Jens E. L. Van Gysel, and William
Croft. 2019. A dependency structure annotation
for modality. In Proceedings of the First Interna-
tional Workshop on Designing Meaning Representa-
tions, pages 182–198, Florence, Italy. Association
for Computational Linguistics.

166

Nianwen Xue. 2006. A chinese semantic lexicon of
senses and roles. Language resources and evalua-
tion, 40(3):395–403.

Nianwen Xue and Martha Palmer. 2009. Adding se-
mantic roles to the chinese treebank. Natural Lan-
guage Engineering, 15(1):143.

Jiarui Yao, Haoling Qiu, Bonan Min, and Nianwen Xue.
2020. Annotating temporal dependency graphs via
crowdsourcing. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 5368–5380.

Yuchen Zhang and Nianwen Xue. 2018a. Neural rank-
ing models for temporal dependency structure pars-
ing. arXiv preprint arXiv:1809.00370.

Yuchen Zhang and Nianwen Xue. 2018b. Structured in-
terpretation of temporal relations. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

167

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 168–174
November 7–11, 2021. ©2021 Association for Computational Linguistics

TranslateLocally: Blazing-fast translation running on the local CPU

Nikolay Bogoychev and Jelmer Van der Linde and Kenneth Heafield
School of Informatics

University of Edinburgh
{N.Bogoych,Jelmer.vanderLinde,Kenneth.Heafield}@ed.ac.uk

Abstract

Every day, millions of people sacrifice their
privacy and browsing habits in exchange for
online machine translation. Companies and
governments with confidentiality requirements
often ban online translation or pay a premium
to disable logging. To bring control back to the
end user and demonstrate speed, we developed
translateLocally. Running locally on a desk-
top or laptop CPU, translateLocally delivers
cloud-like translation speed and quality even
on 10 year old hardware. The open-source
software is based on Marian and runs on Linux,
Windows, and macOS.

1 Introduction

Neural Machine Translation (Bahdanau et al., 2015;
Vaswani et al., 2017) is pervasive but has a reputa-
tion for high computational cost. The combination
of the typically high computational cost, however,
has pushed its delivery to the cloud, with a number
of cloud providers available (Google, Microsoft,
Facebook, Amazon, Baidu, etc.). Using a cloud
based translation provider carries an inherent pri-
vacy risk, as users lose control of their data once it
enters the web. Potential issues include public dis-
closure due to not understanding terms of service
(Tomter et al., 2017), contractors reading user data
(Lerman, 2019), use of user data for advertising,
and data breaches.

To preserve privacy, we made a translation sys-
tem that runs locally: translateLocally. Once a
translation model is downloaded, it does not use an
Internet connection. Running locally is challeng-
ing due to a number of factors: the model needs to
be small enough to download on a user hardware;
translation latency can’t be hidden by splitting and
parallelising the translation of a large documents
across multiple machines; consumer hardware has
highly variable computing power; availability of
GPU computational resources can’t be assumed.

We therefore focused on trimming model size
and optimising speed for CPUs while aiming to pre-
serve translation quality. The result is fast enough
that users see translations update as they type with
latency comparable to ping times to the cloud.

Targeting non-expert users, the open-source
(primarily MIT) software1 is also available as
compiled binaries for Linux, Windows and
Mac from the official webpage: https://
translatelocally.com. Translation mod-
els for several language pairs are provided, while
advanced users can add their own models.

2 Design

Our product is based on the Marian machine trans-
lation toolkit (Junczys-Dowmunt et al., 2018),
heavily optimised for speed with a Qt based GUI.

2.1 Translation Engine

For the translation engine core, we used the same
Marian fork as the one used by Bogoychev et al.
(2020) for participating in the 2020 Workshop
on Neural Generation and Translation’s efficiency
shared task (WNGT 2020, Heafield et al., 2020).
We introduce binary lexical shortlists and stream-
lined binary model loading to the codebase, result-
ing in a comparable translation speed, but slightly
faster loading time. We also add sentence splitting
and formatting preservation are handled by a C++
wrapper around Marian.2

2.2 Translation Models

Our models are built with knowledge distilla-
tion (Kim and Rush, 2016), use lexical shortlists
(Schwenk et al., 2007; Le et al., 2012; Devlin et al.,
2014; Bogoychev et al., 2020) to reduce the size of
the output layer, 8-bit integer arithmetic, and the

1https://github.com/XapaJIaMnu/
translateLocally

2https://github.com/browsermt/
bergamot-translator

168

Machine Year CPU Cores WPS

Laptop: Vaio PCG-41412L 2012 i5-2430M 2 1066
Desktop: iMac 27 inch 2012 i7-3770 4 3146
Desktop 2016 i7-6700 4 6548
Laptop: Dell XPS 9360 2017 i7-7500U 4 3378
Laptop: Dell Alienware 13R3 2017 i7-7700HQ 4 5888
Desktop 2019 AMD Ryzen 3600X 6 8791
Desktop 2019 i7-9700 8 9401

AWS c5.metal 2019 2x8275CL 48 70037

Table 1: Translation speed, in words per second (WPS), of the English→German model with 8-bit precision on
various hardware. Translation used all cores. The table shows physical core count, not hyperthread count. WPS
is averaged over 1M sentences. The timing measurement includes loading time but excludes sentence splitting,
which was done in advance for this experiment.

simplified simple recurrent unit (Kim et al., 2019)
for decoding.

We tested translation speed on a range of con-
sumer hardware, shown in Table 1, using the
million-sentence test set from the WNGT 2020
efficiency shared task and the tiny11 preset English-
German translation model from Bogoychev et al.
(2020). This test set is already sentence split, so we
did not include sentence splitting and format preser-
vation in timing. Translating a million sentences
provides ample opportunity to batch sentences of
similar length and use all threads; users translating
a few sentences will see slower throughput, but
lower latency.

All of our student models available in the initial
release are trained with the same tiny11 config-
uration preset. Training, knowledge distillation
and quantisation instructions are described in de-
tail on github.3 Users can follow those instructions
to train, distil and quantise their custom models,
achieving noticeable speedup over vanilla float32
marian models, although any marian compatible
models are supported in principle.

2.3 Language pairs

Our initial release includes 10 language pairs built
for the Bergamot project (Table 2). We report aver-
age BLEU scores on WMT test sets up to WMT19
(Barrault et al., 2019), for all languages except for
Icelandic and Norwegian. For Icelandic and Nor-
wegian we report BLEU scores on self-crawled
TED Talks test set, available on github.4

3https://github.com/browsermt/
students/tree/master/train-student

4https://github.com/browsermt/
students/tree/master/isen/data

Languages pair BLEU

en-es 35.0
es-en 35.3
en-et 25.1
et-en 30.8
cs-en 33.2
en-cs 25.9
en-de 41.8
is-en 23.7
nn-en 41.7
nb-en 42.7

Table 2: Language pairs and their BLEU scores in the
initial release.

The models are distributed together with a lex-
ical shortlist in an archive that is approximately
15MB in size. We are building and adding new
models to the project.

2.4 GUI and user interaction

We chose the Qt5 framework to build our graphical
interface. The Qt framework is widely used, open
source, free for non-commercial use and in active
development. We support building against both Qt5
and Qt6, which allows us to support older Linux
software distributions, like Ubuntu 16.04, which
do not have easy access to Qt6 packages.

We took a minimalist approach the GUI, where
the user is presented with a drop-down menu to

https://github.com/browsermt/students/
tree/master/nnen/data

https://github.com/browsermt/students/
tree/master/nben/data

5https://www.qt.io

169

select or download models, as well as a resizeable
box where the user may input text. Translations
will be shown underneath or besides the input text.
Translations will start to appear as soon as the user
begins inputting text. The view of the first run of
the program is shown in Figure 1.

Figure 1: First run view of translateLocally.

Downloading models from the Internet is done
through a drop-down menu, as shown on Figure 2.
In line with our privacy promise, the application
only uses Internet access following explicit user
action: to retrieve the list of available models and
to download a new model. These downloads are
static files. The HTTP request includes a user-
agent field with the application version number.
There is no cookie or other unique identifier. The
directory containing downloaded models can also
be copied to another machine to setup a system
without Internet access; we are planning to ship a
version with models included.

Once the model is downloaded, typing in the
input box results in a translation, shown in Figure 3.

The application attempts to optimise thread
count based on available cores and batch size based
on available RAM though these can be overridden
by the user, as shown on Figure 4. Fonts can also
be changed through an OS-dependent dialog. Re-
translating as a user types consumes power, so this
feature can be disabled.

We also provide a model management screen
where a user may delete downloaded models, or
import custom models, as shown in Figure 5.

Our translation engine preserves whitespace be-

Figure 2: Select a model to download.

Figure 3: Translation view.

tween sentences, so users can copy/paste content
and get a well formatted text, as shown on Figure 6,
which also features the side-by-side view mode.

2.5 Distribution

Precompiled and packaged binaries for Windows,
macOS and Ubuntu 20.04 are available on the offi-
cial website. Users may fetch the source code from
GitHub and build it on their local machines using
CMake. The matrix multiplication library manu-
ally dispatches SSSE3, AVX2, AVX512BW and
AVX512VNNI implementations based on CPUID.
However, other kernels like activation functions are
currently compiled without multiple versions and
will be somewhat faster if compiled explicitly for a
particular vectorised instruction set.

170

Figure 4: Settings selection for the translation engine.

Figure 5: Model management and import window.

Figure 6: Translating a Big chunk of text from
Wikipedia, with preservation of formatting.

3 Comparison against existing solutions

We compare against two existing desktop machine
translation solutions: Argos Translate6 and OPUS-
CAT MT Engine (Nieminen, 2021). They both have
slightly different use-cases and support different
translation languages. We compare BLEU scores
(Papineni et al., 2002) on a WMT19 test set (Bar-
rault et al., 2019) for the English-German language
pair, as well as wall-clock and CPU time. We mea-
sure only the time necessary for the actual transla-
tion. We ignore startup time and issue a translation
of an unrelated text before running our test in order
to discard any lazy initialisation time.

As only translateLocally supports all three plat-
forms, we do pairwise comparison, once on Win-
dows for OPUS-CAT vs translateLocally, and once
on macOS for Argos Translate vs translateLocally.

3.1 Quality comparison
For the quality comparison we used the following
models:

• For translateLocally, we used Bergamot’s
English-Germany tiny model7 which is just
15 MB to download.

• For OPUS-CAT we used the English-German
opus+bt-2021-04-13.zip8 model, which is 275
MB in size.

• For Argos Translate we used their default
English-German model which is downloaded
through the UI, which is 87 MB in size when
downloading.

We compare the BLEU scores on Table 3.

System Model Size BLEU

translateLocally 15 MB 41.8
OPUS CAT 275 MB 40.8
Argos Translate 87 MB 34.9

Table 3: BLEU score on WMT19 English-German as
well as model sizes.

translateLocally’s student architecture, coupled
with 8bit integer model compression delivers the

6https://github.com/argosopentech/
argos-translate

7http://data.statmt.org/bergamot/
models/deen/ende.student.tiny11.tar.gz

8https://github.com/Helsinki-NLP/
Tatoeba-Challenge/tree/master/models/
eng-deu#opusbt-2021-04-13zip

171

smallest model size and the highest BLEU score.
OPUS CAT has a comparable BLEU score, but
the model is more than 15 times larger compared
to translateLocally. Argos Translate has a much
lower BLEU score than either of the two, and a
model size that is right in the middle.

3.2 Argos Translate comparison

Argos Translate is based on OpenNMT and sup-
ports 13 language pairs, with more planned in the
future.

Argos Translate is not fully cross-platform as
there are no windows binaries provided. The de-
velopers do advertise that it is possible for users to
self-build the product on Windows.

Finally, the macOS version is also available
through the Apple app store, but it is paid,9 whereas
translateLocally is free.

We present our test results on Table 4. Both sys-
tem were tested on a MacBook Pro 16” 2019, using
8 CPU threads to translate the whole WMT19 test
set, which around 40k tokens. CPU time was mea-
sured using the Activity Monitor, and Words per
second (WPS) is approximately calculated. Argos
Translate does not allow the CPU threads to be con-
figured by the user, so we matched the number of
threads they use in translateLocally.

System WPS CPU Time BLEU

translateLocally 7350 40s 41.8
Argos Translate 76 4378s 34.9

Table 4: translateLocally vs Argos Translate, translat-
ing 40k tokens for speed benchmark and BLEU scores
on WMT19 English-German.

TranslateLocally is about 100 times faster and
delivers vastly superior translation quality com-
pared to Argos Translate.

3.3 OPUS-CAT comparison

Just like translateLocally, OPUS-CAT MT Engine
(Nieminen, 2021) uses Marian as its translation
engine. Unlike translateLocally, its translation en-
gine is not optimised for speed. Furthermore the
GUI is slow when handling large amounts of text.
Simply pasting large chunks of text, such as the full
“Crime and Punishment”10 into OPUS-CAT takes

9Free macOS version is distributed through pip.
10https://www.gutenberg.org/files/2554/

2554-0.txt

nearly as long as translateLocally takes to paste
and translate all the text.

The strength of OPUS-CAT comes from its plug-
ins that integrate it with popular professional trans-
lator software, whereas our product does not sup-
port any CAT software.

OPUS-CAT has more language pairs available,
which could also be used with translateLocally, but
they are not optimised for speed.

Finally OPUS-CAT is only available for Win-
dows, as it is build using the dot NET framework,
whereas translateLocally is cross-platform.

For comparing OPUS-CAT vs translateLocally,
we used a single threaded mode for both applica-
tions, as we found no way to force OPUS-CAT to
use multiple threads, whether it is through their
translation interface, or through their memoQ plu-
gin.11 We tested on a Windows Machine with 4
CPU core i9-9800H inside Parallels, measuring
the CPU time from the task manager. We pre-
split the input of OPUS-CAT, as it doesn’t have
its own sentence splitter. Furthermore we excluded
the copy/paste time from the OPUS-CAT measure-
ments, as its XAML user interface is bad at han-
dling large amounts of text. We present our results
on Table 5.

System WPS CPU Time BLEU

translateLocally 1250 34s 41.8
Opus-CAT 12 3363s 40.8

Table 5: translateLocally crippled to run single-
threaded vs Opus-CAT, translating 40k tokens for
speed benchmark and BLEU scores on WMT19
English-German.

Even with the added benefit of sentence-splitting
and ignoring copy/paste time, and forcing single-
threaded mode, OPUS-CAT is about 100 times
slower than translateLocally.

4 Conclusion

We presented translateLocally, a desktop transla-
tion application, capable of high speed translations
on a variety of hardware. Our software provides
a viable alternative to cloud translation for users
who are conscious of their privacy. Our product
is 100 times faster than competing software and
has none of the rate limitations of freemium cloud
providers. We start with 10 high quality, optimised

11https://www.memoq.com

172

models and we aim to continuously add additional
language pairs. As our product is open-source and
cross-platform, it can be adopted by a wide range
of users. The use of Marian as a translation engine
allows for users to easily train their own models,
potentially facilitating internal use for large organi-
zations.

Acknowledgements

We thank all the researchers and engineers working
on the Bergamot12 project for making translateLo-
cally possible, with special thanks to Ulrich Ger-
mann and Jerin Philip for their help with making
the codebase cross platform, and to Graeme Nail
for helping with deployment. We thank everyone
who tested the beta version of the application and
the reviewers for their comments and suggestions.

This work was conducted within the scope
of the Research and Innovation Action

Bergamot, which has received funding from the
European Union’s Horizon 2020 research and in-
novation programme under grant agreement No
825303.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Loïc Barrault, Ondřej Bojar, Marta R. Costa-jussà,
Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,
Shervin Malmasi, Christof Monz, Mathias Müller,
Santanu Pal, Matt Post, and Marcos Zampieri. 2019.
Findings of the 2019 conference on machine transla-
tion (WMT19). In Proceedings of the Fourth Con-
ference on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 1–61, Florence, Italy. As-
sociation for Computational Linguistics.

Nikolay Bogoychev, Roman Grundkiewicz, Al-
ham Fikri Aji, Maximiliana Behnke, Kenneth
Heafield, Sidharth Kashyap, Emmanouil-Ioannis
Farsarakis, and Mateusz Chudyk. 2020. Edin-
burgh’s submissions to the 2020 machine translation
efficiency task. In Proceedings of the The 4th
Workshop on Neural Generation and Translation
(WNGT 2020), Seattle.

Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas
Lamar, Richard Schwartz, and John Makhoul. 2014.

12https://browser.mt/partners/

Fast and robust neural network joint models for sta-
tistical machine translation. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1370–1380, Baltimore, Maryland. Association for
Computational Linguistics.

Kenneth Heafield, Hiroaki Hayashi, Yusuke Oda, Ioan-
nis Konstas, Andrew Finch, Graham Neubig, Xian
Li, and Alexandra Birch. 2020. Findings of the
fourth workshop on neural generation and transla-
tion. In Proceedings of the Fourth Workshop on Neu-
ral Generation and Translation, pages 1–9, Online.
Association for Computational Linguistics.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in C++. In Proceedings
of ACL 2018, System Demonstrations, pages 116–
121, Melbourne, Australia. Association for Compu-
tational Linguistics.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
Level Knowledge Distillation. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1317–1327, Austin,
Texas. Association for Computational Linguistics.

Young Jin Kim, Marcin Junczys-Dowmunt, Hany Has-
san, Alham Fikri Aji, Kenneth Heafield, Roman
Grundkiewicz, and Nikolay Bogoychev. 2019. From
research to production and back: Ludicrously fast
neural machine translation. In Proceedings of the
3rd Workshop on Neural Generation and Transla-
tion, pages 280–288, Hong Kong. Association for
Computational Linguistics.

Hai Son Le, Alexandre Allauzen, and François Yvon.
2012. Continuous space translation models with
neural networks. In Proceedings of the 2012 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, pages 39–48, Montréal,
Canada. Association for Computational Linguistics.

Rachel Lerman. 2019. Human workers can listen to
google assistant recordings. Associated Press.

Tommi Nieminen. 2021. OPUS-CAT: Desktop NMT
with CAT integration and local fine-tuning. In Pro-
ceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: System Demonstrations, pages 288–294,
Online. Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

173

Holger Schwenk, Marta R. Costa-jussà, and Jose A.
R. Fonollosa. 2007. Smooth bilingual n-gram trans-
lation. In Proceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 430–438, Prague, Czech
Republic. Association for Computational Linguis-
tics.

Line Tomter, Martin H. W. Zondag, and Øyvind
Bye Skille. 2017. Warning about translation web
site: Passwords and contracts accessible on the inter-
net. Norsk Rikskringkasting AS.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

174

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 175–184
November 7–11, 2021. ©2021 Association for Computational Linguistics

Datasets: A Community Library for Natural Language Processing

Quentin Lhoest∗, Albert Villanova del Moral∗, Yacine Jernite, Abhishek Thakur,
Patrick von Platen, Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall,

Joe Davison, Mario Šaško↑, Gunjan Chhablani↑, Bhavitvya Malik↑, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas Patry, Angelina McMillan-Major,

Philipp Schmid, Sylvain Gugger, Clément Delangue, Théo Matussière, Lysandre Debut,
Stas Bekman, Pierric Cistac, Thibault Goehringer, Victor Mustar, François Lagunas,

Alexander M. Rush, and Thomas Wolf Ω

Hugging Face / {quentin,thomas}@huggingface.co

Abstract

The scale, variety, and quantity of publicly-
available NLP datasets has grown rapidly as
researchers propose new tasks, larger mod-
els, and novel benchmarks. Datasets is a
community library for contemporary NLP de-
signed to support this ecosystem. Datasets
aims to standardize end-user interfaces, ver-
sioning, and documentation, while provid-
ing a lightweight front-end that behaves sim-
ilarly for small datasets as for internet-scale
corpora. The design of the library incor-
porates a distributed, community-driven ap-
proach to adding datasets and documenting
usage. After a year of development, the li-
brary now includes more than 650 unique
datasets, has more than 250 contributors, and
has helped support a variety of novel cross-
dataset research projects and shared tasks. The
library is available at https://github.
com/huggingface/datasets.

1 Introduction

Datasets are central to empirical NLP: curated
datasets are used for evaluation and benchmarks;
supervised datasets are used to train and fine-tune
models; and large unsupervised datasets are neces-
sary for pretraining and language modeling. Each
dataset type differs in scale, granularity and struc-
ture, in addition to annotation methodology. Histor-
ically, new dataset paradigms have been crucial for
driving the development of NLP, from the Hansard
corpus for statistical machine translation (Brown
et al., 1988) to the Penn Treebank for syntactic
modeling (Marcus et al., 1993) to projects like
OPUS and Universal Dependencies (Nivre et al.,
2016; Tiedemann and Nygaard, 2004) which bring
together cross-lingual data and annotations.

∗Lead Library Maintainers, Ω Library Creator, ↑ Indepen-
dent Research Contributor

Contemporary NLP systems are now developed
with a pipeline that utilizes many different datasets
at significantly varying scale and level of annota-
tion (Peters et al., 2018). Different datasets are used
for pretraining, fine-tuning, and benchmarking. As
such, there has been a large increase in the number
of datasets utilized in the NLP community. These
include both large text collections like C4 (Raffel
et al., 2020), fine-tuning datasets like SQuAD (Ra-
jpurkar et al., 2016), and even complex zero-shot
challenge tasks. Benchmark datasets like GLUE
have been central to quantifying the the advances
of models such as BERT (Wang et al., 2018; Devlin
et al., 2019).

The growth in datasets also brings significant
challenges, including interface standardization, ver-
sioning, and documentation. A practitioner should
be able to utilize N different datasets without re-
quiring N different interfaces. In addition, N prac-
titioners using the same dataset should know they
have exactly the same version. Datasets have also
grown larger, and ideally interfaces should not have
to change due to this scale, whether one is using
small-scale datasets like Climate Fever (∼1k data
points), medium-scale Yahoo Answers (∼1M), or
even all of PubMed (∼79B). Finally, datasets are
being created with a variety of different procedures,
from crowd-sourcing to scraping to synthetic gen-
eration, which need to be taken into account when
evaluating which is most appropriate for a given
purpose and ought to be immediately apparent to
prospective users (Gebru et al., 2018).

Datasets is a community library designed to ad-
dress the challenges of dataset management and
access, while supporting community culture and
norms. The library targets the following goals:

• Ease-of-use and Standardization: All datasets
can be easily downloaded with one line of

175

code. Each dataset utilizes a standard tabular
format, and is versioned and cited.

• Efficiency and Scale: Datasets are
computation- and memory-efficient by
default and work seamlessly with tokeniza-
tion and featurization. Massive datasets can
even be streamed through the same interface.

• Community and Documentation: The project
is community-built and has hundreds of con-
tributors across languages. Each dataset is
tagged and documented with a datasheet de-
scribing its usage, types, and construction.

Datasets is in continual development by the en-
gineers at Hugging Face and is released under
an Apache 2.0 license.1 The library is available
at https://github.com/huggingface/
datasets. Full documentation is available
through the project website.2

2 Related Work

There is a long history of projects aiming to group,
categorize, version, and distribute NLP datasets
which we briefly survey. Most notably, the Linguis-
tic Data Consortium (LDC) stores, serves, and man-
ages a variety of datasets for language and speech.
In addition to hosting and distributing corpus re-
sources, the LDC supports significant annotation
efforts. Other projects have aimed to collect related
annotations together. Projects like OntoNotes have
collected annotations across multiple tasks for a sin-
gle corpus (Pradhan and Xue, 2009) whereas the
Universal Dependency treebank (Nivre et al., 2016)
collects similar annotations across languages. In
machine translation, projects like OPUS catalog the
translation resources for many different languages.
These differ from Datasets which collects and pro-
vides access to datasets in a content-agnostic way.

Other projects have aimed to make it easy
to access core NLP datasets. The influential
NLTK project (Bird, 2006) provided a data library
that makes it easy to download and access core
datasets. SpaCy also provides a similar loading
interface (Honnibal and Montani, 2017). In recent
years, concurrent with the move towards deep learn-
ing, there has been a growth in large freely avail-
able datasets often with less precise annotation stan-
dards. This has motivated cloud-based repositories

1Datasets themselves may utilize different licenses which
are documented in the library.

2https://huggingface.co/docs/datasets/

of datasets. Initiatives like TensorFlow-Datasets
(2021) and TorchText (2021) have collected various
datasets in a common cloud format. This project
began as a fork of TensorFlow-Datasets, but has
diverged significantly.

Datasets differs from these projects along sev-
eral axes. The project is decoupled from any mod-
eling framework and provides a general-purpose
tabular API. It focuses on NLP specifically and pro-
vides specialized types and structures for language
constructs. Finally, it prioritizes community man-
agement and documentation through the dataset
hub and data cards, and aims to provide access to a
long-tail of datasets for many tasks and languages.

3 Library Tour and Design

We begin with a brief tour. Accessing a dataset is
done simply by referring to it by a global identity.
dataset = load_dataset("boolq")

Each dataset has a features schema and metadata.
print(dataset.features, dataset.info)

Any slice of data points can be accessed directly
without loading the full dataset into memory.
dataset["train"][start:end]

Processing can be applied to every data point in
a batched and parallel fashion using standard li-
braries such as NumPy or Torch.
Torch function "tokenize"
tokenized = dataset.map(tokenize,

num_proc=32)

Datasets facilitates each of these four Stages with
the following technical steps.

S1. Dataset Retrieval and Building Datasets
does not host the underlying raw datasets, but ac-
cesses hosted data from the original authors in a
distributed manner.3 Each dataset has a community
contributed builder module. The builder module
has the responsibility of processing the raw data,
e.g. text or CSV, into a common dataset interface
representation.

S2. Data Point Representation Each built
dataset is represented internally as a table with
typed columns. The Dataset type system includes
a variety of common and NLP-targeted types. In
addition to atomic values (int’s, float’s, string’s,

3For datasets with intensive preprocessing, such as
Wikipedia, a preprocessed version is hosted. Datasets re-
moved by the author are not centrally cached and become
unavailable.

176

binary blobs) and JSON-like dicts and lists, the
library also includes named categorical class la-
bels, sequences, paired translations, and higher-
dimension arrays for images, videos, or waveforms.

S3. In-Memory Access Datasets is built on top
of Apache Arrow, a cross-language columnar data
framework (Arrow, 2020). Arrow provides a local
caching system allowing datasets to be backed by
an on-disk cache, which is memory-mapped for fast
lookup. This architecture allows for large datasets
to be used on machines with relatively small device
memory. Arrow also allows for copy-free hand-offs
to standard machine learning tools such as NumPy,
Pandas, Torch, and TensorFlow.

S4. User Processing At download, the library
provides access to the typed data with minimal pre-
processing. It provides functions for dataset manip-
ulation including sorting, shuffling, splitting, and
filtering. For complex manipulations, it provides
a powerful map function that supports arbitrary
Python functions for creating new in-memory ta-
bles. For large datasets, map can be run in batched,
multi-process mode to apply processing in parallel.
Furthermore, data processed by the same function
is automatically cached between sessions.

Complete Flow Upon requesting a dataset, it is
downloaded from the original host. This triggers
dataset-specific builder code which converts the
text into a typed tabular format matching the feature
schema and caches the table. The user is given a
memory-mapped typed table. To further process
the data, e.g. tokenize, the user can run arbitrary
vectorized code and cache the results.

4 Dataset Documentation and Search

Datasets is backed by the Dataset Hub 4 that helps
users navigate the growing number of available
resources and draws inspiration from recent work
calling for better documentation of ML datasets in
general (Gebru et al., 2018) and NLP datasets in
particular (Bender and Friedman, 2018).

Datasets can be seen as a form of infrastruc-
ture (Hutchinson et al., 2021). NLP practitioners
typically make use of them with a specific goal in
mind, whether they are looking to answer a speci-
fied research question or developing a system for
a particular practical application. To that end, they
need to be able to not only easily identify which

4https://hf.co/datasets/

Figure 1: The data card for ELI5 (Fan et al., 2019).

dataset is most appropriate for the task at hand, but
also to understand how various properties of that
best candidate might help with, or, conversely, run
contrary to their purpose.

The Dataset Hub includes all of the datasets
available in the library. It links each of them to-
gether though: a set of structured tags holding
information about their languages, tasks supported,
licenses, etc.; a data card based on a template5 de-
signed to combine relevant technical considerations
and broader context information (McMillan-Major
et al., 2021); and a list of models trained on the
dataset. Both the tags and data card are filled man-
ually by the contributor who introduces the dataset
to the library. Figure 1 presents an example of the
dataset page on the hub.6 Together, these pages
and the search interface help users navigate the
available resources.

Choosing a Dataset Given a use case, the struc-
tured tags provide a way to surface helpful datasets.
For example, requesting all datasets that have the
tags for Spanish language and the Question An-
swering task category returns 7 items at the time
of writing. A user can then refine their choice by
reading through the data cards, which contain sec-
tions describing the variety of language used, legal
considerations including licensing and incidence of
Personal Identifying Information, and paragraphs
about known social biases resulting from the col-
lection process that might lead a deployed model
to cause disparate harms.

5https://hf.co/datasets/card-guide
6https://hf.co/datasets/eli5

177

Using a Dataset The data card also contains in-
formation to help users navigate all the choices,
from hardware to modeling, that go into success-
fully training a system. These include the number
of examples in each of the dataset splits, the size on
disk of the data, meaningful differences between
the training, validation, and test split, and free text
descriptions of the various fields that make up each
example to help decide what information to use as
input or output of a prediction model.

The Data Card as a Living Document A
dataset’s life continues beyond its initial release.
As NLP practitioners interact with the dataset in
various ways, they may surface annotation artifacts
that affect the behavior of trained models in unex-
pected ways (Gururangan et al., 2018),7 issues in
the way the standard split was initially devised to
test a model’s ability to adapt to new settings (Kr-
ishna et al., 2021), or new understanding of the
social biases exhibited therein (Hutchinson et al.,
2020). The community-driven nature of Datasets
and the versioning mechanisms provided by the
GitHub backend provide an opportunity to keep
the data cards up to date as information comes to
light and to make gradual progress toward having
as complete documentation as possible.

5 Dataset Usage and Use-Cases

Datasets is now being actively used for a variety
of tasks. Figure 2 (left) shows statistics about li-
brary usage. We can see that the most commonly
downloaded libraries are popular English bench-
marks such as GLUE and SQuAD which are often
used for teaching and examples. However there is
a range of popular models for different tasks and
languages.

Figure 2 (right) shows the wide coverage of the
library in terms of task types, sizes, and languages,
with currently 681 total datasets. During the devel-
opment of the Datasets project, there was a public
hackathon to have community members develop
new Dataset builders and add them to the project.
This event led 485 commits and 285 unique con-
tributors to the library. Recent work has outlined
the difficulty of finding data sources for lower-
resourced languages through automatic filtering
alone (Caswell et al., 2021). The breadth of lan-
guages spoken by participants in this event made
it possible to more reliably bootstrap the library

7https://hf.co/datasets/snli#
other-known-limitations

with datasets in a wide range of different languages.
Finally while Datasets is designed for NLP, it is be-
coming used for multi-modal datasets. The library
now includes types for continuous data, including
multi-dimensional arrays for image and video data
and an Audio type.

5.1 Case Studies: N -Dataset NLP

A standardized library of datasets opens up new
use-cases beyond making single datasets easy to
download. We highlight three use-cases in which
practitioners have employed the Datasets library.

Case Study 1: N -task Pretraining Benchmarks
Benchmarking frameworks such as NLP Decathlon
and GLUE have popularized the comparison of a
single NLP model across a variety of tasks (Mc-
Cann et al., 2018; Wang et al., 2018). Recently
benchmarking frameworks like GPT-3’s test suite
framework (Brown et al., 2020) have expanded this
benchmarking style even further, taking on dozens
of different tasks. This research has increased in-
terest in comparison of different datasets at scale.

Datasets is designed to facilitate large-scale, N -
task benchmarking beyond what might be possible
for a single researcher to set up. For example, the
Eleuther AI project aims to produce a massive scale
open-source model. As part of this project they
have released an LM Evaluation Harness8 which
includes nearly 100 different NLP tasks to test a
large scale language model. This framework is built
with the Datasets library as a method for retrieving
and caching datasets.

Case Study 2: Reproducible Shared Tasks
NLP has a tradition of shared tasks that become
long-lived benchmark datasets. Tasks like CoNLL
2000 (Tjong Kim Sang and Buchholz, 2000) con-
tinue to be widely used more than 20 years after
their release. Datasets provides a convenient, re-
producible, and standardized method for hosting
and maintaining shared tasks, particularly when
they require multiple different datasets.

Datasets was used to support the first GEM
(Generation, Evaluation, and Metrics) work-
shop (Gehrmann et al., 2021). This workshop ran a
shared task comparing natural language generation
(NLG) systems on 12 different tasks. The tasks
included examples from twenty different languages
and supervised datasets varying from size of 5k
examples to 500k. Critically, the shared task had

8https://github.com/EleutherAI/lm-evaluation-harness

178

Figure 2: Summary statistics from the datasets in the library. (Left) The relative download numbers of the most
popular datasets in the library. (Right) Task properties. Each dataset may have multiple sub-tasks. Task Types
are the types labeled in the library. Task Sizes are the number of data points in the table. Task Languages are the
languages tagged in the library (many datasets include tasks in different languages).

179

a large variety of different input formats including
tables, articles, RDF triples, and meaning graphs.
Datasets allows users to access all 12 datasets with
a single line of code in their shared task description.

Case Study 3: Robustness Evaluation While
NLP models have improved to the point that
on-paper they compete with human performance,
many research projects have demonstrated that
these same models are fooled when given out-of-
domain examples (Koehn and Knowles, 2017), sim-
ple adversarial constructions (Belinkov and Bisk,
2018), or examples that spuriously match basic
patterns (Poliak et al., 2018).

Datasets can be used to support better bench-
marking of these issues. The Robustness Gym9

proposes a systematic way to test an NLP system
across many different proposed techniques, specifi-
cally subpopulations, transformations, evaluation
sets, and adversarial attacks (Goel et al., 2021).
Together, these provide a robustness report that
is more specific than a single evaluation measure.
While developed independently, the Robustness
Gym is built on Datasets, and "relies on a common
data interface" provided by the library.

6 Additional Functionality and Uses

Streaming Some datasets are extremely large and
cannot even fit on disk. Datasets includes a
streaming mode that buffers these datasets on the
fly. This mode supports the core map primitive,
which works on each data batch as it is streamed.
Datasets streaming helped enable recent research
into distributed training of a very large open NLP
model (Diskin et al., 2021).
Indexing Datasets includes tools for easily build-
ing and utilizing a search index over an arbitrary
dataset. To construct the index the library can inter-
face either with FAISS or ElasticSearch (Johnson
et al., 2017; Elastic, 2021). This interface makes it
easy to efficiently find nearest neighbors either with
textual or vector queries. Indexing was used to host
the open-source version of Retrieval-Augmented
Generation (Lewis et al., 2020), a generation model
backed by the ability to query knowledge from
large-scale knowledge sources.
Metrics Datasets includes an interface for stan-
dardizing metrics which can be documented, ver-
sioned and matched with datasets. This function-
ality is particularly useful for benchmark datasets

9https://robustnessgym.com/

Figure 3: Datasets viewer is an application that shows
all rows for all datasets in the library. The interface al-
lows users to change datasets, subsets, and splits, while
seeing the dataset schema and metadata.

such as GLUE that include multiple tasks each with
their own metric. Some metrics like BLEU and
SQuAD are included directly in the library code,
whereas others are linked to external packages. The
library also allows for metrics to be applied in a
distributed manner over the dataset.

Data Viewer A benefit of the standardized inter-
face of the library is that it makes it trivial to build
a cross-task dataset viewer. As an example, Hug-
ging Face hosts a generic viewer for the entirety of
datasets (Figure 3) 10. In this viewer, anyone on the
web can open all almost 650 different datasets and
view any example. Because the tables are typed,
the viewer can easily show all component features,
structured data, and multi-modal features.

7 Conclusion

Hugging Face Datasets is an open-source,
community-driven library that standardizes the pro-
cessing, distribution, and documentation of NLP
datasets. The core library is designed to be easy to
use, fast, and to use the same interface for datasets
of varying size. At 650 datasets from over 250 con-
tributors, it makes it easy to use standard datasets,
has facilitated new use cases of cross-dataset NLP,
and has advanced features for tasks like indexing
and streaming large datasets.

10https://huggingface.co/datasets/viewer/

180

Acknowledgements

While organized by Hugging Face, Datasets is
an open-source project driven by contributors.
This work was only possible thanks to Charin
Polpanumas, Cahya Wirawan, Jonatas Grosman,
Thomas Hudson, Zaid Alyafeai, Rahul Chauhan,
Vineeth S, Sandip, Yvonnegitau, Jared T Nielsen,
Michal Jamry, Bharat Raghunathan, Ceyda Cinarel,
David Adelani, Misbah Khan, Steven Liu, Va-
sudev Gupta, Matthew Bui, Abdul Rafay Khalid,
Beth Tenorio, Eduardo Gonzalez Ponferrada, Har-
shal Mittal, Hugo Abonizio, Moussa Kamal Ed-
dine, Stefan Schweter, Sumanth Doddapaneni,
Yavuz Kömeçoğlu, Yusuke Mori, J-chim, On-
tocord, Skyprince999, Vrindaprabhu, Jonathan
Bragg, Philip May, Alexander Seifert, Ivanzidov,
Jake Tae, Karim Foda, Mohamed Al Salti, Nick
Doiron, Vinay, Czabo, Vblagoje, Nilansh Rajput,
Abdulelah S. Al Mesfer, Akshay Bhardwaj, Amit
Moryossef, Basava Sai Naga Viswa Chaitanya,
Darek Kłeczek, Darshan Gandhi, Gustavo Aguilar,
Hassan Ismail Fawaz, Jack Morris, Jamesg,
Jonathan Chang, Karthik Bhaskar, Manan Dey,
Maria Grandury, Michael A. Hedderich, Mounica
Maddela, Nathan Cooper, Purvi M, Richard Wang,
Song Feng, Sourab Mangrulkar, Tanmoy, Vi-
jayasaradhi, Zacharysbrown, Chameleontk, Eu-
sip, Jeromeku, Patpizio, Tuner007, Benjamin
Van Der Burgh, Bharati Patidar, George Mihaila,
Olivier, Tim Isbister, Alessandro Suglia, Başak Bu-
luz Kömeçoğlu, Boris Dayma, Dariusz Kajtoch,
Frankie Robertson, Jieyu, Mihaelagaman, Nikhil
Bartwal, Param Bhavsar, Paullerner, Rachelker, Ri-
cardo Rei, Sai, Sasha Rush, Suraj Parmar, Takuro
Niitsuma, Taycir Yahmed, Tuan-phong Nguyen,
Vladimir Gurevich, Alex, Calpt, Idoh, Justin-yan,
Katnoria, Sileod, Avinash Swaminathan, Connor
Mccarthy, Jungwhan Kim, Leo Zhao, Sanjay Ka-
math, (bill) Yuchen Lin, 2dot71mily, 8bitmp3,
Abi Komma, Adam, Adeep Hande, Aditya Sid-
dhant, Akash Kumar Gautam, Alaa Houimel, Alex
Dong, Along, Anastasia Shimorina, Andre Bar-
bosa, Anton Lozhkov, Antonio V Mendoza, Ash-
meet Lamba, Ayushi Dalmia, Batjedi, Behçet Şen-
türk, Bernardt Duvenhage, Binny Mathew, Birger
Moëll, Blanc Ray, Bram Vanroy, Clément Rebuf-
fel, Daniel Khashabi, David Fidalgo, David Wad-
den, Dhruv Kumar, Diwakar Mahajan, Elron Ban-
del, Emrah Budur, Fatima Haouari, Fraser Green-
lee, Gergely Nemeth, Gowtham.r, Hemil Desai,
Hiroki Nakayama, Ilham F Putra, Jannis Vam-

vas, Javier De La Rosa, Javier-jimenez99, Jeff
Hale, Jeff Yang, Joel Niklaus, John Miller, John
Mollas, Joshua Adelman, Juan Julián Cea Morán,
Kacper Łukawski, Koichi Miyamoto, Kushal Ke-
dia, Laxya Agarwal, Leandro Von Werra, Loïc Es-
tève, Luca Di Liello, Malik Altakrori, Manuel,
Maramhasanain, Marcin Flis, Matteo Manica,
Matthew Peters, Mehrdad Farahani, Merve Noyan,
Mihai Ilie, Mitchell Gordon, Niccolò Campolungo,
Nihal Harish, Noa Onoszko, Nora Belrose, Or
Sharir, Oyvind Tafjord, Pewolf, Pariente Manuel,
Pasquale Minervini, Pedro Ortiz Suárez, Pedro
Lima, Pengcheng Yin, Petros Stavropoulos, Phil
Wang, Philipp Christmann, Philipp Dufter, Philippe
Laban, Pierre Colombo, Rahul Danu, Rabeeh
Karimi Mahabadi, Remi Calizzano, Reshinth
Adithyan, Rodion Martynov, Roman Tezikov, Sam
Shleifer, Savaş Yıldırım, Sergey Mkrtchyan, Shub-
ham Jain, Shubhambindal2017, Subhendu Ranjan
Mishra, Taimur Ibrahim, Tanmay Thakur, Thomas
Diggelmann, Théophile Blard, Tobias Slott, Tsve-
tomila Mihaylova, Vaibhav Adlakha, Vegar An-
dreas Bergum, Victor Velev, Vlad Lialin, Wilson
Lee, Yang Wang, Yasir Abdurrohman, Yenting
(Adam) Lin, Yixin Nie, Yoav Artzi, Yoni Gottes-
man, Yongrae Jo, Yuxiang Wu, Zhong Peixiang,
Zihan Wang, Aditya2211, Alejandrocros, Andy
Zou, Brainshawn, Cemilcengiz, Chutaklee, Gau-
rav Rai, Dhruvjoshi1998, Duttahritwik, Enod, Fe-
lixgwu, Ggdupont, Jerryishere, Jeswan, Lodgi, Lor-
inczb, Maxbartolo, Nathan Dahlberg, Neal, Ng-
dodd, Kristo, Onur Güngör, Ophelielacroix, Padi-
padou, and Phiwi.

References
Apache Arrow. 2020. Apache Arrow, a cross-

language development platform for in-memory an-
alytics. https://arrow.apache.org/.

Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic
and natural noise both break neural machine transla-
tion. In International Conference on Learning Rep-
resentations.

Emily M. Bender and Batya Friedman. 2018. Data
statements for natural language processing: Toward
mitigating system bias and enabling better science.
Transactions of the Association for Computational
Linguistics, 6:587–604.

Steven Bird. 2006. NLTK: The Natural Language
Toolkit. In Proceedings of the COLING/ACL 2006
Interactive Presentation Sessions, pages 69–72, Syd-
ney, Australia. Association for Computational Lin-
guistics.

181

P. Brown, J. Cocke, S. Della Pietra, V. Della Pietra,
F. Jelinek, R. Mercer, and P. Roossin. 1988. A sta-
tistical approach to language translation. In Coling
Budapest 1988 Volume 1: International Conference
on Computational Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, De-
cember 6-12, 2020, virtual.

Isaac Caswell, Julia Kreutzer, Lisa Wang, Ahsan Wa-
hab, Daan van Esch, Nasanbayar Ulzii-Orshikh, Al-
lahsera Tapo, Nishant Subramani, Artem Sokolov,
Claytone Sikasote, Monang Setyawan, Supheak-
mungkol Sarin, Sokhar Samb, Benoît Sagot, Clara
Rivera, Annette Rios, Isabel Papadimitriou, Sa-
lomey Osei, Pedro Javier Ortiz Suárez, Iroro
Orife, Kelechi Ogueji, Rubungo Andre Niyongabo,
Toan Q. Nguyen, Mathias Müller, André Müller,
Shamsuddeen Hassan Muhammad, Nanda Muham-
mad, Ayanda Mnyakeni, Jamshidbek Mirzakhalov,
Tapiwanashe Matangira, Colin Leong, Nze Lawson,
Sneha Kudugunta, Yacine Jernite, Mathias Jenny,
Orhan Firat, Bonaventure F. P. Dossou, Sakhile
Dlamini, Nisansa de Silva, Sakine Çabuk Balli,
Stella Biderman, Alessia Battisti, Ahmed Baruwa,
Ankur Bapna, Pallavi Baljekar, Israel Abebe Azime,
Ayodele Awokoya, Duygu Ataman, Orevaoghene
Ahia, Oghenefego Ahia, Sweta Agrawal, and Mofe-
toluwa Adeyemi. 2021. Quality at a glance: An
audit of web-crawled multilingual datasets. CoRR,
abs/2103.12028.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Thomas Diggelmann, Jordan Boyd-Graber, Jannis Bu-
lian, Massimiliano Ciaramita, and Markus Leippold.
2020. Climate-fever: A dataset for verification of
real-world climate claims.

Michael Diskin, Alexey Bukhtiyarov, Max Ryabinin,
Lucile Saulnier, Quentin Lhoest, Anton Sinitsin,
Dmitry Popov, Dmitry Pyrkin, Maxim Kashirin,
Alexander Borzunov, Albert Villanova del Moral,
Denis Mazur, Ilia Kobelev, Yacine Jernite, Thomas

Wolf, and Gennady Pekhimenko. 2021. Distributed
deep learning in open collaborations.

Elastic. 2021. Elastic Search. https://www.
elastic.co/.

Angela Fan, Yacine Jernite, Ethan Perez, David Grang-
ier, Jason Weston, and Michael Auli. 2019. ELI5:
Long form question answering. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 3558–3567, Florence,
Italy. Association for Computational Linguistics.

Timnit Gebru, Jamie Morgenstern, Briana Vec-
chione, Jennifer Wortman Vaughan, Hanna M. Wal-
lach, Hal Daumé III, and Kate Crawford. 2018.
Datasheets for datasets. CoRR, abs/1803.09010.

Sebastian Gehrmann, Tosin P. Adewumi, Karmanya
Aggarwal, Pawan Sasanka Ammanamanchi, Aremu
Anuoluwapo, Antoine Bosselut, Khyathi Raghavi
Chandu, Miruna Adriana Clinciu, Dipanjan Das,
Kaustubh D. Dhole, Wanyu Du, Esin Durmus,
Ondvrej Duvsek, Chris C. Emezue, Varun Gan-
gal, Cristina Garbacea, T. Hashimoto, Yufang Hou,
Yacine Jernite, Harsh Jhamtani, Yangfeng Ji, Shailza
Jolly, Mihir Kale, Dhruv Kumar, Faisal Ladhak,
Aman Madaan, Mounica Maddela, Khyati Mahajan,
Saad Mahamood, Bodhisattwa Prasad Majumder,
Pedro Henrique Martins, Angelina McMillan-Major,
Simon Mille, Emiel van Miltenburg, Moin Nadeem,
Shashi Narayan, V. Nikolaev, Rubungo Andre Niy-
ongabo, Salomey Osei, Ankur P. Parikh, Laura
Perez-Beltrachini, Niranjan Rao, Vikas Raunak,
Juan Diego Rodríguez, Sashank Santhanam, João
Sedoc, Thibault Sellam, Samira Shaikh, Anasta-
sia Shimorina, Marco Antonio Sobrevilla Cabezudo,
Hendrik Strobelt, Nishant Subramani, W. Xu, Diyi
Yang, Akhila Yerukola, and Jiawei Zhou. 2021. The
gem benchmark: Natural language generation, its
evaluation and metrics. ArXiv, abs/2102.01672.

Karan Goel, Nazneen Fatema Rajani, Jesse Vig,
Zachary Taschdjian, Mohit Bansal, and Christopher
Ré. 2021. Robustness gym: Unifying the NLP eval-
uation landscape. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies: Demonstrations, pages 42–55,
Online. Association for Computational Linguistics.

Suchin Gururangan, Swabha Swayamdipta, Omer
Levy, Roy Schwartz, Samuel Bowman, and Noah A.
Smith. 2018. Annotation artifacts in natural lan-
guage inference data. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 107–112, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Matthew Honnibal and Ines Montani. 2017. spacy 2:
Natural language understanding with bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear, 7(1):411–420.

182

Ben Hutchinson, Vinodkumar Prabhakaran, Emily
Denton, Kellie Webster, Yu Zhong, and Stephen De-
nuyl. 2020. Social biases in NLP models as barriers
for persons with disabilities. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2020, Online, July 5-10,
2020, pages 5491–5501. Association for Computa-
tional Linguistics.

Ben Hutchinson, Andrew Smart, Alex Hanna, Emily
Denton, Christina Greer, Oddur Kjartansson, Parker
Barnes, and Margaret Mitchell. 2021. Towards ac-
countability for machine learning datasets: Practices
from software engineering and infrastructure. In
Proceedings of the 2021 ACM Conference on Fair-
ness, Accountability, and Transparency, FAccT ’21,
page 560–575, New York, NY, USA. Association for
Computing Machinery.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017.
Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734.

Philipp Koehn and Rebecca Knowles. 2017. Six
challenges for neural machine translation. arXiv
preprint arXiv:1706.03872.

Kalpesh Krishna, Aurko Roy, and Mohit Iyyer. 2021.
Hurdles to progress in long-form question answer-
ing. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, NAACL-HLT 2021, Online, June 6-11, 2021,
pages 4940–4957. Association for Computational
Linguistics.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau
Yih, Tim Rocktäschel, Sebastian Riedel, and
Douwe Kiela. 2020. Retrieval-augmented gener-
ation for knowledge-intensive NLP tasks. CoRR,
abs/2005.11401.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313–330.

Bryan McCann, N. Keskar, Caiming Xiong, and
R. Socher. 2018. The natural language decathlon:
Multitask learning as question answering. ArXiv,
abs/1806.08730.

Angelina McMillan-Major, Salomey Osey, Juan Diego
Rodríguez, Pawan Sasanka Ammanamanchi, Sebas-
tian Gehrmann, and Yacine Jernite. 2021. Reusable
templates and guides for documenting datasets and
models for natural language processing and genera-
tion - a case study of the huggingface and gem data
and model cards.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,

Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC’16), pages 1659–1666, Portorož,
Slovenia. European Language Resources Associa-
tion (ELRA).

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Adam Poliak, Jason Naradowsky, Aparajita Haldar,
Rachel Rudinger, and Benjamin Van Durme. 2018.
Hypothesis only baselines in natural language in-
ference. In Proceedings of the Seventh Joint Con-
ference on Lexical and Computational Semantics,
pages 180–191, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Sameer S. Pradhan and Nianwen Xue. 2009.
OntoNotes: The 90% solution. In Proceedings
of Human Language Technologies: The 2009 An-
nual Conference of the North American Chapter of
the Association for Computational Linguistics, Com-
panion Volume: Tutorial Abstracts, pages 11–12,
Boulder, Colorado. Association for Computational
Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

TensorFlow-Datasets. 2021. TensorFlow Datasets, a
collection of ready-to-use datasets. https://
www.tensorflow.org/datasets.

Jörg Tiedemann and Lars Nygaard. 2004. The OPUS
corpus - parallel and free: http://logos.uio.
no/opus. In Proceedings of the Fourth Interna-
tional Conference on Language Resources and Eval-
uation (LREC’04), Lisbon, Portugal. European Lan-
guage Resources Association (ELRA).

Erik F. Tjong Kim Sang and Sabine Buchholz. 2000.
Introduction to the CoNLL-2000 shared task chunk-
ing. In Fourth Conference on Computational Nat-
ural Language Learning and the Second Learning
Language in Logic Workshop.

183

TorchText. 2021. TorchText. https://pytorch.
org/text/stable/index.html.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

184

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 185–194
November 7–11, 2021. ©2021 Association for Computational Linguistics

SUMMARY EXPLORER
Visualizing the State of the Art in Text Summarization

Shahbaz Syed †* Tariq Yousef †* Khalid Al-Khatib †

Stefan Jänicke ‡ Martin Potthast †

†Leipzig University ‡University of Southern Denmark
<shahbaz.syed@uni-leipzig.de> <tariq.yousef@uni-leipzig.de>

Abstract

This paper introduces SUMMARY EXPLORER,
a new tool to support the manual inspec-
tion of text summarization systems by com-
piling the outputs of 55 state-of-the-art sin-
gle document summarization approaches on
three benchmark datasets, and visually explor-
ing them during a qualitative assessment. The
underlying design of the tool considers three
well-known summary quality criteria (cover-
age, faithfulness, and position bias), encapsu-
lated in a guided assessment based on tailored
visualizations. The tool complements existing
approaches for locally debugging summariza-
tion models and improves upon them. The tool
is available at https://tldr.webis.de/.

1 Introduction

Automatic text summarization is the task of gen-
erating a summary of a long text by condensing
it to its most important parts. This longstanding
task originated in automatically creating abstracts
for scientific documents (Luhn, 1958), and later
extended to documents such as web pages (Salton
et al., 1994) and news articles (Wasson, 1998).

There are two paradigms of automatic sum-
marization: extractive and abstractive. The for-
mer extracts important information from the to-
be-summarized text, while the latter additionally
involves paraphrasing, sentence-fusion, and natu-
ral language generation to create fluent summaries.
Neural summarization approaches trained on large-
scale datasets have significantly advanced both
paradigms by improving the overall document un-
derstanding and text generation capabilities of the
models to generate fluent summaries.

Currently, the progress in text summarization
is tracked primarily using automatic evaluation
with ROUGE (Lin, 2004) as the de facto standard
for quantitative evaluation. ROUGE has proven

* Equal contribution.

effective for evaluating extractive systems, measur-
ing the overlap of word n-grams between a gener-
ated summary and a reference summary (ground
truth). Still, it only provides an approximation of
a model’s capability to generate summaries that
are lexically similar to the ground truth. More-
over, ROUGE is unsuitable for evaluating abstrac-
tive summarization systems, mainly due to its in-
adequacy in capturing all semantically equivalent
variants of the reference (Ng and Abrecht, 2015;
Kryscinski et al., 2019; Fabbri et al., 2021). Be-
sides, a reliable automatic evaluation of a summary
is challenging (Lloret et al., 2018) and strongly
dependent on its purpose(Jones et al., 1999).

A robust method to analyze the effectiveness
of summarization models is to manually inspect
their outputs from individual perspectives such as
coverage of key concepts and linguistic quality.
However, manual inspection requires obtaining the
outputs of certain models, delineating a guideline
that comprises particular assessment criteria, and
ideally utilizing proper visualization techniques to
examine the outputs efficiently.

To this end, we present SUMMARY EXPLORER (Fig-
ure 1), an online interactive visualization tool that
assists humans (researchers, experts, and crowds)
to inspect the outputs of text summarization mod-
els in a guided fashion. Specifically, we com-
pile and host the outputs of several state-of-the-art
models (currently 55) dedicated to English single-
document summarization. These outputs cover
three benchmark summarization datasets compris-
ing semi-extractive to highly abstractive ground
truth summaries. The tool facilitates a guided vi-
sual analysis of three important summary qual-
ity criteria: coverage, faithfulness, and position
bias, where tailored visualizations for each crite-
rion streamline both absolute and relative manual
evaluation of summaries. Overall, our use cases
(see Section 5) demonstrate the ability of SUMMARY

EXPLORER to provide a comparative exploration of

185

CNN
DailyMail XSum TL;DR A B C D E

Document Summary A

Summary B

Summary C

Summary D

Content coverage
What parts of a doc. are captured by its summary?

Hallucination faithfulness
What are the hallucinations in a summary?

Entity coverage / faithfulness
Which entities from a doc. are captured by its summary?

Relation coverage / faithfulness
Which relations from a doc. are captured by its summary?

Position bias within a document
Which parts of a single doc. do all summaries come from?

Position bias across documents
Which parts of all docs. do all summaries come from?

1

2

3

4

Figure 1: Overview of SUMMARY EXPLORER. Its guided assessment process works in four steps: (1) corpus
selection, (2) quality aspect selection, (3) model selection, and (4) quality aspect assessment. Exemplified is the
assessment of the content coverage of the summaries of four models for a source document from the CNN/DM
corpus. For each summary sentence, its two most related source document sentences are highlighted on demand.

the state-of-the-art text summarization models, and
to discover interesting cases that cannot likely be
captured by automatic evaluation.

2 Related Work

Leaderboards such as Paperswithcode,1 Explaina-
Board2 and NLPProgress3 provide an overview of
state of the art in text summarization mainly ac-
cording to ROUGE. These leaderboards simply
aggregate the scores as reported by the models’
developers, where the reported scores can be ob-
tained using different implementations. Hence, a
fair comparison become less feasible. For instance,
the Bottom-Up model (Gehrmann et al., 2018) uses
a different implementation of ROUGE,4 compared
to the BanditSum model (Dong et al., 2018).5 Be-
sides, for a qualitative comparison of the models,
one needs to manually inspect the generated sum-
maries, which are missing from such leaderboards.

To address these shortcomings, VisSeq (Wang
et al., 2019) aids developers to locally compare
their model’s outputs with the ground truth, provid-
ing lexical and semantic comparisons along with
statistics such as most frequent n-grams and sen-
tence score distributions. LIT (Tenney et al., 2020)
provides similar functionality for a broader range
1https://paperswithcode.com/task/text-summarization
2http://explainaboard.nlpedia.ai/leaderboard/task-summ/
3https://nlpprogress.com/english/summarization.html
4https://github.com/sebastianGehrmann/rouge-baselines
5https://github.com/pltrdy/rouge

of NLP tasks, implementing a work-bench-style de-
bugging of model behavior, including visualization
of model attention, confusion matrices, and prob-
ability distributions. Closely related to our work
is SummVis (Vig et al., 2021), the recently pub-
lished tool that provides a visual text comparison
of summaries with a reference summary as well as
a source document, facilitating local debugging of
hallucinations in the summaries.

SUMMARY EXPLORER draws from these develop-
ments and adds three missing features: (1) Quality-
criteria-driven design. Based on a careful literature
review of qualitative evaluation of summaries, we
derive three key quality criteria and encode them
explicitly in the interface of our tool. Other ex-
isting tools render these criteria implicit in their
underlying design. (2) A step-by-step process for
guided analysis. From the chosen quality crite-
ria, we formulate concise and specific questions
needed for a qualitative evaluation, and provide a
tailored visualization for each question. While pre-
vious tools utilize visualization and enable users to
(de)activate certain features, they oblige the users
to figure out the process themselves, which can be
overwhelming to non-experts. (3) Compilation of
the state of the art. We collect the outputs of more
than 50 models on three benchmark datasets pro-
viding a comprehensive overview of the progress
in text summarization.

SUMMARY EXPLORER complements these tools and

186

also provides direct access to the state of the art in
text summarization, encouraging rigorous analysis
to support the development of novel models.

3 Designing Visual Summary Exploration

The design of SUMMARY EXPLORER derives from
first principles, namely the three quality criteria
coverage, faithfulness, and position bias of a sum-
mary in relation to its source document. These
high-level criteria are frequently manually assessed
throughout the literature. Since their definitions
vary, however, we derive from each criterion a total
of six specific aspects that are more straightfor-
wardly operationalized in a visual exploration (see
Figure 1, Step 2). To render the aspects more di-
rectly accessible to users, each is “clarified” by a
guiding question that can be answered by a tailored
visualization. Below, the three quality criteria are
discussed, followed by the visual design.

3.1 Summary Quality Criteria
Coverage A primary goal of a summary is to
capture the important information from its source
document. Accordingly, a standard practice in sum-
mary evaluation is to assess its coverage of the
key content (Paice, 1990; Mani, 2001; Jones et al.,
1999). In many cases, a comparison to the ground
truth (reference) summary can be seen as a proxy
for coverage, which is essentially the core idea
of ROUGE. However, since it is hard to establish
an ideal reference summary (Mani et al., 1999), a
comparison against the source document is more
meaningful. Although an automatic comparison
against it is feasible (Louis and Nenkova, 2013;
ShafieiBavani et al., 2018), deciding what is impor-
tant content is highly subjective (Peyrard, 2019).
Therefore, authors resort to a manual comparison
instead (Hardy et al., 2019). We operationalize
coverage assessment by visualizing a document’s
overlap in terms of content, entities, and entity rela-
tions with its summary. Content coverage refers to
whether a summary condenses information from all
important parts of a document, measured by com-
mon similarity measures; entity coverage contrasts
the sets of named entities identified in both sum-
mary and document; and relation coverage does
the same, but for extracted entity relations.

Faithfulness A more recent criterion that gained
prominence especially in relation to neural sum-
marization is the faithfulness of a summary to its
source document (Cao et al., 2018; Maynez et al.,

2020). Whereas coverage asks if the document is
sufficiently reflected in the summary, faithfulness
asks the reverse, namely if the summary adds some-
thing new, questioning its appropriateness. Due to
their autoregressive nature, neural summarization
models have the unique property to “hallucinate”
new content (Kryscinski et al., 2020; Zhao et al.,
2020). This is what enables abstractive summariza-
tion, but also bears the risk of generating content in
a summary that is unrelated to the source document.
The only acceptable hallucinated content in a sum-
mary must be textually entailed by its source docu-
ment, which renders an automatic assessment chal-
lenging (Falke et al., 2019; Durmus et al., 2020).
We operationalize faithfulness assessment by visu-
alizing previously unseen words in a summary in
context, aligned with the best-matching sentences
of its source document.

Position bias Data-driven approaches, such as
neural summarization models, can be biased by
the domain of their training data and learn to ex-
ploit common patterns. For example, news articles
are typically structured according to an “inverted
pyramid,” where the most important information
is given in the first few sentences (PurdueOWL,
2019), and which models learn to exploit (Wasson,
1998; Kedzie et al., 2018). Non-news texts, such
as social media posts, however, do not adopt this
structure and thus require an unbiased considera-
tion to obtain proper summaries (Syed et al., 2019).
We operationalize position bias assessment by visu-
alizing the parts of a document that are the source
of its summary’s sentences, as well as the ones that
are common among a set of summaries.

3.2 Visual Design
Guided Assessment SUMMARY EXPLORER imple-
ments a streamlined process to guide summary
quality assessment, consisting of four steps (see
Figure 1). (1) A benchmark dataset is selected.
(2) A list of available summary quality aspects is
offered each with a preview of its tailored visual-
ization and its interactive use. (3) Applying Shnei-
derman’s (1996) well-known Visual Information-
seeking Mantra (“overview first, zoom and filter,
then details-on-demand”), an overview of all mod-
els as a heatmap over averages of several quantita-
tive metrics is shown (Figure 2a), which enables
a targeted filtering of the models based on their
quantitative performance. The heatmap of average
values paints only a rough picture; upon model

187

(a)

(b) (g)

(c)

(d) (e)

(f)

Figure 2: (a) Heatmap overview of 45 models for the CNN/DM corpus; ones selected for analysis are highlighted
red. Views for (b) the content coverage, (c) the entity coverage, (d) the relation coverage, (e) the position bias
across models for a single document, (f) the position bias of a model across all documents as per lexical and
semantic alignment, (g) the distribution of quantitative metric scores for a model.

188

selection, histograms of each model’s score dis-
tribution for each metric are available. (4) After
models have been selected, the user is forwarded
to the corresponding quality aspect’s view.

The visualizations for the individual aspects of
the three quality criteria share the property that two
texts need to be visually aligned with one another.6

Despite this commonality, we abstain from creating
a single-view visualization “stuffed” with alterna-
tive options. We rather adopt a minimalistic design
for the assessment of individual quality aspects.

Coverage View (Figure 2b,c,d) Content cover-
age is visualized as alignment of summary sen-
tences and document sentences at the semantic and
lexical level in a full-text side-by-side view. Col-
orization indicates different types of alignments.
For entity coverage (relation coverage), a corre-
sponding side-by-side view lists named entities (re-
lations) in a summary and aligns them with named
entities (relations) in its source document. For
unaligned relations, corresponding document sen-
tences can be retrieved.

Faithfulness View (Figure 3, Case A) Hallucina-
tions are visualized by highlighting novel words in
a summary. For each summary sentence with a hal-
lucination, semantically and lexically similar docu-
ment sentences are highlighted on demand. Since
named entities and thus also entity relations form a
subset of hallucinated words, the above coverage
views do the same. Also, in an aggregated view,
hallucinations found in multiple summaries are or-
dered by frequency, allowing to inspect a particular
model with respect to types of hallucinations.

Position Bias View (Figure 2e,f) Position bias
is visualized for all models given a source doc-
ument, and for a specific model with respect to
all its summaries in a corpus. The former is visu-
alized as a text heatmap, where a gradient color
indicates for every sentence in a source document
how many different summaries contain a seman-
tically or lexically corresponding sentence. The
latter is visualized by a different kind of heatmap
for 50 randomly selected model summaries, where
each summary is projected on a single horizontal
bar representing the source document. Bar length
reflects document length in sentences and aligned
sentences are colored to reflect lexical or semantic
alignment.
6A visualization paradigm recently surveyed by Yousef and
Jänicke (2021).

Aggregation Options Most of the above visual-
izations show individual pairs of source documents
and a summary. This enables the close inspection
of a given summary, and thus the manual assess-
ment of a model by sequentially inspecting a num-
ber of summaries for different source documents
generated by the same model. For these views,
the visualizations also support displaying a number
of summaries from different models for a relative
assessment of their summaries.

4 Collection of Model Outputs

We collected the outputs of 55 summarization
approaches on the test sets of three benchmark
datasets for the task of single document summa-
rization: CNN/DM, XSum and Webis-TLDR-17.
Each dataset has a different style of ground truth
summaries, ranging from semi-extractive to highly
abstractive, providing a diverse selection of models.
Outputs were obtained from NLPProgress, meta-
evaluations such as SummEval (Fabbri et al., 2021),
REALSumm (Bhandari et al., 2020), and in corre-
spondence with the model’s developers.7

4.1 Summarization Corpora
The most popular dataset, CNN/DM (Hermann
et al., 2015; Nallapati et al., 2016), contains news
articles with multi-sentence summaries that are
mostly extractive in nature (Kryscinski et al., 2019;
Bommasani and Cardie, 2020). We obtained the
outputs from 45 models. While the original test
split of the dataset contained 11,493 articles, we
discarded ones that were not summarized by all
models, resulting in 11,448 articles total. This mi-
nor discrepancy is due to inconsistent usage by
authors, such as reshuffling the order of examples,
de-duplication of articles in the test set, choice of
tokenization, text capitalization, and truncation.

For the XSum dataset (Narayan et al., 2018), the
outputs of six models for its test split (10,360 ar-
ticles) were obtained. XSum contains news arti-
cles with more abstractive single-sentence sum-
maries compared to CNN/DM. The Webis-TLDR-
17 dataset (Völske et al., 2017) contains highly
abstractive, self-authored (single to multi-sentence)
summaries of Reddit posts, although slightly nois-
ier than the other datasets (Bommasani and Cardie,
2020). We obtained the outputs from the four sub-
missions of the TL;DR challenge (Syed et al., 2019)
for 250 posts.
7We sincerely thank all the developers for their efforts to
reproduce and share their models’ outputs with us.

189

Aligned Document Spans Summary

A) Hallucinations via Sentence Alignment

B) Hidden Errors via Relation Alignment

Aligned Document Span

Corresponding Summary Sentence

Summary Relations

Figure 3: Two showcases for identifying inconsistencies in abstractive summaries using SUMMARY EXPLORER.
Case A depicts the verification of the correctness of hallucinations by aligning document sentences. Case B depicts
uncovering more subtle hallucination errors by comparing unaligned relations.

4.2 Text Preprocessing
In a preprocessing pipeline, the input of a collection
of documents, their ground truth summaries, and
the generated summaries from a given model were
normalized. First, basic normalization, such as
de-tokenization, unifying model-specific sentence
delimiters, and sentence segmentation were carried
out. Second, additional information, such as named
entities and relations were extracted using Spacy8

and Stanford OpenIE (Angeli et al., 2015), respec-
tively. The latter extracts redundant relations where
partial components such as either the subject or the
object are already captured by longer counterparts.
Such “contained” relations are merged into unique
representative relations for each subject.

Alignment Every output summary is aligned
with its source document, identifying the top two
lexically and semantically related document sen-
tences for each summary sentence. Lexical align-
ment relies on averaged ROUGE-{1,2,L} scores
among the document and summary sentences. The
highest scoring document sentence is taken as the
first match. The second match is identified by re-
moving all content words from the summary sen-
tence already captured by the first match, and re-
peating the process as per Lebanoff et al. (2019).
For semantic alignment, the rescaled BERTScore
(Zhang et al., 2020) is computed between a sum-
mary sentence and all source document sentences,
with the top-scoring two sentences as candidates.
8https://spacy.io

Summary Evaluation Measures Several stan-
dard evaluation measures enable quantitative com-
parisons and filtering of models for detailed anal-
ysis: (1) compression as the word ratio between a
document and its summary (Grusky et al., 2018),
(2) n-gram abstractiveness as per Gehrmann et al.
(2019) calculates a normalized score for novelty by
tracking parts of a summary that are already among
the n-grams it has in common with its document,
(3) summary length as word count (not tokens),
(4) entity-level factuality as per (Nan et al., 2021)
as percentage of named entities in a summary found
in its source document, and (5) relation-level factu-
ality as percentage of relations in a summary found
in its source document. Finally, for consistency, we
recompute ROUGE-{1,2,L}9 for all the models.

5 Assessment Case Studies

We showcase the use and effectiveness of SUMMARY

EXPLORER by investigating two models (IMPROVE-
ABS-NOVELTY, and IMPROVE-ABS-NOVELTY-LM)
from Kryscinski et al. (2018) that improve the ab-
straction in summaries by including more novel
phrases. We investigate the correctness of their
hallucinations (novel words in the summary), and
identify hidden errors introduced by the sentence
fusion of the abstractive models.
9https://github.com/google-research/google-research/tree/
master/rouge

190

Hallucinations via Sentence Alignment Hallu-
cinations are novel words or phrases in a summary
that warrant further inspection. Accordingly, our
tool highlights them (Figure 3, Case A), direct-
ing the user to the respective candidate summary
sentences whose related document sentences can
be seen on demand. For IMPROVE-ABS-NOVELTY,
we see that the first candidate improves abstrac-
tion via paraphrasing, is concisely written, and
correctly substitutes the term “offenses” with the
novel word “charges”. The second candidate also
improves abstraction via sentence fusion, where
two pieces of information are combined: “bennett
allegedly drove her daughter”, and “victim advised
she thought she was going to die”. The novel word

“told” also fits. However, the sentence fusion cre-
ates a wrong relation between the different actors
(“bennett allegedly told her daughter that she was
going to die”), which can be easily identified via
the visual sentence alignment provided.

Hidden Errors via Relation Alignment The
above showcase does not capture all hallucinations.
SUMMARY EXPLORER also aligns relations extracted
from a summary and its source document to iden-
tify novel relations. For IMPROVE-ABS-NOVELTY-
LM, we see that the relation “she was arrested” is
unaligned to any relation in the source document
(Figure 3, Case B). Aligning the summary sentence
to the document, we note that it is unfaithful to the
source despite avoiding hallucinations (“Bennett
was released on $10,500 bail”, and not “arrested
on $10,500 bail”). The word “arrested” was sim-
ply extracted from the document sentence (Figure 3,
Case A). Without the visual support, identifying
this small but important mistake would have been
more cognitively demanding for an assessor.

6 Conclusion

In this paper, we present SUMMARY EXPLORER, an on-
line interactive visualization tool to assess the state
of the art in text summarization in a guided fash-
ion. In enables analysis akin to close and distant
reading in particular facilitating the challenging
inspection of hallucinations by abstractive summa-
rization models. The tool is available open source10

enabling local use. We also welcome submissions
of summaries from newer models trained on the ex-
isting datasets as part of our collaboration with the
summarization community. We aim to expand the
10https://github.com/webis-de/summary-explorer

tool’s features in future work, exploring novel vi-
sual comparisons of documents to their summaries
for more reliable qualitative assessments of sum-
mary quality. Finally, it is important to note that the
accuracy of some of the views is influenced by the
intrinsic drawbacks of the toolkits used for named
entity recognition and information extraction.

7 Ethical Statement

Visualization plays a major role in the usage and ac-
cessibility of our tool. In this regard, to accommo-
date for color blindness, we primarily use gradient-
based visuals for key modules such as model se-
lection, aggregating important content, and text
alignment. This renders the tool usable also in a
monochromatic setting. Regarding the hosted sum-
marization models, the key goal is to allow a wider
audience comprising of model developers, the end
users, and practitioners to openly compare and as-
sess the strengths, limitations and possible ethical
biases of these systems. Here, our tool supports
making informed decisions about the suitability of
certain models to the downstream applications.

Acknowledgments

We thank the reviewers for their valuable feed-
back. This work was supported by the German Fed-
eral Ministry of Education and Research (BMBF,
01/S18026A-F) by funding the competence center
for Big Data and AI (ScaDS.AI Dresden/Leipzig).

References
Gabor Angeli, Melvin Jose Johnson Premkumar, and

Christopher D. Manning. 2015. Leveraging linguis-
tic structure for open domain information extraction.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing of the Asian Federation of Natural
Language Processing, ACL 2015, July 26-31, 2015,
Beijing, China, Volume 1: Long Papers, pages 344–
354. The Association for Computer Linguistics.

Manik Bhandari, Pranav Narayan Gour, Atabak Ash-
faq, Pengfei Liu, and Graham Neubig. 2020. Re-
evaluating evaluation in text summarization. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), On-
line. Association for Computational Linguistics.

Rishi Bommasani and Claire Cardie. 2020. Intrinsic
evaluation of summarization datasets. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages

191

8075–8096, Online. Association for Computational
Linguistics.

Ziqiang Cao, Furu Wei, Wenjie Li, and Sujian Li. 2018.
Faithful to the original: Fact aware neural abstrac-
tive summarization. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Arti-
ficial Intelligence (IAAI-18), and the 8th AAAI Sym-
posium on Educational Advances in Artificial Intel-
ligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pages 4784–4791. AAAI Press.

Yue Dong, Yikang Shen, Eric Crawford, Herke van
Hoof, and Jackie Chi Kit Cheung. 2018. Banditsum:
Extractive summarization as a contextual bandit. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, Brussels,
Belgium, October 31 - November 4, 2018, pages
3739–3748. Association for Computational Linguis-
tics.

Esin Durmus, He He, and Mona Diab. 2020. FEQA: A
question answering evaluation framework for faith-
fulness assessment in abstractive summarization. In
Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2020,
Online, July 5-10, 2020, pages 5055–5070. Associa-
tion for Computational Linguistics.

Alexander R. Fabbri, Wojciech Kryscinski, Bryan
McCann, Caiming Xiong, Richard Socher, and
Dragomir R. Radev. 2021. Summeval: Re-
evaluating summarization evaluation. Trans. Assoc.
Comput. Linguistics, 9:391–409.

Tobias Falke, Leonardo F. R. Ribeiro, Prasetya Ajie
Utama, Ido Dagan, and Iryna Gurevych. 2019.
Ranking generated summaries by correctness: An in-
teresting but challenging application for natural lan-
guage inference. In Proceedings of the 57th Confer-
ence of the Association for Computational Linguis-
tics, ACL 2019, Florence, Italy, July 28- August 2,
2019, Volume 1: Long Papers, pages 2214–2220. As-
sociation for Computational Linguistics.

Sebastian Gehrmann, Yuntian Deng, and Alexander M.
Rush. 2018. Bottom-up abstractive summarization.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, Brussels,
Belgium, October 31 - November 4, 2018, pages
4098–4109. Association for Computational Linguis-
tics.

Sebastian Gehrmann, Zachary M. Ziegler, and Alexan-
der M. Rush. 2019. Generating abstractive sum-
maries with finetuned language models. In Proceed-
ings of the 12th International Conference on Natu-
ral Language Generation, INLG 2019, Tokyo, Japan,
October 29 - November 1, 2019, pages 516–522. As-
sociation for Computational Linguistics.

Max Grusky, Mor Naaman, and Yoav Artzi. 2018.
Newsroom: A dataset of 1.3 million summaries with
diverse extractive strategies. In Proceedings of the

2018 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2018,
New Orleans, Louisiana, USA, June 1-6, 2018, Vol-
ume 1 (Long Papers), pages 708–719. Association
for Computational Linguistics.

Hardy, Shashi Narayan, and Andreas Vlachos. 2019.
Highres: Highlight-based reference-less evaluation
of summarization. In Proceedings of the 57th Con-
ference of the Association for Computational Lin-
guistics, ACL 2019, Florence, Italy, July 28- August
2, 2019, Volume 1: Long Papers, pages 3381–3392.
Association for Computational Linguistics.

Karl Moritz Hermann, Tomás Kociský, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to
read and comprehend. In Advances in Neural Infor-
mation Processing Systems 28: Annual Conference
on Neural Information Processing Systems 2015,
December 7-12, 2015, Montreal, Quebec, Canada,
pages 1693–1701.

K Sparck Jones et al. 1999. Automatic summarizing:
factors and directions. Advances in automatic text
summarization, pages 1–12.

Chris Kedzie, Kathleen R. McKeown, and Hal Daumé
III. 2018. Content selection in deep learning mod-
els of summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, Brussels, Belgium, October 31 -
November 4, 2018, pages 1818–1828. Association
for Computational Linguistics.

Wojciech Kryscinski, Nitish Shirish Keskar, Bryan Mc-
Cann, Caiming Xiong, and Richard Socher. 2019.
Neural text summarization: A critical evaluation.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, November 3-7, 2019, pages 540–551.
Association for Computational Linguistics.

Wojciech Kryscinski, Bryan McCann, Caiming Xiong,
and Richard Socher. 2020. Evaluating the factual
consistency of abstractive text summarization. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020, pages 9332–
9346. Association for Computational Linguistics.

Wojciech Kryscinski, Romain Paulus, Caiming Xiong,
and Richard Socher. 2018. Improving abstraction
in text summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, Brussels, Belgium, October 31 -
November 4, 2018, pages 1808–1817. Association
for Computational Linguistics.

Logan Lebanoff, Kaiqiang Song, Franck Dernoncourt,
Doo Soon Kim, Seokhwan Kim, Walter Chang, and
Fei Liu. 2019. Scoring sentence singletons and pairs

192

for abstractive summarization. In Proceedings of
the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
2175–2189. Association for Computational Linguis-
tics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Elena Lloret, Laura Plaza, and Ahmet Aker. 2018.
The challenging task of summary evaluation: an
overview. Lang. Resour. Evaluation, 52(1):101–
148.

Annie Louis and Ani Nenkova. 2013. Automatically
assessing machine summary content without a gold
standard. Comput. Linguistics, 39(2):267–300.

Hans Peter Luhn. 1958. The automatic creation of lit-
erature abstracts. IBM Journal of Reseach and De-
vopment, 2(2):159–165.

Inderjeet Mani. 2001. Summarization evaluation: An
overview.

Inderjeet Mani, David House, Gary Klein, Lynette
Hirschman, Therese Firmin, and Beth Sundheim.
1999. The tipster summac text summarization eval-
uation. In EACL 1999, 9th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, June 8-12, 1999, University of Bergen,
Bergen, Norway, pages 77–85. The Association for
Computer Linguistics.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
Ryan T. McDonald. 2020. On faithfulness and fac-
tuality in abstractive summarization. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, ACL 2020, Online, July
5-10, 2020, pages 1906–1919. Association for Com-
putational Linguistics.

Ramesh Nallapati, Bowen Zhou, Cícero Nogueira dos
Santos, Çaglar Gülçehre, and Bing Xiang. 2016.
Abstractive text summarization using sequence-to-
sequence rnns and beyond. In Proceedings of the
20th SIGNLL Conference on Computational Natural
Language Learning, CoNLL 2016, Berlin, Germany,
August 11-12, 2016, pages 280–290. ACL.

Feng Nan, Ramesh Nallapati, Zhiguo Wang,
Cícero Nogueira dos Santos, Henghui Zhu, Dejiao
Zhang, Kathy McKeown, and Bing Xiang. 2021.
Entity-level factual consistency of abstractive text
summarization. In Proceedings of the 16th Confer-
ence of the European Chapter of the Association for
Computational Linguistics: Main Volume, EACL
2021, Online, April 19 - 23, 2021, pages 2727–2733.
Association for Computational Linguistics.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!

topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, Brussels, Belgium, October 31 -
November 4, 2018, pages 1797–1807. Association
for Computational Linguistics.

Jun-Ping Ng and Viktoria Abrecht. 2015. Better sum-
marization evaluation with word embeddings for
ROUGE. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2015, Lisbon, Portugal, September 17-21,
2015, pages 1925–1930. The Association for Com-
putational Linguistics.

Chris D Paice. 1990. Constructing literature abstracts
by computer: techniques and prospects. Information
Processing & Management, 26(1):171–186.

Maxime Peyrard. 2019. A simple theoretical model of
importance for summarization. In Proceedings of
the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
1059–1073. Association for Computational Linguis-
tics.

PurdueOWL. 2019. Journalism and journalistic writ-
ing: The inverted pyramid structure.

Gerard Salton, James Allan, Chris Buckley, and Amit
Singhal. 1994. Automatic analysis, theme genera-
tion, and summarization of machine-readable texts.
Science, 264(5164):1421–1426.

Elaheh ShafieiBavani, Mohammad Ebrahimi, Ray-
mond K. Wong, and Fang Chen. 2018. Summa-
rization evaluation in the absence of human model
summaries using the compositionality of word em-
beddings. In Proceedings of the 27th International
Conference on Computational Linguistics, COLING
2018, Santa Fe, New Mexico, USA, August 20-26,
2018, pages 905–914. Association for Computa-
tional Linguistics.

B. Shneiderman. 1996. The eyes have it: a task by data
type taxonomy for information visualizations. In
Proceedings 1996 IEEE Symposium on Visual Lan-
guages, pages 336–343.

Shahbaz Syed, Michael Völske, Nedim Lipka, Benno
Stein, Hinrich Schütze, and Martin Potthast. 2019.
Towards summarization for social media - results of
the tl;dr challenge. In Proceedings of the 12th Inter-
national Conference on Natural Language Genera-
tion, INLG 2019, Tokyo, Japan, October 29 - Novem-
ber 1, 2019, pages 523–528. Association for Compu-
tational Linguistics.

Ian Tenney, James Wexler, Jasmijn Bastings, Tolga
Bolukbasi, Andy Coenen, Sebastian Gehrmann,
Ellen Jiang, Mahima Pushkarna, Carey Radebaugh,
Emily Reif, and Ann Yuan. 2020. The language in-
terpretability tool: Extensible, interactive visualiza-
tions and analysis for NLP models. In Proceedings

193

of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstra-
tions, EMNLP 2020 - Demos, Online, November 16-
20, 2020, pages 107–118. Association for Computa-
tional Linguistics.

Jesse Vig, Wojciech Kryscinski, Karan Goel, and
Nazneen Fatema Rajani. 2021. Summvis: Interac-
tive visual analysis of models, data, and evaluation
for text summarization. CoRR, abs/2104.07605.

Michael Völske, Martin Potthast, Shahbaz Syed, and
Benno Stein. 2017. Tl;dr: Mining reddit to
learn automatic summarization. In Proceedings
of the Workshop on New Frontiers in Summariza-
tion, NFiS@EMNLP 2017, Copenhagen, Denmark,
September 7, 2017, pages 59–63. Association for
Computational Linguistics.

Changhan Wang, Anirudh Jain, Danlu Chen, and Ji-
atao Gu. 2019. Vizseq: a visual analysis toolkit
for text generation tasks. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019 - System Demonstrations, pages 253–
258. Association for Computational Linguistics.

Mark Wasson. 1998. Using leading text for news sum-
maries: Evaluation results and implications for com-
mercial summarization applications. In Proc. of the
36th Annual Meeting of the Association for Com-
putational Linguistics and 17th Int. Conference on
Computational Linguistics, pages 1364–1368.

Tariq Yousef and Stefan Jänicke. 2021. A survey of
text alignment visualization. IEEE Transactions on
Visualization and Computer Graphics, 27(2):1149–
1159.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with BERT. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Zheng Zhao, Shay B. Cohen, and Bonnie Webber. 2020.
Reducing quantity hallucinations in abstractive sum-
marization. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, Online. Asso-
ciation for Computational Linguistics.

194

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 195–202
November 7–11, 2021. ©2021 Association for Computational Linguistics

MeetDot: Videoconferencing with Live Translation Captions

Arkady Arkhangorodsky, Christopher Chu, Scot Fang, Yiqi Huang,
Denglin Jiang, Ajay Nagesh, Boliang Zhang, Kevin Knight

DiDi Labs
4640 Admiralty Way

Marina del Rey, CA 90292
{arkadyarkhangorodsky,chrischu,scotfang,denglinjiang,

yiqihuang,ajaynagesh,boliangzhang,kevinknight}@didiglobal.com

Abstract
We present MeetDot, a videoconferencing sys-
tem with live translation captions overlaid on
screen. The system aims to facilitate conversa-
tion between people who speak different lan-
guages, thereby reducing communication bar-
riers between multilingual participants. Cur-
rently, our system supports speech and cap-
tions in 4 languages and combines automatic
speech recognition (ASR) and machine trans-
lation (MT) in a cascade. We use the re-
translation strategy to translate the streamed
speech, resulting in caption flicker. Addition-
ally, our system has very strict latency require-
ments to have acceptable call quality. We im-
plement several features to enhance user ex-
perience and reduce their cognitive load, such
as smooth scrolling captions and reducing cap-
tion flicker. The modular architecture allows
us to integrate different ASR and MT services
in our backend. Our system provides an in-
tegrated evaluation suite to optimize key in-
trinsic evaluation metrics such as accuracy, la-
tency and erasure. Finally, we present an inno-
vative cross-lingual word-guessing game as an
extrinsic evaluation metric to measure end-to-
end system performance. We plan to make our
system open-source for research purposes.1

1 Introduction

As collaborations across countries is the norm in
the modern workplace, videoconferencing is an in-
dispensable part of our working lives. The recent
widespread adoption of remote work has necessi-
tated effective online communication tools, espe-
cially among people who speak different languages.
In this work, we present MeetDot, a videoconfer-
encing solution with live translation captions. Par-
ticipants can see an overlaid translation of other
participants’ speech in their preferred language.
Currently, we support speech and captions in En-
glish, Chinese, Spanish and Portuguese.

1The system will be available at https://github.
com/didi/meetdot

The system is built by cascading automatic
speech recognition (ASR) and machine transla-
tion (MT) components. We process the incoming
speech signal in a streaming mode, transcribe it in
the speaker’s language to be used as input to an MT
system to decode in the listener’s language during
the call. We have very tight latency requirements
to be able to provide good quality captions in a
live video call. Our framework has several features
to enable a better user experience and reduce the
cognitive load on the participants such as smooth
pixel-wise scrolling of the captions, fading text
that is likely to change and biased decoding of ma-
chine translation output (Arivazhagan et al., 2020)
to reduce the flicker of the captions. In addition,
we present preliminary work towards identifying
named-entity mentions in speech by interpolating
a pronunciation dictionary with the ASR language
model.

We present the key metrics to measure the qual-
ity of the captions such as accuracy, latency and
stability (flicker in captions). Our system provides
an integrated evaluation suite to enable fast devel-
opment through hill climbing on these metrics. In
addition to these intrinsic metrics, we present an in-
teresting online cross-lingual word guessing game,
where one of the participants is given a word that
they describe and the other participants have to
guess the word by reading the captions in their
respective languages.

We present the following as the key contributions
of our work:

• A video conference system with live transla-
tion of multilingual speech into captions over-
laid on participants’ videos. The system has
several features to enhance user experience.

• A comprehensive evaluation suite closely inte-
grated with the system and a set of metrics to
reduce latency, caption flicker and accuracy.

• A cross-lingual word-guessing game that can
be used as an extrinsic metric to evaluate end-

195

Figure 1: MeetDot system architecture. The ASR and MT modules are designed to be plug-and-play with different
services in the backend (e.g. in-house DiDi MT system/Google MT API). Frontend consists of different “views” -
e.g. live captions view - captures audio from another browser window/zoom/system to show translated captions.

to-end system performance.
We are in the process of releasing the system as

open-source software for the purpose of furthering
research in the area.

2 Related Work

The area of simultaneous translation has attracted
a lot of attention is recent years. The recent edi-
tions of the Workshop on Automatic Simultaneous
Translation (Wu et al., 2021, 2020) and the tutorial
in EMNLP 2020 (Huang et al., 2020) provide us an
overview of the state-of-the-art and challenges in
live translation. Recent technical advances include
newer architectures such as prefix-to-prefix (Ma
et al., 2019) and adaptive policy methods such as
imitation learning (Zheng et al., 2019) and mono-
tonic attention (Raffel et al., 2017). The solu-
tions in this space are differentiated into speech-to-
speech and speech-to-text, in the former there is
a speech synthesis component. Our work falls in
the latter bucket, since we only display captions to
the user. Since we have access to separate audio-
input channels (one per participant), we do not need
speaker diarization (Park et al., 2021).

Re-translation is a common strategy applied,
wherein we translate from scratch every new ex-
tended source sentence, transcribed through the
ASR module as the participant speaks. The abil-
ity to modify previously displayed captions when
new ASR output is available can lead to flicker in
displayed captions. Following previous work (Ari-
vazhagan et al., 2020), we measure this using the
erasure metric and reduce it using biased beam
search during MT decoding. To better capture our

use case of short exchanges in a meeting scenario
compared to long speech, we introduce additional
metrics initial lag, incremental caption lag, mean
word burstiness and max word burstiness.

There have been recent working systems in this
space, such as Ma et al. (2019); Cho et al. (2013);
Wang et al. (2016) that provide live captions for
single-speaker lectures and does not focus on multi-
party meetings. Very recently, there are news re-
ports of systems that offer live translations of multi-
party meetings (ZDNet, 2021), but their technical
details are unclear.

3 System Description

The overall system architecture is shown in
Figure 1. It mainly consists of two components
(1) Frontend: runs on the user’s computer locally
(2) Backend: runs on the server and consists of
ASR and MT modules that interact with the Flask
server. The modular architecture allows us to
swap the ASR and MT components from different
service providers (such as Google ASR or in-house
Kaldi-based ASR services). These are explained
below.

MeetDot User Interface: We implemented a sim-
ple web-based user interface that allows users to
have meetings with automatically translated cap-
tions overlaid. Our interface consists of:
- A home page (Figure 2, top-left panel) for creat-
ing a meeting room with default settings, or a game
(§ 4).
- A meeting creation page, where the room settings
can be configured in different ways for experimen-

196

Figure 2: MeetDot room creation. Landing page (top, left panel) Any user can set up a MeetDot room and share
its URL with potential participants (bottom, left panel). Admin users can select parameters that control captioning,
speech recognition, and translation (right panel, §3).

tation. (Figure 2, right panel)
- A meeting landing page, where a user specifies
their speaking language and caption language (usu-
ally the same) before joining the meeting. (Figure
2, bottom-left panel)
- A meeting page, where the video call takes place
(Figure 3)

The meeting page features real-time translated
captions overlaid on each speaker’s video, dis-
played to each user in their selected language (Fig-
ure 3). The user’s spoken language and caption
language can also be changed on-the-fly. The meet-
ings support full video-conferencing functionality,
including microphone and camera toggles, screen
sharing, and gallery/focused views. Finally, there
is a panel that shows the automatically transcribed
and translated conversation history in the user’s
preferred language, which can also be saved.

MeetDot also supports “Live Translation” mode

that can translate audio from any audio feed, e.g.
a microphone or the user’s own computer. We
provide instructions for the latter, so users can see
captions for audio in either another browser tab or
an ongoing Zoom call or audio from their system.

The frontend is implemented in Vue,2 and
the backend is implemented using Flask. Video-
conferencing functionality is built with WebRTC,3

using Daily.co4 as the signaling server to initiate
real-time audio and video connections. The
frontend sends audio bytes to the Flask backend
through a WebSocket connection, which routes
them to the speech recognition and translation
services and returns translated captions to be
displayed.

2https://vuejs.org/
3https://webrtc.org/
4https://www.daily.co/

197

Figure 3: MeetDot videoconference interface. Translated captions are incrementally updated (word-by-word,
phrase-by-phrase) on top of participant videos. Translations also appear in the transcript panel (on right, not
shown), updated utterance-by-utterance. Choosing a caption language (4th button from left at the bottom, in green)
displays all captions in that particular language. This depicts the view of the English caption user.

Speech Recognition and Machine Translation:
Our backend services of ASR and MT are joined
in a cascaded manner. Each participant’s speech
is fed in a streaming fashion to the ASR module
of the appropriate language selected by the user.
Additionally, we show the ASR output as captions
to the speaker as feedback/confirmation to them.
Each of the transcribed text returned by ASR is
fed to the MT system to translate it into the cap-
tion language selected by the reader, from scratch.
This strategy is termed as re-translation. Since the
ASR stream continually returns a revised or an ex-
tended string, the input to MT is noisy and will
lead to the captions overwritten frequently (termed
as flicker) leading to a high cognitive load on the
reading. We employ several techniques to have
better user experience while they are reading the
captions (elaborated more below).

At present, we support English, Chinese, Span-
ish and Portuguese languages for both speech and
captions. The modular architecture of our system
allows us to plug-and-play different ASR and MT
service components in the backend. We develop
two different ASR systems based on the Kaldi
framework and WeNet (Yao et al., 2021). We can
also swap either of these to use Google ASR API
instead. For MT, we have the option of using our

in-house DiDi MT system (Chen et al., 2020) as
well as call Google MT API. For Kaldi ASR, we
adapt pre-trained Kaldi models to videoconferenc-
ing domain by interpolating the pre-trained lan-
guage model with our in-domain language mod-
els. For WeNet, we use use the Unified Conformer
model and language model interpolation is planned
for future work.5 Following Arivazhagan et al.
(2020), we modify the decoding procedure of MT
in OpenNMT’s ctranslate toolkit6 to mitigate the
issue of flicker mentioned above.

We include several additional features to
enhance user experience. We use NVIDIA NeMo
toolkit7 to punctuate the captions and predict if the
word should be capitalized or not, which makes
the captions more readable. We have an initial
named entity recognition module, to recognize
mentions of participants’ names in speech when
using the Kaldi ASR system. This is performed
by interpolating the ASR’s language model with a
language model trained on a synthesised corpus
that contains participants’ names. The name

5We use a pre-trained checkpoint for English ASR and
trained a Chinese ASR model from scratch using the multi-cn
and TAL datasets.

6https://github.com/OpenNMT/
CTranslate2

7https://github.com/NVIDIA/NeMo

198

Direction Systems Final Translation Normalized Initial Incremental Mean word Max word
bleu lag (s) erasure lag (s) caption lag (s) burstiness burstiness

En-to-Zh Google ASR, Google MT 17.81 5.84 2.69 3.82 0.71 5.26 11.83
” Kaldi ASR, DiDi MT 19.59 2.72 0.33 2.59 0.43 4.34 9.20
” WeNet ASR, DiDi MT 23.76 2.39 0.21 2.73 0.47 4.76 9.62

Zh-to-En Google ASR, Google MT 9.99 2.33 0.47 4.31 2.12 5.20 9.46
” Kaldi ASR, DiDi MT 7.88 3.33 0.73 2.70 0.42 2.42 6.13
” WeNet ASR, DiDi MT 9.76 2.27 0.37 2.52 0.32 2.42 5.65

Table 1: Baseline results on our daily work conversation dataset. Note that the Google API does not have biased-
decoding available to reduce flicker. Metrics are explained in §4. Right 4 metrics are introduced by our work.

pronunciation dictionary required by Kaldi ASR
is generated automatically by rules. Profanity
is detected using a standard list of keywords
and starred in both ASR and translation output.
We have an experimental module to detect the
speaker’s language automatically (instead of being
manually set by the user). The advantage of such
a feature is to allow code-switching between
multiple languages which is a common behavior
among multilingual speakers (Solorio and Liu,
2008; Sivasankaran et al., 2018).

Captioning Strategies: Here we describe how we
deploy ASR and MT capabilities to create transla-
tion captions that are incrementally updated in real
time. Since we display translation captions on top
of a speaker’s video feed, we have limited screen
real-estate—for example, 3 lines of 60 characters
each.

Each time we receive an incremental ASR up-
date (hypothesis extension or revision), we trans-
late the updated string from scratch (Arivazhagan
et al., 2020). If the translation exceeds the available
real-estate, we display the longest suffix that fits.
ASR also signals utterance boundaries; we only
send the current, growing utterance through MT,
caching the MT results on previous utterances.

The basic system exhibits large amounts of
flicker (Niehues et al., 2016, 2018), which we miti-
gate with these methods:
Translate-k. We only send every kth ASR output
to MT. This results in captions that are more stable,
but which update more slowly.
Translate-t. Improving on translate-k, we send an
ASR output to MT if at least t seconds have elapsed
since the last MT call.
Mask-k. We suppress the last k words from the MT
output, providing time for the translation to settle
down (Cho and Esipova, 2016; Gu et al., 2017; Ma
et al., 2019; Arivazhagan et al., 2020). We often
use Mask-4 in practice.
Biased MT decoding. We encourage word-by-word

MT decoding to match the string output by the pre-
vious MT call (Arivazhagan et al., 2020), avoiding
translation variations that, while acceptable, unfor-
tunately introduce flicker.
Preserve linebreaks. When possible, we prevent
words from jumping back & forth across line-
breaks.
Smooth scrolling. We reduce perception of flicker
by scrolling lines smoothly, pixel-wise.

4 Evaluation

Dataset: In order to evaluate our system in
the most-appropriate deployment scenario, we
construct an evaluation dataset based on meetings
within our team. We have a total of 5 meetings, 3
meetings involving 7 participants and in English
and 2 meetings involving 2 participants in Chinese.
The content of the meetings are daily work
conversation and contains a total of 135 mins
(94 mins English and 41 mins Chinese). We
manually transcribe and translate these meetings
using a simple and uniform set of guidelines. The
resulting dataset consists of 494 English utterances
(∼ 11k words, translated into Chinese) and 183
Chinese utterances (∼ 9.8k characters, translated
into English). We use this dataset to measure our
intrinsic evaluation metrics.

Intrinsic metrics: We adopt the following metrics
from previous work on streaming translation (Pap-
ineni et al., 2002; Niehues et al., 2016; Arivazhagan
et al., 2020):
- Final Bleu. We measure the Bleu MT accuracy of
final, target-language utterances against a reference
set of human translations. Anti-flicker devices that
“lock in” partial translations will generally decrease
final Bleu.
- Translation lag. We measure (roughly) the aver-
age difference, in seconds, between when a word
was spoken and when its translation was finalized
on the screen.
- Normalized erasure. We quantify flicker as m/n,

199

Figure 4: Cross-lingual word guessing game for extrinsic evaluation. Roles: one player is given a word to describe
in their language, one or more players look at the captions displayed to guess the correct word. Screenshot shown
is that of the describer of the word. Word is “eyelash” (left panel) - the participants communicate hints and guesses
through MeetDot translation captions, and the system itself spots correct guesses.

the number of words m that get erased during the
production of an n-word utterance.

To support our videoconferencing application,
we introduce other intrinsic metrics:
- Initial lag. In videoconferencing, we find it valu-
able to generate translation captions immediately
after a speaker begins, even if the initial transla-
tion involves some flicker. Here we measure the
time between initial speaking time and the first dis-
played word. We improve initial lag by adopting a
Mask-0 policy at the start of an utterance, transi-
tioning to our usual Mask-4 policy later.
- Incremental caption lag. The average time be-
tween caption updates.
- Mean (& Max) word burstiness. The mean num-
ber of words or characters for Chinese (maximum,
respectively) that are added/subtracted in a single
caption update (for a given utterance’s translation–
averaged over all utterances, respectively).

In Table 1, we present baseline results of the
various intrinsic metrics for the English to Chinese
and Chinese to English systems. We present results
for 3 different module combinations, namely, (i)
Google API8 for ASR9 and MT10 (ii) Kaldi ASR
and DiDi MT (iii) WeNet ASR and DiDi MT.
From the results table, we would like to highlight
that the biased decoding modification for machine
translation has a positive impact on several metrics

8Accessed on 2021-09-09.
9https://cloud.google.com/

speech-to-text
10https://cloud.google.com/translate

such as translation lag, normalized erasure and
word burstiness. Biased decoding is absent in the
Google MT API, hence has higher numbers in
these metrics. This results in increasing flicker
leading to a poorer user experience. Our final
bleu score when using WeNet ASR and DiDi
MT is several points better than Google ASR and
Google MT in the English to Chinese direction
and has comparable performance in Chinese to
English direction. ASR system’s performance is
an important factor in a cascaded system. Kaldi
ASR has a word error rate (WER) rate of 43.88
for English (character error rate (CER) of 49.75
for Chinese, respectively) compared to WeNet
ASR’s WER of 34.74 (CER of 38.03 for Chinese,
respectively). This has a direct impact on final bleu
scores as seen from the results.

Cross-lingual word guessing game: Extrinsic
metrics for speech translation are not as popular as
intrinsic ones (Arivazhagan et al., 2020; Niehues
et al., 2016). However, given the broad range of
techniques for displaying translation captions, we
would like to measure things that are closer to the
user experience.

Here, we introduce a cross-lingual, cooperative
word game for A/B testing different captioning al-
gorithms. Players who speak different languages
use MeetDot’s translation captions to communicate
with each other. If the players obtain higher scores
under one condition, we conclude that their com-
munication is, in some way, made more effective

200

and efficient.
The game is a variation on Taboo,11 in which one

player receives a secret word (such as “racoon” or
“scary”) and must describe it without mentioning
the word or variant of it. The other player tries to
guess the word. The players are awarded a point
for every word guessed in a 4-minute period. The
first player is allowed to skip upto three words.

In our variation, the first player may receive a
Chinese word and describe it in Chinese, while
the second player sees English captions and makes
guesses in English. When translation is quick, ac-
curate, and readable, players score higher.

We design our bilingual wordlists to contain
words with limited ambiguity. This way, we are
able to build a reliable, automatic scorer that re-
wards players and advances them to the next word.

We also implement a competitive, multi-player
version of the game, where players are assigned
points for making correct guesses faster than others,
and for giving clues that lead to fast guesses.

5 Conclusion and Future Work

We describe MeetDot, a videoconferencing sys-
tem with live translation captions, along with its
components: UI, ASR, MT, and captioning. We
implement an evaluation suite that allows us to
accurately compute metrics from the sequence of
captions that users would see. We also describe a
cross-lingual word game for A/B testing different
captioning algorithms and conditions.

Our future work includes improved ASR/MT,
extrinsic testing, and an open source release. Our
overall goal is to provide a platform for developing
translation captions that are accurate and “right
behind you”.

References
Naveen Arivazhagan, Colin Cherry, I Te, Wolfgang

Macherey, Pallavi Baljekar, and George F. Foster.
2020. Re-translation strategies for long form, si-
multaneous, spoken language translation. In Proc.
ICASSP.

Tanfang Chen, Weiwei Wang, Wenyang Wei, Xing Shi,
Xiangang Li, Jieping Ye, and Kevin Knight. 2020.
DiDi’s machine translation system for WMT2020.
In Proc. WMT.

Eunah Cho, C. Fügen, T. Herrmann, Kevin Kil-
gour, M. Mediani, Christian Mohr, J. Niehues, Kay

11https://www.hasbro.com/common/
instruct/Taboo(2000).PDF

Rottmann, Christian Saam, S. Stüker, and A. Waibel.
2013. A real-world system for simultaneous transla-
tion of german lectures. In INTERSPEECH.

Kyunghyun Cho and Masha Esipova. 2016. Can neu-
ral machine translation do simultaneous translation?
ArXiv, abs/1606.02012.

Jiatao Gu, Graham Neubig, Kyunghyun Cho, and Vic-
tor O.K. Li. 2017. Learning to translate in real-time
with neural machine translation. In Proc. EACL.

Liang Huang, Colin Cherry, Mingbo Ma, Naveen Ari-
vazhagan, and Zhongjun He. 2020. Simultaneous
translation. In Proc. EMNLP: Tutorial Abstracts.

Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng,
Kaibo Liu, Baigong Zheng, Chuanqiang Zhang,
Zhongjun He, Hairong Liu, Xing Li, Hua Wu, and
Haifeng Wang. 2019. STACL: Simultaneous trans-
lation with implicit anticipation and controllable la-
tency using prefix-to-prefix framework. In Proc.
ACL.

J. Niehues, T. Nguyen, Eunah Cho, Thanh-Le
Ha, Kevin Kilgour, M. Müller, Matthias Sperber,
S. Stüker, and A. Waibel. 2016. Dynamic transcrip-
tion for low-latency speech translation. In INTER-
SPEECH.

J. Niehues, Ngoc-Quan Pham, Thanh-Le Ha, Matthias
Sperber, and A. Waibel. 2018. Low-latency neural
speech translation. In INTERSPEECH.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proc. ACL.

Tae Jin Park, Naoyuki Kanda, Dimitrios Dimitri-
adis, Kyu J. Han, Shinji Watanabe, and Shrikanth
Narayanan. 2021. A review of speaker di-
arization: Recent advances with deep learning.
arXiv:2101.09624.

Colin Raffel, Minh-Thang Luong, Peter J. Liu, Ron J.
Weiss, and Douglas Eck. 2017. Online and linear-
time attention by enforcing monotonic alignments.
In Proc. ICML.

Sunit Sivasankaran, Brij Mohan Lal Srivastava,
Sunayana Sitaram, Kalika Bali, and Monojit Choud-
hury. 2018. Phone merging for code-switched
speech recognition. In Workshop on Computational
Approaches to Linguistic Code Switching.

Thamar Solorio and Yang Liu. 2008. Learning to pre-
dict code-switching points. In Proc. EMNLP.

Xiaolin Wang, Andrew Finch, Masao Utiyama, and Ei-
ichiro Sumita. 2016. A prototype automatic simulta-
neous interpretation system. In Proc. COLING: Sys-
tem Demonstrations.

Hua Wu, Colin Cherry, Liang Huang, Zhongjun He,
Qun Liu, Maha Elbayad, Mark Liberman, Haifeng
Wang, Mingbo Ma, and Ruiqing Zhang, editors.
2021. Proc. Second Workshop on Automatic Simul-
taneous Translation.

201

Hua Wu, Collin Cherry, Liang Huang, Zhongjun He,
Mark Liberman, James Cross, and Yang Liu, editors.
2020. Proc. First Workshop on Automatic Simulta-
neous Translation.

Zhuoyuan Yao, Di Wu, Xiong Wang, Binbin Zhang,
Fan Yu, Chao Yang, Zhendong Peng, Xiaoyu Chen,
Lei Xie, and Xin Lei. 2021. Wenet: Production
oriented streaming and non-streaming end-to-end
speech recognition toolkit. In INTERSPEECH.

ZDNet. 2021. Cisco’s webex debuts real-time trans-
lation from english to 100+ languages. https:
//tinyurl.com/bwvfm8ka. Accessed: 2021-06-
30.

Baigong Zheng, Renjie Zheng, M. Ma, and Liang
Huang. 2019. Simultaneous translation with flexible
policy via restricted imitation learning. In ACL.

202

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 203–211
November 7–11, 2021. ©2021 Association for Computational Linguistics

Box Embeddings: An open-source library for representation learning
using geometric structures

Tejas Chheda∗†, Purujit Goyal*†, Trang Tran*†‡, Dhruvesh Patel †,
Michael Boratko†, Shib Sankar Dasgupta†, and Andrew McCallum†

† College of Information and Computer Sciences
University of Massachusetts Amherst, MA 01003, USA

‡ MassMutual Data Science, MA 01002, USA
{tchheda,purujitgoyal,ttrang,dhruveshpate}@cs.umass.edu

{mboratko,ssdasgupta,mccallum}@cs.umass.edu

Abstract

A major factor contributing to the success
of modern representation learning is the ease
of performing various vector operations. Re-
cently, objects with geometric structures (eg.
distributions, complex or hyperbolic vectors,
or regions such as cones, disks, or boxes) have
been explored for their alternative inductive bi-
ases and additional representational capacities.
In this work, we introduce Box Embeddings, a
Python library that enables researchers to eas-
ily apply and extend probabilistic box embed-
dings. 1 Fundamental geometric operations
on boxes are implemented in a numerically sta-
ble way, as are modern approaches to training
boxes which mitigate gradient sparsity. The
library is fully open-source, and compatible
with both PyTorch and TensorFlow, which al-
lows existing neural network layers to be re-
placed with or transformed into boxes effort-
lessly. In this work, we present the implemen-
tation details of the fundamental components
of the library, and the concepts required to use
box representations alongside existing neural
network architectures.

1 Introduction

Much of the success of modern deep learning rests
on the ability to learn representations of data com-
patible with the structure of deep architectures used
for training and inference (Hinton, 2007; LeCun
et al., 2015). Vectors are the most common choice
of representation, as linear transformations are well
understood and element-wise non-linearities of-
fer increased representational capacity while be-

∗* Equal Contributions.
1The source code and the usage and API documentation for

the library is available at https://github.com/iesl/
box-embeddings and https://www.iesl.cs.
umass.edu/box-embeddings/main/index.html,
respectively. A quick video tutorial is available at
https://youtu.be/MEPDw8sIwUY.

ing straightforward to implement. Recently, vari-
ous alternatives to vector representations have been
explored, each with different inductive biases or
capabilities. Vilnis and McCallum (2015) repre-
sent words using Gaussian distributions, which can
be thought of as a vector representation with an
explicit parameterization of variance. This vari-
ance was demonstrated to be capable of captur-
ing the generality of concepts, and KL-divergence
provides a natural asymmetric operation between
distributions, ideas which were expanded upon in
Athiwaratkun and Wilson (2018). Nickel and Kiela
(2017), on the other hand, change the embedding
space itself from Euclidean to hyperbolic space,
where the negative curvature has been shown to
provide a natural inductive bias toward modeling
tree-like graphs (Nickel and Kiela, 2018; Weber,
2020; Weber and Nickel, 2018).

A subset of these alternative approaches explores
region-based representations, where entities are not
represented by a single point in space but rather
explicitly parameterized regions whose volumes
and intersections are easily calculated. Order em-
beddings (Vendrov et al., 2016) represent elements
using infinite cones in Rn+ and demonstrate their
efficacy of modeling partial orders. Lai and Hock-
enmaier (2017) endow order embeddings with prob-
abilistic semantics by integrating the space under a
negative exponential measure, allowing the calcu-
lation of arbitrary marginal, joint, and conditional
probabilities. Cone representations are not particu-
larly flexible, however - for instance, the resulting
probability model cannot represent negative corre-
lation - motivating the development of probabilistic
box embeddings (Vilnis et al., 2018), where entities
are represented by n-dimensional rectangles (i.e.
Cartesian products of intervals) in Euclidean space.

Probabilistic box embeddings have undergone
several rounds of methodological improvements.

203

The original model used a surrogate function to
pull disjoint boxes together, which was improved
upon in Li et al. (2018) via Gaussian convolution of
box indicator functions, resulting in a smoother loss
landscape and better performance as a result. Das-
gupta et al. (2020) improved box training further
by using a latent random variable approach, where
the corners of boxes are modeled using Gumbel
random variables. These latter models lacked valid
probabilistic semantics, however, a fact rectified in
Boratko et al. (2021).

While each methodological improvement
demonstrated better performance on various
modeling tasks, the implementations grew more
complex, bringing with it various challenges
related to performance and numerical stability.
Various applications of probabilistic box embed-
dings (eg. modeling joint-hierarchies (Patel et al.,
2020), uncertain knowledge graph representation
(Chen et al., 2021), or fine-grained entity typing
(Onoe et al., 2021)) have relied on bespoke
implementations, adding unnecessary difficulty
and differences in implementation when applying
box embeddings to new tasks. To mitigate this
issue and make applying and extending box
embeddings easier, we saw the need to introduce
a reusable, unified, stable library that provides
the basic functionalities needed in studying box
embeddings. To this end, we introduce “Box
Embeddings”, a fully open-source Python library
hosted on PyPI. The contributions of this work are
as follows:

• Provide a modular and reusable library that
aids the researchers in studying probabilistic
box embeddings. The library is compatible
with both of the most popular Machine Learn-
ing libraries: PyTorch and TensorFlow.

• Create extensive documentation and example
code, demonstrating the use of the library to
make it easy to adapt to existing code-bases.

• Rigorously unit-test the codebase with high
coverage, ensuring an additional layer of reli-
ability.

2 Box Embeddings

Formally, a “box” is defined as a Cartesian product
of closed intervals,

B(θ) =

n∏

i=1

[zi(θ), Zi(θ)]

= [z1(θ), Z1(θ)]× · · · × [zn(θ), Zn(θ)],

z the lower-left coordinate of the boxes
Z the top-right coordinate of the boxes
centre the center coordinate of the boxes, z+Z2
box_shape shape of the center coordinates (or z, Z)
box_reshape if possible, reshapes the box_shape into the target_shape

broadcast
if possible, adds new dimensions to the box_shape to make
it compatible with the target_shape

Table 1: BoxTensor Properties

where θ represent some latent parameters. In the
simplest case, θ ∈ R2n are free parameters, and
zi, Zi are projections onto the i and n+ i compo-
nents, respectively. In general, however, the pa-
rameterization may be more complicated, eg. θ
may be the output from a neural network. For
brevity, we omit the explicit dependency on θ. The
different operations (such as volume and intersec-
tion) commonly used when calculating probabil-
ities from box embeddings can all be defined in
terms of zi, Zi - the min and max coordinates of
the interval in each dimension.

2.1 Parameterizations
The fundamental component of the library is
the BoxTensor class, a wrapper around the
torch.Tensor and tensorflow.Tensor
class that represents a tensor/array of boxes.
BoxTensor is an opaque wrapper, in that it ex-
poses the operations and properties necessary to
use the box representations (see table 1) irrespec-
tive of the specific way in which the parameters
θ are related to zi, Zi. The main two properties
of the BoxTensor are z and Z, which repre-
sent the min and max coordinates of an instance
of BoxTensor. Listing 1 shows how to create
an instance of BoxTensor consisting of two 2-
dimensional boxes in Figure 1.

import torch
from box_embeddings.parameterizations import

BoxTensor
theta = torch.tensor(

[[[-2, -2], [-1, -1]], [[1, 0], [3, 4]]]
)
box = BoxTensor(theta)
A = box[0]
B = box[1]

Listing 1: Manually initializing a BoxTensor
consisiting for the 2-D boxes depicted in Figure 1.

Given a torch.Tensor corresponding to the
parameters θ of a BoxTensor, one can obtain a
box representation in multiple ways depending on
the constraints on the min and max coordinates of
the box representations as well as the the range
of values in θ. The BoxTensor class itself sim-
ply splits θ in half on the last dimension, using
θ[. . . , 1 : n] as z and θ[. . . , n + 1 : 2n] as Z.

204

Figure 1: Box Parameterization

Here, the Ellipsis “. . . ” denotes any number of
leading dimensions, for instance, batch, sequence-
length, etc. For the sake of simplifying the nota-
tions, from here on, the presence of the leading
dimensions will not be explicitly denoted using the
Ellipsis. Moreover, all the indexing operations
can be assumed to be operating only on the last
dimension, unless stated otherwise.
from box_embeddings.parameterizations import

BoxTensor, MinDeltaBoxTensor, SigmoidBoxTensor
box_tensor = BoxTensor(theta)
box_tensor_pos_sides = MinDeltaBoxTensor(theta)
box_tensor_in_unit_cube = SigmoidBoxTensor(theta)

Listing 2: Converting latent vectors to boxes, for
various choices of box parameterizations.

Any box can be represented in this fashion,
however some settings of θ may lead to situa-
tions where zi > Zi. This scenario is invalid un-
der conventional box models (Vilnis et al., 2018;
Li et al., 2018), and although valid for mod-
els which interpret these coordiantes as parame-
ters of a latent random variable (Dasgupta et al.,
2020; Boratko et al., 2021) it is often still desir-
able to constrain side-lengths to be non-negative.
MinDeltaBoxTensor represents boxes that are
unbounded and have non-negative side-length in
each dimension. That is, it outputs boxes with
z, Z ∈ Rn and zi ≤ Zi, and furthermore any such
box has a corresponding θ under this parameteriza-
tion. A valid probabilistic interpretation of box em-
beddings requires that their embedding space has
finite measure, however. One trivial way to accom-
plish this is to parameterize boxes to remain within
the unit hypercube, which can be accomplished via
the SigmoidBoxTensor or TanhBoxTensor
classes. The specific mathematical operations re-

Parameterization z Z

BoxTensor θ[1 : n] θ[n+ 1 : 2n]
MinDeltaBoxTensor θ[1 : n] z + softplus(θ[n+ 1 : 2n])
SigmoidBoxTensor σ(θ[1 : n]) z + (1− z)σ(θ[n+ 1 : 2n])

TanhBoxTensor tanh(θ[1:n])+1
2 z + (1−z) tanh(θ[n+1:2n])

2

Table 2: The different subclasses of BoxTensor and
how they represent boxes using the learnable parame-
ters θ ∈ R2n taken as input.

lating the θ variables to their z, Z coordinates are
found in Table 2, and example usage can be found
in Listing 2.2

2.2 Operations on BoxTensor

We provide a variety of modules that imple-
ment different operations on the box-tensors, such
as Intersection, Volume, Pooling and
Regularization. We also implemented a
BoxEmbedding layer that, just like a vector em-
bedding layer, provides index lookup. However,
unlike a vector embedding layer, this returns boxes
instead of vectors. We discuss these layers in detail
below.

2.2.1 Intersection

Given two instances of BoxTensor with com-
patible shapes, this operation performs the inter-
section between the two box-tensors and returns
an instance of BoxTensor as the result. For
two instances of BoxTensor A and B with coor-
dinates (zA, ZA) and (zB, ZB) respectively, the
(z, Z) coordinates of the resulting intersection
box for the two types of intersection operations,
HardIntersection (Vilnis et al., 2018; Li
et al., 2018) and GumbelIntersection (Das-
gupta et al., 2020), are shown in Table 3, and corre-
sponding codes are provided in Listing 3.
from box_embeddings.parameterizations import

BoxTensor
from box_embeddings.modules.intersection import

HardIntersection, GumbelIntersection

boxA = BoxTensor(theta_a)
boxB = BoxTensor(theta_b)

hard_intersection = HardIntersection()
gumbel_intersection =

GumbelIntersection(intersection_temperature=0.8)

hard_ab = hard_intersection(boxA, boxB)
gumbel_ab = gumbel_intersection(boxA, boxB)

Listing 3: Various approaches to computing the
intersection of two box tensors.

2The TensorFlow version for all the code snippets is pro-
vided in Appendix.

205

Intersection type z Z

HardIntersection max(zA, zB) min(ZA, ZB)

GumbelIntersection β LSE(zAβ ,
zB
β) −β LSE(−ZA

β ,−
ZB
β)

Table 3: Expressions for the two kinds of inter-
section layers. Here, LSE denotes logsumexp, i.e.,
LSE(x, y) := log(exp(x) + exp(y))

2.2.2 Volume
Boxes (or intersections of boxes) are typically
queried for their volumes. Our HardVolume
layer implements the volume calculation as orig-
inally introduced in Vilnis et al. (2018), which
is simply a direct multiplication of side-lengths.
It is in this setting where bounded parame-
terizations such as SigmoidBoxTensor and
TanhBoxTensor are particularly useful, as the
resulting volumes can be interpreted as yielding a
valid marginal or joint probability. Note, however,
that the guarantees of positive side-lengths do not
apply when taking the intersection of two disjoint
boxes, in which case the resulting box should have
zero volume.

Our SoftVolume layer implements the vol-
ume function proposed by Li et al. (2018), which
mitigates the training difficulties that arise when
disjoint boxes should overlap. Finally, our
BesselApproxVolume layer implements the
volume function proposed in Dasgupta et al. (2020),
which approximates the expected volume of a box
where the coordinates are interpreted as location pa-
rameters of Gumbel random variables. The expres-
sions and the code snippets for the various volume
operations are given in Table 4 and 4, respectively.

Remark 1. Note that due to the presence of the
product, the naive implementation of volume com-
putations as shown in Table 4 will often result in
numerical overflow or underflow for dimensions
greater than 5. Hence, we provide an option to
compute the volume in log-space, which is on by
default.

from box_embeddings.modules.volume import
HardVolume, SoftVolume, BesselApproxVolume

hard_volume = HardVolume()
log_volA = hard_volume(boxA)

soft_volume = SoftVolume(volume_temperature=5.0)
log_vol_ab = soft_volume(hard_ab)

bessel_volume =
BesselApproxVolume(volume_temperature=5.0,
intersection_temperature=0.8)

log_vol_ab = bessel_volume(gumbel_ab)

Listing 4: Different proposed methods for computing
box volume, of increasing “smoothness”.

Intersection type Volume

HardVolume
∏n
i=1max(Zi − zi, 0)

SoftVolume
∏n
i=1 T ∗ softplus(Zi−zi

T)

BesselApproxVolume
∏n
i=1 T ∗ softplus(Zi−zi−2γβ

T)

Table 4: The expressions for different volume im-
plementations. Here, (z, Z) are the min-max coordi-
nates of the input BoxTensor, T is the volume tem-
perature hyperparameter, γ is the Euler-Mascheroni
constant, β is the gumbel intersection parameter, and
softplus(x) = log(1 + expx).

2.2.3 Pooling
The library also provides pooling operations that
take as input an instance of BoxTensor and re-
duce one of the leading dimensions by pooling
across it. Currently, there are two types of pool-
ing operations implemented – intersection based,
which takes intersection across all the boxes in a
particular dimension, and mean based, which takes
the arithmetic mean of the min and max coordinates
of the boxes across a dimension.

2.2.4 Regularization
There is an excessive slackness in the learning ob-
jective defined using containment conditions on
boxes, which leads to large flat regions of local
minima resulting in poor training. In order to mit-
igate this problem, Patel et al. (2020) introduces
volume based regularization for boxes, which aug-
ments the loss with a penalty if the box volume
exceeds a certain threshold. This penalty reduces
the size of the flat local minima facilitating better
training of boxes.
from box_embeddings.modules.pooling import

HardIntersectionBoxPooler
from box_embeddings.modules.regularization import

L2SideBoxRegularizer

pooler = HardIntersectionBoxPooler()
pooled_box = pooler(box)

box_regularizer =
L2SideBoxRegularizer(log_scale=True)

vol_box = soft_volume(pooled_box)
loss = loss_fn(vol_box) +

box_regularizer(pooled_box)

Listing 5: Box pooling and regularization operations.

2.3 Embedding

BoxTensor and its children classes, do not store
learnable parameters directly, they simply wrap
the input tensor and provide an interface which
interprets the wrapped tensor as box representa-
tion. However, when working with a shallow model

206

(embedding only model), one needs an embedding
layer that owns its parameters and outputs boxes
corresponding to the input indices. The library
provides BoxEmbedding layer that works like a
native embedding layer in PyTorch or TensorFlow,
i.e., it performs index lookup, but instead of re-
turning an instance of the native tensor, it returns
instance of BoxTensor.

2.3.1 Initializers
We also provide an abstract interface
BoxInitializer to implement various
methods for initializing the learnable parameters of
the BoxEmbedding layer. As a concrete exam-
ple we implement UniformBoxInitializer,
which initializes boxes with uniformly random min
coordinates and side lengths. This is used as the
default initializer for the BoxEmbedding layer
unless specified otherwise.

3 Applications

In this section, we demonstrate the Box Embed-
dings library by using it to implement models for
two real-world tasks: a representation learning task
of hierarchical graph modeling (Nickel and Kiela,
2017; Vilnis et al., 2018), and the NLP task of nat-
ural language inference (Dagan et al., 2005; Bow-
man et al., 2015). We first demonstrate the intuition
behind the containment-based loss function used to
train these models using a toy example involving
two 2-dimensional boxes.

3.1 Toy example

For the purpose of demonstration, we set up a toy
example which embeds a simple graph with just
two nodes, X,Y and one edge (X,Y). We start
with two non-overlapping boxes at initialization:
boxX and boxY , and use SGD to train the parame-
ters that minimize the following loss function

L(θ) = − log
Vol (B(θX) ∩ B(θY))

Vol (B(θY))
.

Geometrically, this encourages boxY ⊆ boxX . If
using a box embedding with valid probabilistic
semantics, this loss function can be interpreted as
binary cross-entropy with P (X|Y) = 1.3 The
code for this example can be found in Appendix
A.2. We visualize the containment training process
in Figure 3. Each line represents the edge of the

3To understand further the motivation for this choice of
graph embedding, see Vilnis et al. (2018).

box in one dimension, with the left endpoint of a
blue or orange line to be the minimum coordinate
of a box, and the right endpoint of a line to be the
maximum coordinate of a box.

3.2 Representing hierarchical graph
Representing relations between the nodes of a hi-
erarchy is useful for various NLP and Machine
Learning tasks such as natural language inference
(Wang et al., 2019; Sharma et al., 2019), entity typ-
ing (Onoe et al., 2021), multi-label classification
(Chatterjee et al., 2021), and question answering
(Jin et al., 2019; Fang et al., 2020). For example,
in Figure 2, knowing the hypernym relationship
between the pairs (herb, basil), (herb, thyme), and
(herb, rosemary) can help paraphrase the sentence
“This dish requires basil, thyme and rosemary” into
“This dish requires several herbs.”. Additionally,
knowing the relationship between (herb, banana),
and (fruit, banana) can help answer questions such
as “What is both a herb and a fruit?” Note that
this latter example maps directly onto the notion
of box intersection, as we are seeking an element
contained in both “herb” and “fruit”.

For demonstration, we train box embeddings to
represent the hypernym graph of WordNet (Miller
et al., 1990). Hypernym or IS-A is a transitive re-
lation between a pair of words, where one word
(hypernym) represents a general/broader concept,
and the other word (hyponym) is a more specific
sub-concept (Yu et al., 2015). The transitive re-
duction of the WordNet noun hierarchy contains
82,114 entities and 84,363 edges. The learning
task is framed as an edge classification task where,
given a pair of nodes (h, t), the model outputs
the probability of existence of an edge from h
to t. Following Patel et al. (2020), we train an
edge classification model using the transitive reduc-
tion edges augmented with varying percentages of
the transitive closure edges (10%, 25%, 50%) as
positive examples and randomly sampled negative
examples with positive to negative ratio of 1:10.
The BoxEmbedding layer is initialized with ran-
dom boxes representing the nodes of the hypernym
graph. For each input pair x = (hi, ti), the proba-
bility of existence of the edge hi → ti is computed
as

P (hi → ti) =
Vol (B(θhi) ∩ B(θti))

Vol (B(θti))
.

In our case, we use MinDeltaBoxTensor
parameterization, HardIntersection and

207

(a) An example hierarchical structure (b) Representing the structure in (a) with Box Embeddings

Figure 2: Box Embeddings can capture hierarchical structures commonly observed in natural language

(a) Before training (b) After training

Figure 3: Visualization of two 15-dimensional boxes
before and after containment training described in Sec-
tion 3.1. The green box B(θY) has been trained to be
entirely contained in the orange box B(θX).

TC Edges 0% 10% 25% 50%

w/o Regularization 44.2% 71.3% 81.1% 89.1%
w Regularization 59.4% 90.3% 91.9% 94.2%

Table 5: Test F1 scores for predicting the transitive clo-
sure of WordNet’s hypernym relations when training on
increasing amounts of edges from the transitive closure

SoftVolume. Binary cross-entropy loss is used
to train the model for edge classification. The test
set consists of positive edges sampled from the rest
of the transitive closure (not seen during training)
and a fixed set of random negatives with the same
positive to negative ratio as training. As seen in
Table 5, we are able to replicate the result from
Patel et al. (2020).

3.3 Natural Language Inference (NLI)
Natural language inference (Dagan et al., 2005;
Bowman et al., 2015) is a task where, given two

sentences, premise and hypothesis, the model is
required to pick whether the premise entails the hy-
pothesis, contradicts the hypothesis, or whether nei-
ther relationship holds. The task of NLI is setup as
multi-class classification, and in the two-class ver-
sion, the model is only required to decide whether
the premise entails the hypothesis or not (Mishra
et al., 2021). Although NLI deals with a pair of
sentences at a time, in the space of all possible
sentences the transitive relation of entailment estab-
lishes a partial order. If the sentences are encoded
as boxes then we can train box containment to cap-
ture the transitive entailment relation. To demon-
strate this, we choose the MNLI corpus (Williams
et al., 2018) from the GLUE benchmark (Wang
et al., 2018). Since the MNLI dataset presents
the NLI task as a three-class problem, we collapse
contradiction and neutral labels into a single label
called not-entails to obtain a two-class problem
with class labels entails and not-entails.

In order to obtain box representation for the
premise and hypothesis sentences, we use a neu-
ral network E to first get vector representations vp
and vh for the premise and the hypothesis, respec-
tively. Both these vectors are then interpreted as
the parameters θp := vp and θh := vh of a box
tensor. Finally, the probability of the entails class
is computed as

P (entails) =
Vol (B(θp) ∩ B(θh))

Vol (B(θh))
.

The parameters of the encoder are trained using
the ADAM optimizer (Kingma and Ba, 2014) with
binary cross-entropy as the loss. Table 6 shows the
test accuracy with two different encoders. As seen,
the performance is much higher than random or
majority class baselines.

208

Neural Network Encoder (E) Accuracy

RoBERTa 78%
LSTM 73%

Random Baseline 50%
Majority Baseline 66%

Table 6: Test accuracy on MNLI task using box embed-
dings

4 Conclusion

In this paper, we have introduced Box Embeddings,
the first Python library focused on allowing region-
based representations to be used with deep learning
libraries. Our library implements proposed training
methods and geometric operations on probabilistic
box embeddings in a well-tested and numerically-
stable fashion. We described the concepts needed
to understand and apply this library to novel tasks,
and applied the library to graph modeling and nat-
ural language inference, demonstrating both shal-
low and deep contextualized box representations.
We hope the release of this package will aid re-
searchers in using region-based representations in
their work, and that the well-documented codebase
will facilitate additional methodological extensions
to probabilistic box embedding models.

Acknowledgements

The authors would like to thank the members of
the Information Extraction and Synthesis Labo-
ratory (IESL) at the University of Massachusetts
Amherst for their tremendous support and feed-
back throughout the project. We also thank Lor-
raine Li for her involvement in the early phase of
the project. This work is funded in part by the
University of Southern California subcontract no.
123875727 under Office of Naval Research prime
contract no. N660011924032 and University of
Southern California subcontract no. 89341790 un-
der Defense Advanced Research Projects Agency
prime contract no. FA8750-17-C-0106. The U.S.
Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views
and conclusions contained herein are those of the
authors and should not be interpreted as necessarily
representing the official policies or endorsements,
either expressed or implied, of AFRL, DARPA, or
the U.S. Government.

References
Ben Athiwaratkun and Andrew Gordon Wilson. 2018.

Hierarchical density order embeddings. In Interna-
tional Conference on Learning Representations.

Michael Boratko, Javier Burroni, Shib Sankar Das-
gupta, and Andrew McCallum. 2021. Min/max sta-
bility and box distributions. In Conference on Un-
certainty in Artificial Intelligence. PMLR.

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large anno-
tated corpus for learning natural language inference.
arXiv preprint arXiv:1508.05326.

Soumya Chatterjee, Ayush Maheshwari, Ganesh Ra-
makrishnan, and Saketha Nath Jagaralpudi. 2021.
Joint learning of hyperbolic label embeddings for
hierarchical multi-label classification. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 2829–2841, Online. Associa-
tion for Computational Linguistics.

Xuelu Chen, Michael Boratko, Muhao Chen,
Shib Sankar Dasgupta, Xiang Lorraine Li, and
Andrew McCallum. 2021. Probabilistic box embed-
dings for uncertain knowledge graph reasoning. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 882–893.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment
challenge. In Machine Learning Challenges Work-
shop, pages 177–190. Springer.

Shib Dasgupta, Michael Boratko, Dongxu Zhang, Luke
Vilnis, Xiang Li, and Andrew McCallum. 2020. Im-
proving local identifiability in probabilistic box em-
beddings. Advances in Neural Information Process-
ing Systems, 33.

Yuwei Fang, Siqi Sun, Zhe Gan, Rohit Pillai, Shuo-
hang Wang, and Jingjing Liu. 2020. Hierarchical
graph network for multi-hop question answering. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 8823–8838.

Geoffrey E. Hinton. 2007. Learning multiple layers
of representation. Trends in Cognitive Sciences,
11(10).

Hai Jin, Yi Luo, Chenjing Gao, Xunzhu Tang, and Ping-
peng Yuan. 2019. Comqa: Question answering over
knowledge base via semantic matching. IEEE Ac-
cess, 7:75235–75246.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

209

Alice Lai and Julia Hockenmaier. 2017. Learning to
predict denotational probabilities for modeling en-
tailment. In EACL.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
2015. Deep learning. Nature, 521.

Xiang Li, Luke Vilnis, Dongxu Zhang, Michael Bo-
ratko, and Andrew McCallum. 2018. Smoothing the
geometry of probabilistic box embeddings. In Inter-
national Conference on Learning Representations.

George A Miller, Richard Beckwith, Christiane Fell-
baum, Derek Gross, and Katherine J Miller. 1990.
Introduction to wordnet: An on-line lexical database.
International journal of lexicography, 3(4):235–
244.

Anshuman Mishra, Dhruvesh Patel, Aparna Vijayaku-
mar, Xiang Lorraine Li, Pavan Kapanipathi, and Kar-
tik Talamadupula. 2021. Looking beyond sentence-
level natural language inference for question answer-
ing and text summarization. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1322–1336, On-
line. Association for Computational Linguistics.

Maximillian Nickel and Douwe Kiela. 2017. Poincaré
embeddings for learning hierarchical representa-
tions. In Advances in Neural Information Process-
ing Systems, volume 30. Curran Associates, Inc.

Maximillian Nickel and Douwe Kiela. 2018. Learning
continuous hierarchies in the lorentz model of hy-
perbolic geometry. In International Conference on
Machine Learning, pages 3779–3788. PMLR.

Yasumasa Onoe, Michael Boratko, Andrew McCallum,
and Greg Durrett. 2021. Modeling fine-grained en-
tity types with box embeddings. In Proceedings of
the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 2051–2064, Online.
Association for Computational Linguistics.

Dhruvesh Patel, Shib Sankar Dasgupta, Michael Bo-
ratko, Xiang Li, Luke Vilnis, and Andrew McCal-
lum. 2020. Representing joint hierarchies with box
embeddings. In Automated Knowledge Base Con-
struction.

Soumya Sharma, Bishal Santra, Abhik Jana, Santosh
Tokala, Niloy Ganguly, and Pawan Goyal. 2019. In-
corporating domain knowledge into medical NLI
using knowledge graphs. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 6092–6097, Hong Kong,
China. Association for Computational Linguistics.

Ivan Vendrov, Ryan Kiros, Sanja Fidler, and Raquel Ur-
tasun. 2016. Order-embeddings of images and lan-
guage. In ICLR.

Luke Vilnis, Xiang Li, Shikhar Murty, and Andrew Mc-
Callum. 2018. Probabilistic embedding of knowl-
edge graphs with box lattice measures. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 263–272.

Luke Vilnis and Andrew McCallum. 2015. Word rep-
resentations via gaussian embedding. In ICLR.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, Brussels, Belgium. Association for
Computational Linguistics.

Xiaoyan Wang, Pavan Kapanipathi, Ryan Musa,
Mo Yu, Kartik Talamadupula, Ibrahim Abdelaziz,
Maria Chang, Achille Fokoue, Bassem Makni,
Nicholas Mattei, and Michael Witbrock. 2019. Im-
proving natural language inference using external
knowledge in the science questions domain. Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, 33(01):7208–7215.

Melanie Weber. 2020. Neighborhood growth deter-
mines geometric priors for relational representation
learning. In Proceedings of the Twenty Third Inter-
national Conference on Artificial Intelligence and
Statistics, volume 108 of Proceedings of Machine
Learning Research, pages 266–276. PMLR.

Melanie Weber and Maximilian Nickel. 2018. Curva-
ture and representation learning: Identifying embed-
ding spaces for relational data. NeurIPS Relational
Representation Learning.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122. Association for
Computational Linguistics.

Zheng Yu, Haixun Wang, Xuemin Lin, and Min Wang.
2015. Learning term embeddings for hypernymy
identification. In Twenty-Fourth International Joint
Conference on Artificial Intelligence.

210

A Appendix

A.1 TensorFlow (TF) version

import tensorflow as tf
from box_embeddings.parameterizations import

TFBoxTensor
theta = tf.Variable(

[[[0, 0], [2, 2]], [[4, 0], [8, 4]]]
)
box = BoxTensor(theta)
boxA = box[0]
boxB = box[1]

Listing 6: TF code for initializing a BoxTensor.

from box_embeddings.parameterizations import
TFMinDeltaBoxTensor, TFSigmoidBoxTensor,
TFTanhBoxTensor

box_tensor = TFMinDeltaBoxTensor(theta)
box_tensor_pos_sides = TFSigmoidBoxTensor(theta)
box_tensor_in_unit_cube = TFTanhBoxTensor(theta)

Listing 7: TF code for converting theta vectors to
boxes.

from box_embeddings.parameterizations import
TFBoxTensor

from box_embeddings.modules.intersection import
TFHardIntersection

from box_embeddings.modules.intersection import
TFGumbelIntersection

boxA = TFBoxTensor(theta_a)
boxB = TFBoxTensor(theta_b)

hard_intersection = TFHardIntersection()
gumbel_intersection = TFGumbelIntersection()

hard_ab = hard_intersection(boxA, boxB)
gumbel_ab = gumbel_intersection(boxA, boxB)

Listing 8: TF code for computing the intersection of
two box tensors.

from box_embeddings.modules.volume import
TFHardVolume

from box_embeddings.modules.volume import
TFSoftVolume

from box_embeddings.modules.volume import
TFBesselApproxVolume

hard_volume = TFHardVolume()
volA = hard_volume(boxA)

soft_volume = TFSoftVolume()
vol_ab = soft_volume(hard_ab)

bessel_volume = TFBesselApproxVolume()
vol_ab = bessel_volume(gumbel_ab)

Listing 9: TF code for computing the volume of a box.

from box_embeddings.modules.pooling import
TFHardIntersectionBoxPooler

from box_embeddings.modules.regularization import
TFL2SideBoxRegularizer

pooler = TFHardIntersectionBoxPooler()
pooled_box = pooler(box)

box_regularizer =
TFL2SideBoxRegularizer(log_scale=True)

vol_box = soft_volume(pooled_box)
loss = loss_fn(vol_box) +

box_regularizer(pooled_box)

Listing 10: TF code for performing pooling and
regularization operations over a box.

A.2 Toy Example

import torch
import numpy
from box_embeddings.parameterizations.box_tensor

import BoxTensor
from box_embeddings.modules.volume.volume import

Volume
from box_embeddings.modules.intersection import

Intersection

Initialization
x_z = numpy.array([-2.0 for n in range(1, 16)])
x_Z = numpy.array([0.0 for k in (x_z)])
data_x = torch.tensor([x_z, x_Z],

requires_grad=True)
box_H = BoxTensor(data_x)

y_z = numpy.array([1/n for n in range(1, 16)])
y_Z = numpy.array([1 + k for k in reversed(y_z)])
data_y = torch.tensor([y_z, y_Z],

requires_grad=True)
box_T = BoxTensor(data_y)

Training function
learning_rate = 0.1
def train(box_1, box_2, optimizer, epochs=1):

best_loss = int()
best_box_1 = None
best_box_2 = None
box_vol = Volume(volume_temperature=0.1,

intersection_temperature=0.0001)
box_int =

Intersection(intersection_temperature=0.0001)
for e in range(epochs):

loss = box_vol(box_2) -
box_vol(box_int(box_1, box_2))

optimizer.zero_grad()
loss.backward()
optimizer.step()
if best_loss < loss.item():

best_loss = loss.item()
best_box_2 = box_2
best_box_1 = box_1

print(’Iteration %d, loss = %.4f’ % (e,
loss.item()))

return best_box_1, best_box_2

Train
optimizer = torch.optim.SGD([data_x, data_y],

lr=learning_rate)
best_box_H, best_box_T = train(box_H, box_T,

optimizer, epochs=50)

Listing 11: Training Pipeline for the Toy Example (3.1)

211

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 212–219
November 7–11, 2021. ©2021 Association for Computational Linguistics

LexiClean: An annotation tool for rapid multi-task lexical normalisation

Tyler Bikaun(�), Tim French, Melinda Hodkiewicz, Michael Stewart and Wei Liu
The University of Western Australia

35 Stirling Highway, Crawley, Western Australia
tyler.bikaun@research.uwa.edu.au
{firstname.lastname}@uwa.edu.au

Abstract

NLP systems are often challenged by diffi-
culties arising from noisy, non-standard, and
domain specific corpora. The task of lexi-
cal normalisation aims to standardise such cor-
pora, but currently lacks suitable tools to ac-
quire high-quality annotated data to support
deep learning based approaches. In this paper,
we present LexiClean1, the first open-source
web-based annotation tool for multi-task lexi-
cal normalisation.

LexiClean’s main contribution is support for
simultaneous in situ token-level modification
and annotation that can be rapidly applied cor-
pus wide. We demonstrate the usefulness of
our tool through a case study on two sets of
noisy corpora derived from the specialised-
domain of industrial mining. We show that
LexiClean allows for the rapid and efficient de-
velopment of high-quality parallel corpora. A
demo of our system is available at: https:
//youtu.be/P7_ooKrQPDU.

1 Introduction

Garbage in, garbage out is a well known adage in
the computer science and machine learning com-
munity. In NLP it has become the centre-focus,
demanding a task of its own right; namely, lexical
normalisation (Baldwin et al., 2015). Lexical nor-
malisation is the task of identifying and normalis-
ing non-canonical tokens (e.g. erroneous spelling,
acronyms, . . .) in noisy, non-standard, corpora
(Han and Baldwin, 2011).

Largely made popular after the 2015 ACL-
IJCNLP Workshop on Noisy User-generated Text
(W-NUT) (Baldwin et al., 2015), lexical normali-
sation has demonstrated marked improvements on
down-stream applications such as entity recogni-
tion, text classification, and part-of-speech (POS)
tagging (Derczynski et al., 2013; Hua et al., 2015;
Van der Goot et al., 2017; Núñez et al., 2019).

1LexiClean. https://lexiclean.nlp-tlp.org

These improvements have centred around the fact
that many NLP tools are not amenable to noisy
corpora, such as those in micro-blogging domains
like Twitter (Liu et al., 2011), and in specialised-
domains such as industrial mining (Stewart et al.,
2018).

To date the most popular lexical normalisation
corpus is based on English Twitter and was released
as part of W-NUT (Baldwin et al., 2015). This has
resulted in a number of algorithmic contributions to
lexical normalisation task with the current state-of-
the-art using ensemble learning methods (van der
Goot and van Noord, 2017). More recently, atten-
tion has shifted towards neural techniques that i)
contextually normalise tokens based on high-level
classifications (Stewart et al., 2019b), ii) modify
and fine-tune large pre-trained transformer based
representations (Muller et al., 2019), or iii) perform
joint normalisation and sanitisation (e.g. masking
sensitive tokens) (Nguyen and Cavallari, 2020).

However, neural models typically demand large
volumes of high-quality training data, which is not
available for the task of lexical normalisation. De-
spite the prevalence of open-source token-level an-
notation tools (Stenetorp et al., 2012; Yimam et al.,
2013; Yang et al., 2017; Kummerfeld, 2019), there
still remains a lack of support for lexical normali-
sation.

A gap in lexical normalisation research currently
exists and consists of an absence of large scale an-
notated corpora and scalable, task-specific tools
for their construction. To fill this gap, we intro-
duce LexiClean, an annotation tool for multi-task
lexical normalisation that is:

i. Rapid: Enables fast corpus wide multi-task
annotation.

ii. Flexible: Supports 1:1 and 1:N token normali-
sation.

iii. Intuitive: Maintains a simple and easy-to-use
interface.

212

iv. Dynamic: Permits organic schema develop-
ment during annotation.

The remainder of this paper is organised as fol-
lows. We define the task of lexical normalisation
in Section 2 and briefly review related work in Sec-
tion 3. Following this, we present and describe key
features of LexiClean in Section 4. LexiClean’s
system architecture is then discussed in Section 5
with a case study presented in Section 6. Lastly con-
clusions are drawn and future work is proposed in
Section 7. An online demonstration of LexiClean
is located at https://lexiclean.nlp-tlp.
org and the source code is available under an
Apache-2.0 license at https://github.com/
nlp-tlp/lexiclean.

2 Problem Formulation

Lexical normalisation is defined as the mapping
of non-canonical, out-of-vocabulary (OOV) tokens
to canonical, in-vocabulary (IV) forms (Han and
Baldwin, 2011). Non-canonical tokens are largely
a result of i) unconventional and phonetic spelling,
ii) improper casing, iii) acronyms, iv) abbrevia-
tions and initialisms, v) domain-specific terms, vi)
neologisms, and vii) erroneous concatenation or
tokenization. This task is akin to grammatical error
correction (GEC) (Ng et al., 2014), although it does
not involve token reordering that is core to GEC.

Lexical normalisation is typically tackled as
one of two formulations, either as a sequence-to-
sequence (seq2seq) (Muller et al., 2019; Nguyen
and Cavallari, 2020) or token classification problem
(van der Goot and van Noord, 2017; Stewart et al.,
2018, 2019b). Seq2seq structures the learning task
similar to neural machine translation (NMT) (Bah-
danau et al., 2014) whereby an encoder receives
a sequence of noisy text, X = (x1, . . . , xn), and
maps it to a decoder which outputs a sequence
of normalised text, Y = (y1, . . . , ym). In this
format, |X| does not necessarily have to equal
|Y|. Here a variation in sequence length can result
from concatenation and tokenization corrections
e.g. (“helloworld”) → (“hello”, “world”) or
(“hello”, “w”, “orld”)→ (“hello”, “world”).

In contrast, token classification structures the
task in a modular fashion where OOV candidates
are identified and normalised in multiple stages.
Typically a noisy sequence, X, is mapped to an
intermediate sequence of semantic classes, Z =
(z1, . . . , zn). Token classification can be simple
binary classification, Ln=2 = {OOV, IV }, or

comprehensive, Ln=4 = {self, spelling_error,
domain_specific, acronym}, where L is a space
consisting of n pre-defined classes of token cate-
gories. After classification, alignment to suitable
canonical forms is performed using similarity or
distance based measures conditioned on labels in
Z (Han and Baldwin, 2011; Baldwin et al., 2015).

3 Related Work

In the last decade, many open-source annotation
tools have been developed for token-level classi-
fication tasks such as entity recognition and POS
tagging, notably BRAT (Stenetorp et al., 2012),
WebAnno (Yimam et al., 2013), YEDDA (Yang
et al., 2017), and SLATE (Kummerfeld, 2019).
The contributions of the current generation of tools
have been significant, but support for the task of
lexical normalisation has been overlooked. As a
result, these tools do not have features that en-
able in situ token modification or data quality im-
provements such as decatentation and tokenization
whilst performing their main tasks. On the other
hand, proprietary writing assistants such as Gram-
marly2, ProWritingAid3, and Ginger4 do contain
features required for lexical normalisation, but are
prohibitively expensive and not designed for the
task of corpora annotation.

4 LexiClean - Key Features

This section provides an overview of the key fea-
tures of LexiClean that enable rapid multi-task
token-level annotation that supports both seq2seq
and token classification task formats. An overview
of the system is presented in Figure 1 with a web-
based interface in Figure 3.

4.1 Project Creation and Automatic
Labelling

LexiClean provides users upon project creation the
facility to upload a predefined OOV to IV (1:1) re-
placement dictionary (e.g. {"hel" : "hello", "worl":
"world"}) and an unlimited number of plain-text
gazetteers (Figure 3). Gazetteers are lists of to-
kens mapped to a high-level concept (e.g. do-
main_specific → {u/s, . . . , c/o}. Here, these con-
cepts are referred to as meta-tags and are used to
support the token classification formulation of lex-
ical normalisation. These resources are used to

2Grammarly. https://www.grammarly.com/
3ProWritingAid. https://prowritingaid.com/
4Ginger. https://www.gingersoftware.com/

213

Figure 1: Overview of LexiClean process and data
flow.

automatically label tokens in the entire corpus be-
fore an annotation session commences (Figure 1),
notably reducing annotation effort.

Depending on the resources used, replacements
will be automatically applied as suggested replace-
ments (Figure 3(a)) whereas meta-tags will applied
directly (Figure 2). However, any accepted sug-
gested replacements or automatically applied meta-
tags can be removed at any time throughout an
annotation session if deemed unsuitable (see Fig-
ure 3(b) and Figure 2).

4.2 Single and Multiple Replacements

Instead of iteratively constructing replacement dic-
tionaries only as a 1:1 mapping throughout the an-
notation process, LexiClean allows the correction
of single tokens in situ (1:1) or across the entire
corpora via cascading (1:N) (see apply and apply
all in Figure 3(c)).

This has two main benefits: i) single non-
canonical tokens can be replaced in situ enabling
contextual normalisations to be captured, and ii)
cascading replacements across the entire corpora
hastens annotation speed. The importance of this
is illustrated by considering the following texts -
around the wod, cut the wod, and burn fire wod. 1:1

dictionary based methods (e.g. replace all) would
only be able to capture the replacement as either
wood or world which would incorrectly annotate
either 1 or 2 of the texts. Here, LexiClean allows
users to modify wod → world in situ and cascade
wod → wood across the remainder of the corpus (if
deemed suitable). In some instances, the applica-
tion of both styles of normalisation can indirectly
lead to N:1 mappings being formed.

Figure 2: LexiClean meta-tag context menu.

4.3 Easily Identifiable Token Markup

Identifying and normalising OOV tokens in large
corpora can be a demanding task, especially over
thousands of texts. As a result consistency can be
negatively impacted due to the inability of a user to
recall corrections they have made to non-canonical
token forms. To overcome this, LexiClean marks
up tokens using a colour system. Colours for re-
placements, suggested replacements, and IV and
OOV candidates are set to a default palette (Fig-
ure 3) whereas meta-tag colours are specified by
the project creator on project creation. By using
distinct colours to markup tokens, rapid identifica-
tion can be ensured and consistency preserved. For
example, users can quickly see where suggestions
have been made and decide to accept or ignore
them.

4.4 Dynamic Schema

Similar to token-level annotation tools that employ
dynamic schemas (Stewart et al., 2019a), Lexi-
Clean allows users to update their meta-tag schema
throughout the annotation process. This feature
permits users to organically modify their schema
based on phenomena present in the corpora rather
than fitting to a prescriptive set of classes. Up-
dates include additional classes of meta-tags and
toggling the active state of existing ones. Toggling
of meta-tag active states within the schema permits

214

Figure 3: LexiClean annotation interface - (a) suggested token replacement, (b) accepted token replacement, (c)
in-progress token normalisation, and (d) text tokenization mode.

a soft-deletion that can be reversed if required by
the user.

4.5 Decatenation and Tokenization

Concatenation and irregular tokenization of texts
are common in noisy corpora. Consider the follow-
ing problematic example that exhibits both cases:

original hewalkedacross th er oad
corrections he, , walked, , across, {th

er → the}, , {r oad → road}
normalisation he walked across the road

LexiClean manages this by first allowing the user
to decatenate the concatenated tokens by introduc-
ing additional white space (). Secondly, incorrect
tokenization is corrected through a utility function
that allows users to change the annotation mode of
a text and modify its token spans (see Figure 3(d)).

4.6 Sorting Algorithm
To optimise annotation speed, LexiClean computes
the average inverse tf-idf weight (Manning and
Schutze, 1999) on project creation from all OOV
candidates in each text. Using these weights, texts
are presented to the user in ranked order with the
most prominent candidates appearing first. The ra-
tionale behind this technique is that the immediate
annotation of high-frequency OOV candidates will
have a significant impact on the conversion rate of
texts when using the cascade style annotation.

4.7 Exporting Annotations and
Normalisation Maps

At any stage of an annotation project, users can
download their annotated corpora in an extended
W-NUT JSON-based format (Baldwin et al., 2015).
Additionally, replacements and meta-tag gazetteers
generated over the course of the project can also
be exported for use in new projects or external

215

systems.

5 System Architecture

LexiClean is built using the modern full stack
web development framework MERN5 (MongoDB-
Express-React-NodeJS). All annotations are cap-
tured at the token-level as shown in the MongoDB
(NoSQL) entity relationship diagram in Figure 4.

Figure 4: LexiClean’s entity relationship diagram.

Here, the Project model stores information
related to a project including references to Texts,
Maps and Users. The Maps model captures
replacements and meta-tag gazetteers, as well as
static assets such as a standard English lexicon. The
Texts model comprises information pertaining to
individual texts such as its original value, aggre-
gate tf-idf weight and resulting rank, whether its
been annotated, and its constituent tokens. Texts
reference the Tokens model that is composed
of the tokens original value, and accepted or sug-
gested annotations (replacement, meta_tags, sug-
gested_replacement). Lastly, Users contains in-
formation about users such as their username, pass-
word and email.

6 Case Study

Without comparable systems, we demonstrate the
efficacy of LexiClean through the annotation of

5MERN. https://www.mongodb.com/mern-stack

user generated content (UGC) from the specialised-
domain of industrial mining (IM) (Sikorska et al.,
2016). To date, UGC in industrial domains has re-
ceived little attention from the NLP community,
with state-of-the-art systems relying heavily on
hand-craft rules and heuristics for normalisation
(Hodkiewicz and Ho, 2016; Gao et al., 2020). More
recently, it has also been highlighted that corpora
derived from such domains can pose challenges to
state-of-the-art NLP systems (Dima et al., 2021).

6.1 Task Setup
We experiment on two corpora (IM-Pub and IM-
Priv) and release one to the public6. As LexiClean
currently is a single user application, we focus on
the performance of a single user annotating under
two modes to illustrate the efficacy of LexiClean’s
features. The two modes are i) from scratch (no au-
tomatic labelling using prepopulated replacements
or meta-tag gazetteers), and ii) with automatic la-
belling from prepopulated assets. The same annota-
tor was used for both modes. The annotators native
language was English and they had prior familiarity
with the domain of industrial mining.

In both modes, OOV token candidates are de-
tected by matching to an English lexicon7. Anno-
tation guidelines are borrowed from Baldwin et al.
(2015)8 with extension to support multi-task an-
notation. For both cases, a set of four meta-tags
are used consisting of domain_specific, sensitive,
unsure and noise. An overview and comparison of
the statistics pertaining to both corpora compared
to W-NUT15 is shown in Table 1.

Texts Total
Tokens

OOV Tokens
Count Proportion

IM-Pub 4.5k 21.9k 3.9k 17.8%
IM-Priv 4.5k 21.8k 4.0k 18.3%

W-NUT15 4.9k 73.8k 6.6k 9%

Table 1: Overview and comparison of corpora statis-
tics.

6.2 Case One - Annotation from Scratch
In this case study, annotation of IM-Pub is per-
formed, starting from scratch with no automatic

6Industrial Mining Public (IM-Pub).
https://github.com/nlp-tlp/lexiclean/data/im_pub.json

7SCOWL (v2020.12.07) English with Australian and
British variants (size 60).

8W-NUT15 Guidelines. http://noisy-
text.github.io/2015/norm-shared-task.html

216

labelling. This corpora consisted of 4.5k texts and
3.9k candidate OOV tokens. The annotator perfor-
mance shown in Figure 5 highlights the rapidity
of OOV token annotation early on in the session
owing to features such as cascading corpora wide
annotation and the sorting algorithm. The impact
of these features is also demonstrated by the user’s
annotation rate at the start of the session and its
increasing nature through to completion. More-
over, a substantial number of normalisations and
meta-tags were captured as is evidenced in Table 2.

Figure 5: Overview of annotator performance for case
one (progress is cumulative).

6.3 Case Two - Annotation from
Prepopulated Assets

To evaluate the effectiveness of the automatic la-
belling feature of LexiClean, annotation of an
equivalently sized corpora (IM-Priv) to case one
was performed. Here, replacements and meta-tag
gazetteers generated in case one were exported and
used for automatic labelling. It was found that this
feature significantly reduced the OOV tokens re-
quiring annotation in IM-Priv by 47% (4,013 to
1,897) as well as reducing the vocabulary size by
3.5%. Comparable with case one, Figure 6 also
demonstrated the rapidity of annotation and the
ability to apply a significant number of normali-
sations and associated meta-tags to noisy corpora
within a short period (Table 2).

7 Conclusion and Future Work

We have introduced LexiClean, an open-source an-
notation tool for multi-task lexical normalisation.
Stemming from gaps in current token-level annota-
tion tools, we have demonstrated how a dedicated,
task-specific tool can enable rapid annotation of

Figure 6: Overview of annotator performance for case
two (progress is cumulative).

Case One Two

Replacements 706 3967 1025 3168
M

et
a-

ta
gs domain_specific 116 634 245 805

sensitive 54 382 118 154
unsure 42 56 111 156

noise 19 38 29 65

Table 2: Overview of annotation effort for both cases -
(# of unique tokens | # of annotated instances).

large corpora to support both seq2seq and token-
classification formulations of the lexical normalisa-
tion task. As a result, LexiClean is well positioned
to enable future annotation efforts to support the
development of the next generation of lexical nor-
malisation algorithms and systems. Future work
will focus on converting LexiClean from a single
user tool to one that supports multi-user collabo-
rative annotation akin to the current generation of
token-level annotation tools.

Acknowledgements

This research is supported by the Australian Re-
search Council through the Centre for Transform-
ing Maintenance through Data Science (grant num-
ber IC180100030), funded by the Australian Gov-
ernment. Additionally, Bikaun acknowledges fund-
ing from the Mineral Research Institute of Western
Australia, and Hodkiewicz acknowledges funding
from the BHP Fellowship for Engineering for Re-
mote Operations. Bikaun and Liu acknowledge the
support from ARC Discovery Grant DP150102405.

217

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Timothy Baldwin, Marie-Catherine de Marneffe,
Bo Han, Young-Bum Kim, Alan Ritter, and Wei Xu.
2015. Shared tasks of the 2015 workshop on noisy
user-generated text: Twitter lexical normalization
and named entity recognition. In Proceedings of the
Workshop on Noisy User-generated Text, pages 126–
135.

Leon Derczynski, Alan Ritter, Sam Clark, and Kalina
Bontcheva. 2013. Twitter part-of-speech tagging
for all: Overcoming sparse and noisy data. In
Proceedings of the International Conference recent
advances in Natural Language Processing RANLP
2013, pages 198–206.

Alden Dima, Sarah Lukens, Melinda Hodkiewicz,
Thurston Sexton, and Michael P. Brundage. 2021.
Adapting natural language processing for technical
text‡. Applied AI Letters, e33.

Yiyang Gao, Caitlin Woods, Wei Liu, Tim French,
and Melinda Hodkiewicz. 2020. Pipeline for ma-
chine reading of unstructured maintenance work or-
der records. In Proceedings of the 30th. European
Safety and Reliability Conference and 15th. Proba-
bilistic Safety Assessment and Management Confer-
ence. ESRA PSAM.

Bo Han and Timothy Baldwin. 2011. Lexical normali-
sation of short text messages: Makn sens a# twitter.
In Proceedings of the 49th Annual meeting of the
Association for Computational Linguistics: Human
language technologies, pages 368–378.

Melinda Hodkiewicz and Mark Tien-Wei Ho. 2016.
Cleaning historical maintenance work order data for
reliability analysis. Journal of Quality in Mainte-
nance Engineering, 22(2):146–163.

Wen Hua, Zhongyuan Wang, Haixun Wang, Kai Zheng,
and Xiaofang Zhou. 2015. Short text understand-
ing through lexical-semantic analysis. In 2015 IEEE
31st. International Conference on Data Engineering,
pages 495–506. IEEE.

Jonathan K Kummerfeld. 2019. Slate: a super-
lightweight annotation tool for experts. arXiv
preprint arXiv:1907.08236.

Xiaohua Liu, Shaodian Zhang, Furu Wei, and Ming
Zhou. 2011. Recognizing named entities in tweets.
In Proceedings of the 49th. Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 359–367.

Christopher Manning and Hinrich Schutze. 1999.
Foundations of statistical natural language process-
ing. MIT press.

Benjamin Muller, Benoît Sagot, and Djamé Seddah.
2019. Enhancing bert for lexical normalization. In
The 5th Workshop on Noisy User-generated Text (W-
NUT).

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The conll-2014 shared task on
grammatical error correction. In Proceedings of
the 18th. Conference on Computational Natural Lan-
guage Learning: Shared Task, pages 1–14.

Hoang Nguyen and Sandro Cavallari. 2020. Neural
multi-task text normalization and sanitization with
pointer-generator. In Proceedings of the First Work-
shop on Natural Language Interfaces, pages 37–47.

José Carlos Rosales Núñez, Djamé Seddah, and Guil-
laume Wisniewski. 2019. Phonetic normalization
for machine translation of user generated content.
In Proceedings of the 5th. Workshop on Noisy User-
generated Text (W-NUT 2019), pages 407–416.

Joanna Sikorska, Melinda Hodkiewicz, Ashwin
D’Cruz, Lachlan Astfalck, and Adrian Keating.
2016. A collaborative data library for testing prog-
nostic models. In PHM Society European Confer-
ence, volume 3.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. Brat: a web-based tool for nlp-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th. Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 102–107.

Michael Stewart, Wei Liu, and Rachel Cardell-Oliver.
2019a. Redcoat: a collaborative annotation tool
for hierarchical entity typing. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP): System Demonstrations, pages
193–198.

Michael Stewart, Wei Liu, and Rachel Cardell-Oliver.
2019b. Word-level lexical normalisation using
context-dependent embeddings. arXiv preprint
arXiv:1911.06172.

Michael Stewart, Wei Liu, Rachel Cardell-Oliver, and
Rui Wang. 2018. Short-text lexical normalisation
on industrial log data. In 2018 IEEE International
Conference on Big Knowledge (ICBK), pages 113–
122. IEEE.

Rob Van der Goot, Barbara Plank, and Malvina Nissim.
2017. To normalize, or not to normalize: The impact
of normalization on part-of-speech tagging. arXiv
preprint arXiv:1707.05116.

Rob van der Goot and Gertjan van Noord. 2017.
Monoise: Modeling noise using a modular normal-
ization system. arXiv preprint arXiv:1710.03476.

218

Jie Yang, Yue Zhang, Linwei Li, and Xingxuan Li.
2017. Yedda: A lightweight collaborative text span
annotation tool. arXiv preprint arXiv:1711.03759.

Seid Muhie Yimam, Iryna Gurevych, Richard Eckart
de Castilho, and Chris Biemann. 2013. Webanno: A
flexible, web-based and visually supported system
for distributed annotations. In Proceedings of the
51st. Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages
1–6.

219

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 220–230
November 7–11, 2021. ©2021 Association for Computational Linguistics

T3-Vis: a visual analytic framework for Training and fine-Tuning
Transformers in NLP

Raymond Li†, Wen Xiao†, Lanjun Wang‡∗, Hyeju Jang†, Giuseppe Carenini†
†University of British Columbia, Vancouver, Canada
{raymondl, xiaowen3, hyejuj, carenini}@cs.ubc.ca

‡Huawei Cananda Technologies Co. Ltd., Burnaby, Canada
lanjun.wang@huawei.com

Abstract
Transformers are the dominant architecture in
NLP, but their training and fine-tuning is still
very challenging. In this paper, we present
the design and implementation of a visual an-
alytic framework for assisting researchers in
such process, by providing them with valu-
able insights about the model’s intrinsic prop-
erties and behaviours. Our framework offers
an intuitive overview that allows the user to
explore different facets of the model (e.g., hid-
den states, attention) through interactive visu-
alization, and allows a suite of built-in algo-
rithms that compute the importance of model
components and different parts of the input
sequence. Case studies and feedback from
a user focus group indicate that the frame-
work is useful, and suggest several improve-
ments. Our framework is available at: https:
//github.com/raymondzmc/T3-Vis.

1 Introduction
Approaches through neural networks have made
significant progress in the field of NLP, with Trans-
former models (Vaswani et al., 2017) rapidly be-
coming the dominant architecture due to their
efficient parallel training and ability to effec-
tivelymodel long sequences. Following the release
of BERT (Devlin et al., 2019) along with other
Transformer-based models pretrained on large cor-
pora (Liu et al., 2019; Lewis et al., 2020; Joshi
et al., 2020; Lee et al., 2020), the most successful
strategy on many NLP leaderboards has been to
directly fine-tune such models on the downstream
tasks (e.g., summarization, classification). How-
ever, despite the strong empirical performance of
this strategy, understanding and interpreting the
training and fine-tuning processes remains a criti-
cal and challenging step for researchers due to the
inherent black-box nature of neural models (Koval-
eva et al., 2019; Hao et al., 2019; Merchant et al.,
2020; Hao et al., 2020).

∗Corresponding author.

Generally speaking, a large number of visual
analytics tools have been shown to effectively sup-
port the analysis and interpretation of deep learn-
ing models (Hohman et al., 2018). For instance,
to remedy the black-box nature of neural network
hidden states, previous work has used scatterplots
to visualize high dimensional vectors through pro-
jection techniques (Smilkov et al., 2016; Kahng
et al., 2017), with Aken et al. (2020) visualizing
the differences of token representations from differ-
ent layers of BERT (Devlin et al., 2019). Similarly,
despite some limitations regarding the explanatory
capabilities of the attention mechanism (Jain and
Wallace, 2019; Wiegreffe and Pinter, 2019), the
visualization of its weights has also been shown to
be beneficial in discovering learnt features (Clark
et al., 2019; Voita et al., 2019), with promising re-
cent work focusing on Transformers (Vig, 2019;
Hoover et al., 2020).

Besides the works on exploring what has been
learnt in the pretrained models, there are also sev-
eral visualization tools developed to show saliency
scores generated by gradient-based (Simonyan
et al., 2013; Bach et al., 2015; Shrikumar et al.,
2017) or perturbation-based interpretation meth-
ods (Ribeiro et al., 2016; Li et al., 2016), which
can help with visualizing the relative importance
of individual tokens in the input with respect to
a target prediction (Wallace et al., 2019; Johnson
et al., 2020; Tenney et al., 2020). However, only a
few studies have instead focused on visualizing the
overall training dynamics, where support is critical
for identifying mislabeled examples or failure cases
(Liu et al., 2018; Xiang et al., 2019; Swayamdipta
et al., 2020)

In essence, the framework we propose in this pa-
per, namely T3-Vis, synergistically integrates some
of the interactive visualizations mentioned above
to support developers in the challenging task of
training and fine-tuning Transformers. This is in
contrast with other similar recent visual tools (Ta-

220

Figure 1: Overview of the interface: (A) Projection View provides a 2D visualization of the dataset by encoding
each example as a point on the scatterplot; (B) Data Table allows the user to view the content and metadata (e.g.
label, loss) of the data examples (e.g. document); (C) Attention Head View visualizes the head importance and
weight matrices of each attention head; (D) Instance Investigation View allows the user to perform detailed analysis
(e.g. interpretation, attention) on a data example’s input sequence.

ble 1), which either only focus on single data point
explanations for uncovering model bias (e.g., Al-
lenNLP Interpret (Wallace et al., 2019)), or rely
on failed examples to understand the model’s be-
haviour (e.g., Language Interpretability Tool (LIT)
(Tenney et al., 2020)).

Following the well-established Nested Model
for visualization design (Munzner, 2009), we first
perform an extensive requirement analysis, from
which we derive user tasks and data abstractions to
guide the design of visual encoding and interaction
techniques. More specifically, the resulting T3-
Vis framework provides an intuitive overview that
allows users to explore different facets of the model
(e.g., hidden states, attention, training dynamics)
through interactive visualization.

Our contributions are as follows: (1) An exten-
sive user requirement analysis on supporting the
training and fine-tuning of Transformer models,
based on extensive literature review and interviews
with NLP researchers, (2) the design and implemen-
tation of an open-sourced visual analytic frame-
work for assisting researchers in the fine-tuning
process with a suite of built-in interpretation meth-
ods that analyze the importance of model compo-
nents and different parts of the input sequence, and

(3) the evaluation of the current design from case
studies with NLP researchers and feedback from a
user focus group.

2 Visualization Design

The design of our T3-Vis is based on the nested
model for InfoVis design (Munzner, 2009).

2.1 User Requirements

To derive useful analytical user tasks, we first iden-
tify a set of high-level user requirements (UR)
through interviews with five NLP researchers as
well as surveying recent literature related to the
interpretability and the fine-tuning procedures of
pretrained Transformers. In the interviews, we
prompt participants with the open-ended question
of "If a visualization tool is provided to speed up
your development (fine-tuning pretrained Trans-
formers), what information would you like to see
and explore?". Combining the interview results
and insights from the literature review, we organize
these findings into five high-level requirements,
each highlighting a different facet of the model for
visualization.

Hidden state visualization (UR-1): Support
the exploration for hidden state representations

221

Frameworks Components Functions

Dataset Embeddings
Head

Importance
Attention

Training
Dynamics

Interpretations Pruning Comparison

BertViz (Vig, 2019) X
AllenNLP Interpret

(Wallace et al., 2019)
X

exBERT (Hoover et al., 2020) X X X
LIT (Tenney et al., 2020) X X X X X

InterperT (Lal et al., 2021) X X X X
T3-Vis X X X X X X X X

Table 1: Comparison with other visual frameworks from recent work.

from the model.
Attention visualization (UR-2): Allow users

to examine and explore the linguistic or positional
patterns exhibited in the self-attention distribution
for different attention heads in the model.

Attention head importance (UR-3): Enable
users to investigate and understand the importance
of the attention heads for the downstream task
and the effects of pruning them on the model’s
behaviour.

Interpretability of models (UR-4): In addition
to attention maps, support a suite of alternative
explanation methods based on token input impor-
tance, thus allowing users to better understand the
model behaviours during inference.

Training dynamics (UR-5): Assist users in
identifying relevant data examples based on their
roles in the training process.

2.2 Supported Tasks and Data Model

Based on these user requirements, we derive nine
analytical tasks framed as information seeking
questions . In Table 2, we list the tasks along with
important attributes including: When they are rele-
vant during the fine-tuning process, the Granularity
of the data that it operates on, corresponding User
Requirements, and the framework Components that
it pertains to. We then look at the specific data to
which the tasks are applied to. We characterize our
data model (i.e. data types visualized by the inter-
face) as comprising the model hidden states, the
dataset examples along with their label/training fea-
tures, the attention values, head importance scores,
and input saliency map. Although our task and data
models are derived for the fine-tuning of pretrained
models, they can naturally be extended to training
any Transformer models from scratch. Importantly,
all the questions are invariant to any Transformer-
based models for any downstream tasks (e.g. clas-
sification, sequence-generation or labeling).

2.3 T3-Vis Components: Visual Encoding
and Interactive Techniques

Projection View: To assist users in visualizing the
model’s hidden state representation (UR-1) and to
identify the training role of the data examples (UR-
5), we design the Projection View (Figure 1-(A))
as the main overview of our interface, and visual-
ize the entire (or a subset of the) dataset on a 2D
scatterplot, where each data point on the plot en-
codes a single data example (e.g. document) in the
dataset. While the scatterplots can be generated
in a variety of ways based on the user’s needs, in-
cluding dimension reduction methods (Wold et al.,
1987; McInnes et al., 2018) and plotting based on
training dynamics (Li et al., 2018; Toneva et al.,
2019). Detailed studies examining the effectiveness
of these methods in the context of visual analytics
are out of the scope of this paper, but provide a
promising direction for future work. In T3-Vis,
we provide two implementations (See Figure 2):
(1) t-SNE projection (Van der Maaten and Hinton,
2008) of the model’s hidden states, and (2) plotting
the examples by their confidence and variability
across epochs based on the Data Map technique
(Swayamdipta et al., 2020). The color of the data
points can be selected by the user via a dropdown
menu to encode attributes of the data examples,
where color saturation is used for continuous at-
tributes (e.g. loss, prediction confidence), while
hue is used for categorical attributes (e.g. labels,
prediction). The user can also filter the data points
by attributes, where a range slider is used for filter-
ing the data points by continuous attributes, while
a selectable dropdown menu is used to filter by cat-
egorical attributes. Furthermore, we also introduce
a comparison mode by displaying the two scatter-
plots side-by-side, which allows for the flexibility
of comparing across different checkpoints and the
projection of different hidden state layers.

Data Table: The Data Table (Figure 1-(B)) lists
222

Question When Granularity User Requirements Components

T1
How to determine the model

representation for a given NLP task? Before Dataset 1 Projection
T2 What are the outliers of the dataset? Before, During, After Dataset 1, 5 Projection

T3
What types of linguistic or positional attributes do

the attention patterns exhibit for each attention heads? Before, During, After Instance 2 Projection

T4
Which attention heads are considered important

for the task, and what are its functions? After Both 2, 3
Attention Head

Instance Investigator
T5 How does pruning attention heads affects the model? After Instance 3 Attention Head

T6
How does the model changes at
different stages of fine-tuning? During, After Both 1, 2, 3 All

T7
Does the model rely on specific parts of the
input sequence when making predictions? After Instance 4 Instance Investigator

T8 Are there mislabeled examples in the dataset? During, After Both 1, 5 Projection

T9
How can the dataset be augmented to improve
the performance and robustness of the model? During, After Both 5 Projection

Table 2: Supported analytical tasks: questions that our interface helps to answer.

Figure 2: Interactive scatterplots based on the data ex-
amples’ training dynamics (left), and the t-SNE projec-
tions of hidden states (right)

all examples of the dataset in a single scrollable list,
where each entry displays the input text of a data
example along with its ground truth label. When
the user filters the dataset in the Projection View,
the Data Table is also filtered simultaneously.

Attention Head View: In order to visualize the
importance of the model’s attention heads (UR-3),
as well as the patterns in the attention weight ma-
trices (UR-2), we design the Attention Head View
(Figure 1-(C)), where each block in the l×h matrix
(l layers and h heads) represents a single attention
head at the respective index for layer and head. In
this view, we provide two separate visualization
techniques: namely (1) Head Importance and (2)
Attention Pattern, that can be switched using a tog-
gle button. The Head Importance technique visual-
izes the normalized task-specific head importance
score 1 through the background color saturation and
displayed value of the corresponding matrix block
(See Figure 3a). On the other hand, the Attention
Pattern technique uses heatmaps to visualize the
magnitude of the associated self-attention weight
matrices (See Figure 3b). We also provide a tog-
gle button for the user to visualize the importance

1Details are in A.1 of the Appendix

(a) Head Importance (b) Attention Pattern

Figure 3: The two visualization techniques in the At-
tention Head View.

score and attention patterns on two scales, where
the aggregate-scale visualizes the score and pat-
terns averaged over the entire dataset, while the
instance-scale visualizes the score and patterns for
a selected data example. Lastly, we also offer an
interactive technique for the user to dynamically
prune attention heads and visualize the effects on a
selected example. By hovering over each attention
head block in the view, the user can click on the
close icon to prune the respective attention head
from the model.

Instance Investigation View: After the user se-
lects a data example from the Projection View or
Data Table, the Instance Investigation View (Fig-
ure 1-(D)) renders the corresponding input text se-
quence along with the model predictions and labels
to allow the user to perform detailed analysis on
the data example. In this view, each token of the
input sequence is displayed in a separate text block,
where the background color saturation of each text
block encodes the relative saliency or importance
of the token based on the interpretation methods.
Our interface provides two analysis techniques: (1)
By selecting a head in the Attention Head View
(Figure 3), the user can click on the text block of
any input token to visualize the self-attention dis-

223

tribution of the selected token over the input text
sequence (UR-3). (2) Similarly, the user can visu-
alize the input saliency map with respect to a model
output, by clicking the corresponding output token
(UR-4). Since our framework allows the user to
plug in different interpretation techniques based on
their preference, details regarding the meaningful-
ness of such techniques are out of the scope of this
paper. Our interface provides the implementation
of two input interpretation methods2 : Layer-wise
relevance propagation (Bach et al., 2015), and input
gradient (Simonyan et al., 2013).

2.4 Implementation

Data Processing For each model checkpoint,
data pertaining to dataset-level visualizations in-
cluding hidden state projections, prediction confi-
dence/variability, head importance score, and other
attributes (e.g. loss, prediction) are first processed
and saved in a back-end directory. The only added
computational overhead to the user’s training pro-
cess is the dimension reduction algorithm for pro-
jecting hidden state representation, as other visual-
ized values can all be extracted from the forward
(e.g. confidence, variability, loss) and backward
pass (e.g. head importance, input saliency) of
model training.

Back-end Our back-end Python server provides
built-in support for the PyTorch HuggingFace li-
brary (Wolf et al., 2020), including methods for
extracting attention values, head pruning, comput-
ing importance scores, and interpreting the model
predictions. In order to avoid saving instance-level
data (e.g., attention weights, input heatmap, etc.)
for all examples in the dataset, the server dynam-
ically computes these values for a selected data
example by performing a single forward and back-
ward pass on the model. This requires the server to
keep track of the model’s current state, as well as a
dataloader for indexing the selected data example.

Front-end Our front-end implementation keeps
track of the current visual state of the interface
including the selections, filters, and checkpoint.
The interface can be accessed through any web
browser, where data is retrieved from the back-end
server via the RESTful API. The interactive visual
components of the interface are implemented using
the D3.js framework (Bostock et al., 2011), and
other UI components (e.g. buttons, sliders) are

2Details are in A.2 of the Appendix

implemented with popular front-end libraries (e.g.
jQuery, Bootstrap).

3 Iterative Design

3.1 Focus Group Study

In order to collect suggestions and initial feedback
on T3-Vis, we conducted a focus group study with
20 NLP researchers that work regularly with pre-
trained Transformer models. In this study, we first
presented the design of the interface, then gave a
demo showing its usage on an example. Through-
out the process, we gathered responses from the
participants via open discussions.

Most positive feedback focused on the effective-
ness of our techniques for visualizing self-attention
especially on longer documents (in contrast to
showing links between tokens (Vig, 2019)). There
were also comments on the usefulness of the input
saliency map in providing insightful clues on the
model’s decision process.

Some participants also suggested that the inter-
face would be more useful for classification prob-
lems with well-defined evaluation metrics since
data examples tended to be better clustered in the
Projection View so that they could be easily fil-
tered for error analysis. The need of optimizing the
front-end to support the visualization of large-scale
datasets was also mentioned.

On the negative side, some participants were
concerned by the information loss intrinsic in the
dimension reduction methods, whose possible neg-
ative effects on the user analysis tasks definitely
requires further study. Encouragingly, at the end, a
few participants expressed interest in applying and
evaluating T3-Vis on their datasets and NLP tasks.

3.2 Case Studies

This section describes two case studies of how T3-
Vis facilitates the understanding and exploration of
the fine-tuning process through applications with
real-world corpora. These studies provide initial
evidence on the effectiveness of different visualiza-
tion components, and serve as examples for how
our framework can be used.

3.2.1 Pattern Exploration for an Extractive
Summarizer

NLP researchers in our group, who work on sum-
marization, applied T3-Vis to the extractive summa-
rization task, which aims to compress a document

224

Figure 4: The self-attention distribution of token
“photo” in the Instance Analysis View.

by selecting its most informative sentences. BERT-
Sum, which is fine-tuned from a BERT model (Liu
and Lapata, 2019), is one of the top-performing
models for extractive summarization, but why and
how it works remains a mystery. With our inter-
face, the researchers explored patterns captured
by the model that played important roles in model
predictions. They performed an analysis on the
CNN/Daily Mail dataset (Hermann et al., 2015),
which is arguably the most popular benchmark for
summarization tasks.

The first step was to find the important heads
among all the heads across all the layers. From
the Head Importance View (Figure 1-(C)), the re-
searchers selected the attention heads with high
head importance scores, so that the corresponding
attention distribution was available to interact with.
Then they selected some tokens in the Attention
View to see which tokens they mostly attended to,
and repeated this process for multiple other data
examples, in order to explore whether there was a
general pattern across different data examples.

While examining attention heads based on their
importance in descending order, the researchers
observed that tokens tended to have high attention
on other tokens of the same word on the important
attention heads. For example, the token “photo"
attributed almost all of its attention score to other
instances of the token “photo" in the source doc-
ument (Figure 4). They further found two more
patterns in other important heads, in which the to-
kens tended to have more attention on the tokens
within the same sentence, as well as the adjacent
tokens. These behaviours were consistent across
different pretrained models, such as RoBERTa (Liu
et al., 2019).

These findings provided useful insights to as-
sist the researchers in designing more efficient and
accurate summarization models in the future, and
served as a motivation for the researchers to per-
form similar analysis for other NLP tasks.

Figure 5: A misclassified example within a cluster of
well-classified example.

3.2.2 Error Analysis for Topic Classification

Other researchers in our group explored the inter-
face for error analysis to identify possible improve-
ments of a BERT-based model for topic classifi-
cation. The Yahoo Answers dataset (Zhang et al.,
2015) was used, which contains 10 topic classes.

Researchers first used the Projection View (Fig-
ure 1-(A)) to find misclassified data examples as ap-
plying filters to select label and prediction classes.
For a selected topic class in the t-SNE projection
of the model’s hidden states, they found out that
the misclassified data points far away from clusters
of correctly predicted examples were often misla-
beled during annotation. Therefore, misclassfied
data points within such clusters were of greater in-
terest to them since such points tends to indicate
model failuresrather than mistakes in annotation
(Figure 5). Furthermore, data points in the area
with low variability and low confidence on the Data
Map plot were also selected for investigation since
they are interpreted as consistently misclassified
across epochs. After selecting the examples, the
researchers inspected each instance by using the
Instance Investigation View (Figure 1-(D)) with
the Input Gradient method to visualize the input
saliency map for the prediction of each class.

From this analysis, they discovered two scenar-
ios that led to misclassification. First, the model
focused on unimportant and possibly misleading
details that are not representative of the document’s
overall topic. For instance, a document about
Business & Finance was classified into the Sport
category because the model attended to “hockey
player”, “football player”, and “baseball player”,
which were listed as job titles while discussing
available jobs in Michigan. Second, the model
failed in cases where background knowledge is
required. For example, a document under the En-
tertainment & Music category mentioned names of
two actors which were key clues for the topic, but

225

the model only attended to other words, and made
a wrong prediction.

These findings helped researchers to gain in-
sights for future model design where additional
information such as discourse structure (which can
better reveal importance) and encyclopedic knowl-
edge could be injected into the model’s architecture
to improve the task performance.

4 Conclusion

In this paper, we presented T3-Vis, a visual ana-
lytic framework designed to help researchers better
understand training and fine-tuning processes of
Transformer-based models. Our visual interface
provides faceted visualization of a Transformer
model and allows exploring data across multiple
granularities, while enabling users to dynamically
interact with the model. Additionally, our imple-
mentation and design allows flexible customization
to support a diverse range of tasks and workflows.
Our focus group and case studies demonstrated
the effectiveness of our interface by assisting the
researchers in interpreting the models’ behaviour
and identifying potential directions to improve task
performances.

For future work, we will continue to improve
our framework through the iterative process of ex-
ploring further usage scenarios and collecting feed-
back from users. We will extend our framework
to provide a more advanced visualization for cus-
tom Transformers. For example, we may want
to support the visualization of models with more
complex connections (e.g. parallel attention layers)
or an advanced attention mechanism (e.g. sparse
attention).

226

References
Betty van Aken, Benjamin Winter, Alexander Löser,

and Felix A Gers. 2020. Visbert: Hidden-state visu-
alizations for transformers. In Companion Proceed-
ings of the Web Conference 2020, pages 207–211.

Sebastian Bach, Alexander Binder, Grégoire Mon-
tavon, Frederick Klauschen, Klaus-Robert Müller,
and Wojciech Samek. 2015. On pixel-wise explana-
tions for non-linear classifier decisions by layer-wise
relevance propagation. PloS one, 10(7).

Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer.
2011. D3 data-driven documents. IEEE trans-
actions on visualization and computer graphics,
17(12):2301–2309.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for
NLP, pages 276–286, Florence, Italy. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Yaru Hao, Li Dong, Furu Wei, and Ke Xu. 2019. Visu-
alizing and understanding the effectiveness of BERT.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 4143–
4152, Hong Kong, China. Association for Computa-
tional Linguistics.

Yaru Hao, Li Dong, Furu Wei, and Ke Xu. 2020. Inves-
tigating learning dynamics of BERT fine-tuning. In
Proceedings of the 1st Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics and the 10th International Joint Confer-
ence on Natural Language Processing, pages 87–92,
Suzhou, China. Association for Computational Lin-
guistics.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in Neural Informa-
tion Processing Systems, volume 28, pages 1693–
1701. Curran Associates, Inc.

Fred Hohman, Minsuk Kahng, Robert Pienta, and
Duen Horng Chau. 2018. Visual analytics in deep
learning: An interrogative survey for the next fron-
tiers. IEEE transactions on visualization and com-
puter graphics, 25(8):2674–2693.

Benjamin Hoover, Hendrik Strobelt, and Sebastian
Gehrmann. 2020. exBERT: A Visual Analysis Tool
to Explore Learned Representations in Transformer
Models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 187–196, Online. As-
sociation for Computational Linguistics.

Sarthak Jain and Byron C. Wallace. 2019. Attention is
not Explanation. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 3543–3556, Minneapolis, Minnesota.
Association for Computational Linguistics.

David Johnson, Giuseppe Carenini, and Gabriel Mur-
ray. 2020. Njm-vis: interpreting neural joint models
in nlp. In Proceedings of the 25th International Con-
ference on Intelligent User Interfaces, pages 286–
296.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S.
Weld, Luke Zettlemoyer, and Omer Levy. 2020.
SpanBERT: Improving pre-training by representing
and predicting spans. Transactions of the Associa-
tion for Computational Linguistics, 8:64–77.

Minsuk Kahng, Pierre Y Andrews, Aditya Kalro, and
Duen Horng Polo Chau. 2017. Activis: Visual ex-
ploration of industry-scale deep neural network mod-
els. IEEE transactions on visualization and com-
puter graphics, 24(1):88–97.

Olga Kovaleva, Alexey Romanov, Anna Rogers, and
Anna Rumshisky. 2019. Revealing the dark secrets
of BERT. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4365–4374, Hong Kong, China. Association for
Computational Linguistics.

Vasudev Lal, Arden Ma, Estelle Aflalo, Phillip Howard,
Ana Simoes, Daniel Korat, Oren Pereg, Gadi Singer,
and Moshe Wasserblat. 2021. InterpreT: An interac-
tive visualization tool for interpreting transformers.
In Proceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: System Demonstrations, pages 135–
142, Online. Association for Computational Linguis-
tics.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So, and
Jaewoo Kang. 2020. Biobert: a pre-trained biomed-
ical language representation model for biomedical
text mining. Bioinformatics, 36(4):1234–1240.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational

227

Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and
Tom Goldstein. 2018. Visualizing the loss landscape
of neural nets. In Neural Information Processing
Systems.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. Un-
derstanding neural networks through representation
erasure. arXiv preprint arXiv:1612.08220.

Dongyu Liu, Weiwei Cui, Kai Jin, Yuxiao Guo, and
Huamin Qu. 2018. Deeptracker: Visualizing the
training process of convolutional neural networks.
ACM Transactions on Intelligent Systems and Tech-
nology (TIST), 10(1):1–25.

Yang Liu and Mirella Lapata. 2019. Text summariza-
tion with pretrained encoders. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3730–3740, Hong Kong,
China. Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

L. McInnes, J. Healy, and J. Melville. 2018. UMAP:
Uniform Manifold Approximation and Projection
for Dimension Reduction. ArXiv e-prints.

Amil Merchant, Elahe Rahimtoroghi, Ellie Pavlick,
and Ian Tenney. 2020. What happens to BERT em-
beddings during fine-tuning? In Proceedings of the
Third BlackboxNLP Workshop on Analyzing and In-
terpreting Neural Networks for NLP, pages 33–44,
Online. Association for Computational Linguistics.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri
Frosio, and Jan Kautz. 2019. Importance estimation
for neural network pruning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 11264–11272.

Grégoire Montavon, Wojciech Samek, and Klaus-
Robert Müller. 2018. Methods for interpreting and
understanding deep neural networks. Digital Signal
Processing, 73:1–15.

Tamara Munzner. 2009. A nested model for visualiza-
tion design and validation. IEEE transactions on vi-
sualization and computer graphics, 15(6):921–928.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. " why should i trust you?" explain-
ing the predictions of any classifier. In Proceed-
ings of the 22nd ACM SIGKDD international con-
ference on knowledge discovery and data mining,
pages 1135–1144.

Avanti Shrikumar, Peyton Greenside, and Anshul Kun-
daje. 2017. Learning important features through
propagating activation differences. In International
Conference on Machine Learning, pages 3145–3153.
PMLR.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man. 2013. Deep inside convolutional networks: Vi-
sualising image classification models and saliency
maps. arXiv preprint arXiv:1312.6034.

Daniel Smilkov, Nikhil Thorat, Charles Nicholson,
Emily Reif, Fernanda B Viégas, and Martin Watten-
berg. 2016. Embedding projector: Interactive visu-
alization and interpretation of embeddings. arXiv
preprint arXiv:1611.05469.

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie,
Yizhong Wang, Hannaneh Hajishirzi, Noah A.
Smith, and Yejin Choi. 2020. Dataset cartography:
Mapping and diagnosing datasets with training dy-
namics. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 9275–9293, Online. Associa-
tion for Computational Linguistics.

Ian Tenney, James Wexler, Jasmijn Bastings, Tolga
Bolukbasi, Andy Coenen, Sebastian Gehrmann,
Ellen Jiang, Mahima Pushkarna, Carey Radebaugh,
Emily Reif, and Ann Yuan. 2020. The language in-
terpretability tool: Extensible, interactive visualiza-
tions and analysis for NLP models. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstra-
tions, pages 107–118, Online. Association for Com-
putational Linguistics.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des
Combes, Adam Trischler, Yoshua Bengio, and Geof-
frey J. Gordon. 2019. An empirical study of exam-
ple forgetting during deep neural network learning.
In International Conference on Learning Represen-
tations.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Jesse Vig. 2019. A multiscale visualization of atten-
tion in the transformer model. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages
37–42, Florence, Italy. Association for Computa-
tional Linguistics.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the

228

57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5797–5808, Florence,
Italy. Association for Computational Linguistics.

Eric Wallace, Jens Tuyls, Junlin Wang, Sanjay Sub-
ramanian, Matt Gardner, and Sameer Singh. 2019.
AllenNLP interpret: A framework for explaining
predictions of NLP models. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP): System Demonstrations, pages
7–12, Hong Kong, China. Association for Compu-
tational Linguistics.

Sarah Wiegreffe and Yuval Pinter. 2019. Attention is
not not explanation. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 11–20, Hong Kong, China. Associ-
ation for Computational Linguistics.

Svante Wold, Kim Esbensen, and Paul Geladi. 1987.
Principal component analysis. Chemometrics and
intelligent laboratory systems, 2(1-3):37–52.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Shouxing Xiang, Xi Ye, Jiazhi Xia, Jing Wu, Yang
Chen, and Shixia Liu. 2019. Interactive correction
of mislabeled training data. In 2019 IEEE Confer-
ence on Visual Analytics Science and Technology
(VAST), pages 57–68. IEEE.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. Advances in neural information process-
ing systems, 28:649–657.

229

A Appendix

A.1 Head Importance Score
Although the multi-head self attention mechanism
in Transformers allows the model to learn multi-
ple types of relationships between input representa-
tions across a single hidden layer, the importance of
the individual attention heads can vary depending
on the downstream tasks. Following previous work,
we adapt the Taylor expansion method (Molchanov
et al., 2019) to estimate the error induced from
removing a group of parameters from the model.
In our implementation, we use the first-order ex-
pansion to avoid the overhead from computing the
Hessian, where the gradient with respect to vali-
dation loss is summed over all parameters of an
attention head to estimate its importance.

A.2 Input Interpretation
Input Gradients The input gradient method (Si-
monyan et al., 2013) computes the gradient with
respect to each token. During inference, the class-
score derivative can be computed through back-
propagation. The saliency of the token xi for class
c of output y could therefore be estimated using the
first-order Taylor expansion ∂yc

∂xi
xi.

Layer-wise Relevance Propagation Layer-
wise Relevance Propagation (LRP) (Bach et al.,
2015) was originally proposed to visualize the
contributions of single pixels to predictions for
an image classifier. By recursively computing
relevance from the output layer to the input layer,
LRP is demonstrated to be useful in unravelling the
inference process of neural networks and has been
adopted in recent work to analyze Transformer
models (Voita et al., 2019). The intuition behind
LRP is that, each neuron of the network is
contributed by neurons in the previous layer, and
the total amount of contributions for each layer
should be a constant during back-propagating,
which is called the conservation principle. LRP
offers flexibility to design propagation rules to
explain various deep neural networks, one example
propagation rule is shown as follows (Montavon
et al., 2018),

Ri = Σj
aiwij

Σiaiwij
Rj (1)

where Ri and Rj are relevance scores of two neu-
rons in consecutive layers, ai is the respective acti-
vation for neuron i, and wij is the weight between
neuron i and j.

230

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 231–241
November 7–11, 2021. ©2021 Association for Computational Linguistics

DomiKnowS: A Library for Integration of Symbolic Domain Knowledge
in Deep Learning

Hossein Rajaby Faghihi1, Quan Guo2, Andrzej Uszok3, Aliakbar Nafar1,
Elaheh Raisi1, and Parisa Kordjamshidi1

1 Michigan State University, 2 Sichuan University
3 Florida Institute for Human and Machine Cognition

rajabyfa@msu.edu, guoquan@scu.edu.cn, auszok@ihmc.org,

{nafarali, raisiela, kordjams}@msu.edu

Abstract
We demonstrate a library for the integration of
domain knowledge in deep learning architec-
tures. Using this library, the structure of the
data is expressed symbolically via graph decla-
rations and the logical constraints over outputs
or latent variables can be seamlessly added to
the deep models. The domain knowledge can
be defined explicitly, which improves the ex-
plainability of the models in addition to their
performance and generalizability in the low-
data regime. Several approaches for such in-
tegration of symbolic and sub-symbolic mod-
els have been introduced; however, there is no
library to facilitate the programming for such
integration in a generic way while various un-
derlying algorithms can be used. Our library
aims to simplify programming for such inte-
gration in both training and inference phases
while separating the knowledge representation
from learning algorithms. We showcase vari-
ous NLP benchmark tasks and beyond. The
framework is publicly available at Github1.

1 Introduction

Current deep learning architectures are known to
be data-hungry with issues mainly in generalizabil-
ity and explainability (Nguyen et al., 2015). While
these issues are hot research topics, one approach
to address them is to inject external knowledge di-
rectly into the models when possible. While learn-
ing from examples revolutionized the way that in-
telligent systems are designed to gain knowledge,
many tasks lack adequate data resources. Gener-
ating examples to capture knowledge is an expen-
sive and lengthy process and especially not effi-
cient when such a knowledge is available explicitly.
Therefore, one main motivation of our proposed
framework (DomiKnowS) is to facilitate the in-
tegration of domain knowledge in deep learning
architectures, in particular when this knowledge is
represented symbolically.

1https://github.com/HLR/DomiKnowS

In this demonstration paper, we highlight the
components of this framework that help to com-
bine learning from data and exploiting knowledge
in learning, including: 1) Learning problem specifi-
cation 2) Knowledge representation 3) Algorithms
for integration of knowledge and learning. Cur-
rently, DomiKnowS implementation relies on Py-
Torch and off-the-shelf optimization solvers such
as Gurobi.2 However, it can be extended by de-
veloping hooks to other solvers and deep learning
libraries since the interface is generic and indepen-
dent from the underlying computational modules.

In general, the integration of domain knowledge
can be done 1) using pretrained models and trans-
ferring knowledge (Devlin et al., 2019; Mirzaee
et al., 2021), 2) designing architectures that in-
tegrate knowledge expressed in knowledge bases
(KB) and knowledge graphs (KG) in a way that
the KB/KG context influences the learned repre-
sentations (Yang and Mitchell, 2017; Sun et al.,
2018), or 3) using the knowledge explicitly and
logically as a set of constrains or preferences over
the inputs or outputs (Li and Srikumar, 2019a;
Nandwani et al., 2019b; Muralidhar et al., 2018;
Stewart and Ermon, 2017). Our current library
aims at facilitating the third approach. It is still an
open problem to know which method of integrating
prior knowledge with neural modules is the best
and the performance heavily relies on each task
specifications and experimental settings. However,
there are many ongoing research on the integration
of soft/hard constraints (Li and Srikumar, 2019a;
Nandwani et al., 2019b; Muralidhar et al., 2018;
Stewart and Ermon, 2017) on the output variables
of neural modules which shows the effectiveness
of such approaches in gaining better performance,
especially on low-resource or even semi-supervised

2Gurobi provides free academic license, moreover it pro-
vides a limited free version for all which is sufficient to solve
problems with a small number of variables. We, also, have
started adding hooks to other optimization tools that are freely
available such as GEKKO.

231

tasks (Ratner et al., 2017). While applying the con-
straints on input is technically trivial and could be
done in a data pre-processing step, applying con-
straints over outputs and considering those struc-
tural constraints during training is a research chal-
lenge (Nandwani et al., 2019b; Li and Srikumar,
2019a; Guo et al., 2020). This requires encod-
ing the knowledge at the algorithmic level. How-
ever, given that the constraints can be expressed
logically and symbolically, having a language to
express such a knowledge in a principled way is
lacking in the current machine learning libraries.
Using our developed DomiKnowS library, the do-
main knowledge will be provided symbolically and
by the user utilizing a logical language that we
have defined. This knowledge is used in various
ways: a) As soft constraints by considering the
violations as a part of loss function, this is done
using a prim-dual formulation (Nandwani et al.,
2019b) and can be expanded to probabilistic and
sampling-based approaches (Xu et al., 2018) or
by mapping the constraint to differentiable oper-
ations (Li and Srikumar, 2019b) b) mapping the
constrains to an integer linear program setting and
performing inference-based training by masking
the loss (Guo et al., 2020). Independent form the
training paradigm the constraints can be always
used as hard constraints during inference or not
used at all.

An interactive online demo of DomiKnowS is
available at Google Colab3 and the framework is
accessible on GitHub4.

2 Related Research

Integration of domain knowledge in learning re-
lates to tools that try to express the prior or pos-
terior information about variables beyond what
is in the data. This relates to probabilistic pro-
gramming languages such as (Pfeffer, 2016), Ven-
ture (Mansinghka et al., 2014), Stan (Carpenter
et al., 2017), and InferNet (Minka et al., 2012).
The logical expression of domain knowledge is
used in probabilistic logical programming lan-
guages such as ProbLog (De Raedt et al., 2007),
PRISM (Sato and Kameya, 1997), the recent ver-
sion of Problog,i.e., Deep Problog (Manhaeve et al.,
2018), Statistical Relational Learning tools, such
as Markov logic networks (Domingos and Richard-
son, 2004), Probabilistic soft logic (Broecheler

3https://tinyurl.com/t9wr9n4
4https://github.com/HLR/DomiKnowS

et al., 2010), Bayesian Logic (BLOG) (Milch et al.,
2005), and slightly related to learning over graph
structures (Zheng et al., 2020). Considering the
structure of the output without its explicit decla-
ration is considered in structured output predic-
tion tools (Rush, 2020). Our library is mostly
related to the previous efforts for learning based
programming and the integration of logical con-
straints in learning with classical machine learning
approaches (Rizzolo and Roth, 2010; Kordjamshidi
et al., 2015, 2016). Our framework makes this con-
nection to deep neural network libraries and arbi-
trarily designed architectures. The unique feature
of our library is that, the graph structure is defined
symbolically based on the concepts in the domain.
Unlike Torch-struct (Rush, 2020), our library is in-
dependent from the underlying algorithms, and ar-
bitrary structures can be expressed and used based
on various underlying algorithms. In contrast to
DeepProbLog, we are not limited to probabilis-
tic inference and any solver can be used for infer-
ence depending on the training paradigm that is
used for exploiting the logical constraints. Prob-
abilistic soft logic is another framework that con-
siders logical constraints in learning by mapping
the constraint declarations to a Hing loss Markov
random field (Bach et al., 2017). DRaiL is an-
other declarative framework that is using logical
constraints on top of deep learning and converts
them to an integer linear program at the inference
time (Zhang et al., 2016). None of the above men-
tioned frameworks accommodate working with raw
sensory data nor help in putting that in an opera-
tional structure that can form the domain predicates
and be used by learning modules while our frame-
work tries to address that challenge. We support
training paradigms that make use of the inference
as a black box and in those cases any constraint op-
timization, logical inference engine or probabilistic
inference tools can be integrated and used based on
our abstraction and the provided modularity.

3 Declarative Learning-based
Programming

We use the Entity-Mention-Relation (EMR) extrac-
tion task to describe the framework. We discuss
more showcases in Section 5.

Given an input text such as "Washington is em-
ployed by Associated Press.", the task is to extract
the entities and classify their types (e.g., people,
organizations, and locations) as well as relations

232

between them (e.g., works for, lives in). For ex-
ample, for the above sentence [Washington] is a
person [Associated Press] is an organization
and the relationship between these two entities is
work-for. We choose this task as it includes the
prediction of multiple outputs at the sentence level,
while there are global constraints over the outputs.5

In DomiKnowS, first, using our python-based
specification language, the user describes the prob-
lem and its logical constraints declarativly and in-
dependent from the solutions. Second, it defines
the necessary computational units (here, PyTorch-
based architectures) and connect the solution to the
problem specification. Third, a program instance
is created to execute the model using a background
knowledge integration method with respect to the
problem description.

3.1 Problem Specification

To model a problem in DomiKnowS, the user
should specify the problem domain as a conceptual
graph G(V,E). The nodes in V represent concepts
and the edges in E are relationships. Each node
can take a set of properties P = P1, P2, ..., Pn.
Later, the logical constraints are expressed using
the concepts in the graph. In EMR task, the graph
contains some initial NLP concepts such as sen-
tence, phrase, pair and additional domain concepts
such as people, organization, and work-for.

3.1.1 Concepts
Each problem definition can contain three main
types of concepts (nodes).
Basic Concepts define the structure of the input
of the learning problem. For instance sentence,
phrase, and word are all basic concepts that can be
defined in the EMR task.
Compositional Concepts are used to define the
many-to-many relationships between the basic con-
cepts. Here, the pair concept in the EMR task is
a compositional concept. This is used as the basic
concept for the relation extraction task. We will fur-
ther discuss this when describing edges in Section
3.1.2.
Decision Concepts are derived concepts which are
usually the outputs of the problem and subject to
prediction. They are derived from the basic or
compositional concepts. The people, organization,
and work-for are examples of derived concepts in

5Please note this is just an example of a learning problem
and does not have anything to do with the main functionality
of the framework.

the EMR conceptual graph. Following is a partial
snippet showing the definition of basic and compo-
sitional concepts for EMR task.

1 word = Concept(name='word')
2 phrase = Concept(name='phrase')
3 sentence = Concept(name='sentence')
4 pair = Concept(name='pair')

The following snippet also shows the definition of
some derived concepts in EMR example.

1 entity = phrase(name='entity')
2 people = entity(name='people')
3 org = entity(name='organization')
4 location = entity(name='location')
5 work_for = pair(name='work_for')
6 located_in = pair(name='located_in')

The entity, people, organization and location are
the derived concepts from the phrase concept and
the rest are derived from the pair concept.

3.1.2 Edges
After defining the concepts, the user should spec-
ify existing relationships between them as edges
in the conceptual graph. Edges are used to either
map instances from one concept to another, or gen-
erate instances of a concept from another concept.
DomiKnowS only supports a set of predefined edge
types, namely is_a, has_a, and contains.
is_a is automatically defined between a derived
concept and its parent. In the EMR example, there
is an is_a edge between people and entity. The is_a
edge is mostly used to introduce hierarchical con-
straints and relate the basic and derived concepts.
Has_a connects a compositional concept to its com-
ponents (also referred to as arguments). In the
EMR example, pair concept has two has_a edges
to the phrase concept to specify the arg1 and arg2
of the composition. We allow an arbitrary number
of arguments in a has_a relationship, see below.

1 pair.has_a(arg1=phrase, arg2=phrase)

Contains edge defines a one-to-many relationship
for two concepts to represent a (parent, child) rela-
tionship between them. Here, the number of par-
ents of a concept is not necessarily limited to be
only one. Following is a sample snippet to define a
contains edge between sentence and phrase:

1 sentence.contains(phrase)

233

3.1.3 Global Constraints
The constraint definition is the part where the prior
knowledge of the problem is defined to enable
domain integration. The constraints of each task
should be defined on top of the problem using the
specified concepts and relationships there.

The constraints can be 1) automatically in-
ferred from the conceptual graph structure, 2) ex-
tracted from the standard ontology formalism (here
OWL6), 3) explicitly defined using the logical
constraint language of DomiKnowS. The frame-
work internally uses the defined constraints at the
training-time or the inference-time optimization
depending on the integration method selected for
the task. We discuss the inference phase in more
details in section 4.1. Here is an example of a con-
straint written in DomiKnowS’s logical constraint
language for the EMR task:

1 ifL(work_for('x'), andL(people(path=
('x',arg1)),
organization(path='x',arg2)))

↪→
↪→

The above constraint indicates that a work_for re-
lationship only holds between people and organi-
zation. Other syntactic variations of this constraint
are shown in the Appendix.

To process constraints, DomiKnowS maps those
to a set of equivalent algebraic inequalities or their
soft logic interpretation depending on the integra-
tion method. We discuss this more in Section 4.1.

3.2 Model Declaration
Model declaration phase is about defining the com-
putational units of the task. The basic building
blocks of the model in DomiKnowS are sensors and
learners, which are used to define either determin-
istic or probabilistic functionalities of the model.
Sensor/Learners interact with the conceptual graph
by defining properties on the concepts (nodes).
Each sensor/learner receives a set of inputs either
from the raw data or property values on the graph
and introduces new property values. Sensors are
computational units with no trainable parameters;
and learners are the ones which contain the neural
models. As stated before, the model declaration
phase only defines the connection of the graph prop-
erties to the computational units and the execution
is done later by the program instances.

The user can use any deep learning architecture
compatible with PyTorch modules alongside the

6Ontology Web Language

set of pre-designed and commonly-used neural ar-
chitectures currently existing in the framework. To
facilitate modeling different architectures and com-
putational algorithms in DomiKnowS, we provide
a set of predefined sensors to do basic mathemat-
ical operations and linguistic feature extraction.
Following is a short snippet of defining some sen-
sors/learners for the EMR task.

1 phrase['w2v'] = FunctionalSensor('text',
forward=word2vec)↪→

2 phrase[people] = ModuleLearner('w2v',
module=Classifier(FEATURE_DIM))↪→

3 pair[work_for] = ModuleLearner('emb',
module=Classifier(FEATURE_DIM*2))↪→

In this example, the sensor Word2Vec is used to
obtain token representations from the “text” prop-
erty of each phrase. There is also a very simple
and straightforward linear neural model to classify
phrases and pairs into different classes such as
people, organization, etc.

4 Learning & Evaluation in DomiKnowS

To execute the defined model considering the spec-
ified conceptual graph, DomiKnowS uses program
instances. A program instance is responsible to
run the model, apply loss functions, optimize the
parameters, connect the output decisions to the in-
ference algorithms, and generate the final results
and metrics. Executing the program instance relies
on the problem graph, model declaration, dataload-
ers and a backbone data structure called DataNode.
DataLoader provides an iterable object to loop
over the data. DataNode is an instance of the con-
ceptual graph to keep track of the data instances
and store the computational results of the sensors
and learners. For the EMR task, the program defi-
nition is as follows:

1 program = Program(graph,
poi=(sentence, phrase, pair),
loss=NBCrossEntropyLoss(),
metric=PRF1())

↪→
↪→
↪→

Here, the concepts passed to the poi field specifies
the training points of the program. This enables the
user to train the task based on any subsets of the
concepts defined in the model.

For each program instance, the user should spec-
ify the domain knowledge integration method. The
available methods for integration is discussed in
the next sections. After initializing the program,

234

the user can call train, test, and prediction func-
tionalities to train and evaluate the designed model.
The below snippet is to run training and evaluation
on the EMR task:

1 program.train(train_reader,
test_reader, epochs=10,
Optim=torch.optim.SGD(param,
lr=.001))

↪→
↪→
↪→

2 program.test(new_test_reader)

Here, the user will specify the dataloaders for dif-
ferent sets of the data and the hyper-parameters
required to train the model.

Programs can be composed to address different
training paradigms such as end-to-end or pipeline
training by defining different training points for
each program. More details are available in the
Appendix. Following is an alternative program
definition for pre-training the phrases first and then
learning based on the pairs:

1 program_1 = Program(graph,
poi=(phrase, sentence))↪→

2 program_2 = Program(graph,
poi=(pair))↪→

3 program_1.train(); program_2.train()

4.1 Inference and Optimization

DomiKnowS provides access to a set of approaches
to integrate background knowledge in the form of
constraints on the output decisions or latent vari-
ables/concepts. Currently, DomiKnowS addresses
three different paradigms for integration: 1) Learn-
ing + prediction time inference (L+I) 2) Training-
time integration with hard constraints 3) Training-
time integration with soft constraints. The first
method, which we refer to it as enforcing global
constraints can also be combined and applied on
top of the second and third approaches at inference-
time.
Prediction-time Inference: In the back-end of
DomiKnowS, ILP 7 solvers are used to make infer-
ence under global linear constraints (Roth and Yih,
2005). The constraints are denoted by C (·) ≤ 0.
Without loss of generality, we can denote the struc-
tured output as a binary vector y ∈ Rn. Given
local predictions F (θ) from the neural network,
the global inference can be modeled to maximize
the combination of log probability scores subject
to the constraints (Roth and Yih, 2005; Guo et al.,

7Integer Linear Programming

2020) as follows,

F ∗(θ) = argmax
y

logF (θ)>y

subject to C (y) ≤ 0.
(1)

To handle constraints in ILP, we create variables
for each local decision of instances and trans-
form the logical constraints to algebraic inequal-
ities (Rizzolo and Roth, 2010) in terms of those
variables. Auxiliary variables are added to repre-
sent the nested constraints. The inference method
can be extended to support other approaches such
as probabilistic inference and dynamic program-
ming in future without any modifications to the
other parts of the framework.
Integration of hard constraint in training: Here,
we use our proposed inference-masked loss ap-
proach (IML) (Guo et al., 2020) which constructs
a mask over local predictions based on the global
inference results. The main intuition is to avoid
updating the model based on local violations when
the global inference can recover true labels from
the current predictions. Given structured predic-
tion F (θ) from a neural network and its global
inference F ∗(θ) subject to the constraints, IML is
extended from negative log likelihood as follows

LIML (F (θ), Y) =

− ((1− F ∗(θ))� Y)> logF (θ),
(2)

where Y is the structured ground-truth labels and�
indicates element-wise product. We implemented
LIML(λ) which balances between negative log like-
lihood and IML with a factor λ as introduced in
(Guo et al., 2020). IML works best for very low-
resource tasks where label disambiguation cannot
be learned from the data but can be done based on
the available relational constraints between output
variables. The constraint mapping for the IML uses
the same module in the DomiKnowSthat is imple-
mented to use the global constraint optimization
tool (here ILP).
Integration of soft constraints in training: We
use the primal-dual formulation of constraints pro-
posed in (Nandwani et al., 2019a) to integrate soft
constraints in training the models. Primal-Dual con-
siders the constraints in the neural network training
by augmenting the loss function using Lagrangian
multipliers Λ for the violations from the constraints
by the set of predictions. The constraints are regu-
larized by a hinge function [C (F (θ))]+. The prob-
lem is formulated as a min-max optimization where

235

it maximizes the Lagrangian function with the mul-
tipliers to enforce the constraints and minimize it
with the parameters in the neural network. Here,
instead of solving the min-max primal, we solve
the max-min dual of the original problem.

max
Λ

min
θ
L (F (θ) , Y) + Λ> [C (F (θ))]+ . (3)

During training, we optimize by minimization and
maximization alternatively. With Primal-Dual strat-
egy, the model learns to obey the constraints with-
out requiring any additional inference. Primal-Dual
is less time-consuming at prediction-time than the
previous methods as it does not need an additional
inference-time optimization phase. This can also
be used for semi-supervised setting while exploit-
ing the domain knowledge instead of labeled data.
Handling constraints in Primal-Dual is done by
mapping them to their respective soft logical inter-
pretations (Nandwani et al., 2019b).

It is an open research topic to identify which of
the integration methods performs best for different
tasks. However, DomiKnowS makes it effortless
to use one problem specification and run all the
aforementioned methods.

5 Showcases

The effectiveness of ILP (Roth and Yih, 2005),
IML (Guo et al., 2020), and Primal-Dual (Nand-
wani et al., 2019a) methods have been already
shown in their respective papers. Here, we pro-
vide different tasks and settings to showcase our
framework’s abilities and flexibility to model vari-
ous problems. The results, models implementation
and details of experiments are (partially) available
in the Supplementary part of this paper and (fully)
in the GitHub Repository of DomiKnowS.8

5.1 EMR

Our implementation of the EMR task is based on
the CoNLL (Sang and De Meulder, 2003) bench-
mark and follows the same setting as in (Guo et al.,
2020). The model uses pre-trained BERT (Devlin
et al., 2019) for token representation and a linear
boolean classifier for each derived concept. The
constraints used in this experiment are the domain
and range constraints of pairs and the mutual exclu-
siveness of different derived concepts, which were
seen during the previous sections. IML and Primal-
Dual methods perform the same as the baseline

8https://github.com/HLR/DomiKnowS

using both 100% and 25% of the data, while ILP
inference achieves 1.3% improvement on the 100%
of data and 0.6% improvement on 25% of the data.
More details are available in the Appendix.

5.2 Question Answering
We use WIQA (Tandon et al., 2019) benchmark as
a sample question answering task in DomiKnowS.
The problem graph contains paragraph, question,
symmetric, and transitive concepts. Each para-
graph comes with a set of questions. As explained
by Asai and Hajishirzi, enforcing constraints be-
tween different question answers is beneficial to
improve the performance. By modeling those con-
straints in DomiKnowS, ILP improves the accuracy
from 74.22% to 79.05%, IML reaches 75.49%,
Primal-Dual achieves 76.59%, and the combina-
tion of Primal-Dual and ILP performs best with
80.35% accuracy. More details are available in the
Appendix. Following is a sample constraint defined
for this task.

1 symmetric.has_a(arg1=question,
arg2=question)↪→

2 ifL(is_more('x'), is_less(path=('x',
arg2))↪→

5.3 Image Classification
We use CIFAR-10 benchmark (Krizhevsky et al.)
to show image classification task in DomiKnowS.
CIFAR-10 consists of 60,000 colourful images of
10 classes with 6,000 image for each class. To con-
struct the graph, we defined the derived concepts,
airplane, dog, truck, automobile, bird, cat, deer,
frog, horse and ship, and the base concept image.
We introduce the disjoint constraint between the
labels of an image. We can also define hierarchical
constraints between additional upper level concepts
such as Animal and Object with the existing con-
cepts such dog and ship.

1 disjoint(truck, dog, airplane,
automobile, bird, cat, deer, frog,
horse, ship)

↪→
↪→

Both the disjoint and hierarchical constraints do
not affect the accuracy of the task by a large margin
and ILP can only achieve near 0.5% improvement
over the classification task.

5.4 Inference-Only Example
This example is to show that DomiKnowS can
solve pure optimization problems as well. The task

236

is similar to the classic graph-coloring problem. A
set of cities are given each of which can have a fire
station or not. We want to allocate the fire stations
to cities with respect to the following constraint.
Constraint: For each city x, it either has a fire
station or there exists a city y which is a neighbor
of city x and has a fire station.

To implement this, we define the basic concept
city, the neighbor relationship between two cities
and the derived concept FirestationCity.

1 neighbor.has_a(arg1=city, arg2=city)
2 orL(firestationCity('x'),

existsL(firestationCity(path=('x',
neighbor.arg2))

↪→
↪→

We have also included more showcases to solve
sentiment analysis (Go et al., 2009) and email spam
detection in our GitHub repository. 8 We will add
models for procedural reasoning (Faghihi and Kord-
jamshidi, 2021) and spatial role labeling (Mirzaee
et al., 2021) in future.

6 Conclusions and Future Work

DomiKnowS makes it effortless to integrate do-
main knowledge into deep neural network models
using a unified framework. It allows users to switch
between different algorithms and benefit from a
rich source of abstracted functionalities and com-
putational modules developed for multiple tasks.
It allows naming concepts, defining their relation-
ships symbolically and combining symbolic and
sub-symbolic reasoning over the named concepts.
DomiKnowS helps in interpretability of neural ar-
chitectures by providing named layers and access
to the neural computations at each stage of the train-
ing and evaluation process. As a future direction,
we are looking to enrich our library with prede-
fined functionalities and neural models and further
extend its ability to support more techniques on
integration of domain knowledge with deep neu-
ral models as well as seamless model composition.
More information about technical details and the
documentation of DomiKnowS is publicly avail-
able at our website9 and on GitHub.10

Acknowledgements

This project is partially funded by the Office of
Naval Research (ONR) grant #N00014-20-1-2005.
We thank Drew Hayward and Yue Zhang for their

9https://hlr.github.io/domiknows-nlp/
10https://github.com/HLR/DomiKnowS

work on parts of this framework and the anony-
mous reviewers for their helpful feedback towards
improving the clarity of this manuscript.

References
Akari Asai and Hannaneh Hajishirzi. 2020. Logic-

guided data augmentation and regularization for con-
sistent question answering. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5642–5650.

Stephen H. Bach, Matthias Broecheler, Bert Huang,
and Lise Getoor. 2017. Hinge-loss markov random
fields and probabilistic soft logic. Journal of Ma-
chine Learning Research (JMLR), 18:1–67.

Matthias Broecheler, Lilyana Mihalkova, and Lise
Getoor. 2010. Probabilistic similarity logic. In Con-
ference on Uncertainty in Artificial Intelligence.

Bob Carpenter, Andrew Gelman, Matthew Hoffman,
Daniel Lee, Ben Goodrich, Michael Betancourt,
Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen
Riddell. 2017. Stan: A probabilistic programming
language. Journal of Statistical Software, Articles,
76(1):1–32.

Luc De Raedt, Angelika Kimmig, and Hannu Toivonen.
2007. Problog: a probabilistic Prolog and its appli-
cation in link discovery. In Proceedings of the 20th
International Joint Conference on Artificial Intelli-
gence, pages 2468–2473. AAAI Press.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Perdo Domingos and Matthew Richardson. 2004.
Markov logic: A unifying framework for statistical
relational learning. In ICML’04 Workshop on Sta-
tistical Relational Learning and its Connections to
Other Fields, pages 49–54.

Hossein Rajaby Faghihi and Parisa Kordjamshidi. 2021.
Time-stamped language model: Teaching language
models to understand the flow of events. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
4560–4570.

Alec Go, Lei Huang, and Richa Bhayani. 2009. Twitter
sentiment analysis.

Quan Guo, Hossein Rajaby Faghihi, Yue Zhang,
Andrzej Uszok, and Parisa Kordjamshidi. 2020.
Inference-masked loss for deep structured output

237

learning. In Proceedings of the Twenty-Ninth In-
ternational Joint Conference on Artificial Intelli-
gence, IJCAI-20, pages 2754–2761. International
Joint Conferences on Artificial Intelligence Organi-
zation. Main track.

P. Kordjamshidi, D. Roth, and H. Wu. 2015. Saul: To-
wards declarative learning based programming. In
Proc. of the International Joint Conference on Artifi-
cial Intelligence (IJCAI).

Parisa Kordjamshidi, Daniel Khashabi, Christos
Christodoulopoulos, Bhargav Mangipudi, Sameer
Singh, and Dan Roth. 2016. Better call saul: Flex-
ible programming for learning and inference in nlp.
In Proc. of the International Conference on Compu-
tational Linguistics (COLING).

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton.
Cifar-10 (canadian institute for advanced research).

Tao Li and Vivek Srikumar. 2019a. Augmenting neu-
ral networks with first-order logic. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 292–302.

Tao Li and Vivek Srikumar. 2019b. Augmenting neu-
ral networks with first-order logic. In Proceedings
of the 57th Conference of the Association for Com-
putational Linguistics, ACL 2019, Florence, Italy,
July 28- August 2, 2019, Volume 1: Long Papers,
pages 292–302. Association for Computational Lin-
guistics.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kim-
mig, Thomas Demeester, and Luc De Raedt. 2018.
Deepproblog: Neural probabilistic logic program-
ming. In Advances in Neural Information Process-
ing Systems, volume 31. Curran Associates, Inc.

Vikash K. Mansinghka, Daniel Selsam, and Yura N.
Perov. 2014. Venture: a higher-order probabilis-
tic programming platform with programmable infer-
ence. CoRR, abs/1404.0099.

Brian Milch, Bhaskara Marthi, Stuart Russell, David
Sontag, Daniel L. Ong, and Andrey Kolobov. 2005.
BLOG: Probabilistic models with unknown objects.
In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI).

Tom Minka, John M. Winn, John P. Guiver,
and David A. Knowles. 2012. Infer.NET
2.5. Microsoft Research Cambridge.
http://research.microsoft.com/infernet.

Roshanak Mirzaee, Hossein Rajaby Faghihi, Qiang
Ning, and Parisa Kordjamshidi. 2021. Spartqa: A
textual question answering benchmark for spatial
reasoning. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 4582–4598.

Nikhil Muralidhar, Mohammad Raihanul Islam, Man-
ish Marwah, Anuj Karpatne, and Naren Ramakrish-
nan. 2018. Incorporating prior domain knowledge
into deep neural networks. In 2018 IEEE Interna-
tional Conference on Big Data (Big Data), pages
36–45. IEEE.

Yatin Nandwani, Abhishek Pathak, Mausam, and Parag
Singla. 2019a. A primal dual formulation for deep
learning with constraints. In NeurIPS.

Yatin Nandwani, Abhishek Pathak, Parag Singla, et al.
2019b. A primal dual formulation for deep learning
with constraints. In Advances in Neural Information
Processing Systems, pages 12157–12168.

Anh Nguyen, Jason Yosinski, and Jeff Clune. 2015.
Deep neural networks are easily fooled: High con-
fidence predictions for unrecognizable images. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 427–436.

Avi Pfeffer. 2016. Practical Probabilistic Program-
ming. Manning Publications.

Alexander Ratner, Stephen H. Bach, Henry Ehrenberg,
Jason Fries, Sen Wu, and Christopher Ré. 2017.
Snorkel: Rapid training data creation with weak su-
pervision. Proc. VLDB Endow., 11(3):269–282.

N. Rizzolo and D. Roth. 2010. Learning based Java
for rapid development of NLP systems. In Proceed-
ings of the Seventh Conference on International Lan-
guage Resources and Evaluation.

D. Roth and W. Yih. 2005. Integer linear programming
inference for conditional random fields. In Proc. of
the International Conference on Machine Learning
(ICML), pages 737–744.

Alexander Rush. 2020. Torch-struct: Deep structured
prediction library. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 335–
342, Online. Association for Computational Linguis-
tics.

Erik Tjong Kim Sang and Fien De Meulder. 2003. In-
troduction to the conll-2003 shared task: Language-
independent named entity recognition. In Proceed-
ings of the Seventh Conference on Natural Language
Learning at HLT-NAACL 2003, pages 142–147.

Taisuke Sato and Yoshitaka Kameya. 1997. Prism: A
language for symbolic-statistical modeling. In Pro-
ceedings of the International Joint Conference on Ar-
tificial Intelligence (IJCAI), pages 1330–1339.

Russell Stewart and Stefano Ermon. 2017. Label-free
supervision of neural networks with physics and do-
main knowledge. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 31.

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn
Mazaitis, Ruslan Salakhutdinov, and William Cohen.
2018. Open domain question answering using early

238

fusion of knowledge bases and text. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 4231–4242.

Niket Tandon, Bhavana Dalvi, Keisuke Sakaguchi, Pe-
ter Clark, and Antoine Bosselut. 2019. WIQA: A
dataset for “what if...” reasoning over procedural
text. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
6076–6085, Hong Kong, China. Association for
Computational Linguistics.

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and
Guy Van den Broeck. 2018. A semantic loss func-
tion for deep learning with symbolic knowledge. In
Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pages 5502–5511. PMLR.

Bishan Yang and Tom Mitchell. 2017. Leveraging
knowledge bases in lstms for improving machine
reading. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1436–1446.

Xiao Zhang, Maria Leonor Pacheco, Chang Li, and
Dan Goldwasser. 2016. Introducing DRAIL – a step
towards declarative deep relational learning. In Pro-
ceedings of the Workshop on Structured Prediction
for NLP, pages 54–62, Austin, TX. Association for
Computational Linguistics.

Da Zheng, Minjie Wang, Quan Gan, Zheng Zhang, and
George Karypis. 2020. Learning graph neural net-
works with deep graph library. WWW ’20, New
York, NY, USA. Association for Computing Machin-
ery.

A Global Constraints and Mapping

Following is an example of the mapping between
OWL constraint, graph structure and the logic
python constraint. The ontology definition in
OWL:

1 <owl:ObjectProperty rdf:ID="work_for">
2 <rdfs:domain

rdf:resource="#people"/>↪→
3 <rdfs:range

rdf:resource="#organization"/>↪→
4 </owl:ObjectProperty>

or equivalent graph structure definition:

1 work_for.has_a(arg1=people,
arg2=organization)↪→

DomiKnowS’s constrain language representation:

1 ifL(work_for('x'), andL(people(path=
('x',arg1)),
organization(path='x',arg2)))

↪→
↪→

All three above constraints represent the same
knowledge that a work_for relationship only holds
between people and organization.

In order to map this logical constrain to ILP, the
solver collects sets of candidates for each used in
the constrain concepts.

ILP inequalities are created for each of the com-
binations of candidates sets. The internal nested
andL logical expression is translated to a set of
three algebraic inequalities. The new variable
varAND) is created to transfer the result of the
internal expression into the external one.

1 varAND <= varPhraseIsPeople
2 varAND <= varPhraseIsOrganization
3 varPhraseIsPeople +

varPhraseIsOrganization <= varAND
+ 1

↪→
↪→

External ifL expression is translated to a single al-
gebraic inequality (refers to the variable varAND):

1 varPhraseIsWorkFor <= varAND

B Program Composition

The Program instances allow the user to define dif-
ferent training tasks without extra effort to change
the underlying models. One can define end-to-end
models, pipelines, and two step tuning paradigms
just by defining different program instances and
calling them one after another. For instance, we
can seamlessly switch between the following varia-
tions of learning paradigms on the EMR task.
End-To-End training:

1 program = Program(graph, poi=(phrase,
sentence, pair))↪→

2 program.train()

Pre-train phrase then just train on the pairs:

1 program_1 = Program(graph,
poi=(phrase, sentence))↪→

2 program_2 = Program(graph,
poi=(pair))↪→

3 program_1.train(); program_2.train()

Pre-train phrase and use the result in the end-to-
end training:

239

Precision Recall F1
Entity Relation All Entity Relation All Entity Relation All

Baseline 0.898 0.960 0.933 0.7619 0.807 0.787 0.818 0.872 0.848
Baselin +
ILP

0.896 0.986 0.946 0.816 0.77 0.791 0.847 0.86 0.854

Baseline + IML 0.8851 0.979 0.937 0.746 0.712 0.727 0.8 0.82 0.811
Baseline + PD 0.9 0.952 0.929 0.765 0.789 0.779 0.821 0.859 0.842

Table 1: The results on the 25% of the data on Conll benchmark.

Precision Recall F1
Entity Relation All Entity Relation All Entity Relation All

Baseline 0.909 0.954 0.934 0.824 0.914 0.874 0.86 0.934 0.901
Baselin +
ILP

0.911 0.989 0.954 0.855 0.903 0.882 0.877 0.944 0.914

Baseline + IML 0.904 0.989 0.951 0.831 0.884 0.861 0.86 0.933 0.901
Baseline + PD 0.910 0.934 0.923 0.827 0.915 0.876 0.862 0.924 0.897

Table 2: The results on 100% of data on Conll benchmark.

1 program_1 = POIProgram(graph,
poi=(phrase, sentence), ...)↪→

2 program_2 = POIProgram(graph,
poi=(phrase, sentence, pair),
...)

↪→
↪→

3 program_1.train(...)
4 program_2.train(...)

C Experiments

C.1 EMR

Figure 1: The domain knowledge used for the named
entity and relation extraction task expressed as a graph
in DomiKnowS

Figure 1 shows the prior structural domain
knowledge expressed as a graph and used in this ex-
ample. It contains the basic concepts such as ‘sen-
tence‘, ‘phrase‘, ‘word‘, and ‘pair‘ and the existing
relationships between them alongside the possible

output concepts such as ‘people‘ and ‘work_for‘.
Figure 2 also represents a sample DataNode graph
populated for a single phrase, alongside its proper-
ties and decisions.

Tables 1 and 2 summarize the results of the
model applied on only 25% of the training data
and the whole 100% of the training data based on
the CONLL dataset respectively.

C.2 Question Answering

WIQA dataset contains 39,705 multiple choice
questions regarding cause and effects in the context
of a procedural paragraph. The answer is always ei-
ther is less, is more, or no effect. To model this task
in DomiKnowS, we define paragraph, question,
symmetric, and transitive concepts. Each para-
graph comes with a set of questions. As explained
by Asai and Hajishirzi, enforcing constraints be-
tween different question answers can be beneficial
to the models’ performance. Here, two questions
can be the opposite of each other with a symmetric
relationship between their answers, or three ques-
tions may introduce a chain of reasoning of cause
and effects leading to a transitivity property among
their answers. Following is a sample constraint
defined in DomiKnowS to represent the symmetric
property between questions.

1 symmetric.has_a(arg1=question,
arg2=question)↪→

2 ifL(is_more('x'), is_less(path=('x',
arg2))↪→

240

Figure 2: Sample DataNode graph populated for one single phrase from the Named Entity and Relation Extraction
task.

Model Test Accuracy
Baseline 74.22%
Baseline + IML 75.49%
Baseline + PD 76.59%
Baseline + ILP 79.05%
Baseline + PD + ILP 80.35%

Table 3: Results of accuracy on WIQA dataset

The results for the WIQA dataset are shown in
table 3. Using IML method with this task results
in 1.27% improvement while Primal Dual does a
better job by improving the accuracy with 2.37%.
The best result is achieved with the combination of
ILP and Primal Dual with 6.1% improvement over
the baseline.

241

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 242–250
November 7–11, 2021. ©2021 Association for Computational Linguistics

OpenFraming: Open-sourced Tool for Computational Framing Analysis
of Multilingual Data

Vibhu Bhatia∗
Alyssa Smith†

Vidya Akavoor∗
David Tofu

Prakash Ishwar

Sejin Paik∗
Edward Halim

Boston University
wijaya@bu.edu

Lei Guo
Yimeng Sun

Derry Tanti Wijaya‡

Mona Jalal
Margrit Betke

Abstract

When journalists cover a news story, they
can cover the story from multiple angles or
perspectives. These perspectives are called
“frames”, and usage of one frame or an-
other may influence public perception and
opinion of the issue at hand. We develop
a web-based system for analyzing frames
in multilingual text documents. We propose
and guide users through a five-step end-to-
end computational framing analysis frame-
work grounded in media framing theory in
communication research. Users can use the
framework to analyze multilingual text data,
starting from the exploration of frames in
user’s corpora and through review of pre-
vious framing literature (step 1-3) to frame
classification (step 4) and prediction (step
5). The framework combines unsupervised
and supervised machine learning and lever-
ages a state-of-the-art (SoTA) multilingual lan-
guage model, which can significantly enhance
frame prediction performance while requiring
a considerably small sample of manual anno-
tations. Through the interactive website, any-
one can perform the proposed computational
framing analysis, making advanced computa-
tional analysis available to researchers with-
out a programming background and bridg-
ing the digital divide within the communica-
tion research discipline in particular and the
academic community in general. The system
is available online at http://www.openframing.
org1, via an API http://www.openframing.org:
5000/docs/, or through our GitHub page https:
//github.com/vibss2397/openFraming.

1 Introduction

We live in a world saturated with media. Any major
public issue, such as the ongoing COVID-19 pan-
demic and the Black Lives Matter protests, attracts

∗ Contributed equally
† While at Summer research in Boston University
‡ Corresponding author

1Best viewed with Google Chrome browser

tremendous attention from hundreds of thousands
of news media outlets — traditional and emerging
- around the world. The reporting angles on a sin-
gle issue are often varied across different media
outlets. In covering COVID-19, for example, some
media outlets focus on government response and
actions while others emphasize the economic con-
sequences. Social science scholars call this process
media framing. To define, or to frame, is “to se-
lect some aspects of a perceived reality and make
them more salient in a communicating text” (Ent-
man, 1993). When used in news articles, frames
can strongly impact public perception of the topics
reported and lead to different assessments by read-
ers (Hamborg, 2020), or even reinforce stereotypes
and project explicit and implicit social and racial
biases (Drakulich, 2015; Sap et al., 2019).

Frame discovery in media text has been tradition-
ally accomplished using methods such as quantita-
tive content analysis (Krippendorff, 2018), which
is a manual method widely used by social scien-
tists. However, in the emerging media environment,
the sheer volume and velocity with which content
is generated makes manual labeling increasingly
intractable. To overcome this “Big Data” challenge,
our cross-disciplinary team, which consists of com-
puter science and communication researchers have
employed methods based on SoTA machine learn-
ing (ML) techniques to detect frames automatically
and robustly (Akyürek et al., 2020; Liu et al., 2019).

However, these SoTA ML models are not readily
accessible to social sciences scholars who typically
do not have machine learning and programming
training. The current ecosystem around “Big Data”
creates new digital divides between the Big Data
rich and the Big Data poor (Boyd and Crawford,
2012). Among other barriers, the limited access
to computational resources and skillsets prevents
many communication scholars from taking advan-
tage of a large number of unprecedented ML mod-
els of the day and hampers their ability to glean

242

Figure 1: Our proposed five-step computational framing analysis framework that is grounded in media framing theory in
communication research. Users can use our framework to analyze frames in text, starting from the inductive exploration of
frames in user’s corpora via topic modeling (step 1) and deductively through review of previous framing literature (step 2),
to labeling frames for training data with content analysis (step 3), to training the frame classification model (step 4) and to
prediction on unlabeled data (step 5).

valuable insights from unprecedentedly large media
datasets since framing, especially at scale, defines
how news media coverage shapes mass opinion.

Our goal is to make computational framing
analysis accessible to researchers from a diverse
array of disciplines. We present OpenFraming
(www.openframing.org), a free and user-friendly
Web-based system that allows researchers to con-
duct computational framing analysis without hav-
ing to write and debug complex code. There does,
of course, exist click-and-play commercial soft-
ware, but these tools are often costly and pose is-
sues for researchers due to a lack of transparency
into their inner computational mechanisms. This
black box problem is present in various applica-
tions of data science techniques in communication
research (Guo, 2018), thus hindering the open sci-
ence movement in the field (van Atteveldt and Peng,
2018). In contrast, our system is based on SoTA
framing research and our code is publicly available
under MIT license.

Specifically, we propose a five-step analytical
framework (Figure 1) allowing users to identify
frames in large-scale media text by leveraging
SoTA computational frame analysis research tech-
niques. Our work is advantageous in at least five
aspects. First, the framework is grounded in me-
dia framing theory, one of the most established
theories in communication research (D’Angelo,
2018; Reese et al., 2001b). Second, we provide
a web-based, user-friendly graphic interface where
researchers with little or no computational back-
ground can perform advanced data analysis through

a click-and-play approach. Third, all algorithms
used are open to users and the benefits and limita-
tions of the algorithms are explained at each step.
Fourth, given the increasing importance of under-
standing information flow at a global scale, our
tool can be used to analyze media content in 23
languages based on a SoTA multilingual language
model (Devlin et al., 2018). Lastly, with the sup-
port of a research grant, we make our tool entirely
free to the academic community.

We will start with a review of the theoretical
and methodological backgrounds based on which
our system is developed. We will then detail the
five-step framing analysis facilitated by the system.
The importance of bridging the digital divide in
the field of computational communication research
will also be discussed.

2 Related Work

To frame is “to select some aspects of a perceived
reality and make them more salient in a commu-
nicating text” (Entman, 1993). Like any type of
communication, news involves framing. The ideol-
ogy of a society, ownership of a news organization,
media routine, as well as individual media worker’s
preferences all play some role, consciously or not,
in shaping the news content (Shoemaker and Reese,
1995). Reese et al. (2001a) defines media frames
as “organizing principles that are socially shared
and persistent over time, that work symbolically to
meaningfully structure the social world”. In other
words, one can frame an issue in multiple ways,

243

but a frame must be shared by the target audience
on some level for it to be communicable and ef-
fective. Accordingly, news frame analysis should
focus on frames that are “persistent over time”.
These include generic frames that appear across
issues, time, and space, such as human interest,
conflict, attribution of responsibility, and economic
consequences (Neuman et al., 1992; Nisbet, 2010;
Semetko and Valkenburg, 2000). For any particular
issue, journalists also apply issue-specific frames
e.g., reporters often use peace- and war-oriented
frames to help their audience understand the com-
plexity of wars (Neumann and Fahmy, 2012).

Empirically, communication researchers have
developed a variety of approaches to analyze
frames. There are in general three computational
approaches: 1) lexical-based, 2) unsupervised ML,
and 3) supervised ML.

The lexical-based approach relies on predefined
lists of words, known as lexicons or dictionaries,
with each word associated with a certain frame
(Field et al., 2018). For example, (Lind et al., 2019)
develops keywords to search for frames in the news
coverage of immigration. We, however, contend
that the lexical-based approach is not ideal for news
frame analysis. Unlike the topic-like frames in Lind
et al. (2019), many enduring media frames (e.g.,
conflict, human interest) are abstract and involve
complex meanings, which cannot be easily cap-
tured by a list of words and terms.

The other two approaches are based on ML mod-
els that learn from data. While unsupervised ML
models discover patterns of frames from unlabeled
data, supervised ML is done by training a model
on a sample of documents that are labeled with the
“correct” frame. In communication research, the
“correct frame” often refers to labels provided by
human coders through quantitative content analysis
(Krippendorff, 2004).

Several existing news frame studies used an un-
supervised ML approach. The Latent Dirichlet Al-
location (LDA) topic modeling (Blei et al., 2003)
is a popular example (see Maier et al. (2018) for a
systematic review). In analyzing news content, the
text is observed as a set of latent “topics” and these
topics are distributed over words in a probabilistic
order. The output of the LDA topic modeling is a
“topic matrix” with a list of keywords represent-
ing each topic. Researchers will have to review the
top keywords and decide on a label to represent
the meaning of each topic. Some studies approach

media framing by analyzing mainly themes or top-
ics. This approach is problematic because, again,
news frame analysis should identify patterns that
endure over time, which is different from thematic
or topical analyses that describe themes or topics as
instances reported in certain stories (Reese, 2007).
Given this, the LDA approach is most useful for
exploratory analysis. Although the LDA-generated
topics are not necessarily equivalent to frames, the
information can be used to obtain initial ideas about
the data and infer potential frames for the next step
of supervised frame analysis (Guo et al., 2016).

Supervised ML also has become increasingly
common in communication research (Colleoni
et al., 2014; De Grove et al., 2020). Our recent
studies use BERT language model (Devlin et al.,
2018) and fine-tune it for the task of identifying
frames in the news coverage about US gun violence
which demonstrate a high level of accuracy for mul-
tilingual frame detection (Liu et al., 2019; Akyürek
et al., 2020) with a relatively small amount of data:
1.3k English frame-labeled news headlines.

Based on the review of the literature, we propose
a five-step end-to-end multilingual framing analy-
sis framework that combines unsupervised and su-
pervised ML. Unsupervised ML can help develop
a holistic picture of large-scale text corpora, but is
not sufficient for a news frame analysis. Adding a
supervised approach to the research framework is
essential because the goal is to identify enduring
frames—generic and issue-specific frames to con-
tribute to the media framing literature. Furthermore,
since developing multilingual ground truth labels
through manual content analysis is labor-intensive
and time-consuming, to address this challenge in
part, our proposed framework incorporates a SoTA
multilingual language model such as BERT that
allows transfer learning from pretrained models to
the task at hand. As a result, it would require rela-
tively fewer labeled documents to fine-tune, while
still achieving robust prediction performance.

3 System Description: Five-step
Multilingual Framing Analysis

Our analytical framework, available publicly via
www.openframing.org, involves five steps that re-
searchers can take to conduct a end-to-end com-
putational framing analysis of multilingual text
corpora (Figure 1). To help demonstrate the re-
search procedure, we will accompany the descrip-
tion of our system by a case study that exam-

244

ines frames in the U.S. news coverage of the U.S.
gun violence issue–also provided as a demo at
http://www.openframing.org/demos.html.

Before using the system, researchers should first
collect data related to the issue under consideration.
As for the case study, we collect news headlines
using the keyword combination (gun OR firearm
OR nra OR “2nd amendment” OR “second amend-
ment” OR AR15 OR “assault weapon” OR rifle OR
“brady act” OR “brady bill” OR shooting) and col-
lected a total of 42,917 U.S. English news articles
from 2018 using Brandwatch Consumer Research2.

Step 1: Explore Topics with Topic Modeling
To analyze how the news media frame an issue,
we first suggest users come up with a list of spe-
cific “frames” that guide the discussion of the issue.
This process of searching for frames should be
both inductively—based on an observation of the
data—and deductively—based on the review of the
previous framing literature. Both steps are essential
because the analysis of frames should not just aim
for a full capture of the data (inductive), but also to
build and further advance the prior knowledge of
the media framing theory (deductive).

Step 1 (Figure 2) focuses on the inductive part
of the research. The goal of this first step is to
preliminarily examine the LDA “topic” information
of the data, which helps researchers decide the final
frames to be analyzed in Step 2.

While there is some flexibility regarding the for-
mat of the input dataset (the system currently sup-
ports .xls, .xlsx, .csv, or .tsv), the file must contain
a column labeled "example", which contains one
document per row. Throughout this paper, we call
the unit of analysis a "document", which can be
a news headline, a news article, or a tweet. Our
system also provides users with a list of data clean-
ing options (some of them are shown in Figure
2). In particular, we provide the option of running
the analysis in multiple languages. The Natural
Language Toolkit (NLTK) provides a library of
stopwords available in 23 languages, which we use
to remove stopwords in text in the language speci-
fied by the user. The LDA topic modeling, which
is language invariant, is then applied to generate
topics from the text when user hits the "submit"
button. We use the Mallet LDA implementation
(McCallum, 2002). The system then sends the user
an e-mail with a link to download the results of the

2https://www.brandwatch.com/

Figure 2: Step 1 of the 5-step framing analysis that allows users
to explore topics in their corpora with LDA topic modeling.

analysis–the topics discovered and the keywords
per topic.

Although the LDA topic modeling is a computa-
tional method, its implementation involves a series
of human reasoning. For instance, as mentioned
above, researchers should decide the data cleaning
procedures, the number of LDA topics, and the
number of keywords associated with each topic.
Our tool not only allows users to specify their pre-
ferred settings but also provides guidance and rec-
ommendations for each decision through the infor-
mation ð buttons on Figure 2. Following previous
research, we recommend users try different num-
bers of topics before making the final decision.

In conducting the gun violence study, we first
used the LDA to explore prominent topics in our
dataset about the U.S. gun violence issue. For
demonstration purposes, we tried 5, 10, and 15
topics. Based on the five-topic LDA output (Figure
3), we can manually assign labels to these topics: 1)
mass shootings, 2) police officers, 3) school shoot-
ings and demonstrations, 4) gun rights and gun
control, and 5) the second amendment. It is recom-
mended that at least two researchers independently
review the topics and then decide the labels collec-

245

Figure 3: The LDA topic modeling output for our gun violence
news headlines based on five topics.

tively. When we increase the number of topics from
five to 10, more information emerges such as men-
tal health. However, when we further increase the
number of topics to 15, redundancy occurs—for ex-
ample, many topics are related to gun control—and
certain topics contain words that are not semanti-
cally meaningful. This indicates that we may have
reached the saturation point, thus further increas-
ing the number of topics would be less likely to
generate any new topical information.

After users try a series of numbers and ex-
plore the corresponding topic-keyword matrices
in datasets of different languages, they will be able
to develop a preliminary idea of the multilingual
data. This concludes Step 1 of the framing analysis.

Step 2-3: Decide and Label Frames In Step 2,
researchers are recommended to consult the LDA
topic modeling results from Step 1 (inductive) and
previous literature about media framing of the issue
under investigation (deductive), and then decide a
list of frames to be analyzed.

For our case study, based on the LDA modeling
results of the news coverage of U.S. gun violence
and the literature review of the media framing of
this topic, we decided in Step 2 the following list
of frames: 1) Gun/2nd amendment rights; 2) Gun
control/regulation; 3) Politics; 4) Mental health; 5)
School or public space safety; 6) Race/ethnicity;
7) Public opinion; 8) Society/culture; and 9) Eco-
nomic consequences. On this list, some frames are
issue-specific frames that are unique to the media
coverage of gun violence such as “gun/2nd Amend-
ment rights” and “mental health,” other frames are
generic frames such as “economic consequences”
that apply to all kinds of issues. It is also impor-
tant to note that although the LDA topic model-
ing results do not have explicit reference to “soci-
ety/culture,” we still include it because it is a media
frame discussed in the previous literature about gun
violence media coverage (Birkland and Lawrence,
2009; Schnell, 2001).

In Step 3, once the list of frames is decided, the
user should draw a sample of the data and apply

quantitative content analysis (QCA) (Krippendorff,
2004) to manually label frames. This annotated
sample will be used as the ground truth to train an
ML model in Step 4. In our case study, we selected
a random sample of 1.3k English headlines, and
recruited two human coders to annotate the frames
of the headlines. Following the QCA procedure,
we created a codebook to explain each frame and
held multiple training sessions for the coders to
understand how to identify the dominant frames of
the headlines. To test intercoder reliability, the two
coders for each language were instructed to code a
sample of news headlines independently and their
results were compared. They ultimately reached a
robust level of intercoder reliability (0.90 α).

Step 4: Build a Frame Classification Model
with Deep Learning The goal of Step 4 is to
use the documents the users have labeled from
Step 3 to build supervised ML models that can
then predict frames in unlabeled documents. Our
analytical framework incorporates SoTA language
model BERT, which stands for Bidirectional En-
coder Representations from Transformers (Devlin
et al., 2018). In order to analyze text in multiple
languages, we use a recent multilingual extension
of BERT: XLM-Roberta (Conneau et al., 2019).

BERT is one of the most successful deep learn-
ing language models in natural language process-
ing (NLP). Trained on a large text corpus (i.e.,
Wikipedia pages and books), the model produces
embeddings (i.e., vectors of numbers) to represent
the meaning of sentences, taking into consideration
the relationships between words and their context.
On top of that, XLM-Roberta is further trained on a
large corpus of multilingual data, that is, 2.5TB of
filtered web data in 100 languages. The vector rep-
resentations of text in any of the 100 languages the
model is pretrained on can then be used to generate
insight into any text in the given language. Further
discussion of our system’s multilingual capability
and other recommendations for best practices can
be found in the comprehensive FAQ section of our
website.3

Building a deep learning model from scratch is
hard because it requires extensive training data. A
common approach is to “transfer” insight from a
pretrained deep learning model and use it to per-
form similar tasks on another dataset. This is called
transfer learning. With the capability of transfer-
ring knowledge from a pretrained model to the

3http://www.openframing.org/faq.html

246

current task, one can build a model with a high
level of accuracy even using a small sample of
ground truth labels. In short, our system first ob-
tains some knowledge from XLM-Roberta about
how to create meaningful vector representations of
text in multiple languages, and fine-tunes these rep-
resentations using the provided human annotations
for frame classification4. Our system implements 5-
fold cross-validation and provides three evaluation
scores—precision, recall, and F-score—to assess
the performance of the trained model. These are
sent via an email to the user once training is done,
together with the ID of the model trained on the
user’s entire labeled data that the user can use for
frame prediction in Step 5. As for our gun violence
case study, we use the above-discussed approach.
Based on 5-fold cross-validation, the model to pre-
dict frames in the English news headlines reached
0.83 accuracy.

Step 5: Predict Frames with Deep Learning
Once the user is satisfied with the average model
performance from Step 4, they can upload an unla-
beled dataset and the user’s trained model can be
used to predict the frames in the dataset. Our sys-
tem also provides four English pretrained models
on topics of gun violence trained on the gun vio-
lence frame corpus (Liu et al., 2019; Akyürek et al.,
2020; Guo et al., 2021), and immigration, tobacco,
and same-sex marriage trained on the media frame
corpus (Card et al., 2015; Field et al., 2018).

We use the gun violence model trained from Step
4–which obtains a 5-fold cross-validation accuracy
of 0.83–to predict the frames of the remaining En-
glish news headlines about the U.S. gun violence
issue from different years. Figure 4 visualize the
results, which can also be accessed at the demo
part of our website http://www.openframing.org/
demos.html. It is clear that the volume of coverage
increased after each mass shooting case (Figure
4) and overall, the issue was largely politicized in
the media discourse. The demo also allows com-
parison of conservative and liberal-leaning news
coverage in the U.S., where the former emphasized
the mental health frame more than so the latter.
With results of news frames like the ones demon-
strated here, users can run additional statistics to
compare news framing strategies across different
societies, or different types of news media within a

4We use one set of training parameters recommended for
BERT: a learning rate of 5e-5, 3 epochs of fine-tuning, and a
batch size of 8

Figure 4: Screenshot of part of the web page for the gun vio-
lence study demo, showing 2018 headline frame predictions.

certain society.

4 Discussion and Conclusion

As we have argued, applying SoTA computational
methods to framing analysis can make a signifi-
cant methodological contribution to the field. How-
ever, the implementation involves at least two chal-
lenges: the lack of computational resources and
skills. Deep learning models such as XLM-Roberta,
are extremely large ML models with millions of
parameters to train. Even fine-tuning them requires
computers with GPU compute capability, which is
expensive and not widely available. Some cloud
services such as Google Colab provide free but lim-
ited access to GPUs. The intensive computational
requirements for running large ML models and
the unequal access to these computing resources
among researchers contribute to the digital and
compute divide (Strubell et al., 2019).

For communication researchers, the divide is
exacerbated due to the shortage of computational
research skills. Implementing and fine-tuning topic
modeling or deep learning models such as the ones
introduced here requires the understanding and a
considerable degree of comfortability with using
a deep learning programming framework such as
Pytorch, machine learning libraries such as scikit-
learn for the training and evaluation setup and anal-
ysis, NLP libraries such as NLTK to clean and pre-
process the text, as well as Python programming
that is required for using these frameworks and li-
braries. Users with little experience in computer
science or programming would find it challenging
to run the computational analysis on their own.

With the support of a cross-disciplinary team,
our system aims to make the computational fram-

247

ing analysis accessible to researchers with no or
little prior experience in computer science and pro-
gramming. Through a click-and-play web-based
system, the users can follow the guidance on the
website and run the advanced computational analy-
sis step by step. Users with different levels of exper-
tise would know where to start and how to interact
with the system. Also unlike many of the similar
applications in the market, our system prioritizes
transparency in its data processing and algorithms.
The tool is entirely open-sourced and users will
have access to the raw code on our Github page.

5 Future Directions

In the future, we are extending our system to sup-
port multilingual framing analysis on noisy or in-
formal text, such as those present in social media
posts, using recent methods such as Wibowo et al.
(2021) to convert informal to formal text prior to
doing framing analysis. Other interesting future di-
rections include extending our system to support
computational multimodal (i.e., text and image)
framing analysis. As journalists have been using
both text and images to frame news stories (Mes-
saris and Abraham, 2001; Coleman and Wu, 2015;
Dan, 2017; Powell et al., 2015), text and images
have worked together to create a holistic percep-
tion of news and hence must be considered together
when analyzing news frames (Wessler et al., 2016).
Although such use of multimodal inputs has been
explored in many NLP tasks such as multimodal
machine translation (Specia et al., 2016; Hewitt
et al., 2018; Khani et al., 2021) and vision-language
tasks such as multilingual image retrieval or cap-
tioning (Kim et al., 2020; Burns et al., 2020; Ra-
sooli et al., 2021), there is not yet a computational
tool that can support multimodal framing. Further-
more, in addition to communication scholars ben-
efiting from such tool that can analyze, on large
scale, images and headlines in tandem for frames,
newsroom editors would also benefit from tools
that can identify images that help depict the main
thrust of the story’s focus (Caple, 2010). Such tools
do not yet exist, and a system that can support mul-
timodal framing will be able to address this need.

Acknowledgments

This work is supported in part by the U.S. NSF
grant 1838193, DARPA HR001118S0044 (the
LwLL program), and the Department of the Air
Force FA8750-19-2-3334 (Semi-supervised Learn-

ing of Multimodal Representations). The U.S. Gov-
ernment is authorized to reproduce and distribute
reprints for Governmental purposes. The views and
conclusions contained in this publication are those
of the authors and should not be interpreted as
representing official policies or endorsements of
DARPA, the Air Force, and the U.S. Government.

References
Afra Feyza Akyürek, Lei Guo, Randa Elanwar, Prakash

Ishwar, Margrit Betke, and Derry Tanti Wijaya.
2020. Multi-label and multilingual news framing
analysis. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 8614–8624, Online. Association for Computa-
tional Linguistics.

Thomas A Birkland and Regina G Lawrence. 2009.
Media framing and policy change after columbine.
American Behavioral Scientist, 52(10):1405–1425.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of ma-
chine Learning research, 3(Jan):993–1022.

Danah Boyd and Kate Crawford. 2012. Critical ques-
tions for big data: Provocations for a cultural, tech-
nological, and scholarly phenomenon. Information,
communication & society, 15(5):662–679.

Andrea Burns, Donghyun Kim, Derry Wijaya, Kate
Saenko, and Bryan A Plummer. 2020. Learn-
ing to scale multilingual representations for vision-
language tasks. In European Conference on Com-
puter Vision, pages 197–213. Springer.

Helen Caple. 2010. What you see and what you
get: The evolving role of news photographs in an
Australian broadsheet. Journalism and Meaning-
Making: Reading the Newspaper, pages 199–220.

Dallas Card, Amber Boydstun, Justin H Gross, Philip
Resnik, and Noah A Smith. 2015. The media frames
corpus: Annotations of frames across issues. In Pro-
ceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 2: Short Papers), pages 438–444.

Renita Coleman and Denis Wu. 2015. Image and emo-
tion in voter decisions: The affect agenda. Lexing-
ton Books.

Elanor Colleoni, Alessandro Rozza, and Adam Arvids-
son. 2014. Echo chamber or public sphere? predict-
ing political orientation and measuring political ho-
mophily in twitter using big data. Journal of com-
munication, 64(2):317–332.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco

248

Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Viorela Dan. 2017. Integrative framing analysis: Fram-
ing health through words and visuals. Routledge.

Paul D’Angelo. 2018. Doing news framing analysis II:
Empirical and theoretical perspectives. Routledge.

Frederik De Grove, Kristof Boghe, and Lieven
De Marez. 2020. (what) can journalism studies
learn from supervised machine learning? Journal-
ism Studies, 21(7):912–927.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Kevin M Drakulich. 2015. Explicit and hidden racial
bias in the framing of social problems. Social Prob-
lems, 62(3):391–418.

Robert M Entman. 1993. Framing: Toward clarifica-
tion of a fractured paradigm. Journal of Communi-
cation.

Anjalie Field, Doron Kliger, Shuly Wintner, Jennifer
Pan, Dan Jurafsky, and Yulia Tsvetkov. 2018. Fram-
ing and agenda-setting in russian news: a computa-
tional analysis of intricate political strategies. arXiv
preprint arXiv:1808.09386.

Lei Guo. 2018. Ignorance or uncertainty: How the
“black box” dilemma in big data research may “mis-
inform” political communication. In Digital Discus-
sions, pages 50–67. Routledge.

Lei Guo, Kate Mays, Yiyan Zhang, Derry Wijaya, and
Margrit Betke. 2021. What makes gun violence a
(less) prominent issue? a computational analysis of
compelling arguments and selective agenda setting.
Mass communication and society, pages 1–25.

Lei Guo, Chris J Vargo, Zixuan Pan, Weicong Ding,
and Prakash Ishwar. 2016. Big social data analyt-
ics in journalism and mass communication: Compar-
ing dictionary-based text analysis and unsupervised
topic modeling. Journalism & Mass Communica-
tion Quarterly, 93(2):332–359.

Felix Hamborg. 2020. Media bias, the social sciences,
and nlp: Automating frame analyses to identify bias
by word choice and labeling. In Proceedings of the
58th Annual Meeting of the Association for Com-
putational Linguistics: Student Research Workshop,
pages 79–87.

John Hewitt, Daphne Ippolito, Brendan Callahan, Reno
Kriz, Derry Tanti Wijaya, and Chris Callison-Burch.
2018. Learning translations via images with a mas-
sively multilingual image dataset. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2566–2576.

Nikzad Khani, Isidora Tourni, Mohammad Sadegh Ra-
sooli, Chris Callison-Burch, and Derry Tanti Wijaya.
2021. Cultural and geographical influences on im-
age translatability of words across languages. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 198–209.

Donghyun Kim, Kuniaki Saito, Kate Saenko, Stan
Sclaroff, and Bryan Plummer. 2020. Mule: Multi-
modal universal language embedding. In Proceed-
ings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pages 11254–11261.

Klaus Krippendorff. 2004. Content analysis: An intro-
duction to its methodology.

Klaus Krippendorff. 2018. Content analysis: An intro-
duction to its methodology. Sage publications.

Fabienne Lind, Jakob-Moritz Eberl, Tobias Heidenre-
ich, and Hajo G Boomgaarden. 2019. Computa-
tional communication science| when the journey is
as important as the goal: A roadmap to multilin-
gual dictionary construction. International Journal
of Communication, 13:21.

Siyi Liu, Lei Guo, Kate Mays, Margrit Betke, and
Derry Tanti Wijaya. 2019. Detecting frames in news
headlines and its application to analyzing news fram-
ing trends surrounding us gun violence. In Proceed-
ings of the 23rd Conference on Computational Natu-
ral Language Learning (CoNLL), pages 504–514.

Daniel Maier, Annie Waldherr, Peter Miltner, Gregor
Wiedemann, Andreas Niekler, Alexa Keinert, Bar-
bara Pfetsch, Gerhard Heyer, Ueli Reber, Thomas
Häussler, et al. 2018. Applying lda topic modeling
in communication research: Toward a valid and re-
liable methodology. Communication Methods and
Measures, 12(2-3):93–118.

Andrew Kachites McCallum. 2002. Mallet:
A machine learning for language toolkit.
Http://mallet.cs.umass.edu.

Paul Messaris and Linus Abraham. 2001. The role of
images in framing news stories. In Framing public
life, pages 231–242. Routledge.

W Russell Neuman, Russell W Neuman, Marion R
Just, and Ann N Crigler. 1992. Common knowl-
edge: News and the construction of political mean-
ing. University of Chicago Press.

Rico Neumann and Shahira Fahmy. 2012. Analyzing
the spell of war: A war/peace framing analysis of the
2009 visual coverage of the sri lankan civil war in
western newswires. Mass Communication and Soci-
ety, 15(2):169–200.

Matthew C Nisbet. 2010. Knowledge into action:
Framing the debates over climate change and
poverty. In Doing news framing analysis, pages 59–
99. Routledge.

249

Thomas E Powell, Hajo G Boomgaarden, Knut
De Swert, and Claes H de Vreese. 2015. A clearer
picture: The contribution of visuals and text to fram-
ing effects. Journal of Communication, 65(6):997–
1017.

Mohammad Sadegh Rasooli, Chris Callison-Burch,
and Derry Tanti Wijaya. 2021. " wikily" neural
machine translation tailored to cross-lingual tasks.
arXiv preprint arXiv:2104.08384.

Stephen D Reese. 2007. The framing project: A bridg-
ing model for media research revisited. Journal of
communication, 57(1):148–154.

Stephen D Reese, Jr Gandy, and August E Grant. 2001a.
Prologue—framing public life: A bridging model for
media research. In Framing public life, pages 23–48.
Routledge.

Stephen D Reese, Oscar H Gandy Jr, and August E
Grant. 2001b. Framing public life: Perspectives on
media and our understanding of the social world.
Routledge.

Maarten Sap, Saadia Gabriel, Lianhui Qin, Dan Ju-
rafsky, Noah A Smith, and Yejin Choi. 2019.
Social bias frames: Reasoning about social and
power implications of language. arXiv preprint
arXiv:1911.03891.

Frauke Schnell, Karen Callaghan. 2001. Assessing
the democratic debate: How the news media frame
elite policy discourse. Political communication,
18(2):183–213.

Holli A Semetko and Patti M Valkenburg. 2000. Fram-
ing european politics: A content analysis of press
and television news. Journal of communication,
50(2):93–109.

P. Shoemaker and Stephen D. Reese. 1995. Mediating
the message: Theories of influences on mass media
content.

Lucia Specia, Stella Frank, Khalil Sima’An, and
Desmond Elliott. 2016. A shared task on multi-
modal machine translation and crosslingual image
description. In Proceedings of the First Conference
on Machine Translation: Volume 2, Shared Task Pa-
pers, pages 543–553.

Emma Strubell, Ananya Ganesh, and Andrew Mc-
Callum. 2019. Energy and policy considera-
tions for deep learning in nlp. arXiv preprint
arXiv:1906.02243.

Wouter van Atteveldt and Tai-Quan Peng. 2018. When
communication meets computation: Opportunities,
challenges, and pitfalls in computational communi-
cation science. Communication Methods and Mea-
sures, 12(2-3):81–92.

Hartmut Wessler, Antal Wozniak, Lutz Hofer, and Ju-
lia Lück. 2016. Global multimodal news frames

on climate change: A comparison of five democra-
cies around the world. The International Journal of
Press/Politics, 21(4):423–445.

Haryo Akbarianto Wibowo, Made Nindyatama
Nityasya, Afra Feyza Akyürek, Suci Fitriany, Al-
ham Fikri Aji, Radityo Eko Prasojo, and Derry Tanti
Wijaya. 2021. Indocollex: A testbed for mor-
phological transformation of indonesian word
colloquialism. Findings of the Association for
Computational Linguistics: ACL-IJCNLP 2021.

250

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 251–258
November 7–11, 2021. ©2021 Association for Computational Linguistics

IrEne-viz: Visualizing Energy Consumption of Transformer Models

Yash Kumar Lal, Qingqing Cao, Harsh Trivedi, Reetu Singh,
Aruna Balasubramanian, Niranjan Balasubramanian

Department of Computer Science
Stony Brook University

Stony Brook, NY 11794, USA
{ylal,qicao,hjtrivedi,reesingh,arunab,niranjan}@cs.stonybrook.edu

Abstract

IrEne (Cao et al., 2021) is an energy
prediction system that accurately predicts
the interpretable inference energy consump-
tion of a wide range of Transformer-based
NLP models. We present the IrEne-viz
tool, an online platform for visualizing and
exploring energy consumption of various
Transformer-based models easily. Addition-
ally, we release a public API that can be
used to access granular information about
energy consumption of transformer models
and their components. The live demo
is available at http://stonybrooknlp.
github.io/irene/demo/.

1 Introduction

Pretrained transformers have shown strong results
on downstream NLP tasks, resulting in wide-spread
adoption. With their deployment in large-scale
public-facing systems serving hundreds of millions
of requests per day, it has become important to
study their energy footprint at inference time. Infer-
ence energy can incur substantial costs especially
for models that are critical for high-volume web
services.

Designing energy efficient and cost-effective
models requires both accurate and interpretable
energy modeling. Current approaches to energy
modeling treat the model as a monolithic entity.
In our previous work (Cao et al., 2021), we intro-
duced a tree-like abstraction to decompose a model
into its components. We designed a multi-level
prediction method that predicts energy in all the
components of the abstraction tree in a bottom-up
fashion using resource utilization and model de-
scription features. This system called IrEne is used
as the base of this work. IrEne provides more ac-
curate energy prediction than other methods and
is designed to be interpretable. However, it is non-
trivial to retrieve data from that system, making it

difficult to perform analysis or visualization for the
same.

In this work, we present IrEne-viz, a user-
friendly dashboard that allows visualization of in-
ference energy consumption of a transformer-based
model and its various components. Users will be
able to interact with the different operations present
in a model. Our interface allows people to easily
understand the energy bottlenecks during inference.
Additionally, we make our pipeline public by ex-
posing it as an API endpoint. Having such data
readily available will further research in the area
and allow the community to use it for their own
purposes, such as analyzing accuracy or latency
trade-offs against energy. For instance, Cao et al.
(2021) compared accuracy of BERT on a specific
task while varying the number of layers and made
observations about the energy-accuracy tradeoff.
We design IrEne-viz to be:

• Easy to use - Our browser interface is intu-
itive and allows for thorough exploration of a
model, its operations, and their energy usage.

• Easy to access - The model tree and its fea-
tures are readily available through a public
API in an easy-to-use JSON format.

• Easy to extend - New models to be tracked
can be included easily.

2 Related Work

There has been increased interest in the energy con-
sumption of NLP models in recent years. Despite
some progress in modeling, there is a lack of visu-
alisation and analysis tools for the same.

2.1 Energy Estimation

Schwartz et al. (2019) suggest using metrics like
floating point operations (FPO) to measure energy
efficiency. However, Henderson (2020) argues such

251

Module Level

ML Level

BertModel

BertEmbeddings BertEncoder BertPooler

Embedding:word LayerNorm BertLayer:0

BertAttention BertIntermediate BertOutput

BertSelfAttention BertSelfOutput

Linear:query matmul softmax Linear:dense LayerNorm

Linear:dense Linear:dense LayerNorm

Linear:dense Tanh

Figure 1: A tree view of a 1-layer BERT model. The yellow rectangle nodes stand for basic machine learning (ML)
level operations. The brown rectangle nodes are also ML level which are non-parametric (i.e., has no trainable
parameters). The ML level operations are model-agnostic and provided by machine learning software framework.
The light blue oval nodes denote model-specific operations that reflect the architectural semantics given by the
model developer .

metrics alone cannot accurately reflect energy con-
sumption. Energy prediction of applications on
mobile devices is a well-studied topic in the sys-
tems community (Pathak et al., 2011, 2012; Yoon
et al., 2012; Cao et al., 2017) but they require fine-
grained understanding of the application. None of
these systems predict energy for NLP models.

Henderson (2020) use the experiment-impact-
tracker software framework to report the aggre-
gated energy of benchmark programs, built on
Strubell et al. (2019). However, Cao et al. (2020)
show that this type of resource utilization only mod-
eling can be highly inaccurate. Zhou et al. (2020)
presents an energy efficient benchmark for NLP
models. However, they only report the time (hours)
and cost (dollars) for training and testing NLP mod-
els, the actual energy numbers remain unknown.

2.2 Transformer Model Visualization

For NLP, a number of tools exist for investigat-
ing specific model classes, such as RNNs (Strobelt
et al., 2018), Transformers (Hoover et al., 2020; Vig
and Belinkov, 2019), or text generation (Strobelt
et al., 2018). More generally, AllenNLP Interpret
(Wallace et al., 2019) introduces a modular frame-
work for interpretability components, focused on
single-datapoint explanations and integrated tightly
with the AllenNLP (Gardner et al., 2017) frame-
work. Lal et al. (2021) present a tool to visualize
token embeddings through each layer of a Trans-
former and highlight distances between certain to-
ken embeddings. No such visualization work exists
for energy consumption of NLP models.

3 IrEne - Prediction Engine

We briefly review the IrEne system which we use
as the energy prediction engine. Please refer to
(Cao et al., 2021) for more details. IrEne is an in-
terpretable energy prediction system. It represents
transformer models in a tree-based abstraction, and
generates energy prediction for each node of the
tree, thus directly supporting interpretability. IrEne
also comes with data it was trained on – for each
tree node, it has associated resource utilization and
model-related features, and ground-truth energy
measured with a hardware power monitor.

Tree Abstraction

IrEne uses a model tree abstraction that represents
the model nodes in three-levels: math level, ma-
chine learning (ML) level and module level. Math
level nodes are a finite set of mathematical oper-
ations (like addition, subtraction, matrix multipli-
cation etc); they form model-agnostic ML level
nodes (such as Linear, LayerNorm etc.), which fur-
ther can be used to construct complex module level
nodes. Module level nodes are groups of lower ML
level node operations that reflect the logic units of
the NLP algorithms defined by model authors. The
model tree abstraction is such that each parent node
captures computation of all of its children nodes.
Figure 1 shows an example tree representation for a
1-layer BERT transformer. This abstraction makes
energy calibration more interpretable by allowing
us to understand and analyze how the components
of a model contribute to its energy usage.

252

Resource features

Model features

Model specs

BertModel

BertEmbeddings BertEncoder BertPooler

Embedding:word LayerNorm BertLayer:0

BertAttention BertIntermediate BertOutput

BertSelfAttention BertSelfOutput

Linear:query matmul softmax Linear:dense LayerNorm

Linear:dense Linear:dense LayerNorm

Linear:dense Tanh

JIT tracing

Profile Estimation
model

Predicted energy for each nodeIrEne Energy Estimation

Figure 2: IrEne works by taking model specifications (for example, model code) as inputs and extracting a model
tree representation using code instrumentation and run-time tracing. IrEne then runs the model once on a given
hardware and feeds resource profiles combined with the model computation features into a regressor to predict the
energy of the entire model tree representation. The root of the tree represents the energy of the entire NLP model
and each child node represents the energy of different modules/ML operators that make up the model.

Figure 3: IrEne-viz has a simple input screen where a user can select which Transformer model they want to
analyze, and specify the input sequence length and batch size for the model.

Resource Usage Collection

For a given transformer model, IrEne generates a
tree representation in the aforementioned abstrac-
tion and populates each node with relevant features
and ground-truth energy measurement.

To construct the tree, the transformer model1

is run on the target hardware on randomly gener-
ated input for given batch size and input sequence
length2. This provides execution graph and the
JIT trace containing runtime information, which is
combined as to form the final tree representation.

Irene uses resource utilization and model-based

1We used HuggingFace Transformers library v4.2.2
2The batch size and input sequence length together decide

the amount of input data to the model, therefore, they both
affect the model energy consumption.

features. Resource features capture how the models
use hardware resources and cause energy activities.
Model features like input size and number of pa-
rameters are obtained from PyTorch model directly.
A list of features, as described in Cao et al. (2021),
is shown in Table 1.

Irene collects ground-truth energy for each node
using a highly accurate power monitor, and runs it
several times to get a reliable estimate. One can
use the power monitor to measure energy directly
at runtime for visualization. However, this is cum-
bersome and requires physical access to the device
which is not always feasible with cloud-based de-
ployments.

253

Figure 4: The user will be able to see an interactive visualization of the model components in a tree format. They
will be able to expand and collapse it as per their need for granularity in energy analysis. Additionally, to the right,
a list of model operations, in order of energy consumption, is provided for easy browsing.

Training and Prediction

IrEne predicts the energy for every node in the
model tree in a bottom-up fashion. At the leaves,
where the nodes correspond to the ML primitives,
IrEne uses separate regression models for each type
of ML primitive (e.g., one regressor for Linear
Layer, another for LayerNorm etc.). For the inter-
mediate nodes, their energy is predicted recursively
using a single regressor that makes a weighted com-
bination of the predicted energy values from its
children, and mean squared loss between predicted
and ground-truth energy for all tree nodes is jointly
minimized. For both types of regressors, IrEne uses
features that are derived from resource utilization
(e.g. cpu utilization) and generalized node features
(e.g. size of inputs) enabling accurate multi-level
energy prediction. Using the model tree abstrac-
tion and multi-level prediction model makes IrEne
generalizable, in the sense that once trained, it can
work on unseen NLP models with similar compo-
nents.

4 User Interface and Functionality

The goal of IrEne-viz is to provide an easy way
for users to analyze the energy of a given Trans-
former model (for a specified input size). To do
so, we design a browser-based user interface (UI)

batch_size : batch size
seq_len : # of input tokens
flops : floating point operations (unit: million)
mem_bytes : memory read and write (unit: MiB)

cpu_util : CPU utilization (unit: %)
mem_usg : memory usage (unit: %)
gpu_util : GPU processor utilization (unit: %)
gm_usg : GPU memory usage (unit: %)
g_clk : GPU processor clock speed (unit: MHz)
gm_clk : GPU memory clock speed (unit: MHz)
latency : inference latency (unit: s)
gpu_energy : GPU driver energy (unit: joule)

Table 1: Features used for energy estimation in IrEne.

in IrEne-viz that controls the input size and selects
the model, as shown in Figure 3. We then estimate
the energy consumption of the model and visual-
ize the energy for each part in the Transformer
model. Specifically, an user selects a predefined
Transformer model3 via the dropdown menu and
enters the batch size and input sequence length. Af-
ter pressing the visualize button, IrEne-viz backend
server will run the energy estimation and send the
energy result back to the browser for visualization.

3We are adding functionality to support customized models

254

Figure 5: Hovering over any node provides the user
with additional information about that node. This in-
cludes measurements of memory usage, flops and CPU
cycles. Users can select models optimal for their hard-
ware requirements.

In IrEne-viz, we support two core functionalities:
Functionality 1 - Explore the energy consump-
tion of the model. Besides the entire model
energy, users can interactively explore the energy
consumed by any block inside the model, as shown
in Figure 4. Additionally, we support inspecting
the resource and model features used to estimate
the energy, as described in Figure 5.

Functionality 2 - Find energy bottlenecks. At
each level of the model, users can easily identify op-
erations that can be improved (or pruned) in terms
of their relative energy usage. The visualization
dashboard also displays a list of model operations
along with their predicted energy usage, as pre-
sented in Figure 6.

5 System Implementation

To make IrEne-viz modular and extensible, we de-
sign an energy analysis pipeline consisting of three
components: a visualization panel that accepts user
requests and presents energy results, a prediction
engine (IrEne) that predicts energy consumption
and a backend server that encapsulates IrEne and
serves information through an API endpoint. The
API and the prediction engine can be used as in-
dividual entities as well. They are also designed
to be extensible, so adding new features is easy.
The visualization panel is intuitive and informative,
allowing easy exploration of data.

Figure 7 shows the full pipeline used for this

Figure 6: The dashboard also provides a list of all
model operations along with their predicted energy con-
sumption for easy identification of bottlenecks.

application. The visualization panel queries the
API with the user-desired model name, input se-
quence length and batch size. This information
is passed on to the prediction engine. The engine
performs resource collection for the corresponding
model specifications and predicts the energy usage
of each component. The API sends the visualiza-
tion panel a full tree representation of the model
containing all the model information.

5.1 Visualization Panel

The browser-based UI is built up of HTML web-
pages using a bootstrap template. The visualization
widget is developed using D3.js (Bostock, 2012)
embedded in a Flask (Grinberg, 2018) application.
A user can decide which model they want to ana-
lyze, and provide desired values for batch size and
input sequence length. Upon selection, a full tree
with information about the model is presented. We
also provide an option to display the entire tree
at once and, since there are lot of components in
a model, collapse it into one root component for
easier analysis. Users are able to interact with dif-
ferent components to explore every component in
the model. They can click on a component to ex-
pand and show all the components in that subtree.
When the cursor hovers over it, all the resource
information about that component is shown to the
user. At any level, the color of the component in-
dicates the percentage of energy consumption it is
responsible for. Additionally, we present a list of
model components with their predicted energy use
on one part of the screen. This frontend applica-

255

Figure 7: Full system pipeline. The visualization panel queries the backend with the model name, input sequence
length and batch size. This information is passed on to the prediction engine, which performs resource collection
and predicts the energy usage of each component. The prediction engine generates full tree with all the model
information and prediction energy back to the backend, which in turn passes it to visualization panel .

tion is deployed on Heroku and will be available
publicly soon.

5.2 Backend
First, we download the configuration of the spec-
ified model from Huggingface Hub (Wolf et al.,
2020) and use it convert it into a tree object. A
model is composed of multiple module-level com-
ponents, and a module-level component itself is
made up of other module-level or ML-level com-
ponents. Each parent component encapsulates the
computation of all of its child components.

First, we run the model to extract the model tree
structure. A profiler process is started in the back-
ground to monitor usage of various resources. For
each type of abstraction described, we find every
component in the model.4 It is run with dummy
inputs of the required input size for a fixed number
of times so that the profiler can log energy usage
reliably (low standard deviation in energy measure-
ments). We reconcile resource usage logs with
their respective components using the timestamp at
which they were run. Next, we annotate the model
tree objects with these features.

To generate energy predictions, we use the Cao
et al. (2021) model. We load the saved weights, use
the features we just collected to perform inference.
The same model tree object is populated with the
predicted energy numbers, and can now be used
for visualization. The backend encapsulates the
prediction engine, which is deployed as a Flask

4For the profiler to collect correct energy statistics, we
make sure no other significant process is running on the same
machine.

API hosted on a GPU desktop using nginx.
For currently supported models, it takes 15-25

minutes to gather resource usage and make pre-
dictions. So, to speed up visualization, we cache
results for these models and serve them to the user.

We expose the full end-to-end-pipeline as a Flask
API endpoint, and make it available for public use.
Querying it for model energy usage information
only requires a simple GET request to be made.
In addition to this, we plan to expose the model
tree abstraction as another API endpoint so that
the community can use it for other purposes like
runtime analysis.

6 Conclusion and Roadmap

IrEne-viz provides an integrated UI and compo-
nents for visualizing and exploring the energy con-
sumption of various Transformer models. It is un-
der active development and is being constantly re-
fined for release. We are adding support for live
models immediately. For new models, users will be
sent an email with a custom link to their requested
visualization. As the community uses it, we will
cache resource usage and predictions for more inter-
mediate nodes found in various transformer-based
models. This optimization will gradually result in
lower times for newer models.

Our end-to-end pipeline, served as an API, can
be used to build an energy leaderboard. This plat-
form can be extended to compare the energy of ar-
chitectural modifications (e.g. activation or normal-
ization function) of different models for given input.
By extending this work to other harware, we aim to

256

provide energy optimization suggestions based on
energy profiles of a model on the given hardware.
In our previous work, (Cao et al., 2021) we also
studied accuracy vs energy trade-offs, which will
be integrated into the dashboard.

7 Acknowledgements

This work was supported in part by the National
Science Foundation under grants IIS-1815358.

References
Mike Bostock. 2012. D3.js - data-driven documents.

Qingqing Cao, Aruna Balasubramanian, and Niranjan
Balasubramanian. 2020. Towards accurate and reli-
able energy measurement of NLP models. In Pro-
ceedings of SustaiNLP: Workshop on Simple and
Efficient Natural Language Processing, pages 141–
148, Online. Association for Computational Linguis-
tics.

Qingqing Cao, Yash Kumar Lal, Harsh Trivedi, Aruna
Balasubramanian, and Niranjan Balasubramanian.
2021. IrEne: Interpretable energy prediction for
transformers. In Association for Computational Lin-
guistics: ACL 2021, Online. Association for Compu-
tational Linguistics.

Yi Cao, Javad Nejati, Muhammad Wajahat, Aruna Bal-
asubramanian, and Anshul Gandhi. 2017. Decon-
structing the Energy Consumption of the Mobile
Page Load. Proceedings of the ACM on Measure-
ment and Analysis of Computing Systems, 1(1):6:1–
6:25.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2017. Allennlp: A deep semantic natural language
processing platform.

Miguel Grinberg. 2018. Flask web development: de-
veloping web applications with python. " O’Reilly
Media, Inc.".

James Henderson. 2020. The unstoppable rise of com-
putational linguistics in deep learning. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 6294–6306,
Online. Association for Computational Linguistics.

Benjamin Hoover, Hendrik Strobelt, and Sebastian
Gehrmann. 2020. exBERT: A Visual Analysis Tool
to Explore Learned Representations in Transformer
Models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 187–196, Online. As-
sociation for Computational Linguistics.

Vasudev Lal, Arden Ma, Estelle Aflalo, Phillip Howard,
Ana Simoes, Daniel Korat, Oren Pereg, Gadi Singer,

and Moshe Wasserblat. 2021. InterpreT: An interac-
tive visualization tool for interpreting transformers.
In Proceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: System Demonstrations, pages 135–
142, Online. Association for Computational Linguis-
tics.

Abhinav Pathak, Y. Charlie Hu, and Ming Zhang.
2012. Where is the energy spent inside my app?
fine grained energy accounting on smartphones with
Eprof. In Proceedings of the 7th ACM european con-
ference on Computer Systems, EuroSys ’12, pages
29–42, New York, NY, USA. Association for Com-
puting Machinery.

Abhinav Pathak, Y. Charlie Hu, Ming Zhang, Paramvir
Bahl, and Yi-Min Wang. 2011. Fine-grained power
modeling for smartphones using system call tracing.
In Proceedings of the sixth conference on Computer
systems, EuroSys ’11, pages 153–168, New York,
NY, USA. Association for Computing Machinery.

Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren
Etzioni. 2019. Green AI. CoRR, abs/1907.10597.

H. Strobelt, S. Gehrmann, M. Behrisch, A. Perer,
H. Pfister, and A. M. Rush. 2018. Seq2Seq-Vis:
A Visual Debugging Tool for Sequence-to-Sequence
Models. ArXiv e-prints.

Hendrik Strobelt, Sebastian Gehrmann, Hanspeter Pfis-
ter, and Alexander M. Rush. 2018. Lstmvis: A tool
for visual analysis of hidden state dynamics in recur-
rent neural networks. IEEE Transactions on Visual-
ization and Computer Graphics, 24(1):667–676.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 3645–3650, Florence, Italy.
Association for Computational Linguistics.

Jesse Vig and Yonatan Belinkov. 2019. Analyzing
the structure of attention in a transformer language
model. In Proceedings of the 2019 ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 63–76, Florence, Italy. As-
sociation for Computational Linguistics.

Eric Wallace, Jens Tuyls, Junlin Wang, Sanjay Subra-
manian, Matt Gardner, and Sameer Singh. 2019. Al-
lenNLP Interpret: A framework for explaining pre-
dictions of NLP models. In Empirical Methods in
Natural Language Processing.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,

257

Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Chanmin Yoon, Dongwon Kim, Wonwoo Jung,
Chulkoo Kang, and Hojung Cha. 2012. AppScope:
application energy metering framework for android
smartphones using kernel activity monitoring. In
Proceedings of the 2012 USENIX conference on
Annual Technical Conference, USENIX ATC’12,
page 36, USA. USENIX Association.

Xiyou Zhou, Zhiyu Chen, Xiaoyong Jin, and
William Yang Wang. 2020. HULK: an energy effi-
ciency benchmark platform for responsible natural
language processing. CoRR, abs/2002.05829.

258

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 259–266
November 7–11, 2021. ©2021 Association for Computational Linguistics

Open-Domain Question-Answering for COVID-19
and Other Emergent Domains

Sharon Levy§, Kevin Mo¶, Wenhan Xiong§, William Yang Wang§
§University of California, Santa Barbara

¶Princeton University
{sharonlevy,xwhan,william}@cs.ucsb.edu, kevinmo@princeton.edu

Abstract
Since late 2019, COVID-19 has quickly
emerged as the newest biomedical domain, re-
sulting in a surge of new information. As
with other emergent domains, the discussion
surrounding the topic has been rapidly chang-
ing, leading to the spread of misinformation.
This has created the need for a public space for
users to ask questions and receive credible, sci-
entific answers. To fulfill this need, we turn to
the task of open-domain question-answering,
which we can use to efficiently find answers
to free-text questions from a large set of docu-
ments. In this work, we present such a system
for the emergent domain of COVID-19. De-
spite the small data size available, we are able
to successfully train the system to retrieve an-
swers from a large-scale corpus of published
COVID-19 scientific papers. Furthermore, we
incorporate effective re-ranking and question-
answering techniques, such as document di-
versity and multiple answer spans. Our open-
domain question-answering system can further
act as a model for the quick development of
similar systems that can be adapted and modi-
fied for other developing emergent domains.

1 Introduction

With the rise of social media and other online
sources, it is easy to access information from sites
without third-party filtering (Allcott and Gentzkow,
2017). As such, it is important in today’s society
to create systems that can provide credible and
reliable information to users. This is especially
true in the context of emergent domains which, un-
like more established sectors, may contain rapidly
changing information. COVID-19 follows this pat-
tern, with over 100,000 related articles published
in 2020 and new research findings still frequently
reported (Else, 2020).

However, the vast interest and exposure sur-
rounding this topic have consequently generated a
rise in misinformation (Kouzy et al., 2020; Med-
ina Serrano et al., 2020). This can lead to lower

compliance with various preventative measures
such as social distancing, which in turn can con-
tinue the spread of the virus (Bridgman et al., 2020;
Tasnim et al., 2020). A question-answering system
that allows users to ask free-text questions with an-
swers deriving from published articles and reliable
scientific sources can help mitigate this spread of
misinformation and inform the public at the same
time.

The task of open-domain question-answering
has risen in prominence in recent years (Chen
et al., 2017; Yang et al., 2019; Xiong et al., 2021a).
Systems have evolved from keyword-based ap-
proaches (Salton and McGill, 1986) to the uti-
lization of neural networks with dense passage re-
trieval (Xiong et al., 2021b). Furthermore, large-
scale datasets have been used to train and test these
systems, such as general knowledge datasets (Joshi
et al., 2017; Nguyen et al., 2016) and domain-
specific datasets1 (Tsatsaronis et al., 2012). How-
ever, many of these systems are evaluated on these
established datasets with abundant questions and
clearly defined answers. In the case of an emergent
domain system, this likely will not be available and
the reduced data size can result in lower answer
precision.

In this paper, we build an open-domain question-
answering system in the emergent domain of
COVID-19. We aim to overcome a staple issue
with emergent domain question-answering systems:
lack of data. While several COVID-19-related
datasets have been published since the beginning
of the pandemic (Roberts et al., 2020; Tang et al.,
2020), they are small in scale and cannot be used
for training our models. We tackle the issue of
data shortage by fine-tuning pre-trained biomedical
language models with a small in-domain dataset.
Though these models are not trained on COVID-
19 data, they allow our system to warm start with
general biomedical terminology. Other COVID-

1https://trec.nist.gov/data.html

259

Figure 1: An overview of the COVID-19 open-domain question-answering system. The retrieval component is
shown on the left and the reading comprehension/answer extraction component is shown on the right.

19-related question-answering systems have been
created in recent months (Bhatia et al., 2020; Yan
et al., 2021; Reddy et al., 2020). However, our
system incorporates multiple state-of-the-art infor-
mation retrieval techniques with dense retrieval and
BM25 (Robertson and Zaragoza, 2009) and the ad-
ditional functionality of diversity re-ranking and
multiple answer spans.

Our system is comprised of two models: the re-
trieval model and reading comprehension model.
Our system consists of several layers of document
and answer re-ranking to increase both quality and
diversity in our answers. The overall system can
be seen in Figure 1. We additionally provide code2

to create an online demo site to visualize our sys-
tem and provide multiple filters for users to further
refine their queries.

Our contributions are

1. We set a precedent for quickly creating an ef-
fective open-domain question-answering sys-
tem for an emergent domain.

2. We integrate multiple stages of document re-
ranking throughout our pipeline to provide
relevant and diverse answers.

3. We create an online demo to allow the public

2https://github.com/sharonlevy/Open_
Domain_COVIDQA

to easily obtain answers to COVID-19-related
questions from credible scientific sources.

2 Retrieval

The retrieval model consists of a dense retriever
and contains further layers of re-ranking. In the
following sections, we describe the data used to
train our model, along with the model details and
re-ranking strategies.

2.1 Data
As mentioned in Section 1, several COVID-19-
related datasets have been published throughout
the pandemic. However, there are a limited number
of sizable datasets focused on the general areas of
information retrieval and question-answering. In
order to train on in-domain data, we utilize the
COVID-QA (Möller et al., 2020) dataset to fine-
tune our model for the document retrieval task.
COVID-QA is a COVID-19 question-answering
dataset and contains multiple question-answer pairs
for each context document (2,019 QA pairs in to-
tal), where the documents are COVID-19-related
PubMed3 articles.

In order to transform the question-answering
dataset for our retrieval task, we choose to utilize
the questions and their related context articles dur-
ing training. We split each context article into size

3https://pubmed.ncbi.nlm.nih.gov/

260

Figure 2: An outline of the diversity re-ranking process
discussed in Section 2.4. After the retrieval size for
each cluster is calculated, the top-ranking documents
(as determined by the hybrid model) are selected from
each cluster according to this size and accumulated into
the final set of retrieved documents. This final set is
also ordered according to the original ranking by the
hybrid model.

100-200 tokens. Given the answer for each ques-
tion and context article pair, we extract only the
chunks of text that contain the answer with simple
string matching and use this as a positive sample for
each question. We further partition the dataset into
training, development, and test sets. These splits
are made at 70%, 10%, and 20%, respectively. Ad-
ditionally, we remove any document-specific ques-
tions (e.g. How many participants are there in this
study?) from the test set for a fair assessment.

We utilize the CORD-19 (Wang et al., 2020)
dataset as our document corpus for the open-
domain retrieval task. The corpus website is con-
sistently updated with newly published COVID-19-
related papers from several sources. Similar to the
COVID-QA dataset, we pre-process each article by
splitting it into multiple document entries based on
paragraph text cutoffs. Paragraphs that are longer
than 200 tokens are split further until they reach
the desired 100-200 token size.

2.2 Dense Retriever

The dense retriever consists of a unified encoder for
encoding both questions and text documents. We
utilize the pre-trained PubMedBERT model (Gu
et al., 2020) as the encoder and fine-tune on the

Model FM@5 FM@20 FM@50

Dense Retrieval 0.300 0.471 0.556
BM25 0.346 0.486 0.556
Hybrid Model 0.362 0.498 0.607

Table 1: Comparison of dense retriever, BM25, and hy-
brid models for open-domain retrieval on the test set of
COVID-QA. Results are evaluated with fuzzy match-
ing (FM) scores at various retrieval count thresholds.
The fuzzy matching process is described in Section 2.5.

COVID-QA dataset. We utilize both positive and
negative samples during training. Positive samples
consist of paragraphs that contain the exact answer
span for the current question. Likewise, negative
samples consist of paragraphs that do not contain
the exact answer.

During training, the model learns to encode ques-
tions and positive paragraphs into similar vectors
such that positive paragraphs are ranked higher than
negative paragraphs in similarity. After training,
the CORD-19 document corpus is passed through
the trained encoder and the embeddings are indexed
and saved. During test time, the question is used
as input to the model. The resulting embedding is
used to find similarly embedded documents from
the existing dense document embeddings using in-
ner product similarity scores.

2.3 BM25 Re-ranking

While the dense retriever excels in the retrieval
of documents with semantic similarity to a query,
there may be specific keywords in the query that are
important for document retrieval. This is especially
true in biomedical domains, such as COVID-19,
which heavily rely on particular terminology. As a
result, our system includes a second stage during
retrieval in which we re-rank the top-n retrieved
documents with the BM25 algorithm. Specifically,
we use the BM25+ algorithm defined in (Lv and
Zhai, 2011). BM25 depends on keyword match-
ing and ranks documents based on the appearance
of query terms within the document corpus. We
further simplify this by first removing stop words
from the top-n documents before re-ranking. We
define the combination of our dense retriever with
BM25 re-ranking as our hybrid model.

2.4 Retrieval Diversity

Following the re-ranking of retrieved documents
with BM25, we aim to increase the diversity of

261

Model Datasets Exact Match F1

BERT COVID-QA 12.27 39.07
BERT SQUAD2.0 29.24 59.34
BioBERT SQUAD2.0 30.54 59.39
BERT SQUAD2.0 + COVID-QA 33.68 65.53
BioBERT SQUAD2.0 + COVID-QA 37.59 66.67
BioBERT w/ multiple answer spans SQUAD2.0 + COVID-QA 39.16 72.03

Table 2: Comparison of BERT and BioBERT models fine-tuned on combinations of COVID-QA and SQuAD2.0.
The final row includes the BioBERT model with multiple answer spans extracted. Each model was evaluated on a
held-out test set from COVID-QA.

these documents so that a user does not view nearly
identical texts. To do this, we cluster the top-k re-
ranked documents into three clusters with K-Means
clustering (MacQueen et al., 1967) and TF-IDF fea-
tures. For each cluster, we compute its size in pro-
portion to k. This relative size is multiplied by the
desired number of documents l (where l < k) to be
retrieved. Given the resulting size for each cluster,
the most relevant (top-ranked) documents are cho-
sen in their current ranking order. This procedure
is illustrated in Figure 2. Following this method
allows us to present the user with more diverse and
relevant documents that would otherwise be ranked
lower.

2.5 Retrieval Experiments

We use the test subset of the COVID-QA dataset to
evaluate our retrieval model. However, as COVID-
QA is intended for the question-answering task, we
cannot accurately evaluate our model by simply
calculating the retrieval rank of the correct doc-
ument. This is due to our specific task of open-
domain question-answering, in which we are re-
trieving from the large CORD-19 corpus instead
of the much smaller pool of documents in COVID-
QA. As a result, we define a fuzzy matching metric
to evaluate the quality of our retrieved documents.
This is a combination of deep semantic matching
and keyword matching. We have varying combina-
tions and thresholds based on respective conditions,
such as differing answer lengths. We evaluate the
answer in each QA pair in our COVID-QA test set
against each retrieved document.

The deep semantic matching is achieved through
the Sentence-BERT model (Reimers and Gurevych,
2019) and F1 score is utilized for keyword match-
ing. Each retrieved document is split into a list of
sentences and each sentence is evaluated for three
conditions:

1. Cosine similarity score that is greater than or
equal to threshold a of the sentence/query pair
encoded with Sentence-BERT.

2. Cosine similarity score greater than or equal to
threshold b, where b < a, and F1 score greater
than or equal to threshold c.

3. F1 score greater than or equal to threshold d,
where d > c. This is only calculated if the
token count of an answer is less than or equal
to 3.

If any of the three conditions are achieved for any
sentence within the retrieved document, the docu-
ment is evaluated as a positive retrieval and con-
taining the answer to the query.

We show the impact of the BM25 re-ranking
stage in the hybrid model in Table 1. It can be seen
that individually, BM25 and the dense retriever
models obtain similar retrieval results. However,
the hybrid model of dense retrieval followed by
BM25 re-ranking allows the system to obtain more
relevant documents for the user.

3 Reading Comprehension

The second stage of our system consists of a read-
ing comprehension model that can answer the orig-
inal query based on the retrieved documents. We
describe the training data, model design, and docu-
ment re-ranking associated with our model in the
following sections.

3.1 Data
We utilize the COVID-QA dataset to train our
model for the reading comprehension task. Un-
like the retrieval model, the reading comprehen-
sion model utilizes both questions and answers,
along with their respective context articles for train-
ing. As mentioned in Section 2.1, we partition the

262

Figure 3: An example of returning multiple answers to
a user for the query: “What are symptoms of covid?”

dataset into training, development, and test sets and
utilize this to evaluate the model.

3.2 Methodology

The reading comprehension model performs ex-
tractive question-answering. Given a question and
paragraph pair, the model learns to find start and
end tokens to represent the answer span (or spans)
in the paragraph text. This is done by choosing the
highest-ranked start and end tokens produced by
the model where the start token is earlier than the
end token in the text sequence. We utilize a variant
of BioBERT (Lee et al., 2019) that is fine-tuned
on the SQuAD2.0 (Rajpurkar et al., 2018) dataset4.
We find that fine-tuning this model on COVID-
QA allows the model to train on both in-domain
(COVID-QA) and out-domain (SQuAD2.0) data
and increases results for this task when evaluated
on the test set of COVID-QA.

3.3 Multiple Answers

Some retrieved documents may contain answer
spans that are not contiguous. In order to accommo-
date this, we rank the top-m start and end tokens
according to confidence scores and select the pairs
of tokens that do not overlap with higher-ranked
answer spans. This allows each document to high-
light up to m answers rather than just one answer
and increases evaluation results. We show the ef-
fect of adding multiple answer spans in Table 2
in comparison to various model and fine-tuning
dataset combinations. An example of multiple an-
swer spans for a given query can be seen in Figure
3.

3.4 Document Re-ranking

When the reading comprehension model is utilized
in the overall system, it is used to answer the same
question within a set of documents retrieved from
the hybrid retriever model. While the documents

4https://huggingface.co/ktrapeznikov/
biobert_v1.1_pubmed_squad_v2

Figure 4: The side panel in the demo website which al-
lows users to filter the number of documents retrieved
and the date range for the publication date of these doc-
uments.

are already re-ranked by the retriever, we further re-
rank these documents again following the answer
extraction portion of the system. When answering
a question for each document, the reading compre-
hension model provides a confidence score along-
side each start and end token. We utilize these
confidence scores and reorder the current set of
retrieved documents based on the combination of
the start and end scores for the top answer in each
document. As a result, if a question is not easily an-
swered in a highly ranked retrieved document, the
respective document will subsequently be moved
to a lower rank.

4 Open-domain Question Answering

In the previous sections, we describe the retrieval
and reading comprehension models. We combine
the two models for the end-to-end open-domain
question-answering task. The full system overview
can be seen in Figure 1. Once the retriever is
trained, the CORD-19 corpus is encoded and stored.
When a user queries the system with a question,
this question is encoded using the unified retriever

263

model and the resulting vector is used to retrieve
similar documents from the dense corpus. Once
the top documents are retrieved, they are re-ranked
with the BM25 algorithm and further clustered/re-
ranked to introduce diversity to the results. The
top remaining documents are used as input to the
reading comprehension model along with the initial
question. This model computes the answer span
(and potentially spans) for each document. The
documents are then re-ranked given the reading
comprehension model’s confidence score in the top
answer span and the answers for each document
are highlighted.

5 Demo

We build an online demo that allows users to easily
utilize our system. This website is powered through
Streamlit5.

5.1 Query Filters

The input documents for the demo are from the
CORD-19 corpus. These documents are pre-
encoded by the trained hybrid retrieval model. We
include several features for users to filter in order
to narrow down their search. A user is able to
decide how many documents they would like to
be retrieved (in the range from 1 to 5) from the
drop-down menu. We include start and end date
selection boxes to allow users to further filter the
retrieved documents by publication date within the
top retrieved documents. These components are
shown in Figure 4. If there are no documents avail-
able for the date range, we show this as a message
and instead retrieve relevant documents from any
date range for the user.

5.2 Demo Procedure

The user can enter a free-text question in English
into the search bar as seen in Figure 5. This ques-
tion is encoded by the trained retrieval model and
used to find matching documents. The reading
comprehension model uses the retrieved documents
and query to extract the answer (or answers) and
re-rank the documents based on the answer con-
fidence scores. The chosen number of retrieved
documents is displayed to the user. Each document
is displayed alongside its journal or source name
and publication date from its respective CORD-19
article. The user can expand each document head-
ing to view the article title and text snippet. The

5https://streamlit.io/

Figure 5: The list of documents returned to a user for
a given query. Each document is labeled by its publish-
ing journal and publication date.

Figure 6: Retrieved documents for a given query can
be expanded to show their respective article titles and
text snippets. Extracted answers for each document are
highlighted in red.

extracted answers are highlighted in red as seen in
Figure 6.

6 Conclusion

In this paper, we present an open-domain ques-
tion answering system for the emergent domain of
COVID-19. Our system is comprised of retrieval
and reading comprehension components, with sev-
eral layers of refinement to increase the quality and
diversity of responses. The system allows users
to quickly search COVID-19-related questions and
obtain a set of answers from biomedical publica-
tions. Additionally, we provide a demo website
that allows users to easily interact with our system
and apply additional filters to further refine their
search. We hope that amidst the time of a global
pandemic, our system can serve as both a resource

264

in finding credible answers to users’ COVID-19
questions and a model for future systems in similar
emergent domains.

References
Hunt Allcott and Matthew Gentzkow. 2017. Social me-

dia and fake news in the 2016 election. Journal of
economic perspectives, 31(2):211–36.

Parminder Bhatia, Kristjan Arumae, Nima Pour-
damghani, Suyog Deshpande, Ben Snively, Mona
Mona, Colby Wise, George Price, Shyam Ra-
maswamy, and T. Kass-Hout. 2020. Aws cord19-
search: A scientific literature search engine for
covid-19. ArXiv, abs/2007.09186.

Aengus Bridgman, Eric Merkley, Peter John Loewen,
Taylor Owen, Derek Ruths, Lisa Teichmann, and
Oleg Zhilin. 2020. The causes and consequences
of covid-19 misperceptions: Understanding the role
of news and social media. Harvard Kennedy School
Misinformation Review, 1(3).

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading Wikipedia to answer open-
domain questions. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1870–
1879, Vancouver, Canada. Association for Computa-
tional Linguistics.

Holly Else. 2020. How a torrent of covid science
changed research publishing-in seven charts. Na-
ture, pages 553–553.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas,
Naoto Usuyama, Xiaodong Liu, Tristan Naumann,
Jianfeng Gao, and Hoifung Poon. 2020. Domain-
specific language model pretraining for biomedi-
cal natural language processing. arXiv preprint
arXiv:2007.15779.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601–1611.

Ramez Kouzy, Joseph Abi Jaoude, Afif Kraitem,
Molly B El Alam, Basil Karam, Elio Adib, Jabra
Zarka, Cindy Traboulsi, Elie W Akl, and Khalil
Baddour. 2020. Coronavirus goes viral: quantify-
ing the covid-19 misinformation epidemic on twitter.
Cureus, 12(3).

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So,
and Jaewoo Kang. 2019. BioBERT: a pre-
trained biomedical language representation model
for biomedical text mining. Bioinformatics,
36(4):1234–1240.

Yuanhua Lv and ChengXiang Zhai. 2011. Lower-
bounding term frequency normalization. In Pro-
ceedings of the 20th ACM International Conference
on Information and Knowledge Management, CIKM
’11, page 7–16, New York, NY, USA. Association
for Computing Machinery.

James MacQueen et al. 1967. Some methods for clas-
sification and analysis of multivariate observations.
In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, volume 1,
pages 281–297. Oakland, CA, USA.

Juan Carlos Medina Serrano, Orestis Papakyriakopou-
los, and Simon Hegelich. 2020. NLP-based feature
extraction for the detection of COVID-19 misinfor-
mation videos on YouTube. In Proceedings of the
1st Workshop on NLP for COVID-19 at ACL 2020,
Online. Association for Computational Linguistics.

Timo Möller, Anthony Reina, Raghavan Jayakumar,
and Malte Pietsch. 2020. COVID-QA: A question
answering dataset for COVID-19. In Proceedings
of the 1st Workshop on NLP for COVID-19 at ACL
2020, Online. Association for Computational Lin-
guistics.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. Ms marco: A human generated machine read-
ing comprehension dataset. In CoCo@ NIPS.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 784–
789, Melbourne, Australia. Association for Compu-
tational Linguistics.

Revanth Gangi Reddy, Bhavani Iyer, Md Arafat Sultan,
Rong Zhang, Avi Sil, Vittorio Castelli, Radu Flo-
rian, and Salim Roukos. 2020. End-to-end qa on
covid-19: Domain adaptation with synthetic train-
ing. arXiv preprint arXiv:2012.01414.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for
Computational Linguistics.

Kirk Roberts, Tasmeer Alam, Steven Bedrick, Dina
Demner-Fushman, Kyle Lo, Ian Soboroff, Ellen
Voorhees, Lucy Lu Wang, and William R Hersh.
2020. TREC-COVID: rationale and structure of
an information retrieval shared task for COVID-19.
Journal of the American Medical Informatics Asso-
ciation, 27(9):1431–1436.

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: BM25 and be-
yond. Now Publishers Inc.

265

Gerard Salton and Michael J McGill. 1986. Introduc-
tion to modern information retrieval.

Raphael Tang, Rodrigo Nogueira, Edwin Zhang, Nikhil
Gupta, Phuong Cam, Kyunghyun Cho, and Jimmy
Lin. 2020. Rapidly bootstrapping a question an-
swering dataset for covid-19. arXiv preprint
arXiv:2004.11339.

Samia Tasnim, Md Mahbub Hossain, and Hoimonty
Mazumder. 2020. Impact of rumors and misinfor-
mation on covid-19 in social media. Journal of pre-
ventive medicine and public health, 53(3):171–174.

George Tsatsaronis, Michael Schroeder, Georgios
Paliouras, Yannis Almirantis, Ion Androutsopoulos,
Eric Gaussier, Patrick Gallinari, Thierry Artieres,
Michael R Alvers, Matthias Zschunke, et al. 2012.
Bioasq: A challenge on large-scale biomedical se-
mantic indexing and question answering. In 2012
AAAI Fall Symposium Series.

Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar,
Russell Reas, Jiangjiang Yang, Doug Burdick,
Darrin Eide, Kathryn Funk, Yannis Katsis, Rod-
ney Michael Kinney, Yunyao Li, Ziyang Liu,
William Merrill, Paul Mooney, Dewey A. Murdick,
Devvret Rishi, Jerry Sheehan, Zhihong Shen, Bran-
don Stilson, Alex D. Wade, Kuansan Wang, Nancy
Xin Ru Wang, Christopher Wilhelm, Boya Xie, Dou-
glas M. Raymond, Daniel S. Weld, Oren Etzioni,
and Sebastian Kohlmeier. 2020. CORD-19: The
COVID-19 open research dataset. In Proceedings
of the 1st Workshop on NLP for COVID-19 at ACL
2020, Online. Association for Computational Lin-
guistics.

Wenhan Xiong, Xiang Lorraine Li, Srinivasan Iyer,
Jingfei Du, Patrick Lewis, William Yang Wang,
Yashar Mehdad, Wen-tau Yih, Sebastian Riedel,
Douwe Kiela, and Barlas Oğuz. 2021a. Answer-
ing complex open-domain questions with multi-hop
dense retrieval. International Conference on Learn-
ing Representations.

Wenhan Xiong, Hong Wang, and William Yang Wang.
2021b. Progressively pretrained dense corpus index
for open-domain question answering. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 2803–2815, Online. Associa-
tion for Computational Linguistics.

Rui Yan, Weiheng Liao, Jianwei Cui, Hailei Zhang,
Yichuan Hu, and Dongyan Zhao. 2021. Multilin-
gual COVID-QA: Learning towards Global Informa-
tion Sharing via Web Question Answering in Mul-
tiple Languages, page 2590–2600. Association for
Computing Machinery, New York, NY, USA.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen
Tan, Kun Xiong, Ming Li, and Jimmy Lin. 2019.
End-to-end open-domain question answering with
bertserini. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for

Computational Linguistics (Demonstrations), pages
72–77.

266

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 267–274
November 7–11, 2021. ©2021 Association for Computational Linguistics

Project Debater APIs: Decomposing the AI Grand Challenge

Roy Bar-Haim, Yoav Kantor, Elad Venezian∗, Yoav Katz, Noam Slonim
IBM Research

{roybar,yoavka,eladv,katz,noams}@il.ibm.com

Abstract

Project Debater was revealed in 2019 as the
first AI system that can debate human experts
on complex topics. Engaging in a live debate
requires a diverse set of skills, and Project De-
bater has been developed accordingly as a col-
lection of components, each designed to per-
form a specific subtask. Project Debater APIs
provide access to many of these capabilities, as
well as to more recently developed ones. This
diverse set of web services, publicly available
for academic use, includes core NLP services,
argument mining and analysis capabilities, and
higher-level services for content summariza-
tion. We describe these APIs and their perfor-
mance, and demonstrate how they can be used
for building practical solutions. In particular,
we will focus on Key Point Analysis, a novel
technology that identifies the main points and
their prevalence in a collection of texts such as
survey responses and user reviews.

1 Introduction

Argumentation and debating are fundamental capa-
bilities of human intelligence. They are essential
for a wide range of everyday activities that involve
reasoning, decision making or persuasion. Over the
last few years, there has been growing interest in
Computational Argumentation, defined as “the ap-
plication of computational methods for analyzing
and synthesizing argumentation and human debate”
(Gurevych et al., 2016). A recent milestone in this
field is Project Debater, which was revealed in
2019 as the first AI system that can debate human
experts on complex topics1. Project Debater is the
third in the series of IBM Research AI’s grand chal-
lenges, following Deep Blue and Watson. It has
been developed for over six years by a large team
of researchers and engineers, and its live demon-
stration in February 2019 received massive media

∗First three authors equally contributed to this work.
1https://www.research.ibm.com/

artificial-intelligence/project-debater/

attention. In our recent paper, “An autonomous de-
bating system”, published in the Nature magazine
(Slonim et al., 2021), we describe Project Debater’s
architecture and evaluate its performance.

To debate humans, an AI must be equipped with
a diverse set of skills. It has to be able to pinpoint
relevant arguments for a given debate topic in a
massive corpus, detect the stance of arguments and
assess their quality. It also has to identify prin-
cipled, recurring arguments that are relevant for
the specific topic, organize the different types of
arguments into a compelling narrative, recognize
the arguments made by the human opponent, and
make a rebuttal. Accordingly, Project Debater has
been developed as a collection of components, each
designed to perform a specific subtask. Over the
years, we published more than 50 papers describ-
ing these components and released many related
datasets for academic use.

Successfully engaging in a debate requires high
level of accuracy from each component. For ex-
ample, failing to detect the argument’s stance may
result in arguing in favor of your opponent – a dire
situation in a debate. A crucial part of develop-
ing highly accurate models was the collection of
uniquely large scale, high-quality labeled datasets
for training each component. The evidence detec-
tion classifier, for instance, was trained using 200K
labeled examples, and was able to achieve a re-
markable precision of 95% for top 40 candidates
(Ein-Dor et al., 2020).

Another major challenge was scalability. One
example is applying Wikification (Mihalcea and
Csomai, 2007) to our 10 billion sentences corpus,
a task that was infeasible for any of the available
tools. We therefore developed a novel, fast Wik-
ification algorithm, which can be applied to mas-
sive corpora while achieving competitive accuracy
(Shnayderman et al., 2019).

Project Debater APIs give access to selected ca-
pabilities originally developed for the live debating

267

system, as well as related technologies we have
developed more recently. We provide free access
for academic use to these APIs, as well as trial and
licensing options for developers. The APIs can be
divided into three main groups:

• Core NLU services, including Wikification,
semantic relatedness between Wikipedia con-
cepts, short text clustering, and common
theme extraction for texts. These general-
purpose tools may be useful in many different
use cases, and may serve as building blocks
in a variety of NLP applications.

• Argument Mining and Analysis, including the
detection of sentences containing claims and
evidence, claim boundaries detection within
a sentence, argument quality assessment and
stance classification (pro/con). These services
are of particular interest to the computational
argumentation research community.

• Content summarization, including two high-
level services: Narrative Generation con-
structs a well-structured speech that supports
or contests a given topic, according to the
specified polarity. Key Point Analysis summa-
rizes a collection of comments as a small set
of automatically extracted, human-readable
key points, each assigned with a numeric mea-
sure of its prominence in the input. These
tools may serve data scientists analyzing opin-
ionated texts such as user reviews, survey re-
sponses, social media, customer feedback, etc.

Several demonstrations of argument mining ca-
pabilities have been previously published (Stab
et al., 2018; Wachsmuth et al., 2017; Chernodub
et al., 2019), some of which also provide access
to their capabilities via APIs. However, Project
Debater APIs offer a much broader set of services,
trained on unique large-scale, high quality datasets,
which have been developed over many years of
research.

The next sections describe each of the APIs and
their performance assessment, and how they can
be accessed and used via the Debater Early Access
Program. We then describe several examples of
using and combining these APIs in practical appli-
cations.

2 Services Overview

In this section we provide a short description for
each service, and point to its related publications,

and other relevant resources. All the training
datasets for these services have been developed
as part of Project Debater.

2.1 Core NLU Services

This group of services includes several fundamen-
tal natural language processing tasks.

Text wikification. The Wikification service iden-
tifies mentions of Wikipedia concepts in the given
text. We created our own wikifier, described in
(Shnayderman et al., 2019), since existing tools
were far too slow to be applied to the Lexis-Nexis
corpus we used for argument mining, which con-
tains about 10 billion sentences. We developed a
simple rule-based method, which relies on match-
ing the mentions to the Wikipedia title, as well as
on Wikipedia redirects. This approach enables very
fast Wikification, about 20 times faster than the
commonly-used TagMe Wikifier (Ferragina and
Scaiella, 2010), while achieving competitive accu-
racy.

Concept relatedness. This service measures the
semantic relatedness between a pair of Wikipedia
concepts. We trained a BERT regressor (Devlin
et al., 2019) on the WORD dataset (Ein Dor et al.,
2018), which includes 13K pairs of Wikipedia con-
cepts manually annotated to determine their level
of relatedness. The input to the regressor is the first
sentence in the Wikipedia article of each concept.

Text clustering. Our Text clustering service is
based the Sequential Information Bottleneck (sIB)
algorithm (Slonim et al., 2002). This unsupervised
algorithm has been shown to achieve strong results
on standard benchmarks. However, sIB has not
been as popular as other clustering algorithms such
as K-Means, since its run time was significantly
higher. Our implementation of sIB is highly opti-
mized, leveraging the sparseness of bag of words
representation. With this optimization, the run time
of sIB is very fast, and even comparable with K-
Means. The python code of this implementation is
also available2.

Common theme extraction. This service gets
a clustering partition of sentences and returns
Wikipedia concepts representing the main themes
in each cluster. These themes aim to represent the
subjects that are discussed by the sentences of this
cluster, and distinguish it from other clusters. This

2https://github.com/IBM/sib

268

service is based on the hypergeometric test, applied
to the concepts mentioned in the sentences of each
cluster. The service identifies concepts that are
enriched in each cluster compared to the other clus-
ters, taking into account the semantic relatedness
of different concepts.

2.2 Argument Mining and Analysis

This group includes classifiers and regressors that
aim to identify arguments in input texts, determine
their stance, and assess their quality.

Claim Detection. This service identifies whether
a sentence contains a claim with respect to a given
topic. This task was introduced by Levy et al.
(2014). They define a Claim as “a general, con-
cise statement that directly supports or contests
the given Topic”. The claim detection model is a
BERT-based classifier, trained on 90K positive and
negative labeled examples from the Lexis-Nexis
corpus. The model is similar to the one described
in (Ein-Dor et al., 2020).

Claim Boundaries. Given an input sentence that
is assumed to contain a claim, this service returns
the boundaries of the claim within the sentence
(Levy et al., 2014). The Claim Boundaries service
may be used to refine the results of the Claim De-
tection service, which provides sentence-level clas-
sification. The service is based on a BERT model,
which was fine-tuned on 52K crowd-annotated ex-
amples mined from the Lexis-Nexis corpus.

Evidence Detection. Similar to the Claim Detec-
tion service, this service gets a sentence and a topic
and identifies whether the sentence is an Evidence
supporting or contesting the topic. In our context,
an Evidence is an argument that contains research
results or an expert opinion. This is a BERT based
service which was fine-tuned using 200K annotated
examples from Lexis-Nexis corpus. This model is
based on the work of Ein-Dor et al. (2020).

Argument Quality. This service, based on the
work of Gretz et al. (2020), produces a numeric
quality score for a given argument. The service is
based on a BERT regressor, which was trained on
27K arguments, collected for a variety of topics and
annotated with quality scores. Both the arguments
and the quality scores were collected via crowd-
sourcing. The real-valued argument quality scores
were derived from a large number of binary labels
collected from crowd annotators. Specifically, for

each example, the annotators were asked whether
the sentence, as is, may fit in a speech supporting
or contesting the given topic. High quality scores
typically indicate arguments that are grammatically
valid, use proper language, make a clear and con-
cise argument, have a clear stance towards the topic,
etc.

Pro-Con. This service (Bar-Haim et al., 2017;
Toledo-Ronen et al., 2020), gets an argument and
a topic and predicts whether the argument sup-
ports or contests the topic. This service is a BERT-
based classifier, which was trained on 400K stance-
labeled examples. It includes arguments extracted
from the Lexis-Nexis corpus, as well as arguments
collected via crowsourcing. The set of training ar-
guments was automatically expanded by replacing
the original debate concept with consistent and con-
trastive expansions, based on the work of Bar-Haim
et al. (2019).

2.3 Content Summarization

This group contains two high-level services that
create different types of summaries.

Key Point Analysis. This service summarizes a
collection of comments on a given topic as a small
set of key points (Bar-Haim et al., 2020a,b). The
salience of each key point is given by the number
of its matching sentences in the given comments.
The input for the service is a collection of textual
comments, which are split into sentences. The out-
put is a short list of key points and their salience,
along with a list of matching sentences per key
point. A key point matches a sentence if it captures
the gist of the sentence, or is directly supported by a
point made in the sentence. The service selects key
points from a subset of concise, high-quality sen-
tences (according to the quality service described
above), aiming to achieve high coverage of the
given comments. Matching sentences to key points
is performed by a RoBERTa-large model (Liu et al.,
2019), trained on a dataset of 24K (argument, key
point) pairs, labeled as matched/unmatched. It is
also possible to specify the key points as part of
the input, in which case the service matches the
sentences to the given key points.

Narrative Generation This service receives a
topic, and a list of arguments that support or contest
the topic, and constructs a well-structured speech
summarizing the relevant input arguments that are
compatible with the requested stance (pro or con).

269

It works as follows: first, we select high-quality
arguments with the right stance. Then, the service
performs Key Point Analysis over these arguments.
Finally, The service selects the most prominent
key points, and for each key point, it selects the
best arguments to create a corresponding paragraph.
Alternatively, paragraphs may be generated based
on the output of the text clustering service. Selected
arguments are slightly rephrased as required and
connecting text is added to improve the fluency of
the resulting speech.

2.4 Wikipedia Sentence-Level Index

In addition to the above groups of services, we
also provide a sentence-level index of Wikipedia.
The index underlying our search service is a data
structure that is populated with sentences, en-
riched with some metadata, such as the Wikipedia
concepts mentioned in each sentence (as iden-
tified by the Wikification service), named en-
tities, and multiple lexicons. The index facil-
itates fast retrieval of sentences according to
queries that may refer to the text and/or the
metadata, with word distance restrictions. For
example, retrieve all the sentences that sat-
isfy the template “<PERSON> ... that ...
<CONCEPT> ... <SENTIMENT-WORD>”.

3 Assessment

Table 1 includes assessment results for various ser-
vices. For each service, we specify the benchmark
that was used for testing, the evaluation measure(s)
and the results. If the results in the table are quoted
from one of our papers, this is indicated by!. Un-
less otherwise mentioned, the results are from the
same paper that is cited for the dataset. In cases
where the results for the service were not available
(this happens, for example, if the current service
implementation is different from the one described
in the paper), we ran the service on the benchmark
and reported the results.

The text clustering assessment is the only one
that is not performed over a Project Debater dataset,
but over a standard benchmark - the widely-used 20
newsgroups dataset, which contains about 18,000
news posts on 20 topics (Lang, 1995). We clus-
tered these posts into 20 clusters, and compared
the results with the original partition. We re-
port Adjusted Mutual Information (AMI) and Ad-
justed Rand Index (ARI) measures. Our results
(AMI=0.595 and ARI=0.466) are considerably bet-

ter than those obtained with K-Means (AMI=0.228
and ARI=0.071).

Overall, the results confirm the high quality of
our services.

4 The Debater Early Access Program

The 12 Project Debater APIs are offered via the
IBM Debater Early Access Program. The goal
of this program is to make core capabilities from
Project Debater available as building blocks for a
variety of text understanding applications.

The Early Access Program is freely available for
academic use on the IBM Cloud, and can also be li-
censed for commercial use. As part of the program,
both Python and Java SDKs are available. All the
services are REST-based, which enables their usage
by any desired programming language. In order
to access these APIs, an API key is required. We
supply such API keys freely for non-commercial
use.

The early access website, shown in Figure 2, con-
tains various resources3. The main tab includes a
detailed description of all the services with Python,
Java, and CURL code examples. The description
also includes links to related publications. In addi-
tion, it contains a demo UI, which allows interact-
ing with the APIs online.

The Examples tab contains step-by-step tutorials,
which demonstrate how the APIs can be applied in
complex scenarios, to solve real-world problems.
The Data Sets tab contains a link to all Project
Debater datasets. Finally, there is a tab for the
Speech By Crowd application. Speech By Crowd
is a web application that enables the user to collect
and analyze opinions on a desired controversial
topic. The application is free for non-commercial
use. The application has been demonstrated in
several events, as we discuss in the next section.

5 Use Cases

5.1 Analysing Surveys and Reviews

Surveys are commonly used by decision makers to
collect opinions from a large audience. However,
extracting the key issues that came up in hundreds
or thousands of survey responses is a very challeng-
ing task.

Existing automated approaches are often lim-
ited to identifying key phrases or concepts and the

3https://early-access-program.debater.
res.ibm.com/academic_use

270

Service Benchmark Measure Result From Paper?
Evidence Detection VLD (Ein-Dor et al., 2020) Precision@40 0.95 !

Argument Quality IBM-Rank30k-WA (Gretz et al., 2020) Pearson /
Spearman
correlation

0.52 / 0.48 !

Concepts relatedness WORD (Ein Dor et al., 2018) Pearson /
Spearman
correlations

0.85 / 0.57

Text wikification Trans (Shnayderman et al., 2019) Precision /
Recall / F1

0.76 / 0.62 /
0.68

!

Pro-Con IBM-Rank30k (Gretz et al., 2020) Accuracy 0.92
Text clustering 20 Newsgroups (Lang, 1995) AMI / ARI 0.595 /

0.466
Key Point Analysis ArgKP (Bar-Haim et al., 2020a); Re-

sults are from (Bar-Haim et al., 2020b)
F1 0.77 !

Table 1: Project Debater APIs assessment

Figure 1: The IBM Debater Early Access Program web page. The list of services is shown on the left. For the
selected service - the pro-con service, there is an expandable short description and a demo that allows trying the
service online.

overall sentiment toward them, but do not provide
detailed, actionable insights. Using Debater APIs,
and in particular Key Point Analysis (KPA), we are
able to analyze and derive insights from answers to
open-ended survey questions.

Austin Municipal Survey Tutorial. To demon-
strate this capability, we have prepared a hands-on
tutorial, publicly available on GitHub4. In this
tutorial, we analyze free-text responses for a com-
munity survey conducted in the city of Austin in
the years 2016 and 2017. In this survey, the citi-
zens of Austin were asked “If there was ONE thing
you could share with the Mayor regarding the City

4https://github.com/IBM/
debater-eap-tutorial

of Austin (any comment, suggestion, etc.), what
would it be?”.

In the tutorial, we first run KPA on 1000 ran-
domly selected sentences from 2016. We then use
the Argument Quality (AQ) service and run KPA
on 1000 top-quality sentences from 2016. We show
that selecting higher-quality sentences for our sam-
ple results in a better summary, and higher coverage
of the resulting key points. Figure 2 is a screenshot
from the Jupyter Notebook of the tutorial. It shows
the overall coverage of the extracted key points,
and lists the top key points found, and for each key
point - the number of its matching sentences and
its top-scoring matches.

The tutorial also shows how to compare the 2016
271

Figure 2: A screenshot from the Jupyter Notebook of the tutorial, showing the results for running KPA on the 2016
Austin survey data (1000 top-quality sentences). The coverage, top three key points and top 2 matching sentences
per key point are displayed.

responses to those from 2017. This can be done by
mapping 1000 top-quality sentences from 2017 to
the same set of key points that was extracted for
2016, and observe the year-to-year changes in the
key point salience.

The results show that traffic congestion is one of
the top problems in Austin. In order to better un-
derstand the citizens’ complaints and suggestions
regarding this topic, we can use two additional ser-
vices, Wikification and Concept Relatedness, to
identify sentences that are related to the Traffic
concept and run KPA only on this subset.

IBM Employee Engagement Survey. Key
Point Analysis has also been applied to analyze
the 2020 IBM employee engagement survey. Over
300K employees wrote more than 550K sentences
in total. These sentences were automatically classi-
fied into positive and negative, and we ran KPA on
each set separately to extract positive and negative
key points. The HR team reported that these analy-
ses enable them to extract actionable and valuable
insights with significantly less effort.

Business Reviews. Similar to surveys, KPA can
also be used for effectively summarizing user re-
views. In our recent work (Bar-Haim et al., 2021)
we demonstrate its application to the Yelp dataset
of business reviews.

5.2 Online Debates

In the following public demonstrations, we com-
bined several services to summarize online debates,
where hundreds or thousands of participants submit
online their pro and con arguments for a controver-
sial topic, using the Speech by Crowd platform.
We used the pro-con service to split arguments by
stance, the argument quality service to filter out

low quality arguments, the KPA service to sum-
marize the data into key points and the narrative
generation to create a coherent speech.

That’s Debateable. “That’s Debatable” is a TV
show presented by Bloomberg Media and Intelli-
gence Squared. In each episode, a panel of experts
debates a controversial topic, such as “It’s time to
redistribute the wealth”. Using the above pipeline,
we were able to summarize thousands of arguments
submitted online by the audience, and the result-
ing pro and con key points and speeches were pre-
sented during the show. The audience contributed
interesting points, some of which were not raised
by the expert debaters, and therefore enriched the
discussion.5

Grammy Music Debates. During the Grammys
2021 event, four music debate topics (e.g., vir-
tual concerts vs. live shows) were published on
the event’s website. Hundreds of arguments con-
tributed by music fans were collected for each topic,
and the same method was applied to analyze and
summarize them6.

6 Conclusion

We introduced Project Debater APIs, which pro-
vide access to many of the core capabilities of the
Project Debater grand challenge, as well as more re-
cent technologies such as Key Point Analysis. The
evaluation we presented confirms the high quality
of these services. We discussed different use cases
for these APIs, in particular for analyzing and sum-
marizing various types of opinionated texts. We

5https://www.research.ibm.com/
interactive/project-debater/
thats-debatable/

6https://www.grammy.com/watson

272

believe that this diverse set of services may be used
as building blocks in many text understanding appli-
cations, and may be relevant for a broad audience
in the NLP community.

Acknowledgements

The authors thank Alon Halfon, Naftali Liberman,
Amir Menczel, Guy Moshkowich, Dafna Shein-
wald, Ilya Shnayderman and Artem Spector for
their contribution to the development of the IBM
Debater Early Access Program.

References
Roy Bar-Haim, Indrajit Bhattacharya, Francesco Din-

uzzo, Amrita Saha, and Noam Slonim. 2017. Stance
classification of context-dependent claims. In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 1, Long Papers, pages 251–261.
Association for Computational Linguistics.

Roy Bar-Haim, Lilach Eden, Roni Friedman, Yoav
Kantor, Dan Lahav, and Noam Slonim. 2020a. From
arguments to key points: Towards automatic argu-
ment summarization. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 4029–4039, Online. Association
for Computational Linguistics.

Roy Bar-Haim, Lilach Eden, Yoav Kantor, Roni Fried-
man, and Noam Slonim. 2021. Every bite is an ex-
perience: Key Point Analysis of business reviews.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
3376–3386, Online. Association for Computational
Linguistics.

Roy Bar-Haim, Yoav Kantor, Lilach Eden, Roni Fried-
man, Dan Lahav, and Noam Slonim. 2020b. Quan-
titative argument summarization and beyond: Cross-
domain key point analysis. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 39–49, On-
line. Association for Computational Linguistics.

Roy Bar-Haim, Dalia Krieger, Orith Toledo-Ronen,
Lilach Edelstein, Yonatan Bilu, Alon Halfon, Yoav
Katz, Amir Menczel, Ranit Aharonov, and Noam
Slonim. 2019. From surrogacy to adoption; from bit-
coin to cryptocurrency: Debate topic expansion. In
Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 977–
990, Florence, Italy. Association for Computational
Linguistics.

Artem Chernodub, Oleksiy Oliynyk, Philipp Hei-
denreich, Alexander Bondarenko, Matthias Hagen,
Chris Biemann, and Alexander Panchenko. 2019.

TARGER: Neural argument mining at your finger-
tips. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics: Sys-
tem Demonstrations, pages 195–200, Florence, Italy.
Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers), pages 4171–4186. Association for Computa-
tional Linguistics.

Liat Ein Dor, Alon Halfon, Yoav Kantor, Ran Levy,
Yosi Mass, Ruty Rinott, Eyal Shnarch, and Noam
Slonim. 2018. Semantic relatedness of wikipedia
concepts - benchmark data and a working solu-
tion. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC-2018). European Language Resource Associ-
ation.

Liat Ein-Dor, Eyal Shnarch, Lena Dankin, Alon Hal-
fon, Benjamin Sznajder, Ariel Gera, Carlos Alzate,
Martin Gleize, Leshem Choshen, Yufang Hou,
Yonatan Bilu, Ranit Aharonov, and Noam Slonim.
2020. Corpus wide argument mining - A working
solution. In Proceedings of the Thirty-Fourth AAAI
Conference on Artificial Intelligence, pages 7683–
7691. AAAI Press.

Paolo Ferragina and Ugo Scaiella. 2010. Tagme:
On-the-fly annotation of short text fragments (by
wikipedia entities). In Proceedings of the 19th
ACM International Conference on Information and
Knowledge Management, CIKM ’10, pages 1625–
1628, New York, NY, USA. ACM.

Shai Gretz, Roni Friedman, Edo Cohen-Karlik, As-
saf Toledo, Dan Lahav, Ranit Aharonov, and Noam
Slonim. 2020. A large-scale dataset for argument
quality ranking: Construction and analysis. Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, 34(05):7805–7813.

Iryna Gurevych, Eduard H. Hovy, Noam Slonim,
and Benno Stein. 2016. Debating Technologies
(Dagstuhl Seminar 15512). Dagstuhl Reports,
5(12):18–46.

Ken Lang. 1995. Newsweeder: Learning to filter net-
news. In Armand Prieditis and Stuart Russell, ed-
itors, Machine Learning Proceedings 1995, pages
331–339. Morgan Kaufmann, San Francisco (CA).

Ran Levy, Yonatan Bilu, Daniel Hershcovich, Ehud
Aharoni, and Noam Slonim. 2014. Context depen-
dent claim detection. In Proceedings of COLING
2014, the 25th International Conference on Compu-
tational Linguistics: Technical Papers, pages 1489–
1500, Dublin, Ireland. Dublin City University and
Association for Computational Linguistics.

273

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Rada Mihalcea and Andras Csomai. 2007. Wikify!
linking documents to encyclopedic knowledge. In
Proceedings of the Sixteenth ACM Conference on
Conference on Information and Knowledge Manage-
ment, CIKM ’07, page 233–242, New York, NY,
USA. Association for Computing Machinery.

Ilya Shnayderman, Liat Ein-Dor, Yosi Mass, Alon
Halfon, Benjamin Sznajder, Artem Spector, Yoav
Katz, Dafna Sheinwald, Ranit Aharonov, and Noam
Slonim. 2019. Fast end-to-end wikification. arXiv
preprint arXiv:1908.06785.

Noam Slonim, Yonatan Bilu, Carlos Alzate, Roy
Bar-Haim, Ben Bogin, Francesca Bonin, Leshem
Choshen, Edo Cohen-Karlik, Lena Dankin, Lilach
Edelstein, Liat Ein-Dor, Roni Friedman-Melamed,
Assaf Gavron, Ariel Gera, Martin Gleize, Shai Gretz,
Dan Gutfreund, Alon Halfon, Daniel Hershcovich,
Ron Hoory, Yufang Hou, Shay Hummel, Michal
Jacovi, Charles Jochim, Yoav Kantor, Yoav Katz,
David Konopnicki, Zvi Kons, Lili Kotlerman, Dalia
Krieger, Dan Lahav, Tamar Lavee, Ran Levy, Naf-
tali Liberman, Yosi Mass, Amir Menczel, Shachar
Mirkin, Guy Moshkowich, Shila Ofek-Koifman,
Matan Orbach, Ella Rabinovich, Ruty Rinott, Slava
Shechtman, Dafna Sheinwald, Eyal Shnarch, Ilya
Shnayderman, Aya Soffer, Artem Spector, Ben-
jamin Sznajder, Assaf Toledo, Orith Toledo-Ronen,
Elad Venezian, and Ranit Aharonov. 2021. An au-
tonomous debating system. Nature, 591(7850):379–
384.

Noam Slonim, Nir Friedman, and Naftali Tishby. 2002.
Unsupervised document classification using sequen-
tial information maximization. In Proceedings of
the 25th Annual International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, SIGIR ’02, page 129–136, New York, NY,
USA. Association for Computing Machinery.

Christian Stab, Johannes Daxenberger, Chris Stahlhut,
Tristan Miller, Benjamin Schiller, Christopher
Tauchmann, Steffen Eger, and Iryna Gurevych. 2018.
ArgumenText: Searching for arguments in heteroge-
neous sources. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics: Demonstrations,
pages 21–25, New Orleans, Louisiana. Association
for Computational Linguistics.

Orith Toledo-Ronen, Matan Orbach, Yonatan Bilu,
Artem Spector, and Noam Slonim. 2020. Multilin-
gual argument mining: Datasets and analysis. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 303–317, Online. As-
sociation for Computational Linguistics.

Henning Wachsmuth, Martin Potthast, Khalid Al-
Khatib, Yamen Ajjour, Jana Puschmann, Jiani Qu,
Jonas Dorsch, Viorel Morari, Janek Bevendorff, and
Benno Stein. 2017. Building an argument search en-
gine for the web. In Proceedings of the 4th Work-
shop on Argument Mining, pages 49–59, Copen-
hagen, Denmark. Association for Computational
Linguistics.

274

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 275–282
November 7–11, 2021. ©2021 Association for Computational Linguistics

CroAno : A Crowd Annotation Platform for Improving
Label Consistency of Chinese NER Dataset

Baoli Zhang∗1, Zhucong Li∗1,2, Zhen Gan3, Yubo Chen1,2, Jing Wan3, Kang Liu1,2,
Jun Zhao1,2, Shengping Liu4, Yafei Shi4

1 National Laboratory of Pattern Recognition, Institute of Automation,
Chinese Academy of Sciences, Beijing, China

2 School of Artificial Intelligence, University of Chinese Academy of Sciences,Beijing, China
3 Beijing University of Chemical Technology, Beijing, China

4 Unisound Ai Technology Co,.Ltd, Beijing, China
{baoli.zhang, zhucong.li, yubo.chen, kliu, jzhao}@nlpr.ia.ac.cn,

{ganzhen,wanj}@mail.buct.edu.cn, {liushengping, shiyafei}@unisound.com

Abstract

In this paper, we introduce CroAno, a web-
based crowd annotation platform for the Chi-
nese named entity recognition (NER). Besides
some basic features for crowd annotation like
fast tagging and data management, CroAno
provides a systematic solution for improving
label consistency of Chinese NER dataset. 1)
Disagreement Adjudicator: CroAno uses a
multi-dimensional highlight mode to visualize
instance-level inconsistent entities and makes
the revision process user-friendly. 2) Inconsis-
tency Detector: CroAno employs a detector
to locate corpus-level label inconsistency and
provides users an interface to correct incon-
sistent entities in batches. 3) Prediction Er-
ror Analyzer: We deconstruct the entity pre-
diction error of the model to six fine-grained
entity error types. Users can employ this er-
ror system to detect corpus-level inconsistency
from a model perspective. To validate the ef-
fectiveness of our platform, we use CroAno to
revise two public datasets. In the two revised
datasets, we get an improvement of +1.96%
and +2.57% F1 respectively in model perfor-
mance.

1 Introduction

Named entity recognition (NER), the task of de-
tecting and classifying named entities in texts, has
made significant progress relying on data-driven
methods (Lample et al., 2016). Existing supervised
approaches to NER require massive high-quality
annotated data. Since hiring annotation experts is
costly and time-consuming, crowd annotation and
non-experts annotators are more generally used, the
drawback is a higher proportion of inconsistency
in the annotation.

∗ co-first authors, they contributed equally to this work.

Figure 1: The whole architecture of CroAno.

However, existing NER annotation tools for
crowd annotation (Ogren Philip, 2006; Chen and
Styler, 2013; Manning et al., 2014; Samih et al.,
2016) mainly aim to improve annotating efficiency
and rarely consider the dataset’s consistency. Label
inconsistency is ubiquitous in NER datasets. For
example, OntoNotes 4.0 (Weischedel et al., 2011),
which is a classical Chinese NER benchmark, the
proportion of label inconsistency is up to 10% ac-
cording to our estimation. In this dataset, the men-
tion of “中国人民” (Chinese People) appears 36
times, of which the whole mention is marked as
entity 23 times, and “中国” (China) is separately
labeled as entity 13 times. Such inconsistency may
confuse the NER model and cause disastrous re-
sults.

In this paper, we propose a web-based crowd
annotation platform named CroAno. As shown
in Figure 1, CroAno contains three modules to
improve label consistency of the Chinese NER
dataset.

Disagreement Adjudicator: Crowd annotation
tools usually distribute the same instance to differ-
ent annotators, which would cause disagreement.
We call this phenomenon instance-level label incon-

275

Figure 2: The screenshot of Annotator Interface.

sistency, because this inconsistency occurs in the
same instance. Instance-level label inconsistency
is easy to locate but difficult to display and correct.
YEDDA (Yang et al., 2018) employs a comparison
report to show these inconsistencies to annotation
experts. But it failed to display detailed informa-
tion of inconsistent entities, and annotation experts
cannot directly correct these entities through the
comparison report. To solve these display and cor-
rection issues, CroAno uses a multi-dimensional
display mode to show inconsistent instances and
employs the "click to correct" method to facilitate
correction.

Inconsistency Detector: This module is
designed to solve corpus-level label inconsis-
tency，especially corpus-level pre&suffix inconsis-
tency. Corpus-level pre&suffix inconsistency refers
to the inconsistency of whether a descriptive string
is included in the entity string. In OntoNotes4.0,
the string “超过”(over) is included as a prefix of
Money entity in some instances while in other in-
stances the string is excluded as an external prefix.
Locating these inconsistent entities is hard because
a global perspective is required. CroAno uses a
detector to locate potential inconsistency and pro-
vides an interface to support users correct these
inconsistent entities in batches.

Prediction Error Analyzer: As mentioned
above, disagreement adjudicator and inconsistency
detector are responsible to solve label inconsistency
from a data perspective, while prediction error ana-
lyzer can detect label inconsistency from a model
perspective. To analyze inconsistency, we decon-
struct entity prediction error of the model to a novel
error system, which gives entity prediction error
more abundant information with six fine-grained
error types. CroAno provides a search API, which
supports users to employ the error system to lo-
cate specific entities and their context. Moreover,
CroAno employs an elaborately designed inter-
face to differentiate the model prediction and the
annotation.

In summary, the contributions of this paper are

Figure 3: The screenshot of Disagreement Adjudicator.

as follows:

• We propose a crowd annotation platform,
which can promote label consistency of
the Chinese NER dataset. The site can
be accessed by http://116.62.20.198:3000,
and instruction video is provided at
https://www.youtube.com/watch?v=wt2ma9F
U540. To the best of our knowledge, CroAno
is the first crowd annotation platform that
aims at promoting label consistency of NER
dataset.

• We introduce three novel modules to pro-
mote label consistency of the NER dataset.
Disagreement Adjudicator provides a multi-
dimensional highlight mode to visualize and
an interface function to revise instance-level
inconsistency. Inconsistency Detector em-
ploys locating and revising strategies to cor-
rect corpus-level label inconsistency. Predic-
tion Error Analyzer can help algorithm ex-
perts detect corpus-level inconsistency from a
model perspective.

• To validate the effectiveness of our platform,
we use CroAno to revise two public datasets.
In the two revised datasets, we get an improve-
ment of +1.96% and +2.57% in F1 respec-
tively. It is worth mentioning that the pro-
motion of data can be inherited by any NER
model.

2 User Roles in CroAno

CroAno defines three roles: the crowd annotator,
the annotation expert and the algorithm expert. The
crowd annotator completes basic annotation tasks.
The annotation expert is responsible for guideline
formulation, data management, task distribution,
and label consistency optimization. The algorithm
expert is responsible for providing analyses and

276

Figure 4: The screenshot of Inconsistency Detector,We provide English translations for inconsistent entities.

suggestions of the annotation result from the per-
spective of the model.

The crowd annotator uses Annotator Interface
for annotation. After preliminary annotation, re-
sults are sent to the annotation expert.

The annotation expert uses Disagreement Ad-
judicator and Inconsistency Detector for revision.
Specifically, the annotation expert uses Disagree-
ment Adjudicator to modify instance-level inconsis-
tency from multi-annotators, and then uses Incon-
sistency Detector to detect and modify corpus-level
inconsistency. After that, the promoted dataset is
sent to the algorithm expert.

The algorithm expert uses Prediction Error Ana-
lyzer for evaluation. The algorithm expert can use
Prediction Error Analyzer to detect the difference
between model prediction and annotators annota-
tion to get promotion direction of annotation or just
revise the annotation.

The following sections will introduce the main
modules of CroAno.

3 Annotator Interface

This section describes the interface, which is de-
signed for easily annotating. As shown in Figure 2,
the interface uses different colors to distinguish the
entity categories. Annotators can locate an entity
and its span with the left mouse button. And They
can choose an entity category by short-cut key or
click the corresponding button in the entity label
bar.

Except for basic annotating function, they can
mark the current instance as "annotated" by click-
ing the first top-left button, filter "annotated in-
stances" by clicking the second top-left button, and
get the guideline by clicking the last top-left button.

4 Disagreement Adjudicator

This section describes Disagreement Adjudicator,
which is designed for solving instance-level label
inconsistency. Instance-level inconsistency means
disagreement annotations between different anno-
tators within the same instance. Apart from annota-
tion errors, different understandings of the guide-
line can also lead to disagreement. This type of
inconsistency needs to be revised by the annotation
expert. Difficulties in implementing this operation
are to visualize disagreement entities and revise.
CroAno uses a novel multi-dimensional high-

light mode to visualize disagreement entities. As
shown in Figure 3, underlines of text represent
annotators annotation, the background represents
agreement entities or approved entities. Figure 3
shows an instance annotated by two annotators.
The “美国”(America) entity has two black un-
derlines and black background, which means the
two annotators consistently annotated this span as
GPE.

The revision stage is easy to execute. The an-
notation expert can click any disagreement entity
to get a revision dialog. The dialog will display
all corresponding disagreement entities, and the
annotation expert can select a proper one.

5 Inconsistency Detector

This section describes Inconsistency Detector,
which is designed for reducing corpus-level
pre&suffix inconsistency.

5.1 Overview
In NER dataset, some entity types have descriptive
words. It is difficult to reach an agreement on a de-
scriptive string that should be included in the entity

277

Figure 5: The screenshot of Prediction Error Analyzer. We provide English translations for mistakenly predicted
entities in this figure.

string. For example, the MONEY entity type has a
descriptive word "more than". In some instances
the word "more than" is contained inside the en-
tity string as a prefix, while in other instances the
word is excluded as an external prefix. Appendix
A displays inconsistent pre&suffixes of two NER
dataset and some example instances.

Our proposed framework contains a detec-
tor algorithm to detect potential inconsistent
pre&suffixes and an interface to help users to revise
these inconsistencies.

5.2 Pre&Suffix Inconsistency Detector
We denote the dataset as D, the entit set extracted
from the dataset as S. We use entity denotes a spe-
cific entity object from entity set. An entity object
has at least four attributes, including string, sen-
tence, start, end. String denotes the entity string,
sentence represents the instance text string that con-
tains this entity. Given a specific entity, the expres-
sion sentence[start: end] == string is always true.

We use p denotes entity prefix, pi denotes prefix
with length i.

pi =

{
string[: i], if len(string) ≤ i
′′, otherwise

(1)

We use e denotes external descriptive word before
entity string, ei denotes external prefix with length
i.

ei =

{
sentence[start− i : start], if start− i ≥ 0
′′, otherwise

(2)
Take the inconsistent prefix detection algorithm

as an example as shown in Algorithm 1. The basic

Algorithm 1 Inconsistent Prefix Detection Algo-
rithm

Input: Entity set S, Max prefix length: l
Output: Inconsistent prefixes
I ← Ø
E← Ø
for entity in S do

for i = 1 to l do
Obtain pi. (Eq.1)
Obtain ei. (Eq.2)
I = I ∪ pi
E = E ∪ ei

end for
end for
return I ∩E

idea of inconsistency detector is that if a descriptive
string appears both as a prefix or an external prefix,
this string is considered an inconsistent prefix.

We first construct two empty string sets called
prefix_set and external_prefix_set. We then tra-
verse the entity set to add entity prefix and exter-
nal_prefix respectively to the two string set.

After the traverse, the intersection of two string
sets are strings that appearing in both entity prefix
or entity external prefix. These strings are potential
inconsistent prefixes.

6 Prediction Error Analyzer

This section describes Prediction Error Analyzer,
which is designed for detecting label consistency
from the model perspective.

278

6.1 Overview

From an intuitive perspective, The basic idea of this
module is that the NER model trained with train-
set can learn regulations of this annotation. When
an entity gets a wrong prediction compared to an-
notation result in testset, it has a high proportion
that the model has learnt an inconsistent regulation
from trainset.

To support the need to detect inconsistent enti-
ties with the NER model, CroAno provides a will-
designed error system, a search API based on the
error system, and a visualization interface for users
to compare the differences between model predic-
tion and annotations from the annotator.

6.2 Error System

Existing entity error only measures if an entity is
correctly predicted or not, which misses much use-
ful information. CroAno deconstruct entity pre-
diction error to a well-designed error system.

The error system consists of six different error
types. Extra Error and Missing Error means that
the NER model predicts an extra entity or misses an
entity compared with annotators annotation. Long
Error and Short Error means that the NER model
predicts an entity that contains or is within an an-
notated entity. Tag Error and Intersect Error
means different tags and intersect boundary be-
tween model prediction and annotation.

6.3 Search and Visualize Instances

The search API is used to filter entities and their
context by the error system and other features. For
example, if the algorithm expert finds that the PER-
SON entity type has a high proportion to be mistak-
enly missing in model prediction, they can use the
search API to extract these instances.

The visualization interface is designed to make
users directly perceive the difference between
model prediction and annotations from the anno-
tator. As shown in Figure 5, annotations from the
annotator are marked by the background, while
the highlighted underline exhibits annotations pre-
dicted by the model.

Except for detecting corpus-level inconsistency
of the NER dataset, Prediction Error Analyzer can
be used to detect annotation errors or catch the
model’s weakness to decide the improvement di-
rection of the model itself.

Dataset Type Train Dev Test
2*OntoNotes Sentence 15.7K 4.3K 4.3K

Char 491.9K 200.5K 208.1K
2*CCKS Sentence 1K - 0.4K

Char 418.4K - 132.7K

Table 1: Statistics of dataset.

7 Technical Details

This section introduces some necessary technical
details. CroAno has a web-based front-end server
built on Vue in JavaScript and a back-end server
built on Django in Python. CroAno has an en-
vironment decoupled from the operating system,
which means it is deployment-free. CroAno imple-
ment the interface design based on an open-source
Django framework named doccano 1.

8 Experiments

In this section, we conduct experiments on a stan-
dard benchmark and a medical benchmark to verify
the effectiveness of Inconsistency Detector.

8.1 Experimental Setting

Dataset. Two Chinese NER datasets are
used in this paper, which include OntoNotes
4.0 (Weischedel et al., 2011) and CCKS 2019 (Han
et al., 2020). OntoNotes 4.0 is collected from the
news domain, while CCKS 2019 is collected from
the medical domain. For OntoNotes 4.0, we use the
same data split as (Zhang and Yang, 2018). Since
the CCKS 2019 dataset does not have a develop-
ment set, we randomly select 20% samples from
the training set as the development. Statistics of
dataset is shown in Table 1.

Dataset Correction. We invite two volunteers
to use Inconsistency Detector to correct the two
datasets. The correction is for the entire dataset
including training set, development set, and test set.
It is worth mentioning that to count the learning
and mastering time of the function, modify both
datasets took less than half an hour.

Model Settings. We appliy two most widely
recognized NER baseline models, denoted as
BiLSTM-CRF (Ma and Hovy, 2016) and BERT-
Tagger (Devlin et al., 2018), respectively. We uni-
formly use AdamW (Loshchilov and Hutter, 2018)
as an optimizer. For (Ma and Hovy, 2016), we
use the same character embeddings as (Zhang and
Yang, 2018) and set the initial learning rate to 0.01.

1http://doccano.herokuapp.com/

279

For (Devlin et al., 2018), we set the initial learning
rate to 0.00005.

8.2 Results

The model performance before/after correcting is
shown in Table 2 and the statistics of inconsistent
entities correction is shown in Table 3.

OntoNotes 4.0. We correct 730 entities in total,
accounting for 1.4% of the total number of entities.
After correction, BiLSTM-CRF reachs a 69.38%
F1-score, an increase of 1.48%. The improvement
of BERT-Tagger is even more significant, an in-
crease of 1.96%, reaching 76.52% F1-score.

CCKS 2019. We correct 700 entities in total,
accounting for 4.3% of the total number of entities.
After correction, BiLSTM-CRF reached a 82.88%
F1-score, an increase of 2.09%. Consistent with
Ontonotes, the improvement of BERT-Tagger is
more significant, an increase of 2.57%, reaching
85.88% F1-score.

The experiments prove that the annotator ex-
pert can use CroAno to promote dataset, and this
promotion can be inherited by widely recognized
BiLSTM-CRF model and BERT-Tagger model.

9 Related Works

Most of the existing crowd annotation tools for
NER are dedicated to basic functions such as in-
terface friendliness, the convenience of operation,
and annotation prompts, which are all designed for
annotators. Next, this section will compare the fea-
tures of CroAno with the following related works:
BRAT (Stenetorp et al., 2012) is a web-based

general annotation tool that can handle various
annotation tasks, including span annotations and
the relationship between spans. As an early anno-
tation tool, BRAT has great influence. However,
compared with crowd annotation platforms such as
CroAno, it cannot manage crowdsource or reduce
the label inconsistency.
GATE (Bontcheva et al., 2013) is a web-based

collaborative text annotation framework. It en-
ables users to perform complex corpus annotation
projects, which involve a distributed team of anno-
tators. Same as brat, GATE also lacks the ability
to reduce the label inconsistency.
SLATE (Kummerfeld, 2019) is a lightweight an-

notation tool with a terminal-based workflow. It is
designed for annotation experts, focusing on fast
labeling. SLATE has a certain visual disagreement
adjudication capability. However, due to the lim-

2*Model OntoNotes 4.0 CCKS 2019
Before After Before After

BiLSTM-CRF 67.9 69.38 80.79 82.88
BERT-Tagger 74.56 76.52 83.31 85.88

Table 2: Model performance before/after correcting.

Dataset Total Entity Correction Correction Ratio
OntoNotes 49262 730 1.48%

CCKS 18294 700 3.83%

Table 3: Statistics of inconsistent entities correcting.

ited visualization ability of the terminal-based ap-
proach, it can only simply prompt disagreement
samples. Besides, the disagreement adjudication
cannot be applied at the entity-level.

AlpacaTag (Lin et al., 2019) applies the
model ensemble mechanism to merge the results
of different annotators, thereby realizing disagree-
ment adjudication without relying on annotating
experts. It is worth noting that the results of such a
black box model are not interpretable for humans.
Especially for fields such as clinical diagnosis and
drug discovery, black box models often mean po-
tential risks and poor persuasiveness.

YEDDA (Yang et al., 2018) provides a systematic
solution for text span annotations such as collab-
orative user annotations, administrator evaluation.
YEDDA can locate the position of disagreement and
display it by generating a Latex file, but it cannot
directly adjudicate disagreement like CroAno.

To the best of our knowledge, CroAno is the
first crowd annotation platform providing the tool
that can locate and fix inconsistent labels. CroAno
can also make the full use of the ability of the
algorithm expert and the annotation expert.

10 Conclusion and Future Directions

In this paper, we propose a web-based crowd an-
notation platform, which provides a systematic so-
lution for improving the label consistency of the
Chinese NER dataset. To solve instance-level in-
consistency, we propose Disagreement Adjudicator.
To solve corpus-level inconsistency, we propose In-
consistency Detector and Prediction Error Analyzer
from statistic and model perspectives respectively.

The future directions are to extend CroAno to a
cross-task and multi-language version and imple-
ment more prosperous model analysis functions.

280

Acknowledge

This work is supported by the National Key Re-
search and Development Program of China (No.
2020AAA0106400). This work is supported by
the National Natural Science Foundation of China
(No.61976211,No.61806201). This work is sup-
ported by Beijing Academy of Artificial Intelli-
gence (BAAI2019QN0301) , the Key Research Pro-
gram of the Chinese Academy of Sciences (Grant
NO. ZDBS-SSW-JSC006) and the Youth Innova-
tion Promotion Association CAS.

References
Kalina Bontcheva, Hamish Cunningham, Ian Roberts,

Angus Roberts, Valentin Tablan, Niraj Aswani,
and Genevieve Gorrell. 2013. Gate teamware: a
web-based, collaborative text annotation framework.
Language Resources and Evaluation, 47(4):1007–
1029.

Wei-Te Chen and Will Styler. 2013. Anafora: A web-
based general purpose annotation tool. In Proceed-
ings of the 2013 NAACL HLT Demonstration Ses-
sion, pages 14–19.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Xianpei Han, Zhichun Wang, Jiangtao Zhang, Qinghua
Wen, Wenqi Li, Buzhou Tang, Qi Wang, Zhi-
fan Feng, Yang Zhang, Yajuan Lu, et al. 2020.
Overview of the ccks 2019 knowledge graph eval-
uation track: Entity, relation, event and qa. arXiv
preprint arXiv:2003.03875.

Jonathan K Kummerfeld. 2019. Slate: A super-
lightweight annotation tool for experts. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics: System Demonstra-
tions, pages 7–12.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270.

Bill Yuchen Lin, Dong-Ho Lee, Frank F Xu, Ouyu
Lan, and Xiang Ren. 2019. Alpacatag: An active
learning-based crowd annotation framework for se-
quence tagging. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 58–63.

Ilya Loshchilov and Frank Hutter. 2018. Fixing weight
decay regularization in adam.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1064–1074.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proceedings of 52nd annual
meeting of the association for computational linguis-
tics: system demonstrations, pages 55–60.

V Knowtator Ogren Philip. 2006. A protégé plug-in
for annotated corpus construction. In Human lan-
guage technology conference of the North American
chapter of the association of computational linguis-
tics (HLT-NAACL).

Younes Samih, Wolfgang Maier, and Laura Kallmeyer.
2016. Sawt: Sequence annotation web tool. In Pro-
ceedings of the Second Workshop on Computational
Approaches to Code Switching, pages 65–70.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. Brat: a web-based tool for nlp-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 102–107.

Ralph Weischedel, Sameer Pradhan, Lance Ramshaw,
Martha Palmer, Nianwen Xue, Mitchell Marcus,
Ann Taylor, Craig Greenberg, Eduard Hovy, Robert
Belvin, et al. 2011. Ontonotes release 4.0.
LDC2011T03, Philadelphia, Penn.: Linguistic Data
Consortium.

Jie Yang, Yue Zhang, Linwei Li, and Xingxuan Li.
2018. Yedda: A lightweight collaborative text span
annotation tool. In Proceedings of ACL 2018, Sys-
tem Demonstrations, pages 31–36.

Yue Zhang and Jie Yang. 2018. Chinese ner using lat-
tice lstm. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1554–1564.

A Inconsistent Pre&Suffix Example

The cause of the inconsistent prefixes and suffixes
is divergent perceptions of different annotators
on the annotation guideline. For example, some
entity categories have specific descriptive strings.
Because deleting these additive strings does not
change the entity semantics, this leads to opposite
annotation strategies.

Some of the inconsistent prefixes or suffixes de-
tected by this algorithm in the Ontonotes dataset
and the CCKS medical dataset are shown in Table4
and Table5. Some instances that contain inconsis-
tent pre&suffix in the Ontonotes dataset are shown
in Table6.

281

Entity Type Inconsistent Prefixes Inconsistent Suffixes

WORK_OF_ART 《 》、节目(show)

CARDINAL 上(more than)、超过(more than)、
近(nearly)

辆、颗、位、个、家、种、项、名、所
(all of these suffixes are Chinese measure word)

DATA 不到(less than)、过去(over the past)、
过去的(over the past) 之内(within)、内(within)

LOC 地区(area)

NORP 民族(nation)、人民(people)、人士(person)、
民众(the public)

GPE 驻
市区(city)、特区(special administrative

region)、政府(government)

Table 4: Some inconsistent prefixes and suffixes in Ontonotes4.0.

Entity Type Inconsistent Prefixes Inconsistent Suffixes

Anatomic Site 近端(proximal)、左(left)、双侧
(bilateral)、左侧(left side) 上端(upper)、旁(side)、部

Diseases and Diagnoses 轻度(mild) 不能明确(not clear)、可能(possible)、术后
(post operation)、化疗(chemotherapy)

Image Examination 增强(enhancement)、检查(examination)、
平扫(plain CT scan)

Operation 行(perform) 治疗(therapy)

Medicine 片(tablet)

Laboratory Inspection 血(blood) 百分比(percentage)、数(count)、浓度
(concentration)、压积

Table 5: Some inconsistent prefixes and suffixes in CCKS medical dataset.

Entity Type
Prefix

or
Suffix

Prefix or Suffix in Entity Content Prefix or Suffix out of Entity Content

WORK OF ART Prefix: 《

他们想到了哈尔·荷尔布鲁克和电影
[《惊天大阴谋》] WORK_OF_ART

They thought of Hal Holbrook and
the movie "Plot."

张曼玉、梁朝伟主演的
《[花样年华]WORK_OF_ART》

In the Mood for Love staring
Maggie Cheung and Tony Leung

Chiu-wai

CARDINAL Suffix: 位

已有[172位]CARDINAL个人和14个
机构获奖

172 individuals and 14 institutions have
been awarded

参与评证的律师总计约
[700]CARDINAL位，评件
总案数为7200余件

A total of about 700 lawyers
participated in theevaluation, and

the total number of cases was
more than 7,200

LOC Suffix: 地区

要求日本自卫队分担
[亚太地区]LOC的安全责任

Asking Japan’s Self-Defense Forces
to share security responsibilities in

the Asia-Pacific region

英文[亚洲周刊]发布的
[亚太]LOC地区城市排名中，
台北和大版并列第二

Taipei and Osaka have tied for
second place in a ranking of cities
in the Asis-Pacific region released
by the English-language magazine

Asia Week

Table 6: Pre&Suffix inconsistent instances.

282

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 283–297
November 7–11, 2021. ©2021 Association for Computational Linguistics

iFACETSUM: Coreference-based Interactive Faceted Summarization
for Multi-Document Exploration

Eran Hirsch1, Alon Eirew1,2∗, Ori Shapira1∗, Avi Caciularu1, Arie Cattan1,
Ori Ernst1, Ramakanth Pasunuru3, Hadar Ronen4, Mohit Bansal3, Ido Dagan1

1Bar-Ilan University 2Intel Labs, Israel 3UNC Chapel Hill 4Peres Academic Center
{hirsch.eran, obspp18}@gmail.com

alon.eirew@intel.com dagan@cs.biu.ac.il

Abstract

We introduce iFACETSUM,1 a web appli-
cation for exploring topical document sets.
iFACETSUM integrates interactive summariza-
tion together with faceted search, by provid-
ing a novel faceted navigation scheme that
yields abstractive summaries for the user’s se-
lections. This approach offers both a compre-
hensive overview as well as concise details
regarding subtopics of choice. Fine-grained
facets are automatically produced based on
cross-document coreference pipelines, render-
ing generic concepts, entities and statements
surfacing in the source texts. We analyze the
effectiveness of our application through small-
scale user studies, which suggest the useful-
ness of our approach.

1 Introduction

An information consumer aspiring to explore a new
topic will often be faced with an extensive col-
lection of texts from which to acquire knowledge.
Confronted with these texts, the reader would have
difficulty determining where to start reading and
obtaining details about specific aspects of the topic.
Addressing this we present iFACETSUM, illustrated
in Figure 1, an interactive faceted summarization
approach and system for navigating within a large
input document-set on a topic. The system initially
provides a full high-level overview of the topic at a
glance in the form of facets. A user can then dive
further into subtopics of interest and obtain con-
cise facet-based summaries, capturing the valuable
information of a subtopic.

The challenge of knowledge navigation has been
addressed with various solutions, mainly under the
umbrella of exploratory search (Marchionini, 2006)
tasks. For example, in Complex Interactive Ques-
tion Answering (ciQA) (Kelly and Lin, 2007) and

∗ Equal contribution.
1Demo at https://biu-nlp.github.io/iFAC

ETSUM/WebApp/client/, and code at https://gith
ub.com/BIU-NLP/iFACETSUM.

Conversational QA (Reddy et al., 2019), a user
interacts with a QA system in order to meet an in-
formation need on the source text(s). Interactive
information retrieval (Ingwersen, 1992) and con-
versational search (Radlinski and Craswell, 2017)
refine document retrieval through different means
of textual interaction. Both tasks do not offer a
preliminary outline of the source documents, and
hence expect a user to formulate queries or ques-
tions without system guidance. Furthermore, short
answers, such as those output in conversational QA,
may be insufficient, while lists of relevant textual
results, such as in conversational search, may be
overwhelming and provoke an inefficient naviga-
tion process.

As a midpoint solution, interactive summariza-
tion provides an initial summary as an overview of
the topic, and the ability to inquire, via suggested
or free-text queries, for more information in the
form of summary expansions (e.g. Shapira et al.,
2021; Avinesh et al., 2018). Here still, the initial
summary, along with the suggested queries, do not
produce the full high-level picture, and therefore
hints only partially at the possible subtopics that
the user might want to explore.

iFACETSUM builds upon the interactive sum-
marization scheme, extending it via the effective
faceted search approach (Hearst, 2006a) (§2.1),
coupled with facet-based abstractive summariza-
tion (§3.2). The presented facet values provide a
comprehensive overview of the input topic, while
the abstractive summaries deliver concise fine-
grained information on selected facet values (see
Figure 1). Furthermore, since facets are hierarchi-
cally updated in accordance to facet-value selec-
tions, navigating deeper into subtopics becomes
seamless. In terms of backend implementation,
facets are automatically derived over the input
document set in a novel manner, based on cross-
document coreference resolution (Cattan et al.,
2021) and proposition alignment (Ernst et al.,

283

Figure 1: Our iFACETSUM web application over a set of 25 documents about “Native American Challenges”. The
user gets an overview of the topic as Concepts [1], Entities [2] and Statements [3] facets. The facets are updated
in response to the user’s choice of the facet-value “treaties” [5]. An abstractive summary is generated for the
set of sentences corresponding to the “treaties” semantic cluster [4]. The mentions of a facet-value appear when
hovering over its frequency [6]. Clicking "Show all" opens a pop-up with more facet-values. The Entities pop-up
is categorized into further facets of Person, Location, Organization and Miscellaneous [7].

2020), yielding clusters of facet-value mentions
(§3). Accordingly, summaries are generated based
on the sentences that contain mentions of all se-
lected facet-values.

We conduct usability studies on our system, and
demonstrate its utility for easy navigation in topical
document sets, while enabling deep diving into
desired knowledge without losing the context of
the exploration process.

We next describe iFACETSUM’s interface in §2
and its backend implementation in §3. This is fol-
lowed by the description and results of our usability
investigations in §4, an overview of related work
in §5, and finally conclusions and suggestions for
future work in §6.

2 iFACETSUM Interface

iFACETSUM is a web application for exploring a
document-set on a topic, shown in Figure 1. It
generally consists of the faceted navigation com-
ponent (top of figure, described in §2.1) , and the
facet-based summary component (bottom of figure,
§2.2). The former rests upon a faceted-navigation
panel that provides orientation on the source topic,
while the latter supplies the user with key informa-
tion about selected facet-values. This flow facili-
tates guided exploration, over the full scope of the
topical information and within subtopics of inter-
est.

2.1 Faceted Navigation

Faceted search is a technique used to provide more
effective information-seeking support (Tunkelang,
2009), by allowing users to narrow down results
based on rich attributes. A facet describes an at-
tribute type, and facet-terms or facet-values rep-
resent attribute values. iFACETSUM’s facets are
formed using techniques that identify recurring
mentions of sub-sentential units in texts, as ex-
plained further in §3.1.

The faceted navigation component is laid-out to
the user in the form of three general facets (Figure
1, [1], [2] and [3]): (1) Generic Concepts facet,
e.g., “poverty” and “treaties”. (2) Entities facet,
containing values such as e.g., “Clinton” as a per-
son or “Nebraska” as a location. (3) Statements
facet, which lists specific statements mentioned
several times, such as “Nebraska does not allow
casino gambling”.

In our data scheme, each facet-value encapsu-
lates a cluster of mentions that semantically refer
to a common concept, entity or statement, and, as
such, may be lexically diverse (e.g., the “case” con-
cept associates with mentions of “lawsuit”, “fight”,
“battle”, “debate”). A facet-value sentence-set is
defined as the set of sentences pertaining to all of
a facet-value’s mentions. The facet-value label is
the facet-value name presented to the user, and is
chosen to be the most frequent lexical type in the
mention cluster corresponding to that facet-value.

284

The values under each facet are ordered by their
frequencies (number of mentions) in the source
document set, as an indication for level of salience.
A facet-value is shown with its corresponding fre-
quency, and its various mention forms are revealed
by hovering over the frequency meter (e.g., de-
picted in [6], the cluster “treaties” includes men-
tions of “agreements”, “deals”, etc.). Only a few
of the top facet-values are shown under each facet,
while clicking Show all expands the facet in full,
in a pop-up. The pop-up for the Entities facet
partitions the facet-values to particular sub-facets:
Person, Location, Organization and Miscellaneous
([7]).

By clicking a facet-value, the system generates
a summary of its sentence-set. Additionally, the
facets update to include only values appearing in
that sentence-set. The updated facet view thus
gives an overview which is fine-grained for the
selected subtopic, while iteratively selecting addi-
tional facet-values supports diving deeper into it.
When additional facets are gradually selected, a
summary is generated over the intersection of the
sentence-sets of all selected facets. Any of the se-
lected facet-values can be canceled out, whereby
the system updates accordingly.

2.2 Facet-based Summarization

Upon a change in selection of facet-values, the sys-
tem provides the user with targeted information via
an abstractive summary of the selections’ sentence-
set ([4]). As more facet-values are selected, the gen-
erated summary is based on the intersection of the
sentence sets of all selected facets, becoming more
specific. The user can further view the complete set
of source sentences used to generate the summary,
and those sentences’ full documents (Figures 3 and
4 in Appendix). Additionally, clicking “History”
shows all previously generated summaries (Figure
5 in Appendix).

3 Backend Algorithms

As portrayed in §2, iFACETSUM supports two cen-
tral features: presenting a faceted navigation panel
and generating a summary around selected facet-
values. We next describe how facet-values are gen-
erated using CD coreference resolution (§3.1), and
how we apply abstractive summarization, based on
a facet-value selection (§3.2). Figure 2 illustrates
the entire process.

3.1 Coreference-based Facet Formation

As described in §2.1, there are three main facets.
Concepts and Entities are extracted using cross-
document (CD) coreference resolution pipelines,
while Statements via a proposition alignment
pipeline, described next.2

Concepts. We found that identifying and group-
ing together significant co-occurring events within
the source document collection helps to expose and
emphasize the notable concepts in the topic. To that
end, we employ CD event coreference resolution
which detects these concepts.

CD coreference resolution (Lee et al., 2012) clus-
ters text mentions that refer to the same event or
entity across multiple documents. Presently, the
Cross-Document Language Model (CDLM) (Caci-
ularu et al., 2021) is the state-of-the-art for CD
coreference resolution. This model is pretrained
on multiple related documents via cross-document
masking, encouraging the model to learn cross-
document and long-range relationships. Specifi-
cally, we employ the CDLM version fine-tuned
for coreference on the ECB+ corpus (Cybulska
and Vossen, 2014). This model does not include a
mention detection component, but rather expects
relevant mentions to be marked within the input
texts. We therefore leverage the mention detection
ability of the model by Cattan et al. (2021).

Once we have obtained the coreference clusters
from CDLM, events whose mentions are predom-
inantly verbs are filtered out,3 since those usu-
ally present specific actions that tend to be less
informative compared to nominal types that refer
to more generic events (e.g., “said”, “found” “in-
crease” compared to “unemployment”, “poverty”,
“crash”).

CD event coreference resolution separates spe-
cific event instances, hence differentiating between
clusters of similar event types with different argu-
ments (e.g., “unemployment” in Navajo vs. “unem-
ployment” in Cayuga). Since generic event types,
like “unemployment”, are more suitable as facet-
values, clusters with the same label (most frequent
mention) are merged. Each such merged clusters
then constitutes a single facet-value, to be presented
to the user as described in §2.1.4

2Facet extraction runs in a pre-processing step, since it is
not fast enough for real-time latency (see Appendix A.2).

3 Using spaCy (Honnibal et al., 2020).
4We observed that the CD event coreference model has a

tendency to wrongly collapse events of the same type, effec-

285

Figure 2: The iFACETSUM architecture. CD = cross-document, WD = within-document.

Entities. The Entities facet-values help the user
focus on entities such as people (e.g., "Clinton"),
locations (e.g., "New York"), organizations (e.g.,
"FBI") and others (e.g., "the casino"). We created
a separate pipeline for CD entity coreference res-
olution, since we observed subpar performance
when applying the above CD coreference pipeline
for entity coreference.5

Unlike event coreference, mostly studied in the
CD setting, entity coreference has recently seen
impressive progress in the within-document (WD)
setting (Wu et al., 2020; Joshi et al., 2020). Hence,
we leverage WD entity coreference in our entity
recognition pipeline, which comprises three main
steps. (1) We use SpanBERT6 (Joshi et al., 2020),
a state-of-the-art transformer-based LM for WD
entity coreference resolution, to detect and cluster
coreferring entity mentions within each separate
document. (2) The entity mentions detected in
the first step are marked as input for a CD entity
coreference reolution model. To overcome ECB+
entity scarcity referred earlier, we use an alterna-
tive model that is trained on the WEC-Eng dataset
(Eirew et al., 2021).7 (3) Finally, we apply ag-
glomerative clustering to combine the coreference
clusters from steps 1 and 2 (WD and CD), and pro-
duce the overall entity coreference clusters (details
in Appendix A.2).

Once all entity coreference clusters are extracted,
we bin them into more specific categories (“Per-
son”, “Location” and “Organization”), as portrayed
in §2.1, by invoking a Named Entity Recognition
(NER) model.3 A facet-value cluster is tagged with
the majority NER label of the mentions in the clus-
ter, among Person, Organization and Location. If

tively aiding our concept formation.
5This is in line with previous work (Cattan et al., 2021)

which points out that the ECB+ dataset only considers entities
that are arguments of event mentions, which is non-exhaustive.

6Using AllenNLP (Gardner et al., 2018).
7Fine-tuning CDLM on WEC-Eng is computationally in-

feasible, and therefore we use the model by Eirew et al. (2021).

no NER label is assigned to a cluster, it is tagged as
“Miscellaneous” (more details in Appendix A.2).

Statements. Key statements benefit a user by pre-
senting information about specific facts. To gener-
ate these statements, we group together coreferring
propositions (rather than words) that describe the
same fact within the source documents, as seen in
§2.1.

Following Ernst et al. (2020), our pipeline con-
sists of three steps. (1) Proposition candidates are
extracted with OpenIE (Stanovsky et al., 2018). (2)
Pairs of propositions expressing the same statement
are matched using the SuperPAL model (Ernst
et al., 2020), considering proposition pairs whose
alignment score is above 0.5 as matched. (3) A
propositions graph is created by connecting pairs
of nodes that represent similar propositions, and
proposition clusters are matched for the connected
components in the graph (more details in Appendix
A.2).

3.2 Abstractive Facet Summarization
In the standard summarization setting, a system
receives a single or multiple documents as input,
as well as a query in the query-focused task. In our
case, the input is a set of sentences that have one or
more selected facet-values in common, effectively
providing a multi-facet summary. Given the set of
sentences that correspond to the facet-value selec-
tion(s), these sentences are concatenated, ordered
by their position in their source document (more
details in Appendix A.2). This text is then given
as input to BART (Lewis et al., 2020), a denois-
ing sequence-to-sequence model fine-tuned on the
single-document abstractive summarization task.8

iFACETSUM presents abstractive rather than ex-
tractive summaries due to their enhanced readabil-
ity, particularly when summarizing a set of related
sentences. This choice follows prior work, which

8We use the huggingface model from https://hugg
ingface.co/facebook/bart-large-cnn.

286

showed that fusing sentences with shared points of
coreference potentially facilitates coherence of ab-
stractive summaries (Lebanoff et al., 2020). Indeed,
in an internal manual assessment of 30 random indi-
vidual summaries produced by iFACETSUM, with
5 readability measures (Dang, 2006), testers found
overall that the summaries are highly readable. To
verify that factuality is not compromised, an addi-
tional inspection found that these summaries were
also factually consistent to the input text, with 28
out of 30 sampled sentences marked as consistent.
See Appendix B.3 for scores and more details on
these assessments.

4 System Experiments

iFACETSUM aims to provide an effective means
of information seeking in scenarios that require
learning or investigating a new topic (Marchionini,
2006). To that end, we tested this goal through two
small-scale experiments with human subjects, as a
preliminary examination of the system. In the first
experiment, we conducted a pilot usability study to
inspect whether users felt they were able to satisfac-
torily complete an information seeking task using
our system. In the second, we examined whether
iFACETSUM is preferred over a standard document-
search system to complete the exploration task.

4.1 Usability Study

Setup. The purpose of this experiment was to
get general feedback, from human subjects, on the
usability of the system, following established us-
ability study methodologies (Nielsen, 1994). To
simulate a realistic use case of topic exploration,
we instructed participants to use the system in order
to prepare a draft review, given an informational
goal, that a reporter could then use to write a report
on the topic. We prepared guiding story-lines (Ap-
pendix B, Table 1), as informational goals, for two
topics from the DUC 2006 MDS dataset (NIST,
2005). To analyze iFACETSUM in different ex-
ploratory situations, one topic is broad with higher
information variability across the articles (“Native
American Challenges”), while the other is more
focused on a specific event (“EgyptAir Crash”).

In this pilot usability study, six participants9 ex-
plored both topics in random order. During system
usage we observed the users’ activity, via a “think

9The discount usability testing principle contends that six
evaluators are sufficient for prototype evaluation (Nielsen,
1993).

aloud” technique (Van Someren et al., 1994), to
obtain user remarks. After exploring a topic, a
user rated, from 1 to 5, the usefulness of different
aspects of each component in the interface. Af-
ter both topics, a System Usability Scale (SUS)
questionnaire (Brooke, 1995) was filled, to assess
global usability of the system (overall score from 0
to 100). Further details are available in Appendix
B.1.

Results. The average SUS score over the 6 partic-
ipants is 82.9, where 80.3 is considered “excellent”
(UIUX-Trend, 2021). From the average component
ratings over the 12 sessions, users expressed their
satisfaction with the facet view’s and summaries’
quality for the use of the tasks. The overall facets
quality received a score of 4.3 (SD=0.7), sum-
mary coherence 4.7 (SD=0.5), summary informa-
tiveness 4.2 (SD=1.1), summary non-redundancy
3.8 (SD=1.0), and summary length 4.3 (SD=0.9).
General feedback and issues raised by participants
are available in Appendix B.1. Overall, partici-
pants were pleased with their experience and some
voiced their desire to use the tool right away for
current event issues, like COVID-19 vaccination.

As expected, users noticed a difference between
the two topics, and mentioned that they preferred
the Concepts facet for “Native American Chal-
lenges”, while preferring the Entities facet for
“EgyptAir Crash”. Users found the Statements
facet-values rather lengthy and less useful, and
at times considered it a substitute for summariz-
ing the topic. Future improvements of the system
may include considering alternative uses of the
aligned statements, like linking specific fact men-
tions across documents.

4.2 Comparative Analysis

To further investigate whether iFACETSUM is an
effective tool for exploring a new topic, we con-
ducted a small-scale comparison with a search tool,
which roughly simulates common means for learn-
ing about a new topic. We asked four new ex-
perimentees to carry out the exploration task de-
scribed in §4.1, once with our system on one topic,
and once with the search tool on the other topic
(in different orders). The search tool used was
DocFetcher,10 an open source desktop search ap-
plication, which indexes the given files, enables
searching documents with queries, and highlights

10http://docfetcher.sourceforge.net

287

query terms within retrieved documents. The partic-
ipants finished their assignment with iFACETSUM

slightly faster than with the search tool. More im-
portantly, they conveyed their satisfaction of using
iFACETSUM as a tool for navigating through mul-
tiple texts, and learning about a new topic. The
participants filled a questionnaire, rating each ques-
tion on a scale of 1 (DocFetcher is preferred) to 7
(iFACETSUM is preferred). The questions included:
(1) Which system was easier to use in order to
get the desired result? (Avg=5.5, SD=1.73); (2)
With which system was it easier for you to get
an overview of the topic? (Avg=5, SD=2.3); (3)
With which system was it easier for you to get
detailed information about a subtopic of interest?
(Avg=5.25, SD=0.9); (4) If you had to learn about
or explore a new topic, which system would you
choose? (Avg=5.25, SD=0.95). Overall, partici-
pants favored iFACETSUM in all questions, prefer-
ring it for future use (details in Appendix B.2).

5 Related Work

Attaining information of interest from large doc-
ument sets has been approached with different
techniques. A vast amount of research has been
conducted on multi-document summarization, as a
method for presenting the central aspects of a target
set of texts (e.g. Barzilay et al., 1999; Haghighi and
Vanderwende, 2009; Bing et al., 2015; Yasunaga
et al., 2017), where query-focused summarization
(Dang, 2005) biases the output summary around
a given query (e.g. Daumé III and Marcu, 2006;
Baumel et al., 2018; Xu and Lapata, 2020).

Recognizing the need for dynamically acquiring
a broader or deeper scope of the source texts, ex-
ploratory search (Marchionini, 2006; White and
Roth, 2009) was coined as an umbrella term for al-
lowing more dynamic interactive exploration of in-
formation. Adapting the summarization paradigm
to the exploratory setting, interactive summariza-
tion enables a user to refine or expand on a sum-
mary via different modes of interaction. For exam-
ple, Shapira et al. (2021), Avinesh et al. (2018) and
Baumel et al. (2014) provide a limited (or no) initial
summary on the document set, and support iterative
interaction, via queries or preference highlights, to
update the summary. However, the succinct initial
summary, possibly accompanied by few suggested
queries, do not display the full scope of the source
texts, which limits the user’s perception of the many
available sub-topics to learn more about.

On the other hand, other exploratory search ap-
proaches do provide a more elaborate overview of
the source data through sophisticated dashboards
or facets of extracted information or metadata (e.g.
O’Connor et al., 2010; Koren et al., 2008; Hope
et al., 2020). Indeed, faceted navigation (Hearst,
2006a; Tunkelang, 2009) is an effective instru-
ment for navigating within a large data source
(Hearst et al., 2002; Ruotsalo et al., 2020). While
most faceted search systems generate facets from
semi- or fully-structured data, as prominently en-
countered in e-commerce websites and in research
(Hearst, 2006b; Ben-Yitzhak et al., 2008), some
works generate facet hierarchies from unstructured
open-domain texts. For example, from product re-
views, Ly et al. (2011) extract product aspects and
present several summaries, each focused on a sin-
gle aspect as a “facet", in a form of single-level
faceted search. Hope et al. (2020) devise facet-
values from scientific articles by eliciting unstruc-
tured textual information (topics, entities) from the
articles and their structured metadata (e.g article
authors). Although these search tools offer a more
comprehensive overview of the source data, they ei-
ther present raw-text search results or do not allow
thorough navigation.

iFACETSUM fully integrates dynamic multi-
level faceted navigation into interactive multi-
document summarization. The facets serve as an
efficient means of grasping the topic, and render
an intuitive medium for navigating through the in-
formation. The abstractive summaries generated at
real-time expose concise details for any combina-
tion of sub-topics of choice. Furthermore, we inno-
vatively employ coreference resolution and propo-
sition alignment to generate fine-grained open-
domain facets.

6 Conclusion and Future Work

In this paper, we presented iFACETSUM, a novel
text exploration approach and tool over large doc-
ument sets, which incorporates faceted search
into interactive summarization. Its faceted navi-
gation design provides a user with an overview of
the topic and the ability to gradually investigate
subtopics of interest, communicating concise infor-
mation via multi-facet abstractive summarization.
Fine-grained facet-values are generated from the
source texts based on cross-document coreference
pipelines. Small-scale user studies suggest the util-
ity of our approach for exploring a new topic from

288

multiple documents.
Future work may speed up the coreference-based

facet extraction pipeline, allowing for real-time pro-
cessing of ad-hoc document sets, and may inves-
tigate further methods for facet generation. Addi-
tional search techniques might be integrated into
the exploration scheme, including free text search-
ing as raised in the user study. It would also be
appealing to try adapting the system to domains
other than news, such as the medical or scientific
domains, for which exploration tools would be
very useful. Such adaptations would depend on
the portability of the underlying technologies of
cross-document coreference resolution and propo-
sition alignment. Finally, future work may explore
additional ways of leveraging the power of recent
proposition alignment methods.

7 Ethical Considerations

Usability Study. We conducted the usability
study (§4.1) over Zoom sessions (https://zo
om.us/), and carried out the “think aloud” tech-
nique through screen sharing and a with an open
camera. Participants volunteered to take part in the
study, and took about 45 minutes of each of their
time. An informed consent form was signed by the
participant before each study.

The comparative study included four NLP doc-
toral students from our lab who volunteered for the
experiment. The summary readability and factual
consistency assessments were done by two authors
of this paper.

Computation. We ran the three pre-processing
pipelines mentioned in §3.1 on 2 to 4 GPUs, where
each pipeline ran from a few minutes to 10 hours
per topic (25 news articles). Six such topics were
prepared for the demo applications. (more details
in Appendix A.2).

The summarization model runs in real-time (per
user interaction) over a CPU in less than 3 seconds
per summary. Summaries are cached to refrain
from recomputing summaries for repeated queries.

Dataset. The DUC 2006 data was acquired ac-
cording to the required NIST guidelines (duc.ni
st.gov).

Multilingualism. All models used within the
components of iFACETSUM were trained on En-
glish data, thus making the system compatible for
English only. Supporting other languages requires

replacing the contained models to ones compliant
to the desired languages.

Acknowledgments

This work was supported in part by the German
Research Foundation through the German-Israeli
Project Cooperation (DIP, grant DA 1600/1-1); by
the Israel Science Foundation (grant 1951/17); by
a grant from the Israel Ministry of Science and
Technology; and by grants from Intel Labs. RP
and MB were supported by NSF-CAREER Award
1846185 and a Microsoft PhD Fellowship.

References
PVS Avinesh, Benjamin Hättasch, Orkan Ozyurt,

Carsten Binnig, and Christian M Meyer. 2018. Sher-
lock: A System for Interactive Summarization of
Large Text Collections. Proceedings of the VLDB
Endowment, 11(12).

Shany Barhom, Vered Shwartz, Alon Eirew, Michael
Bugert, Nils Reimers, and Ido Dagan. 2019. Re-
visiting joint modeling of cross-document entity and
event coreference resolution. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4179–4189, Florence,
Italy. Association for Computational Linguistics.

Regina Barzilay, Kathleen R. McKeown, and Michael
Elhadad. 1999. Information Fusion in the Context of
Multi-Document Summarization. In Proceedings of
the 37th Annual Meeting of the Association for Com-
putational Linguistics, pages 550–557, College Park,
Maryland, USA. Association for Computational Lin-
guistics.

Tal Baumel, Raphael Cohen, and Michael Elhadad.
2014. Query-Chain Focused Summarization. In
Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 913–922, Baltimore, Maryland.
Association for Computational Linguistics.

Tal Baumel, Matan Eyal, and Michael Elhadad. 2018.
Query Focused Abstractive Summarization: Incor-
porating Query Relevance, Multi-Document Cover-
age, and Summary Length Constraints into seq2seq
Models.

Ori Ben-Yitzhak, Nadav Golbandi, Nadav Har’El,
Ronny Lempel, Andreas Neumann, Shila Ofek-
Koifman, Dafna Sheinwald, Eugene Shekita, Ben-
jamin Sznajder, and Sivan Yogev. 2008. Beyond
Basic Faceted Search. In Proceedings of the 2008
International Conference on Web Search and Data
Mining, WSDM ’08, page 33–44, New York, NY,
USA. Association for Computing Machinery.

Lidong Bing, Piji Li, Yi Liao, Wai Lam, Weiwei Guo,
and Rebecca Passonneau. 2015. Abstractive Multi-
Document Summarization via Phrase Selection and

289

Merging. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1587–1597, Beijing, China. Association for
Computational Linguistics.

John Brooke. 1995. SUS: A quick and dirty usability
scale. Usability Eval. Ind., 189.

Avi Caciularu, Arman Cohan, Iz Beltagy, Matthew E.
Peters, Arie Cattan, and Ido Dagan. 2021. CDLM:
Cross-Document Language Modeling. In Findings
of the Association for Computational Linguistics:
EMNLP 2021.

Arie Cattan, Alon Eirew, Gabriel Stanovsky, Mandar
Joshi, and Ido Dagan. 2021. Cross-document coref-
erence resolution over predicted mentions.

Agata Cybulska and Piek Vossen. 2014. Using a
sledgehammer to crack a nut? lexical diversity
and event coreference resolution. In Proceedings
of the Ninth International Conference on Language
Resources and Evaluation (LREC’14), pages 4545–
4552, Reykjavik, Iceland. European Language Re-
sources Association (ELRA).

Hoa Trang Dang. 2005. Overview of DUC 2005. In
Proceedings of the document understanding confer-
ence, volume 2005, pages 1–12.

Hoa Trang Dang. 2006. Overview of DUC 2006. In
Document Understanding Conference.

Hal Daumé III and Daniel Marcu. 2006. Bayesian
Query-Focused Summarization. In Proceedings of
the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 305–312,
Sydney, Australia. Association for Computational
Linguistics.

Alon Eirew, Arie Cattan, and Ido Dagan. 2021. WEC:
Deriving a large-scale cross-document event corefer-
ence dataset from Wikipedia. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 2498–2510, On-
line. Association for Computational Linguistics.

Ori Ernst, Ori Shapira, Ramakanth Pasunuru, Michael
Lepioshkin, Jacob Goldberger, Mohit Bansal, and
Ido Dagan. 2020. SuperPAL: Supervised Propo-
sition ALignment for Multi-Document Summariza-
tion and Derivative Sub-Tasks.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A deep semantic natural language pro-
cessing platform. In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), pages 1–
6, Melbourne, Australia. Association for Computa-
tional Linguistics.

Aria Haghighi and Lucy Vanderwende. 2009. Explor-
ing Content Models for Multi-Document Summa-
rization. In Proceedings of Human Language Tech-
nologies: The 2009 Annual Conference of the North
American Chapter of the Association for Compu-
tational Linguistics, pages 362–370, Boulder, Col-
orado. Association for Computational Linguistics.

Marti Hearst, Ame Elliott, Jennifer English, Rashmi
Sinha, Kirsten Swearingen, and Ka-Ping Yee. 2002.
Finding the flow in web site search. Communica-
tions of the ACM, 45(9):42–49.

Marti A. Hearst. 2006a. Clustering Versus Faceted Cat-
egories for Information Exploration. Communica-
tions of the ACM, 49(4):59–61.

Marti A. Hearst. 2006b. Design recommendations for
hierarchical faceted search interfaces. In ACM SI-
GIR workshop on faceted search, pages 1–5.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy:
Industrial-strength Natural Language Processing in
Python.

Tom Hope, Jason Portenoy, Kishore Vasan, Jonathan
Borchardt, Eric Horvitz, Daniel Weld, Marti Hearst,
and Jevin West. 2020. SciSight: Combining faceted
navigation and research group detection for COVID-
19 exploratory scientific search. In Proceedings of
the 2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations,
pages 135–143, Online. Association for Computa-
tional Linguistics.

Peter Ingwersen. 1992. Information retrieval interac-
tion, volume 246. Taylor Graham London.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S.
Weld, Luke Zettlemoyer, and Omer Levy. 2020.
SpanBERT: Improving pre-training by representing
and predicting spans. Transactions of the Associa-
tion for Computational Linguistics, 8:64–77.

Diane Kelly and Jimmy Lin. 2007. Overview of the
TREC 2006 ciQA task. In ACM SIGIR Forum, vol-
ume 41, pages 107–116. ACM New York, NY, USA.

Kian Kenyon-Dean, Jackie Chi Kit Cheung, and Doina
Precup. 2018. Resolving Event Coreference with
Supervised Representation Learning and Clustering-
Oriented Regularization. In Proceedings of the
Seventh Joint Conference on Lexical and Com-
putational Semantics, pages 1–10, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Jonathan Koren, Yi Zhang, and Xue Liu. 2008. Per-
sonalized Interactive Faceted Search. In Proceed-
ings of the 17th International Conference on World
Wide Web, WWW ’08, page 477–486, New York,
NY, USA. Association for Computing Machinery.

290

Logan Lebanoff, John Muchovej, Franck Dernoncourt,
Doo Soon Kim, Lidan Wang, Walter Chang, and Fei
Liu. 2020. Understanding Points of Correspondence
between Sentences for Abstractive Summarization.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics: Student
Research Workshop, pages 191–198, Online. Associ-
ation for Computational Linguistics.

Heeyoung Lee, Marta Recasens, Angel Chang, Mihai
Surdeanu, and Dan Jurafsky. 2012. Joint Entity and
Event Coreference Resolution across Documents. In
Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning, pages
489–500, Jeju Island, Korea. Association for Com-
putational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. {BART}: Denoising Sequence-to-Sequence
Pre-training for Natural Language Generation,
Translation, and Comprehension. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7871–7880, On-
line. Association for Computational Linguistics.

Duy Khang Ly, Kazunari Sugiyama, Ziheng Lin, and
Min-Yen Kan. 2011. Product Review Summariza-
tion based on Facet Identification and Sentence Clus-
tering.

Gary Marchionini. 2006. Exploratory Search: from
Finding to Understanding. Communications of the
ACM, 49(4):41–46.

Yehudit Meged, Avi Caciularu, Vered Shwartz, and Ido
Dagan. 2020. Paraphrasing vs coreferring: Two
sides of the same coin. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2020,
pages 4897–4907, Online. Association for Computa-
tional Linguistics.

Jakob Nielsen. 1993. Usability engineering. Aca-
demic Press.

Jakob Nielsen. 1994. Usability engineering, page 165.
Morgan Kaufmann.

NIST. 2005. DUC 2006: Task, Documents, and Mea-
sures. https://duc.nist.gov/duc2006/t
asks.html. Accessed: 2020-05-19.

Brendan O’Connor, Michel Krieger, and David Ahn.
2010. TweetMotif: Exploratory Search and Topic
Summarization for Twitter. Proceedings of the Inter-
national AAAI Conference on Web and Social Media,
4(1).

Filip Radlinski and Nick Craswell. 2017. A Theoret-
ical Framework for Conversational Search. In Pro-
ceedings of the 2017 Conference on Conference Hu-
man Information Interaction and Retrieval, CHIIR
’17, page 117–126, New York, NY, USA. Associa-
tion for Computing Machinery.

Siva Reddy, Danqi Chen, and Christopher D. Manning.
2019. {C}o{QA}: A Conversational Question An-
swering Challenge. Transactions of the Association
for Computational Linguistics, 7:249–266.

Tuukka Ruotsalo, Giulio Jacucci, and Samuel Kaski.
2020. Interactive faceted query suggestion for ex-
ploratory search: Whole-session effectiveness and
interaction engagement. Journal of the Association
for Information Science and Technology, 71(7):742–
756.

Ori Shapira, Ramakanth Pasunuru, Hadar Ronen, Mo-
hit Bansal, Yael Amsterdamer, and Ido Dagan. 2021.
Extending Multi-Document Summarization Evalua-
tion to the Interactive Setting. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 657–677, On-
line. Association for Computational Linguistics.

Gabriel Stanovsky, Julian Michael, Luke Zettlemoyer,
and Ido Dagan. 2018. Supervised Open Information
Extraction. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 885–
895, New Orleans, Louisiana. Association for Com-
putational Linguistics.

Daniel Tunkelang. 2009. Faceted Search. Synthesis
lectures on information concepts, retrieval, and ser-
vices, 1(1):1–80.

UIUX-Trend. 2021. Measuring and Interpreting Sys-
tem Usability Scale - UIUX Trend. https://ui
uxtrend.com/measuring-system-usabi
lity-scale-sus/. Accessed: 2021-06-28.

MW Van Someren, YF Barnard, and JAC Sandberg.
1994. The think aloud method: a practical approach
to modelling cognitive. London: AcademicPress.

Ryen W White and Resa A Roth. 2009. Exploratory
search: Beyond the query-response paradigm. Syn-
thesis lectures on information concepts, retrieval,
and services, 1(1):1–98.

Wei Wu, Fei Wang, Arianna Yuan, Fei Wu, and Ji-
wei Li. 2020. CorefQA: Coreference resolution as
query-based span prediction. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 6953–6963, Online. As-
sociation for Computational Linguistics.

Yumo Xu and Mirella Lapata. 2020. Coarse-to-Fine
Query Focused Multi-Document Summarization. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3632–3645, Online. Association for Computa-
tional Linguistics.

Michihiro Yasunaga, Rui Zhang, Kshitijh Meelu,
Ayush Pareek, Krishnan Srinivasan, and Dragomir
Radev. 2017. Graph-based Neural Multi-Document

291

Summarization. In Proceedings of the 21st Confer-
ence on Computational Natural Language Learning
(CoNLL 2017), pages 452–462, Vancouver, Canada.
Association for Computational Linguistics.

A Implementation Details

A.1 Interface

The frontend uses the reactjs library (https://
reactjs.org/) and the bootstrap library (ht
tps://getbootstrap.com/).

A.2 Backend

The backend service is written in python, using the
tornado web server library (https://www.to
rnadoweb.org). The summarization model was
downloaded from huggingface (https://hugg
ingface.co/facebook/bart-large-c
nn). The service is deployed on a Linux server
with CPU only.

All coreference and proposition alignment mod-
els described in §3.1 are previously trained models.
Links to these trained models are available in the
project’s GitHub.

For creating the CD coreference clusters for
events with the fine-tuned CDLM model, we used
two 32GB V100-SMX2 GPUs, for about 6 hours
per topic. For creating the CD coreference clus-
ters for entities, we used one 12GB TITAN Xp
GPU, for about 5 minutes per topic. For creating
the proposition alignment clusters we used four
GeForce GTX 1080 Ti GPUs, for about 10 hours
per topic.

CD entity coreference merging step. As de-
scribed in §3.1, our final CD entity coreference
step merges WD and CD predictions. The Span-
BERT WD model outputs clusters of coreferring
mentions, while the CD entity model (Eirew et al.,
2021) outputs a pairwise score for each pair of
mentions. We therefore convert SpanBERT clus-
ters to mention-pair scores, by scoring pairs that
are clustered together as 1, and 0 otherwise. Then,
following common practice (Kenyon-Dean et al.,
2018; Barhom et al., 2019; Meged et al., 2020;
Eirew et al., 2021), we apply agglomerative cluster-
ing over all mention-pairs (both WD and CD) and
produce the final entity coreference clusters. Since
WD coreference quality is superior to that of CD
coreference, the high WD coreferring mention-pair
scores of 1 causes the clustering algorithm to favor
those pairs for overall coreference clusters.

Proposition-level similarity threshold. The
proposition alignment model computes a pairwise
similarity between pairs of propositions, and we
only consider pairs with a score above 0.5 (as a
standard binary classification heuristic). We then
create a similarity graph, where each proposition
is a node, and paired propositions are linked with
an edge. The final clusters are the connected
components in the graph. For example, if for
propositions P1, P2 and P3, there exist pairs
(P1, P2) and (P1, P3), then P1, P2 and P3 will be
clustered together.

Facet-value label. As mentioned in §3.1, each
facet-value is linked to a coreference cluster (a set
of mentions) and has a label which is displayed
to the user. For concepts and entities, this label is
the text of the cluster’s most frequent mention. For
statements, there is no repetition of mention texts
in the cluster. There, we use the text of the longest
mention, under the assumption that it has more
context for the user to understand the statement.

Entities sub-facet categorization. After com-
puting the Entities facet-values with entity coref-
erence resolution, we categorize each facet-value
to a specific entity type. For this, we first calcu-
lated the named entity class, with NER, for each
mention in the facet-value cluster. All tokens of a
mention were to be classified with the same NER
class in order for the mention to be considered clas-
sified. Then, the class repeating the most times in
a cluster was chosen as the class of the cluster. If
all mentions of a cluster were not classified, we
categorized the facet-value as Miscellaneous.

We mapped spaCy’s NER classes to names
that we found are more friendly to non NLP-
practitioners (e.g., “GPE” is named “Location”).

Facet-value filters. After generating the poten-
tial facet-values (coreference clusters), we filter
out:

• Clusters with more than 50 mentions, under
the assumption that they are too noisy for the
user.

• Singleton clusters, i.e. a cluster with one men-
tion or one linked sentence (coreferring in
the same sentence), under the assumption that
they are uninformative.

• Clusters whose label is 2 characters or less
(e.g., "’s", "AP").

292

• Clusters whose label has a verb part-of-speech
tag.

Summarization model input. As described in
§3.2, BART is used to summarize the set of in-
put sentences relevant to the facet-value selections.
Since BART has an input-length limit of 1024 to-
kens, ordering the sentences based on their sen-
tence index raises the likelihood that summaries
will be based on sentences from multiple docu-
ments. The documents were ordered by their al-
phanumeric file system order based on their docu-
ment ID.

A.3 Data

DUC 2006 MDS dataset is used for demonstrating
the application, specifically with 6 topics: D0601,
D0602, D0606, D0608, D0617, D0629.

B Experiment Details

We carried out a usability study and a system com-
parison experiment (§4), as well as a summary
quality evaluation (§3.2).

B.1 Usability Study

For the usability study, six participants were gath-
ered based on prior acquaintance. Each user had
a 45 minutes Zoom session with an experienced
experiment overseer. The participants first filled
an experiment participation consent form. Before
starting the actual experiment, the users were pre-
sented with another topic for experimenting with
the system, followed by instructions of the experi-
ment overseer, to reduce the learning curve of using
the system for the first time.

Table 1 shows the two tasks that each user re-
ceived. Participants conducted the experiments on
the two topics in different orders.

SUS questionnaire. The SUS questionnaire
(Brooke, 1995) was filled once by each user after
both topics, with the following 10 questions:

1. I think that I would like to use this system
frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a tech-
nical person to be able to use this system.

5. I found the various functions in this system
were well integrated.

Topic Task
Native American
Challenges
(D0601)

As a junior reporter, you
were assigned a task to
read 25 documents about
Native American Challenge
and hand out a draft to a re-
porter who will write the ac-
tual report.
For your draft, describe two
/ three challenges that Na-
tive American communities
face. For each challenge,
explain any possible causes,
difficulties that arise, and
things being done for or
against.

EgyptAir Crash
(D0617)

As a junior reporter, you
were assigned a task to read
25 documents about the
EgyptAir Crash and hand
out a draft to a reporter who
will write the actual report.
Describe the crash and two
theories around it. For each
theory, describe who stands
behind it, who opposes it
and what are the claims sup-
porting it.

Table 1: The tasks that each user received in both us-
ability study and comparison study. The tasks order
was shuffled among the users.

6. I thought there was too much inconsistency in
this system.

7. I would imagine that most people would learn
to use this system very quickly.

8. I found the system very cumbersome to use.
9. I felt very confident using the system.

10. I needed to learn a lot of things before I could
get going with this system.

To calculate the SUS score, the following proce-
dure is taken (Brooke, 1995): First sum the score
contributions from each item. Each item’s score
contribution will range from 0 to 4. For items
1,3,5,7,and 9 the score contribution is the scale
position minus 1. For items 2,4,6,8 and 10, the
contribution is 5 minus the scale position. Multiply
the sum of the scores by 2.5 to obtain the overall
value of SU. SUS scores have a range of 0 to 100.

The final scores of the six participants are:
293

User 1 2 3 4 5 6
Score 82.5 85 50 97.5 100 82.5

Usefulness questionnaire. After exploring each
topic, the participants filled a questionnaire as fol-
lows:

• For the requirements of the given task, how
useful was the Facets component between 1
(not useful at all) and 5 (very useful)?

• Overall, the summaries output by the system
were: between 1 (I disagree) and 5 (I agree)

– Coherent
– Informative
– Non-Redundant
– Length was about right

The average and (StD) results on the 12 sessions (2
topic for 6 participants) are:

System Aspect Score
Facets quality 4.3 (0.7)
Summ. coherence 4.7 (0.5)
Summ. informativeness 4.2 (1.1)
Summ. non-redundancy 3.8 (1.0)
Summ. length is about right 4.3 (0.9)

Comments raised by participants. During the
sessions, the experiment overseer collected com-
ments and ideas for improvements raised by the par-
ticipants. The consensus was that the summaries
were very impressive, especially when realizing
that they summarize many sentences from multi-
ple documents, and that the Concepts and Enti-
ties facets were useful for navigating through the
vast information. For improvement, suggestions in-
cluded to reverse the order of the history list, to add
a reset button of all filters and to move the facet-
value frequency meter closer to the facet-value la-
bel. Some mentioned that the Statements facet was
less useful, since it acts like a summary that is
unnecessary with respect to the navigation process.

B.2 System Comparison Experiment
For the comparative experiment, we gathered 4
graduate students from our NLP lab and gave them
offline assignments which took about 45 minutes.
At the beginning, each student was given a docu-
ment of instructions describing iFACETSUM and
DocFetcher, and were told to take a few minutes to
play with each system on a third topic. Then each

student was given a document with an assignment,
with the same tasks as the usability study (Table 1).
The participants were told to stop the exploration
process once they felt satisfied with their outcome.
There were 4 variants of the assignment document
(one for each student), for all combinations of 2
systems and 2 topics, where a participant does not
repeat the topic on both systems.

Questionnaire. After both topics, the users an-
swered a comparative usability questionnaire, as
mentioned in §4.2.

The average time for completing the assignment
with DocFetcher was 16 minutes and the average
for iFACETSUM was 15 minutes. We found that
drafts written by participants using the two systems
were comparable in informativeness, and impor-
tantly that the participants preferred iFACETSUM

over the standard search approach (from question-
naire results and general comments).

B.3 Summary Quality Assessment

To assess the quality of the summaries output by
our system (using BART fine-tuned on a summa-
rization task), we collected 5 output summaries
from each of the 6 supported topics (30 summaries
overall) by submitting random facet-value selec-
tions (one or more selections per summary). These
selections yielded sentence sets (summarizer in-
puts) of varying sizes (2 to 47 sentences).

The summaries were rated for five standard
summary readability criteria, as defined in (Dang,
2006), on a 1-to-5 Likert scale. Two of the au-
thors rated all summaries, and then reconciliated
on scores with a large (3 or more points) difference,
in which case scores may have been slightly revised.
In addition, we added a sixth aspect - “Factuality”,
which was assessed by binary scoring. For each
of the 30 summaries, a single sampled summary
sentence was scored 0 if any fact in it did not have
evidence in the source text, and 1 otherwise (30
sentences tested). We found that many sentences
were lightly paraphrased or were fusions of two
sub-sentential extractions, yielding high factuality
scores. Results appear in Table 2.

C iFACETSUM Features and Sample
Session

Feature Explanations. Some of the features of
iFACETSUM, presented in §2, are further explained
here:

294

Summary Aspect Score
Grammatically 4.20 (0.94)
Non-redundancy 4.58 (0.77)
Referential clarity 4.10 (1.02)
Focus 3.93 (1.12)
Structure & Coherence 3.55 (1.14)
Factuality 93.3%

Table 2: Average and (StD.) scores of the summary
evaluation ratings over 30 random summaries gener-
ated by the system, with a 1 (worst) to 5 (best) scale.
For Factuality, the score is the percent of factual sen-
tences (out of 30 sentences).

• Clicking “Original sentences” for a summary
opens a pop-up window with the set of sen-
tences used to generate the summary. The sen-
tences are marked with mentions pertaining
to the selected facet-values. They are grouped
by their parent document and then listed in
order of their position in their corresponding
document. (Figure 3)

• Clicking a document title in the sentences pop-
up opens another pop-up window with that
document in full. The sentences from the par-
ent pop-up are marked in red. (Figure 4)

• Clicking “History” opens a pop-up window
with all the facet-value selections and result-
ing summaries from the current exploration
session. (Figure 5)

• If a complete sentence from the summary has
already been seen in a previous one, that sen-
tence is tinted in purple. We found this useful
given the summarization model’s occasional
extractiveness. (Figure 6)

Facet-value examples. We show in Table 3
some examples of facet-values and their mention
clusters.

Sample session. In Table 4 we show the facet
selections and resulting summaries from part of a
session in the usability study.

Figure 3: The original sentences popup, which lists the
sentences used to create the inquired summary.

295

Facet Facet-Value Examples
Concepts “treaties” (“agreements”, “deals”, “treaty”, “deal”, “settlements”, ...)

“revenues” (“incomes”, “profit”)
Entities “Makah” (“The Makah tribe”, “The Olympic Peninsula tribe”, ...)

“the plane” (“the jet”, “767”, “EgyptAir Flight 990”)
Statements “Native Americans are leaving reservations and relocating in urbans areas” (“Indians

now living in urban areas”, “migration from the reseravtions continues”, ...)

Table 3: Examples of facet-values.

Query Summary
treaties
(34 sentences)

Tribal leaders hope settlement will bring assets they need to upgrade reservation.
Law requires tribes to reach compact with state in which reservation lies if it
wants to open a casino. California does not allow gambling in the state, which
has not allowed gambling in Nebraska. Florida, Kansas and Alabama have sued
the U.S. Interior Department.

treaties, New York
(5 sentences)

McCurn previously ruled that New York illegally acquired the Cayugas reserva-
tion land in 1795 and 1807. The state purchased it in violation of the 1790 Indian
Trade and Intercourse Act, which required Congressional approval for all Indian
land transactions. It was long-standing New York policy to assume authority
over Indian land deals within its borders.

treaties, Florida
(1 sentence)

In addition, Florida, Kansas and Alabama, trying to block the opening of Indian
casinos within their borders, have sued the U.S. Interior Department with the
aim of overturning new rules that allow the federal government to license tribal
casinos in cases where states are reluctant to negotiate compacts.

Table 4: A snippet of a sample iFACETSUM session. Words in bold are mentions of the selected facet-value(s)
(e.g., "compact" is a mention of "treaties").

296

Figure 4: The original document popup, marking the
sentences and mentions relevant to the sentences popup
from which this document was requested. A document
enables the user to get more context on the summary.

Figure 5: The history popup, containing all interactions
from the current session. For each interaction, the facet
selections and corresponding summary are shown.

Figure 6: The sentence is tinted purple, indicating it
was already extracted as part of a previous summary,
relieving the user from reading it again.

297

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 298–307
November 7–11, 2021. ©2021 Association for Computational Linguistics

AMuSE-WSD: An All-in-one Multilingual System
for Easy Word Sense Disambiguation

Riccardo Orlando
Babelscape, Italy

orlando@babelscape.com

Simone Conia
Sapienza University of Rome

conia@di.uniroma1.it

Fabrizio Brignone
Babelscape, Italy

brignone@babelscape.com

Francesco Cecconi
Babelscape, Italy

cecconi@babelscape.com

Roberto Navigli
Sapienza University of Rome
navigli@diag.uniroma1.it

Abstract
Over the past few years, Word Sense Disam-
biguation (WSD) has received renewed inter-
est: recently proposed systems have shown the
remarkable effectiveness of deep learning tech-
niques in this task, especially when aided by
modern pretrained language models. Unfortu-
nately, such systems are still not available as
ready-to-use end-to-end packages, making it
difficult for researchers to take advantage of
their performance. The only alternative for
a user interested in applying WSD to down-
stream tasks is to use currently available end-
to-end WSD systems, which, however, still
rely on graph-based heuristics or non-neural
machine learning algorithms. In this paper, we
fill this gap and propose AMuSE-WSD, the
first end-to-end system to offer high-quality
sense information in 40 languages through a
state-of-the-art neural model for WSD. We
hope that AMuSE-WSD will provide a step-
ping stone for the integration of meaning into
real-world applications and encourage further
studies in lexical semantics. AMuSE-WSD is
available online at http://nlp.uniroma1.
it/amuse-wsd.

1 Introduction

Word Sense Disambiguation (WSD) is the task
of associating a word in context with its most ap-
propriate sense from a predefined sense inventory
(Bevilacqua et al., 2021). Learning the meaning
of a word in context is often considered to be a
fundamental step in enabling machine understand-
ing of text (Navigli, 2018): indeed, a word can
be polysemous, that is, it can refer to different
meanings depending on the context. Over the past
few years, WSD has received growing attention
and has been proven to be useful in an increas-
ing range of applications, such as machine trans-
lation (Liu et al., 2018; Pu et al., 2018; Raganato
et al., 2019), information extraction (Zhong and
Ng, 2012; Delli Bovi et al., 2015), information re-
trieval (Blloshmi et al., 2021), text categorization

(Shimura et al., 2019) and question answering (Ra-
makrishnan et al., 2003).

WSD approaches usually fall into two categories:
knowledge-based (Moro et al., 2014; Agirre et al.,
2014; Chaplot and Salakhutdinov, 2018), which
leverage computational lexicons, and supervised
(Bevilacqua and Navigli, 2020; Blevins and Zettle-
moyer, 2020; Conia and Navigli, 2021; Barba et al.,
2021; ElSheikh et al., 2021), which train machine
learning models on sense-annotated data. While
early work mainly belongs to the former category
(Navigli, 2009), recent studies have shown the su-
periority in performance of the latter category, espe-
cially thanks to complex neural networks (Bevilac-
qua et al., 2021). However, as WSD systems be-
come more and more reliant on increasingly com-
plex input representations – pretrained language
models are becoming the de facto representation
method in several NLP tasks – and involve neu-
ral architectures, the entry requirements for end
users have also become higher. Indeed, the im-
plementation of state-of-the-art WSD systems is
frequently anything but straightforward. What is
more, such systems are often not ready to be used
off-the-shelf and require additional preprocessing
and postprocessing modules for document splitting,
tokenization, lemmatization and part-of-speech tag-
ging. These complications may make the use of
recent high-performing WSD systems unattractive,
or even out of reach, for researchers who want to
take advantage of explicit semantic information in
other areas of research, but who are not experts in
WSD.

In order to make WSD more accessible, there
have been several attempts at providing ready-to-
use WSD systems that can be easily integrated into
other systems (Navigli and Ponzetto, 2012b; Moro
et al., 2014; Agirre et al., 2014; Scozzafava et al.,
2020). Nevertheless, current ready-to-use WSD
systems are either English-only or based on ap-
proaches that now lag behind state-of-the-art mod-

298

els in terms of performance.
In this paper, we fill the gap and present AMuSE-

WSD, an easy-to-use, off-the-shelf WSD pack-
age that provides sense annotations in multiple
languages through a state-of-the-art neural-based
model. The main features of AMuSE-WSD can be
summarized as follows:

• We propose the first ready-to-use WSD pack-
age to offer a multilingual WSD system built
on top of modern pretrained language models;

• AMuSE-WSD offers an easy-to-use REST
API that can be queried either online for ease
of use, or offline to minimize inference times;

• Our system comes with a Web interface to let
users disambiguate short documents on the fly
without a single line of code;

• We support 40 languages offline and 10 lan-
guages online.

We hope that AMuSE-WSD will facilitate the in-
tegration of semantic information into tasks that
may benefit from high-quality sense information,
enabling the exploitation of WSD in multiple lan-
guages.1

2 System Description

AMuSE-WSD is the first all-in-one multilingual
system for WSD based on a state-of-the-art neural
model. Our system encapsulates this model in a
pipeline which provides word-level semantic in-
formation in an end-to-end fashion so that a user
is not required to provide anything more than raw
text as input. In this Section, we provide a de-
scription of the various components of our model,
focusing on its preprocessing pipeline (Section 2.1)
and our WSD system (Section 2.2), which is the
core of AMuSE-WSD. Furthermore, we provide
an overview of its performance on several standard
benchmarks for WSD (Section 2.3).

2.1 Preprocessing
Preprocessing is one important aspect that is often
overlooked by state-of-the-art models built for re-
search purposes, as they often rely on pre-parsed
documents that are already split into sentences, to-
kenized, lemmatized and PoS-tagged. However,

1AMuSE-WSD can be downloaded for offline use upon
request at http://nlp.uniroma1.it/resources.
It is licensed under Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International.

a good preprocessing pipeline is a necessary con-
dition for a high-quality WSD system. Indeed,
the most popular sense inventories for WSD, e.g.
WordNet (Miller, 1992) and BabelNet (Navigli and
Ponzetto, 2012a; Navigli et al., 2021), define the
possible meanings of a word with respect to its
lemma and PoS tag. Therefore, an accurate prepro-
cessing pipeline is fundamental in order to generate
the correct candidate set of possible meanings.

AMuSE-WSD’s preprocessing pipeline takes ad-
vantage of two popular toolkits, spaCy (Honni-
bal et al., 2020) and Stanza (Qi et al., 2020), to
provide high-quality document splitting, tokeniza-
tion, lemmatization and PoS tags to the core WSD
model. We provide more technical details about the
features of our preprocessing pipeline in Section 3.

2.2 Model Architecture
The core of AMuSE-WSD is its WSD model. Since
the main objective of our system is to provide the
best possible automatic annotations for WSD, our
package features a reimplementation of the state-
of-the-art WSD model proposed recently by Co-
nia and Navigli (2021). Differently from other
ready-to-use WSD packages which are based on
graph-based heuristics (Moro et al., 2014; Scoz-
zafava et al., 2020) or non-neural models (Papan-
drea et al., 2017), this neural architecture is built
on top of a Transformer encoder (Vaswani et al.,
2017). More specifically, given a word w in con-
text, the WSD model i) builds a contextualized
representation ew ∈ RdL of the word w as the av-
erage of the hidden states of the last four layers of
a pretrained Transformer encoder L, ii) applies a
non-linear transformation to obtain a sense-specific
hidden representation hw ∈ Rdh , and finally iii)
computes the output score distribution ow ∈ R|S|
over all the possible senses of a sense inventory S.
More formally:

ew = BatchNorm

(
1

4

4∑

i=1

l−kw

)

hw = Swish(Whew + bh)

ow = Wohw + bo

where l−kw is the hidden state of the k-th layer of
L from its topmost layer, BatchNorm(·) is the
batch normalization operation, and Swish(x) =
x ·sigmoid(x) is the Swish activation function (Ra-
machandran et al., 2018).

We follow Conia and Navigli (2021) in fram-
ing WSD as a multi-label classification problem in

299

English datasets Multilingual datasets

SE2 SE3 SE07 SE13 SE15 ALL SE13 SE15 XL-WSD

W
SD

M
od

ul
es

BERT-large 76.3 73.2 66.2 71.7 74.1 73.5 – – –
Conia and Navigli (2020) 77.1 76.4 70.3 76.2 77.2 76.4 – – –
Scarlini et al. (2020) 78.0 77.1 71.0 77.3 83.2 77.9 78.3 70.8 –
Blevins and Zettlemoyer (2020) 79.4 77.4 74.5 79.7 81.7 79.0 – – –
Bevilacqua and Navigli (2020) 80.8 79.0 75.2 80.7 81.8 80.1 80.3 70.7 –
Conia and Navigli (2021) 80.4 77.8 76.2 81.8 83.3 80.2 – – –

E
nd

-t
o-

E
nd

Sy
st

em
s Moro et al. (2014) 67.0 63.5 51.6 66.4 70.3 65.5 65.6 – 52.9

Papandrea et al. (2017) 73.8 70.8 64.2 67.2 71.5 – – – –
Scozzafava et al. (2020) 71.6 72.0 59.3 72.2 75.8 71.7 73.2 66.2 57.7
AMuSE-WSDBERT-large 80.6 78.4 76.5 81.0 82.7 80.2 – – –
AMuSE-WSDXMLR-large 79.5 77.6 74.1 79.9 83.4 79.3 80.0 73.0 67.3
AMuSE-WSDXMLR-base 77.8 76.0 72.1 77.7 81.5 77.5 76.8 73.0 66.2
AMuSE-WSDm-MiniLM 76.3 72.4 69.5 76.1 77.8 75.1 74.5 69.6 63.9

Table 1: English WSD results in F1 scores on Senseval-2 (SE2), Senseval-3 (SE3), SemEval-2007 (SE07),
SemEval-2013 (SE13), SemEval-2015 (SE15), and the concatenation of all the datasets (ALL). We also include
results on multilingual WSD in SemEval-2013 (DE, ES, FR, IT), SemEval-2015 (IT, ES), and XL-WSD (average
over 17 languages, English excluded). We distinguish between WSD Modules, that is, research systems that need
to be inserted into a pipeline, and End-to-End WSD Systems. Best results among end-to-end systems in bold.

which the model can learn to assign multiple valid
senses to each target word. Indeed, the “boundaries”
between different senses of a polysemous word
are not always clear cut or well defined (Erk and
McCarthy, 2009), often leading to cases in which,
given a word in context, more than one meaning is
deemed appropriate by human annotators. Fram-
ing WSD as a multi-label classification problem
allows the model to take advantage of such cases.
In particular, this means that the model is trained
to predict whether a sense s ∈ Sw is appropriate
for a word w in a given context, independently of
the other senses in Sw.

2.3 Evaluation

Datasets. We compare the performance of our
model against currently available end-to-end WSD
systems on the unified evaluation framework for
English all-words WSD proposed by Raganato et al.
(2017). This evaluation includes five gold datasets,
namely, Senseval-2 (Edmonds and Cotton, 2001),
Senseval-3 (Mihalcea et al., 2004), SemEval-2007
(Agirre and Soroa, 2007), SemEval-2013 (Navigli
et al., 2013), and SemEval-2015 (Moro and Navigli,
2015). We also evaluate our model in multilingual
WSD using the French, German, Italian and Span-
ish datasets provided as part of SemEval-2013, and
the Italian and Spanish datasets of SemEval-2015.
Finally, we evaluate AMuSE-WSD on XL-WSD

(Pasini et al., 2021), a new multilingual dataset
which comprises 17 languages.

Experimental setup. We evaluate how the per-
formance of AMuSE-WSD varies when using
four different pretrained language models to repre-
sent input sentences: a high-performing English-
only version based on BERT-large-cased (Devlin
et al., 2019), a high-performing multilingual ver-
sion based on XLM-RoBERTa-large (Conneau
et al., 2020), a multilingual version that relies on
the smaller XLM-RoBERTa-base to balance qual-
ity and inference time, and a multilingual version
based on Multilingual-MiniLM (Wang et al., 2020)
that minimizes inference time while still provid-
ing good results. In any case, the weights of the
underlying language model are left frozen, that is,
they are not updated during training. Each model
is trained for 25 epochs using Adam (Kingma and
Ba, 2015) with a learning rate of 10−4. We train
each model configuration on the union of SemCor
(Miller et al., 1994) and the WordNet Gloss Corpus.
Following standard practice, we perform model se-
lection choosing the checkpoint with highest F1
score on SemEval-2007, the smallest evaluation
dataset.

Results. Table 1 shows how AMuSE-WSD per-
forms in comparison to currently available end-
to-end WSD systems, that is, systems that only

300

require raw text in input. AMuSE-WSD (XLMR-
large) offers a very significant improvement over
SyntagRank (Scozzafava et al., 2020), the previous
best end-to-end system, both in English WSD (+7.6
in F1 score on the concatenation of all the English
test sets) and multilingual WSD (+6.8, +6.8 and
+9.6 in F1 score on SemEval-2013, SemEval-2015
and XL-WSD, respectively). It is worth noting that
even the lightest – and therefore faster – configu-
ration of AMuSE-WSD (m-MiniLM) still shows
significant improvements over SyntagRank (+3.4
and +6.2 in F1 score on ALL and XL-WSD, respec-
tively). For completeness, Table 1 also reports the
performance of recently proposed, non end-to-end
modules for WSD.

3 AMuSE-WSD API

AMuSE-WSD can easily be used to integrate
sense information into downstream tasks. Indeed,
AMuSE-WSD is a simple solution for out-of-the-
box sense disambiguation as it offers a RESTful
API that provides access to a full end-to-end state-
of-the-art pretrained model for multilingual WSD.
The main advantage of our system is that it is fully
self-contained as it takes care of the preprocess-
ing information usually needed by a WSD system,
namely, document splitting, tokenization, lemma-
tization and part-of-speech tagging (see Section
2.1). This means that AMuSE-WSD takes just
raw text as input, freeing the user from the bur-
den of having to compose complex preprocessing
pipelines. Furthermore, our system is optimized
to speed up inference, especially on CPU, which
makes AMuSE-WSD accessible to a broader audi-
ence with smaller hardware budgets. Finally, the
API is available both as a Web API, so as to obtain
sense annotations without installing any software,
and offline API, so that a user can host AMuSE-
WSD locally and minimize inference times. In the
following, we provide more details on the main set
of functionalities offered by AMuSE-WSD.

Document-level preprocessing. The AMuSE-
WSD API lets the user obtain disambiguated text
for batches of sentences in a single query to the
service, reducing the load on the network and the
latency of the responses. On top of this, one com-
mon use case for end users is the disambiguation
of long texts. In order to assist users in such cases,
AMuSE-WSD supports the disambiguation of doc-
uments of arbitrary length, performing document
splitting to enable faster inference by transparently

batching text segments.

Sentence-level preprocessing. The only piece
of information the end user needs to provide to
AMuSE-WSD is raw text. Nonetheless, the un-
derlying model needs lemmas and part-of-speech
tags in order to select the proper sense for a word
(see Section 2.1). To this end, AMuSE-WSD in-
tegrates a preprocessing pipeline, transparent to
the user, that performs tokenization, lemmatization
and part-of-speech tagging. In the search for the
optimal compromise between latency and accuracy
of the preprocessing, AMuSE-WSD employs two
different preprocessing pipelines depending on the
language of the input document, built around spaCy
and Stanza. For each of the 40 supported languages,
our system selects one of the preprocessing models
available in either spaCy or Stanza, prioritizing the
former for its high inference speed and falling back
to Stanza for lower-resource languages where the
performance of the former is suboptimal.

Usage. The AMuSE-WSD API exposes an end-
point named /api/model. The endpoint accepts
POST requests with a JSON body, containing a list
of documents. For each document, two parameters
must be specified:

• text: the text of the document.

• lang: the language of the document.

Each request returns a JSON response containing a
list of objects, one for each input document. Each
object in the response provides the tokenization,
lemmatization, PoS-tagging and sense informa-
tion of the corresponding input document. The
AMuSE-WSD API returns labels that are easily
usable for users interested in WordNet, BabelNet
and the NLTK WordNet API, making it simple to
switch from one resource/tool to another. For ex-
ample, the response to a request that contains only
one sentence will have the following structure:
[{

"tokens": [
...
{

"index": 5,
"text": "river",
"pos": "NOUN",
"lemma": "river",
"bnSynsetId": "bn:00067948n",
"wnSynsetOffset": "9411430n",
"nltkSynset": "river.n.01"

},
...

]
}]

301

We refer to the online documentation for more de-
tails, including the full list of supported languages.2

3.1 Offline API
To further promote the integration of WSD into
large-scale applications, AMuSE-WSD is also dis-
tributed as a Docker3 image that can be deployed
locally on the user’s own hardware. We provide
several ready-to-use images suitable for different
configurations and use cases, depending on whether
a user is constrained by hardware requirements or
prefers the highest quality over shorter inference
times. The images are differentiated based on their
size in parameters and on the hardware they are op-
timized for, that is, CPU or GPU. In the following,
we provide more details on the Docker images.

Model configurations. With AMuSE-WSD, an
end user can choose between four different types
of pre-built Docker images which differ in the pre-
trained language model used to compute contextu-
alized word representations:

• amuse-large uses BERT-large and pro-
vides state-of-the-art results in English WSD.

• amuse-large-multilingual employs
XLM-RoBERTa-large and thus offers the best
results in multilingual WSD. However, it is
also the most demanding in terms of hardware
requirements.

• amuse-medium-multilingual adopts
XLM-RoBERTa-base which provides outputs
that in 98% of cases are the same as those of
its larger counterpart, but taking half the time.

• amuse-small-multilingual uses the
multilingual version of MiniLM, a language
model distilled from XLM-RoBERTa-base. It
is three times faster and three times smaller,
while still achieving remarkable results.

Inference times. In order to further promote its
accessibility, AMuSE-WSD is also available in
Docker images optimized to run on CPU thanks to
ONNX. The ONNX Runtime4 is an engine built
with the aim of significantly improving inference
times while, at the same time, reducing system foot-
print. With ONNX, our system is up to 2.5 times

2http://nlp.uniroma1.it/amuse-wsd/
api-documentation

3https://www.docker.com
4https://www.onnxruntime.ai

AMUSE-WSD ALL Long

CONFIGURATIONS ∆ (ms) ↑ ∆ (ms) ↑

E
ng

lis
h large PLAIN 163 1.0× 1610 1.0×

large ONNX 93 1.7× 1230 1.3×
large CUDA 12 13.6× 170 9.5×

M
ul

til
in

gu
al

large PLAIN 190 1.0× 2940 1.0×
large ONNX 128 1.5× 2170 1.3×
large CUDA 13 14.6× 180 16.3×
medium PLAIN 136 1.0× 1050 1.0×
medium ONNX 61 2.2× 880 1.2×
medium CUDA 11 12.4× 150 7.0×
small PLAIN 96 1.0× 600 1.0×
small ONNX 39 2.5× 460 1.3×
small CUDA 9 10.7× 90 6.7×

Table 2: Inference time for several configurations over
two sets of documents: the concatenation of all the
test sets of the unified evaluation framework for WSD
(ALL), and a set of 300 documents whose lengths are
between 1500 and 3500 characters (Long). ∆: latency
or median time in milliseconds AMuSE-WSD takes to
serve one inference request. ↑: Inference speed-up pro-
vided by the ONNX and CUDA implementations over
vanilla PyTorch.

faster on CPU while also being 1.2 times smaller
compared to its vanilla PyTorch implementation.
We evaluate the inference speed of AMuSE-WSD
on two sets of documents: the concatenation of all
the sentences of the unified evaluation framework
for WSD by Raganato et al. (2017) and a set of 300
documents whose lengths range from 1500 to 3500
characters. Table 2 compares the inference times
of our system in several configurations, showing
the gains of ONNX on CPU.

4 Web Interface

AMuSE-WSD comes with a Web interface which
allows users to disambiguate text on the fly with-
out having to write a single line of code. Figure 1
shows the home page of AMuSE-WSD in which
a user can type a short text (up to 3000 charac-
ters) and indicate the language of the inserted text.
Figure 2 shows, instead, how the Web interface dis-
plays the senses for the input sentence “the quick
brown fox jumps over the lazy dog”, while Figures
3 and 4 show a correctly disambiguated word, that
is, bank, which is ambiguous both in English and
Italian. For each content word (nouns, adjectives,
adverbs and verbs), the interface shows the corre-
sponding sense predicted by the underlying WSD
model, including its definition from WordNet and
an image, if available. Each meaning is linked

302

Figure 1: The home page of the Web interface of AMuSE-WSD. Users can write (or paste) text in the text area.
The dropdown menu allows users to select the language of the input text from among the 10 available in the online
interface.

to its corresponding Web page in BabelNet 5,5 a
multilingual encyclopedic dictionary that includes
WordNet, Open Multilingual WordNet, Wikipedia,
Wikidata and Wiktionary, inter alia. Users can
click on a meaning to obtain further information
about it, ranging from other definitions to its trans-
lation in other languages, from its hypernyms (gen-
eralizations) to its hyponyms (specializations).

We believe that this interface will be especially
useful for researchers, teachers, students and curi-
ous people who may be interested in understanding
how WSD can be taken advantage of in other fields.
Moreover, we also believe that an easy-to-use inter-
face will attract the attention of more researchers
on the task of WSD itself, encouraging future de-
velopments in this area.

5 Conclusion

Over the past few years, WSD has witnessed an
increasing rate of development, especially thanks
to the renewed interest in neural networks and
the advent of modern pretrained language mod-
els. However, research implementations are often

5https://babelnet.org

far from being ready-to-use as they either take as
input pre-parsed documents or require setting up
a preprocessing pipeline to take care, at least, of
document splitting, tokenization, lemmatization
and PoS tagging. Unfortunately, currently avail-
able ready-to-use WSD systems now lag behind
the state of the art and offer solutions based on
non-neural approaches.

In this paper, we addressed this issue and pre-
sented AMuSE-WSD, an All-in-one Multilingual
System for Easy Word Sense Disambiguation. To
the best of our knowledge, AMuSE-WSD is the
first system for end-to-end WSD to encapsulate a
state-of-the-art neural model for sense disambigua-
tion in multiple languages. Our system makes it
easy to obtain and use word-level semantic informa-
tion about word meanings through a RESTful API.
This API is available both online, that is, a user
can disambiguate text through HTTP requests to
our server, and offline, that is, a user can download
prepackaged Docker images and run them locally
to minimize inference times on large bulks of doc-
uments. We provide different configurations to sat-
isfy different needs, from images that are optimized
to run on constrained hardware to high-performing

303

Figure 2: Overview of the Web interface of AMuSE-WSD. The WSD model tags each content word with a
WordNet sense, its definition and an image, if available. Each sense is linked to BabelNet which provides more
information about senses, from their translation into other languages to their related meanings.

Figure 3: An example in which AMuSE-WSD correctly distinguishes between two different senses of the word
bank (its geographical and financial senses).

Figure 4: The output of AMuSE-WSD for the Italian translation of the sentence shown in Figure 3.

images. Last but not least, AMuSE-WSD comes
with an intuitive Web interface that lets users disam-
biguate short documents on the fly without writing
a single line of code. Not only does this interface
showcase the capabilities of our system, but we also
hope it will attract the interest of new researchers
to the field of lexical semantics.

Acknowledgments

The authors gratefully acknowledge
the support of the ERC Consolida-
tor Grant MOUSSE No. 726487
and the European Language Grid
project No. 825627 (Universal Se-
mantic Annotator, USeA) under the
European Union’s Horizon 2020 re-
search and innovation programme.

References
Eneko Agirre, Oier López de Lacalle, and Aitor Soroa.

2014. Random walks for Knowledge-Based Word
Sense Disambiguation. Computational Linguistics,
40(1):57–84.

Eneko Agirre and Aitor Soroa. 2007. SemEval-2007
task 02: Evaluating Word Sense Induction and Dis-
crimination Systems. In Proceedings of the Fourth
International Workshop on Semantic Evaluations
(SemEval-2007), pages 7–12, Prague, Czech Repub-
lic.

Edoardo Barba, Luigi Procopio, and Roberto Nav-
igli. 2021. ConSeC: Word Sense Disambiguation
as Continuous Sense Comprehension. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing (EMNLP), Punta
Cana, Dominican Republic.

Michele Bevilacqua and Roberto Navigli. 2020. Break-
ing through the 80% glass ceiling: Raising the state
of the art in Word Sense Disambiguation by in-
corporating knowledge graph information. In Pro-

304

ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2854–
2864, Online.

Michele Bevilacqua, Tommaso Pasini, Alessandro Ra-
ganato, and Roberto Navigli. 2021. Recent trends
in Word Sense Disambiguation: A survey. In Pro-
ceedings of the Thirtieth International Joint Con-
ference on Artificial Intelligence, IJCAI-21, pages
4330–4338. Survey Track.

Terra Blevins and Luke Zettlemoyer. 2020. Moving
down the long tail of Word Sense Disambiguation
with gloss informed bi-encoders. In Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics, pages 1006–1017, Online.

Rexhina Blloshmi, Tommaso Pasini, Niccolò Cam-
polungo, Somnath Banarjee, Roberto Navigli, and
Gabriella Pasi. 2021. IR like a SIR: Sense-enhanced
Information Retrieval for Multiple Languages. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
Punta Cana, Dominican Republic.

Devendra Singh Chaplot and Ruslan Salakhutdinov.
2018. Knowledge-Based Word Sense Disambigua-
tion using topic models. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelli-
gence, (AAAI-18), the 30th innovative Applications
of Artificial Intelligence (IAAI-18), and the 8th AAAI
Symposium on Educational Advances in Artificial In-
telligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pages 5062–5069.

Simone Conia and Roberto Navigli. 2020. Conception:
Multilingually-enhanced, human-readable concept
vector representations. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 3268–3284, Barcelona, Spain (Online).

Simone Conia and Roberto Navigli. 2021. Framing
Word Sense Disambiguation as a multi-label prob-
lem for model-agnostic knowledge integration. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 3269–3275, Online.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online.

Claudio Delli Bovi, Luca Telesca, and Roberto Navigli.
2015. Large-scale Information Extraction from tex-
tual definitions through deep syntactic and semantic
analysis. Transactions of the Association for Com-
putational Linguistics, 3:529–543.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of

Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota.

Philip Edmonds and Scott Cotton. 2001. SENSEVAL-
2: Overview. In Proceedings of SENSEVAL-
2 Second International Workshop on Evaluating
Word Sense Disambiguation Systems, pages 1–5,
Toulouse, France.

Ahmed ElSheikh, Michele Bevilacqua, and Roberto
Navigli. 2021. Integrating personalized PageR-
ank into neural Word Sense Disambiguation. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
Punta Cana, Dominican Republic.

Katrin Erk and Diana McCarthy. 2009. Graded Word
Sense Assignment. In Proceedings of the 2009 Con-
ference on Empirical Methods in Natural Language
Processing, pages 440–449, Singapore.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy:
Industrial-strength Natural Language Processing in
Python.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Frederick Liu, Han Lu, and Graham Neubig. 2018.
Handling homographs in Neural Machine Transla-
tion. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pages 1336–1345,
New Orleans, Louisiana.

Rada Mihalcea, Timothy Chklovski, and Adam Kilgar-
riff. 2004. The senseval-3 English lexical sample
task. In Proceedings of SENSEVAL-3, the Third
International Workshop on the Evaluation of Sys-
tems for the Semantic Analysis of Text, pages 25–28,
Barcelona, Spain.

George A. Miller. 1992. WordNet: A lexical database
for English. In Speech and Natural Language: Pro-
ceedings of a Workshop Held at Harriman, New
York, February 23-26, 1992.

George A. Miller, Martin Chodorow, Shari Landes,
Claudia Leacock, and Robert G. Thomas. 1994. Us-
ing a semantic concordance for sense identification.
In Human Language Technology: Proceedings of a
Workshop held at Plainsboro, New Jersey, March 8-
11, 1994.

Andrea Moro and Roberto Navigli. 2015. SemEval-
2015 task 13: Multilingual All-Words Sense Disam-
biguation and Entity Linking. In Proceedings of the

305

9th International Workshop on Semantic Evaluation
(SemEval 2015), pages 288–297, Denver, Colorado.

Andrea Moro, Alessandro Raganato, and Roberto Nav-
igli. 2014. Entity Linking meets Word Sense Disam-
biguation: A unified approach. Transactions of the
Association for Computational Linguistics, 2:231–
244.

Roberto Navigli. 2009. Word Sense Disambiguation:
A survey. ACM Comput. Surv., 41(2).

Roberto Navigli. 2018. Natural Language Understand-
ing: Instructions for (present and future) use. In Pro-
ceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI 2018,
July 13-19, 2018, Stockholm, Sweden, pages 5697–
5702.

Roberto Navigli, Michele Bevilacqua, Simone Conia,
Dario Montagnini, and Francesco Cecconi. 2021.
Ten years of BabelNet: A survey. In Proceedings
of the Thirtieth International Joint Conference on
Artificial Intelligence, IJCAI-21, pages 4559–4567.
Survey Track.

Roberto Navigli, David Jurgens, and Daniele Vannella.
2013. SemEval-2013 task 12: Multilingual Word
Sense Disambiguation. In Second Joint Conference
on Lexical and Computational Semantics (*SEM),
Volume 2: Proceedings of the Seventh International
Workshop on Semantic Evaluation (SemEval 2013),
pages 222–231, Atlanta, Georgia, USA.

Roberto Navigli and Simone Paolo Ponzetto. 2012a.
BabelNet: The automatic construction, evaluation
and application of a wide-coverage multilingual se-
mantic network. Artif. Intell., 193:217–250.

Roberto Navigli and Simone Paolo Ponzetto. 2012b.
Multilingual WSD with just a few lines of code: the
BabelNet API. In Proceedings of the ACL 2012 Sys-
tem Demonstrations, pages 67–72, Jeju Island, Ko-
rea. Association for Computational Linguistics.

Simone Papandrea, Alessandro Raganato, and Claudio
Delli Bovi. 2017. SupWSD: A flexible toolkit for su-
pervised Word Sense Disambiguation. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing: System Demon-
strations, pages 103–108, Copenhagen, Denmark.

Tommaso Pasini, Alessandro Raganato, and Roberto
Navigli. 2021. XL-WSD: An extra-large and cross-
lingual evaluation framework for Word Sense Dis-
ambiguation. Proceedings of the AAAI Conference
on Artificial Intelligence, 35(15):13648–13656.

Xiao Pu, Nikolaos Pappas, James Henderson, and An-
drei Popescu-Belis. 2018. Integrating weakly super-
vised Word Sense Disambiguation into Neural Ma-
chine Translation. Transactions of the Association
for Computational Linguistics, 6:635–649.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D. Manning. 2020. Stanza: A
python natural language processing toolkit for many
human languages. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 101–
108, Online.

Alessandro Raganato, Jose Camacho-Collados, and
Roberto Navigli. 2017. Word Sense Disambigua-
tion: A unified evaluation framework and empiri-
cal comparison. In Proceedings of the 15th Confer-
ence of the European Chapter of the Association for
Computational Linguistics: Volume 1, Long Papers,
pages 99–110, Valencia, Spain.

Alessandro Raganato, Yves Scherrer, and Jörg Tiede-
mann. 2019. The MuCoW test suite at WMT
2019: Automatically harvested multilingual con-
trastive Word Sense Disambiguation test sets for ma-
chine translation. In Proceedings of the Fourth Con-
ference on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 470–480, Florence, Italy.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le.
2018. Searching for activation functions. In 6th
International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, April 30
- May 3, 2018, Workshop Track Proceedings.

Ganesh Ramakrishnan, Apurva Jadhav, Ashutosh Joshi,
Soumen Chakrabarti, and Pushpak Bhattacharyya.
2003. Question Answering via Bayesian inference
on lexical relations. In Proceedings of the ACL 2003
Workshop on Multilingual Summarization and Ques-
tion Answering, pages 1–10, Sapporo, Japan.

Bianca Scarlini, Tommaso Pasini, and Roberto Nav-
igli. 2020. With more contexts comes better perfor-
mance: Contextualized Sense Embeddings for all-
round Word Sense Disambiguation. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
3528–3539, Online.

Federico Scozzafava, Marco Maru, Fabrizio Brignone,
Giovanni Torrisi, and Roberto Navigli. 2020. Per-
sonalized PageRank with syntagmatic information
for multilingual Word Sense Disambiguation. In
Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics: System
Demonstrations, pages 37–46, Online.

Kazuya Shimura, Jiyi Li, and Fumiyo Fukumoto. 2019.
Text Categorization by learning predominant sense
of words as auxiliary task. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 1109–1119, Florence,
Italy.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural

306

Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998–6008.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers. In Advances in Neural
Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual.

Zhi Zhong and Hwee Tou Ng. 2012. Word Sense
Disambiguation improves Information Retrieval. In
Proceedings of the 50th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 273–282, Jeju Island, Korea.

307

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 308–318
November 7–11, 2021. ©2021 Association for Computational Linguistics

SeqAttack: On Adversarial Attacks for Named Entity Recognition

Walter Simoncini and Gerasimos Spanakis
Maastricht University

{w.simoncini@student.,jerry.spanakis@}maastrichtuniversity.nl

Abstract

Named Entity Recognition is a fundamental
task in information extraction and is an es-
sential element for various Natural Language
Processing pipelines. Adversarial attacks have
been shown to greatly affect the performance
of text classification systems but knowledge
about their effectiveness against named entity
recognition models is limited. This paper in-
vestigates the effectiveness and portability of
adversarial attacks from text classification to
named entity recognition and the ability of ad-
versarial training to counteract these attacks.
We find that character-level and word-level
attacks are the most effective, but adversar-
ial training can grant significant protection at
little to no expense of standard performance.
Alongside our results, we also release SeqAt-
tack, a framework to conduct adversarial at-
tacks against token classification models (used
in this work for named entity recognition) and
a companion web application to inspect and
cherry pick adversarial examples.

1 Introduction

Named Entity Recognition (NER) is the task of rec-
ognizing named entities in a chunk of text. Named
entities are words (one or more) belonging to a par-
ticular semantic category, such as location, person
or organization. NER is used both as a standalone
tool and as an essential component in several Natu-
ral Language Processing (NLP) pipelines, such as
Information Retrieval (Petkova and Croft, 2007)
and Machine Translation (Babych and Hartley,
2003). Traditionally, NER has been attempted with
rule-based approaches, Hidden Markov Models
and Conditional Random Fields (Li et al., 2020a).
In recent years, deep learning has outperformed
these methods (Li et al., 2017) (Liu et al., 2019a),
especially with the introduction of general-purpose
language models such as BERT (Devlin et al.,
2019).

Neural networks are vulnerable to adversarial
attacks, which can be defined as processes that
craft incorrectly-predicted samples from correctly-
predicted inputs by applying small perturbations,
an example of which can be seen in Figure 1. This
shows that deep learning models are fragile and
might not be ready for deployment in a critical sce-
nario. The most popular technique to overcome this
issue is adversarial training, which uses adversarial
attacks to craft additional training samples and re-
trains the model from scratch (Li et al., 2020b) (Li
et al., 2021). Adversarial attacks and training were
largely explored with regards to text classification,
but current research on NER has only explored
attacks based on adversarial typos (Araujo et al.,
2020) and the effectiveness of more complex at-
tacks (at the word and sentence levels) is unknown.
Word-level attacks are particularly important be-
cause they generate adversarial examples highly
likely to appear in the real world, providing valu-
able additional training data (an example can be
seen in Figure 1). This paper aims to tackle this
problem by investigating the following research
questions:

• RQ1: How robust are named entity recog-
nition models against adversarial attacks at
the character, word and sentence level? In
particular, this paper focuses on a BERTbase
cased model trained on CoNLL2003 (Tjong
Kim Sang and De Meulder, 2003) in order to
maintain consistency across the paper.

Figure 1: Word-level adversarial example for NER
from CoNLL2003 (Tjong Kim Sang and De Meulder,
2003). Changing standings to ranking induces an in-
correct classification of Super G as a non-entity.

308

• RQ2: How do word and character level adver-
sarial training affect a named entity recogni-
tion model’s robustness?

2 Related Work

2.1 Adversarial attacks

Several attack strategies are available to fool text
classification models. In this paper, we follow the
taxonomy by (Yuan et al., 2019), focusing on the
properties in the list below, with the addition of
granularity (Zhang et al., 2020):

• Model knowledge: if all the model informa-
tion is known, attacks are defined as white box.
Black box attacks instead have access only to
the confidence scores. This paper focuses on
black box attacks.

• Specificity: attacks which aim to change
the model’s prediction to a specific class are
called targeted, whereas untargeted attacks
consider any incorrect prediction valid.

• Granularity: adversarial examples can be
crafted by applying perturbations at the char-
acter (e.g. swap, insertion), word (e.g. word
replacement, insertion) or sentence level (e.g.
paraphrasing).

Some popular attack strategies organized by
granularity are presented below.

2.2 Attack strategies

At the character-level DeepWordBug (Gao et al.,
2018) generates at each step candidate adversaries
by swapping adjacent characters, substituting a
character with a random one, deleting or inserting a
character. At the word-level TextFooler (Jin et al.,
2020) ranks the words in a sample by prediction
relevance and replaces the most important ones
using a word embedding optimized for synonyms
(Mrkšić et al., 2016). BERT-Attack (Li et al.,
2020b) and CLARE (Li et al., 2021) operate
similarly, but they respectively use BERT and
DistillRoBERTa (Sanh et al., 2019) (Liu et al.,
2019b) as language models to suggest potential
candidates. CLARE supports token replacements,
insertions, and merges. Meanwhile, BERT-Attack
and TextFooler only support token replacements.
All word-level attacks enforce a semantic similarity
constraint using the Universal Sentence Encoder
(Cer et al., 2018). Finally, at the sentence-level,

SCPN (Iyyer et al., 2018) generates paraphrases
that match one of its built-in syntactic forms.

In comparison to text classification, to the au-
thors’ knowledge, adversarial attacks (and training)
for NER only appears in two work (Araujo et al.,
2020) and (Wang et al., 2020). The former tackles
biomedical NER, showing that BERT-based mod-
els are susceptible to character swaps, keyboard
typo noise and synonym-based entity-word sub-
stitutions. The latter integrates adversarial train-
ing in the train loop of an LSTM-CNN: at each
training step adversarial examples are obtained by
perturbing the word embeddings directly. This pa-
per contributes by evaluating a larger number of
attack strategies and the portability of adversarial
attacks for text classification to token classifica-
tion problems. Moreover, we provide new insights
and a comparison of the samples generated by the
different attack strategies.

2.3 Adversarial training

Adversarial training aims to improve a model’s ro-
bustness using adversarial examples. This task can
be achieved mainly in two ways: via data augmen-
tation and by integrating adversarial training within
the model train loop.

The first method attacks the victim model us-
ing the training set as the attack input and, once
obtained enough samples, retrains the model from
scratch. One of the first work to use this technique
is (Alzantot et al., 2018), in which the authors ad-
versarially train a sentiment classification model
on the IMDB dataset without success. Later work,
such as (Li et al., 2020b) and (Li et al., 2021) show
more interesting results: the former uses adversar-
ial training to make a natural language inference
model more robust, gaining 15% after-attack accu-
racy at the expense of a minimal test accuracy loss.
The latter adversarially trains BERT and TextCNN
models on the AG news dataset obtaining simi-
lar improvements: without loss of test accuracy
the authors manage to reduce the attack rate by
12.3% and 3.5% for BERT and TextCNN respec-
tively. The second method is used by (Wang et al.,
2020), where adversarial training is integrated in
the training loop using a loss function that takes
into account adversarial perturbations. Using this
technique, the authors improve the model’s gener-
alizability by reducing overfitting.

309

3 The SeqAttack framework

The most popular frameworks for conducting ad-
versarial attacks are TextAttack (Morris et al.,
2020) and OpenAttack (Zeng et al., 2021), but
they do not support token classification problems
such as named entity recognition, in which each
token is either classified as being the beginning
of (B), inside (I) or outside an entity (O) accord-
ing to the inside-outside-beginning (IOB) schema
(Ramshaw and Marcus, 1995). In order to attack
NER models we developed SeqAttack, a frame-
work for conducting adversarial attacks against to-
ken classification models. The framework extends
TextAttack and inherits its design, where at-
tacks are composed of a goal function (the objec-
tive to optimize), transformations (how the input
text is perturbed), constraints which limit the candi-
date perturbations and a search method. The frame-
work can be used by NLP practitioners to attack
models, for data augmentation and to quickly pro-
totype attack strategies. Inheriting the structure of
TextAttack also means that its attack strategies
can be easily ported and used against NER models.
In TextAttack, every attack optimizes a goal
function, which in the case of text classification
is defined as 1 − pŷ. Where ŷ is the ground truth
and pŷ is the normalized confidence score for the
ground truth. In SeqAttack, in order to support
NER, the goal function is reformulated as follows:

yadv =

∑N
i=0 goal(yi, ŷi)

countEntities(x)

goal(y, ŷ) =

0 if ŷ = 0

1− pŷ if ŷ 6= 0 ∧ ŷ = y

1 if ŷ 6= 0 ∧ ŷ 6= y

Where y is the model prediction, N the number
of tokens in the sample and x the attacked sam-
ple. countEntities(x) returns the number of entity
tokens in a sample. We call this function the un-
targeted NER goal function. goal(y, ŷ) considers
valid any incorrect classification of an entity token.
It’s important to note that this function assigns no
score to newly introduced entities. This is due to
the fact that the CoNLL2003 metrics consider only
the classification of ground truth named entities.
We also define the untargeted-strict NER goal
function, which assigns no score to flips between I-
CLS and B-CLS. Figure 3 highlights the difference
between the two goal functions.

3.1 Adversarial attacks

This paper employs attack strategies implemented
in TextAttack that proved to be successful for
text classification to attack NER models with minor
adaptations. In particular the following modifica-
tions were applied:

3.1.1 DeepWordBug

We use two different versions of this attack strategy:
DeepWordBug-I, true to the original implementa-
tion and DeepWordBug-II, which is not allowed
to modify named entities. Both attacks have a Lev-
enshtein distance constraint, whose maximum al-
lowed distance is specified with a subscript, as in
DeepWordBug-I5.

3.1.2 BERT-Attack

The sentence similarity constraint was set to 0.4
and the replacement of numeric tokens with al-
phanumeric ones was forbidden (i.e. "4" cannot
be replaced by "car"). Only non-entity tokens are
allowed to be replaced (to avoid the generation of
trivial examples, e.g. swapping a location with a
person’s name) and candidate replacements which
are named entities are also rejected (e.g. the can-
didate replacement "Amsterdam" will be rejected).
The attack can perturb up to 40% of the words in a
sample.

3.1.3 CLARE

The implementation of CLARE used in this paper
only supports replacements and insertions. Sim-
ilarly to BERT-Attack, the replacement of entity
tokens is forbidden and candidate replacements
which are named entities are rejected. When a new
token is inserted, it is automatically labelled as be-
ing outside an entity (O). If a token insertion splits
a named entity the beginning/inside labels will be
adjusted accordingly.

3.1.4 SCPN

Using the OpenAttack implementation, the algo-
rithm iteratively generates candidate paraphrases,
using the original sample or a paraphrase as the
starting point. The candidates are processed to re-
move identical consecutive unigrams and bigrams,
and only the candidates which preserve at least one
named entity are kept. Every token which is not
an entity in the original sample is labelled as being
outside an entity (O). An example can be seen in
Figure 2.

310

Figure 2: A paraphrase generated by SCPN (bottom) and its original counterpart (top). Named entities in the
paraphrase were re-labelled with the corresponding ground truth and the other tokens were labelled as non-entities.
Original sample from CoNLL2003 (Tjong Kim Sang and De Meulder, 2003).

Figure 3: Changing two numbers causes Caen’s la-
bel to flip from B-ORG to I-ORG. The untargeted
goal function would consider Caen to be an incor-
rect classification (and thus a success) meanwhile the
untargeted-strict goal function would not. Example
from CoNLL2003 (Tjong Kim Sang and De Meulder,
2003).

3.2 Adversarial training

This paper approaches adversarial training using
the training dataset augmentation strategy: we at-
tack the model using its training set as the input,
generating at most one adversarial example per
train sample, and we retrain the model with the
augmented dataset. DeepWordBug-I5 and BERT-
Attack were chosen as the attack strategies so as
to investigate the different effect of word-level and
character-level adversarial training.

4 Experiments

4.1 Adversarial attacks

The attack techniques in section 3 were evaluated
on a BERTbase cased model (Devlin et al., 2019),
fine tuned on the CoNLL2003 dataset for three
epochs using the transformers library (Wolf
et al., 2020). All attacks use the untargeted-strict
goal function and target a subset of 256 samples
from the test set, selected such that the model incor-
rectly predicts up to 10% of the entities contained
in each sample. For each sample, the attack is al-
lowed up to 120 seconds and a maximum of 512
model invocations (queries).

4.1.1 Evaluation metrics
The attacks are evaluated following previous work
(Li et al., 2021), (Jin et al., 2020), (Morris et al.,
2020), which employ the following automated met-
rics (in addition to accuracy, recall and F1 score as

in the CoNLL2003 task):

• Attack Rate (A-Rate): percentage of adver-
sarial examples that can fool the model. An
adversarial example is considered successful
when at least one entity is incorrectly classi-
fied.

• Modification Rate (Mod): percentage of
modified tokens. Insert operations increase
by one the modified tokens count (Li et al.,
2021).

• ∆ Grammar Errors (∆GErr): difference in
the number of grammar errors between the ad-
versarial example and its original counterpart,
calculated with LanguageTool (Naber et al.,
2003).

• Textual similarity (Sim): cosine similarity
between the adversarial example and the orig-
inal input calculated via the Universal Sen-
tence Encoder.

We also define the Labels Score (L-Score) met-
ric as the percentage of incorrectly classified en-
tities in a sample. All metrics defined above are
averaged over the successful samples (with the ex-
ception of the attack rate). Table 1 lists the metrics
for the original and attacked datasets.

4.2 Adversarial training
Table 1 shows that our victim model is vulnerable
to adversarial attacks, which raises the question:
is it possible to exploit attacks to make the model
more robust while maintaining a reasonable perfor-
mance on standard data? And what is the difference
in model performance between models adversar-
ially trained with word-level and character-level
adversarial examples, both in normal conditions
and when under attack?

To answer this question we trained a BERTbase
cased model, named NERsmall, on 1/3 of the
CoNLL2003 dataset, equivalent to 5000 examples.
A smaller dataset simulates a low-resource scenario

311

Attack Acc Recall F1 A-Rate ↑ Mod ↓ L-Score ↑ Sim ↑ ∆GErr ↓
Bert-Attack 72% 88% 79% 44% 22% 20% 84% 0.26
CLARE 78% 81% 79% 37% 70% 56% 86% 0.33
DeepWordBug-II5 86% 92% 89% 27% 18% 24% 86% 1.6
DeepWordBug-II30 82% 93% 87% 30% 21% 23% 83% 3.05
DeepWordBug-I5 48% 49% 49% 78% 24% 64% 77% 1.4
SCPN 90% 92% 91% 18% 66% 58% 59% 0.92
Original 98% 99% 98%

Table 1: Comparison of attack strategies on the CoNLL2003 test set using the untargeted strict goal function.
The metrics were calculated using seqeval (Nakayama, 2018). ↑ (↓) indicate whether the higher (or lower) the
better from the attack perspective.

Model Acc Recall F1 A-Rate ↑ Mod ↓ L-Score ↑ Sim ↑ ∆GErr ↓
NERsmall 500 73% 71% 72% 84% 26% 71% 73% 1.5
NERsmall 1000 78% 77% 77% 82% 27% 70% 73% 1.54
NERsmall 1500 77% 77% 77% 84% 26% 68% 73% 1.47
NERsmall 2000 79% 79% 79% 82% 28% 67% 72% 1.48
NERsmall (baseline) 52% 50% 51% 89% 24% 78% 75% 3.83

Table 2: Comparison of CoNLL2003 models against DeepWordBug-I5, trained using a different amount of adver-
sarial examples generated by DeepWordBug (specified next to the model) and the untargeted goal function. The
attack had up to 45 seconds to successfully attack an input sample. ↑ (↓) indicate whether the higher (or lower) the
better from the attack perspective.

and highlights the differences between the two ad-
versarial training strategies. The model achieves a
reasonable performance on the test set (Table 4, last
row) but it can be fooled by both DeepWordBug-
I5 (Table 2) and BERT-Attack (Table 3). The ad-
versarial data augmentation was done by attack-
ing NERsmall using its own training set as the at-
tack input. We respectively generated 2000 and
1000 adversarial examples for DeepWordBug-I5
and BERT-Attack, which were then used to train
robust models, whose performance on CoNLL2003
is listed in Tables 4 and 5.

4.2.1 Model evaluation
To evaluate the effectiveness of adversarial training
we ran the same attacks against NERsmall and its
robust counterparts, using the same CoNLL2003
subset used for evaluating attack strategies. Both
attack strategies were allowed up to 512 model
invocations. DeepWordBug-I5 and BERT-Attack
were respectively allowed up to 45 and 60 seconds
to attack each sample.

5 Results and discussion

5.1 Adversarial attacks

Table 1 lists the after-attack metrics for the var-
ious attack strategies. By observing the metrics

we can notice that DeepWordBug-I5 is the most
effective. Its success is most likely due to the fact
that it can modify named entities. In fact, when
named entities are preserved as in DeepWordBug-
II5, the attack rate drops to 27% and increasing
the Levenshtein distance constraint to 30 has little
effectiveness. Word-level attacks are less effec-
tive than unconstrained character-level attacks, but
perform better than similarly constrained character-
level attacks, decreasing a model’s accuracy by up
to 26% in the case of BERT-Attack. Even if less ef-
fective, word-level attack strategies may be useful
for adversarial training since the generated samples
are highly grammatical (introducing less than 0.5
grammar errors per sample), have a low percent-
age of modified words (except when insertions are
used) and maintain a high sentence similarity: 84-
86% for BERT-Attack and CLARE versus 77% for
DeepWordBug-I5. Some adversarial examples gen-
erated respectively by BERT-attack and CLARE
can be seen in the appendix (Figures 8 and 9). Fu-
ture work may attempt to apply word-level attacks
also on the entities themselves, making sure to pre-
serve the entity class. This would both speed up the
adversarial examples generation (due to the higher
sensitivity) and uncover examples highly likely to
appear in the real world.

312

Model Acc Recall F1 A-Rate ↑ Mod ↓ L-Score ↑ Sim ↑ ∆GErr ↓
NERsmall 500 94% 95% 94% 16% 19% 52% 89% 0.08
NERsmall 1000 94% 95% 94% 12% 19% 50% 89% 0.2
NERsmall (baseline) 88% 89% 89% 20% 18% 55% 88% 0.17

Table 3: Comparison of CoNLL2003 models against BERT-Attack, trained using a different amount of adversarial
examples generated by BERT-Attack (specified next to the model) and the untargeted goal function. The attack
had up to 60 seconds to successfully attack an input sample. ↑ (↓) indicate whether the higher (or lower) the better
from the attack perspective.

5.2 Adversarial training

Tables 2 and 3 respectively summarize the at-
tack metrics for DeepWordBug-I5 and BERT-
Attack. In line with the adversarial attacks re-
sults, DeepWordBug-I5 obtains a largely better suc-
cess than BERT-Attack, reducing the model’s after-
attack accuracy to 52%, where BERT-Attack only
manages to reduce the accuracy to 88%.

Adversarial training grants a significant pro-
tection from both attacks: in the case of
DeepWordBug-I5 (Table 2) adding only 500 sam-
ples to the training set already increases the after at-
tack accuracy by 21%, without affecting the test set
metrics, causing at the same time an increase in the
modification rate and a decrease in the similarity
score. The improvement is statistically significant:
a paired t-test with regards to the modification rate
and the labels score respectively yields p-values
of 0.0086 and 2.42e-09, confirming the added ro-
bustness of the adversarially trained model. The
improvement is also visible in Figure 4, where the
labels score distribution of the attacked dataset for
the normal model is more skewed towards the right
than its robust counterpart, showing a smaller at-
tack success on individual samples for the robust
model. Similarly, the modification rate distribution
for the normal model is more skewed towards the
left, thus more words need to be perturbed to fool
the robust model. Adding more samples further
improves the after attack scores at a small cost of
the standard metrics (Table 4), but the improve-
ment over the robust model with 500 samples is
statistically significant only when 2000 adversarial
examples are used, and only in regards to the labels
score (p = 0.017).

Similarly, the robust models trained with BERT-
attack have a performance similar to NERsmall on
the test set, even improving the model’s F1 score
by 1% (Table 5). Using only 500 samples the after-
attack accuracy increases by 6% and the attack-rate
drops by 4%. Adding more samples further reduces

the attack rate (Table 3). Using only 500 samples
causes a significant improvement in the modifica-
tion rate needed to break the model, yielding a
p-value of 2.66e-05, but does not grant significant
improvement in the labels score (p = 0.4). The lat-
ter improves significantly only when 1000 samples
are used, where the p-value for the labels score is
0.011. These results are very encouraging, since
the added robustness does not affect the test-set
metrics and even improves it, suggesting that this
attack method could be used for data augmenta-
tion in low-resource scenarios, a potential direction
for future research. The difference in the number
of samples needed to grant a significant robust-
ness against DeepWordBug-I5 and BERT-Attack
may be explained by the initial effectiveness of the
attack strategy: the former reduces the baseline ac-
curacy to 52%, meanwhile the latter only reduces
it to 88%.

Figure 4: KDE plots for the labels score and modifica-
tion rate distributions for NERsmall and its robust coun-
terpart, when attacked with DeepWordBug-I5. To be
successful, the attack needs to alter more words for the
robust model, and nonetheless achieves a lower labels
score on average.

313

Examples Acc Recall F1
500 examples 91% 90% 90%
1000 examples 90% 89% 90%
1500 examples 90% 90% 90%
2000 examples 90% 89% 90%
NERsmall 91% 90% 90%

Table 4: CoNLL2003 test set metrics for the adversari-
ally trained models against DeepWordBug. Adding ad-
versarial examples slightly worsens the metrics due to
overfitting.

Examples Acc Recall F1
500 examples 91% 90% 91%
1000 examples 91% 90% 91%
NERsmall 91% 90% 90%

Table 5: CoNLL2003 test set metrics for the adversari-
ally trained models against BERT-Attack. Adversarial
examples slightly improve the metrics, potentially cov-
ering blind spots in the training set.

6 Conclusion

In this paper we showed that NER models are
vulnerable to adversarial attacks at the character,
word and sentence level. When allowed to alter
named entities, DeepWordBug is the most effec-
tive, but it produces highly ungrammatical samples
(appendix Figures 6, 7). Thus, character-level
attacks are not recommended for adversarial
training or data augmentation since the produced
samples are unlikely to appear in a real-world
setting. Word-level attacks instead produce more
fluent adversarial examples (appendix Figures 8,
9), which can be used both for adversarial training
and for data augmentation. Finally, with regards
to sentence-level attacks, this paper finds that
they often produce low-quality samples for this
particular dataset (appendix Figure 5). This is
probably due to the fact that SCPN paraphrases
are generated following a small set of target
syntactic forms, which are incompatible with
CoNLL2003. Further research in this direction
is recommended, as paraphrasing methods
produce a richer variety of samples and may
reveal weaknesses in a model which cannot be
discovered by character-level or word-level attacks.

To help NLP practitioners evaluate and im-
prove their models’ robustness and to foster re-
search on adversarial attacks in token classifica-
tion (and named entity recognition) we release

SeqAttack1, a Python library for conducting ad-
versarial attacks against token classification models.
The library is accompanied by a web application2

to inspect the generated adversarial examples and
cherry pick them for adversarial training.

References
Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,

Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial ex-
amples. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2890–2896, Brussels, Belgium. Association
for Computational Linguistics.

Vladimir Araujo, Andres Carvallo, Carlos Aspillaga,
and Denis Parra. 2020. On adversarial exam-
ples for biomedical nlp tasks. arXiv preprint
arXiv:2004.11157.

Bogdan Babych and Anthony Hartley. 2003. Im-
proving machine translation quality with automatic
named entity recognition. In Proceedings of the
7th International EAMT workshop on MT and other
language technology tools, Improving MT through
other language technology tools, Resource and tools
for building MT at EACL 2003.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Brian Strope, and Ray Kurzweil. 2018. Universal
sentence encoder for English. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 169–174, Brussels, Belgium. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yan-
jun Qi. 2018. Black-box generation of adversarial
text sequences to evade deep learning classifiers. In
2018 IEEE Security and Privacy Workshops (SPW),
pages 50–56. IEEE.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks.

1https://github.com/WalterSimoncini/
SeqAttack

2Application available at https://ner-attack.
ashita.nl/

314

In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1875–1885, New
Orleans, Louisiana. Association for Computational
Linguistics.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is BERT really robust? A strong
baseline for natural language attack on text clas-
sification and entailment. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of
Artificial Intelligence Conference, IAAI 2020, The
Tenth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2020, New York, NY,
USA, February 7-12, 2020, pages 8018–8025. AAAI
Press.

Dianqi Li, Yizhe Zhang, Hao Peng, Liqun Chen, Chris
Brockett, Ming-Ting Sun, and Bill Dolan. 2021.
Contextualized perturbation for textual adversarial
attack. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 5053–5069, Online. Association for
Computational Linguistics.

Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li.
2020a. A survey on deep learning for named entity
recognition. IEEE Transactions on Knowledge and
Data Engineering.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue,
and Xipeng Qiu. 2020b. BERT-ATTACK: Adver-
sarial attack against BERT using BERT. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6193–6202, Online. Association for Computational
Linguistics.

Peng-Hsuan Li, Ruo-Ping Dong, Yu-Siang Wang, Ju-
Chieh Chou, and Wei-Yun Ma. 2017. Leveraging
linguistic structures for named entity recognition
with bidirectional recursive neural networks. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2664–
2669, Copenhagen, Denmark. Association for Com-
putational Linguistics.

Yijin Liu, Fandong Meng, Jinchao Zhang, Jinan Xu,
Yufeng Chen, and Jie Zhou. 2019a. GCDT: A global
context enhanced deep transition architecture for se-
quence labeling. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2431–2441, Florence, Italy. Associa-
tion for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. 2020. TextAttack: A frame-
work for adversarial attacks, data augmentation, and
adversarial training in NLP. In Proceedings of the
2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations,
pages 119–126, Online. Association for Computa-
tional Linguistics.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thom-
son, Milica Gašić, Lina M. Rojas-Barahona, Pei-
Hao Su, David Vandyke, Tsung-Hsien Wen, and
Steve Young. 2016. Counter-fitting word vectors to
linguistic constraints. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 142–148, San Diego,
California. Association for Computational Linguis-
tics.

Daniel Naber et al. 2003. A rule-based style and gram-
mar checker.

Hiroki Nakayama. 2018. seqeval: A python framework
for sequence labeling evaluation. Software available
from https://github.com/chakki-works/seqeval.

Desislava Petkova and W Bruce Croft. 2007.
Proximity-based document representation for
named entity retrieval. In Proceedings of the
sixteenth ACM conference on Conference on
information and knowledge management, pages
731–740.

Lance Ramshaw and Mitch Marcus. 1995. Text chunk-
ing using transformation-based learning. In Third
Workshop on Very Large Corpora.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. ArXiv,
abs/1910.01108.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003, pages
142–147.

Jiuniu Wang, Wenjia Xu, Xingyu Fu, Guangluan Xu,
and Yirong Wu. 2020. Astral: adversarial trained
lstm-cnn for named entity recognition. Knowledge-
Based Systems, 197:105842.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:

315

System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li.
2019. Adversarial examples: Attacks and defenses
for deep learning. IEEE transactions on neural net-
works and learning systems, 30(9):2805–2824.

Guoyang Zeng, Fanchao Qi, Qianrui Zhou, Tingji
Zhang, Zixian Ma, Bairu Hou, Yuan Zang, Zhiyuan
Liu, and Maosong Sun. 2021. OpenAttack: An
open-source textual adversarial attack toolkit. In
Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing: System Demonstrations, pages
363–371, Online. Association for Computational
Linguistics.

Wei Emma Zhang, Quan Z Sheng, Ahoud Alhazmi,
and Chenliang Li. 2020. Adversarial attacks on
deep-learning models in natural language process-
ing: A survey. ACM Transactions on Intelligent Sys-
tems and Technology (TIST), 11(3):1–41.

316

Figure 5: Adversarial examples generated by SCPN, when attacking a BERT-based model trained on CoNLL2003.
For each pair the top row represents the original sample and the bottom row its attacked counterpart. The modified
words are underlined in red.

Figure 6: Adversarial examples generated by DeepWordBug-I, when attacking a BERT-based model trained on
CoNLL2003. For each pair the top row represents the original sample and the bottom row its attacked counterpart.
The modified words are underlined in red.

Figure 7: Adversarial examples generated by DeepWordBug-II, when attacking a BERT-based model trained on
CoNLL2003. For each pair the top row represents the original sample and the bottom row its attacked counterpart.
The modified words are underlined in red.

317

Figure 8: Adversarial examples generated by BERT-Attack, when attacking a BERT-based model trained on
CoNLL2003. For each pair the top row represents the original sample and the bottom row its attacked counterpart.
The modified words are underlined in red.

Figure 9: Adversarial examples generated by CLARE, when attacking a BERT-based model trained on
CoNLL2003. For each pair the top row represents the original sample and the bottom row its attacked counterpart.
The modified words are underlined in red.

318

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 319–328
November 7–11, 2021. ©2021 Association for Computational Linguistics

InVeRo-XL: Making Cross-Lingual Semantic Role Labeling
Accessible with Intelligible Verbs and Roles

Simone Conia
Sapienza University of Rome

conia@di.uniroma1.it

Riccardo Orlando
Babelscape, Italy

orlando@babelscape.com

Fabrizio Brignone
Babelscape, Italy

brignone@babelscape.com

Francesco Cecconi
Babelscape, Italy

cecconi@babelscape.com

Roberto Navigli
Sapienza University of Rome
navigli@diag.uniroma1.it

Abstract

Notwithstanding the growing interest in cross-
lingual techniques for Natural Language Pro-
cessing, there has been a surprisingly small
number of efforts aimed at the development
of easy-to-use tools for cross-lingual Seman-
tic Role Labeling. In this paper, we fill this
gap and present InVeRo-XL, an off-the-shelf
state-of-the-art system capable of annotating
text with predicate sense and semantic role la-
bels from 7 predicate-argument structure in-
ventories in more than 40 languages. We
hope that our system – with its easy-to-use
RESTful API and Web interface – will be-
come a valuable tool for the research commu-
nity, encouraging the integration of sentence-
level semantics into cross-lingual downstream
tasks. InVeRo-XL is available online at http:
//nlp.uniroma1.it/invero.

1 Introduction

Informally, Semantic Role Labeling (SRL) is of-
ten defined as the task of automatically answering
the question “Who did What, to Whom, Where,
When, and How?” (Màrquez et al., 2008). More
precisely, SRL aims at recovering the predicate-
argument structures within a sentence, providing
an explicit overlay that uncovers the underlying
semantics of text. For this reason, SRL is thought
to be key in enabling Natural Language Under-
standing (Navigli, 2018). Today SRL is still an
open problem, with several research papers being
published each year at top-tier conferences, reveal-
ing novel insights and proposing better approaches.
Over the years, thanks to this active development,
SRL has been successfully exploited in a wide ar-
ray of downstream tasks that span across different
areas of Artificial Intelligence, from Natural Lan-
guage Processing (NLP) with Information Retrieval

(Christensen et al., 2010), Question Answering (He
et al., 2015), Machine Translation (Marcheggiani
et al., 2018) and Semantic Parsing (Banarescu et al.,
2013), to Computer Vision with Visual Semantic
Role Labeling (Gupta and Malik, 2015) and Situa-
tion Recognition (Yatskar et al., 2016).

Recently, the growing interest in cross-lingual
NLP, supported by the increasingly wide availabil-
ity of pretrained multilingual language models such
as BERT (Devlin et al., 2019) and XLM-RoBERTa
(Conneau et al., 2020), has sparked renewed inter-
est in multilingual and cross-lingual SRL. In just a
few years, researchers have found ways to design
fully-neural end-to-end systems for SRL (Cai et al.,
2018), to take advantage of contextual word repre-
sentations (Peters et al., 2018; Li et al., 2019), to
achieve high performance on multiple languages
(He et al., 2019a; Conia and Navigli, 2020), to
generate sense and role labels with sequence-to-
sequence models (Blloshmi et al., 2021) and to
perform SRL jointly across heterogeneous invento-
ries (Conia et al., 2021).

Since SRL is a task that involves complex lin-
guistic theories, inventories and techniques, there
have been efforts to develop easy-to-use tools that
offer automatic predicate sense and semantic role
annotations to users interested in the integration of
sentence-level semantics into downstream tasks.
Some notable examples include SENNA1 (Col-
lobert et al., 2011), which uses an ensemble of
feature-based classifiers (Koomen et al., 2005), Al-
lenNLP’s SRL demo2, which provides a reimple-
mentation of a BERT-based model (Shi and Lin,
2019), and InVeRo (Conia et al., 2020), which of-
fers annotations according to two different linguis-
tic inventories, PropBank (Palmer et al., 2005) and

1
https://ronan.collobert.com/senna

2
https://demo.allennlp.org/semantic-role-labeling

319

VerbAtlas (Di Fabio et al., 2019). However, one
important drawback of the above-mentioned tools
is that they are able to perform SRL only in English,
which hinders the exploitation of their annotations
in multilingual and cross-lingual NLP.

In order to fill this gap, we build upon InVeRo
and propose its next major release, InVeRo-XL,
with the objective of making SRL accessible in
multiple languages. We rebuild InVeRo-XL from
the ground up to offer:

• The first end-to-end system to tackle the
whole SRL pipeline in over 40 languages;

• The first off-the-shelf system to provide SRL
annotations for 7 linguistic inventories;

• A RESTful API service that can be queried
either online, so as not to install any software,
or offline, to maximize throughput;

• A Web interface that provides a visualization
of the system output which can be useful for
teaching purposes, comparing linguistic theo-
ries, and prototyping new ideas.

We believe that InVeRo-XL can provide a stepping
stone for the integration of explicit sentence-level
semantics into cross-lingual tasks, attracting new
researchers to the field of SRL and its applications.3

1.1 What’s New in InVeRo-XL

As previously mentioned, InVeRo-XL is the suc-
cessor of InVeRo. Although its main new feature is
the ability to provide predicate sense and semantic
role annotations in over 40 languages with 7 differ-
ent inventories, InVeRo-XL has been overhauled
to also improve several other important aspects. In
particular:

• Preprocessing: while its predecessor used
a very limited set of rules to preprocess En-
glish text, InVeRo-XL features a multilingual
preprocessing module based on spaCy and
Stanza;

• SRL model: the English-only model has been
replaced by a cross-lingual model that is able
to perform not only span-based SRL, but also
dependency-based SRL;

3InVeRo-XL can be downloaded upon request at http://
nlp.uniroma1.it/resources. InVeRo-XL is licensed under
Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International.

• API: the service is now able to handle batched
requests and documents of arbitrary length;

• Offline usage: InVeRo-XL is now available
for download, free for research purposes, al-
lowing users to host their own instance locally.

2 System Overview

In this Section, we provide an overview of the main
components of InVeRo-XL and how they interact,
describing in detail the preprocessing module (Sec-
tion 2.1) and the SRL model (Section 2.2).

2.1 Preprocessing

The previous version of InVeRo-XL preprocessed
an English sentence using a very limited and sim-
ple set of rules. In order to correctly support more
languages, InVeRo-XL now relies on both spaCy
(Honnibal et al., 2020) and Stanza (Qi et al., 2020)
to deal transparently with document splitting and to-
kenization. An automatic language detector based
on fastText4 (Joulin et al., 2017) is used to dy-
namically choose between the two preprocessing
tools, depending on the language detected: spaCy
is faster for high-resource languages, e.g. English,
but also less reliable on lower-resource languages,
e.g. Catalan, for which our system falls back to
Stanza.

2.2 Model Architecture

In line with its predecessor, InVeRo-XL encapsu-
lates an SRL model that falls within the broad cat-
egory of end-to-end systems, tackling the whole
SRL pipeline – predicate identification, predicate
sense disambiguation, argument identification and
argument classification – in a single forward pass.
However, the design of the SRL model itself has
been completely revamped and now follows the ar-
chitecture recently proposed by Conia et al. (2021),
which is capable of performing cross-lingual SRL
with heterogeneous linguistic inventories. In the
following, we describe the main components of the
SRL model architecture provided by InVeRo-XL.

Multilingual word encoder. The first compo-
nent of our model is a multilingual word en-
coder that takes advantage of a pretrained language
model, XLM-RoBERTa (Conneau et al., 2020), to
provide rich contextualized word representations.

4
https://fasttext.cc

320

More formally, for each word wi in an input sen-
tence w = 〈w1, w2, . . . , wn〉 of length n, it com-
putes an encoding ei = Swish(Wwhi + bw) as
a non-linear projection of the concatenation hi of
the corresponding hidden states of the four topmost
layers of the language model.

Universal word encoder. The resulting se-
quence of multilingual word encodings E =
〈e1, e2, . . . , en〉 is then given to a “universal” word
encoder that computes a sequence of task-specific
timestep encodings T = 〈t1, t2, . . . , tn〉 as fol-
lows:

tji =

{
ei if j = 0

tj−1i ⊕ BiLSTMj
i (t

j−1) otherwise

T = 〈tK1 , tK2 , . . . , tKn 〉

where BiLSTMj
i (·) is the i-th timestep of the j-th

BiLSTM layer and K is the total number of BiL-
STM layers. The purpose of this encoder is to cre-
ate representations that are shared across languages
and inventories and are, therefore, “universal”.

Universal predicate-argument encoder. Simi-
larly to the encoder above, the objective of the
universal predicate-argument encoder is to build
predicate-specific argument representations that lie
in a vector space shared across languages and inven-
tories. Assuming that wp is a predicate in the input
sentence w, this encoder builds a sequence A of
predicate-specific argument encodings as follows:

aji =

{
tp ⊕ ti if j = 0

aj−1i ⊕ BiLSTMj
i (a

j−1) otherwise

A = 〈aK′
1 ,aK

′
2 , . . . ,aK

′
n 〉

where ti is the i-th timestep encoding from the
universal sentence encoder, aji is the argument en-
coding for wi with respect to wp produced after the
j-th BiLSTM layer, and K ′ is the total number of
BiLSTM layers.

Inventory-specific decoders. Finally, the univer-
sal encodings are given to a set of classifiers in
order to obtain the desired output labels. More
specifically, for each inventory, we need three types
of output: i) whether a word wi is a predicate wp;
ii) the most appropriate sense s for a predicate wp;
iii) which semantic role r, possibly the null role,
exists between a word wi and a predicate wp. More
formally, our model features three classifiers for

each inventory I as follows:

σp(wi|I) = Wp|I Swish(Wpti + bp) + bp|I

σs(wp|I) = Ws|I Swish(Wstp + bs) + bs|I

σr(wr|wp, I) = Wr|I Swish(Wrai + br) + br|I

where each σ·(·) provides a score distribution over
the possible output classes, i.e. two (true or false)
for predicate identification, the number of senses
of an inventory for predicate sense disambiguation,
and the number of semantic roles (including the
null role) of an inventory for argument labeling.

Miscellanea. While we follow the architecture
proposed by Conia et al. (2021), the SRL model of
InVeRo-XL also comes with a small but significant
number of enhancements. One such enhancement
is that, while Conia et al. (2021) propose a model
for dependency-based SRL, our model is also able
to perform span-based SRL by treating spans as
sequences of BIO tags. In order to correctly de-
code valid spans at inference time, InVeRo-XL
makes use of a Viterbi decoder. Other improve-
ments include training the model with the RAdam
optimizer (Liu et al., 2020), ensuring that each
training batch features a balanced number of in-
stances for each language in the training set, and
searching randomly for better hyperparameter val-
ues.

2.3 Evaluation

Datasets. We report the performance of InVeRo-
XL on two gold standard benchmarks for SRL:
CoNLL-2009 (Hajič et al., 2009) for dependency-
based SRL and CoNLL-2012 (Pradhan et al., 2012)
for span-based SRL. To the best of our knowl-
edge, CoNLL-2009 is the largest benchmark for
multilingual SRL as it comprises six languages,
namely, Catalan, Chinese, Czech, English, German
and Spanish.5 The main challenge of this bench-
mark is that each language was annotated with a
different predicate-argument structure inventory,
e.g. the English PropBank (Palmer et al., 2005)
for English, AnCora (Taulé et al., 2008) for Span-
ish/Catalan and PDT-Vallex (Hajic et al., 2003) for
Czech. While CoNLL-2009 is an ideal test bed for
evaluating the multilingual capabilities of an SRL
system, dependency-based annotations may look
unfamiliar to end users who are not used to the

5Japanese is not available anymore from LDC due to li-
censing issues.

321

Catalan Czech German English Spanish Chinese
Sp

an

AllenNLP’s SRL demo – – – 86.5 – –
InVeRo – – – 86.2 – –
InVeRo-XLspan-based 83.3 85.9 87.0 86.8 81.8 84.9

D
ep

en
de

nc
y

Marcheggiani et al. (2017) — 86.0 — 87.7 80.3 81.2
Chen et al. (2019) 81.7 88.1 76.4 91.1 81.3 81.7
Cai and Lapata (2019b) — — 82.7 90.0 81.8 83.6
Cai and Lapata (2019a) — — 83.8 91.2 82.9 85.0
Lyu et al. (2019) 80.9 87.5 75.8 90.1 80.5 83.3
He et al. (2019b) 86.0 89.7 81.1 90.9 85.2 86.9
Conia and Navigli (2020) 88.3 92.1 89.1 92.4 86.9 89.1
Conia et al. (2021) 88.0 91.5 88.0 91.8 86.3 87.7
InVeRo-XLdependency-based 88.7 92.1 89.9 92.1 87.2 89.1

Table 1: Comparison between InVeRo-XL and other recent systems for SRL. Top: F1 scores on argument labeling
with pre-identified predicates using the official CoNLL-2005 scoring script on the CoNLL-2012 English test set
for span-based SRL and the CoNLL-2009 test sets converted from dependency-based to span-based as described
in Section 2.3. Bottom: F1 scores on argument labeling and sense disambiguation with pre-identified predicates
using the official CoNLL-2009 scoring script on the test sets of the CoNLL-2009 shared task for dependency-based
multilingual SRL.

notion of syntactic/semantic heads. Therefore, dif-
ferently from Conia et al. (2021), we also adapt the
system to perform span-based SRL and evaluate
its effectiveness on the standard English datasets
of CoNLL-2012 and on CoNLL-2009, converting
dependency-based annotations to span-based anno-
tations. We convert an argument head to an argu-
ment span by considering all those words that fall
in the syntactic subtree whose root is the argument
head and discarding all those predicates for which
this conversion produces overlapping spans.

Experimental setup. We train the dependency-
based SRL model on the standard training splits
of CoNLL-2009, making the model learn from all
six languages jointly. Instead, we train the span-
based SRL model on the union of the English train-
ing split of CoNLL-2012 and the Catalan, Chi-
nese, Czech, German and Spanish training sets
converted from dependency-based to span-based,
as explained above. Each model configuration is
trained for 30 epochs using the RAdam optimizer
with learning rates of 10−5 for the weights of XLM-
RoBERTa and 10−3 for the other weights. Follow-
ing standard practice, we select the model check-
point with highest F1 score on the development
set.

Results. Table 1 (top) shows how InVeRo-XL
performs on the English test set of CoNLL-2012 for
span-based SRL compared to its previous release

(InVeRo) and the previously best-performing on-
line system for SRL (AllenNLP’s SRL demo). Not
only does InVeRo-XL achieve better results, but it
is also the only system that is capable of performing
span-based cross-lingual SRL, showing strong re-
sults on each of the non-English test sets of CoNLL-
2009 converted from dependency-based to span-
based as described in Section 2.3. Furthermore,
Table 1 (bottom) shows that InVeRo-XL achieves
results that are comparable to or better than those
of current state-of-the-art models on 5 of the 6
languages of CoNLL-2009 for dependency-based
SRL, the key advantages being that our model is
part of a prepackaged tool with additional user-
friendly features (see Sections 3 and 4).

3 The InVeRo-XL API

In order to facilitate the integration of predicate-
argument structure information into downstream
tasks, InVeRo-XL exposes its fully self-contained
end-to-end multilingual SRL pipeline through an
easy-to-use RESTful API. In the following, we pro-
vide an overview of the main functionalities of the
InVeRo-XL API, from its Resource API (Section
3.1) to its Model API (Section 3.2) and how to
host InVeRo-XL locally on a user’s own hardware
(Section 3.3). We refer users to the online documen-
tation for the complete list of supported languages

322

and inventories, together with other details.6

3.1 Resource API

The Resource API is a simple way for obtaining
semantic information about predicates using the
intelligible verb senses and semantic roles defined
by VerbAtlas, a large-scale predicate-argument
structure inventory which clusters WordNet synsets
(Miller, 1992) that share similar semantic behav-
ior. The Resource API of InVeRo-XL builds upon
the functionalities provided by its predecessor with
the key difference that it now supports multiple
languages thanks to BabelNet 5.07 (Navigli and
Ponzetto, 2012; Navigli et al., 2021), a multilin-
gual encyclopedic dictionary that provides uni-
fied access to several knowledge bases including
WordNet.

More specifically, the Resource API defines two
endpoints:

• /api/verbatlas/predicate: given a
predicate p, this endpoint retrieves the set of
VerbAtlas frames which include at least one
sense of p.

• /api/verbatlas/frame: given a Ver-
bAtlas frame f , this endpoint retrieves its
predicate-argument structure, i.e., the seman-
tic roles, and the WordNet/BabelNet synsets
that belong to f .

3.2 Model API

The Model API of InVeRo-XL has been updated
to not only take advantage of the new multilingual
SRL system but also to provide quality-of-life im-
provements. The Model API now accepts requests
in over 40 languages and returns semantic annota-
tions according to 7 linguistic inventories. On top
of this, the Model API is now able to process docu-
ments of arbitrary length and to handle batches of
documents in a single request.

More specifically, the Model API exposes an
endpoint named /api/model. This endpoint ac-
cepts POST requests with a JSON body containing
a list of input objects, one for each document the
user wishes to annotate. Each input object shall
specify the following fields:

• text: a mandatory field that contains the text
of the document.

6
http://nlp.uniroma1.it/invero/api-documentation

7
https://babelnet.org

[{

"tokens": [

...

{ "index": 2, "text": "volpe" },

{ "index": 3, "text": "salta" },

{ "index": 4, "text": "sul" },

...

],

"annotations": [

{

"tokenIndex": 3,

"verbatlas": {

"sense": "GO−FORWARD",

"arguments": [

{

"role": "Agent",

"score": 1.0,

"span": [0, 3]

},{

"role": "Destination",

"score": 1.0,

"span": [4, 6]

},

...

]

},

"englishPropbank": {...},

"chinesePropbank": {...},

"germanPropbank": {...},

"pdtVallex": {...},

"catalanAncora": {...},

"spanishAncora": {...}

}

...

]

}]

Figure 1: An example of a response from the Model
API for an input Italian sentence. The response con-
tains the tokenized input sentence and the automatic
SRL annotations according to 7 different linguistic in-
ventories.

• lang: an optional field that indicates the lan-
guage of the document. If omitted, InVeRo-
XL will use an automatic language detector
(see Section 2.1).

Each request to the Model API returns a JSON
response containing a list of output objects, one
for each input document, containing the automatic
annotations according to each of the 7 linguistic
inventories, as shown in Figure 1.

323

Figure 2: The home page of the Web interface of InVeRo-XL. Users can search for predicate information (e.g. the
VerbAtlas frames a verb belongs to) and tag sentences in multiple languages with different linguistic inventories
(see Figure 3).

3.3 Offline Usage

One of the most requested features that is currently
missing from InVeRo is the possibility of running
an offline instance of the service so as to annotate
large quantities of text in a shorter time, indepen-
dently of the latency of the network and the volume
of requests being processed by our Web server. To
address this issue, InVeRo-XL is also distributed
as a Docker8 image that can be deployed locally
on a user’s own hardware.9 While network latency
is often a bottleneck for processing a request, an
offline instance of InVeRo-XL does not suffer from
such a constraint and can therefore benefit greatly
from running on better hardware, e.g. on GPU. We
distribute InVeRo-XL in two configurations:

• invero-xl-span is the configuration that
performs multilingual span-based SRL and is
the one used by InVeRo-XL’s Web server;

• invero-xl-dependency is an alterna-
tive configuration built to perform multilin-
gual dependency-based SRL.

Running a local instance of InVeRo-XL is also
simple. First, users are required to perform a one-
time setup to load one of the available images:

#!/bin/bash

docker load -i invero-xl-span_2.0.0.tar

8
https://www.docker.com

9Docker images for InVeRo-XL are freely available for
research purposes at http://nlp.uniroma1.it/resources.

After that, InVeRo-XL can be started with:

#!/bin/bash

PORT=12345

LANGUAGES="EN IT FR ZH"

docker run \

--name invero-xl-span-en \

-p $PORT:80 \

-e LANGUAGES=$LANGUAGES

invero-xl-span:2.0.0

Once started, users can forward their requests lo-
cally. We refer the reader to the online documenta-
tion for further details.10

4 Web Interface

Similarly to its predecessor, InVeRo-XL includes
a public-facing Web interface (Figures 2 and 3)
that provides a visual environment for both the Re-
source API and the Model API, allowing users to
explore the main functionalities while also provid-
ing an intuitive overview of how an SRL system
annotates a sentence or a short document. Most
importantly, the Web interface of InVeRo-XL has
been updated to reflect the changes in the Model
API and the underlying SRL model; now users
can annotate text in 12 languages11 and visualize
predicate senses and semantic roles in 7 linguistic
inventories on the fly, without having to write code.

Figure 3 shows an example sentence in Italian
with its corresponding predicate senses and seman-

10
http://nlp.uniroma1.it/invero/api-documentation

11We limit the number of languages available on the Web
interface due to hardware constraints as Stanza and spaCy use
one preprocessing model for each language.

324

Figure 3: The beginning of the Divine Comedy by Dante Alighieri in Italian as tagged by InVeRo-XL with three
predicate-argument structure inventories – VerbAtlas, the Chinese PropBank and the Spanish AnCora. “Nel mezzo
del cammin di nostra vista mi ritrovai per una selva oscura, ché la diritta via era smarrita” translates into “Midway
upon the journey of our life I found myself within a forest dark, for the straightforward pathway had been lost”.

tic roles as provided by InVeRo-XL. Thanks to
a dropdown menu, users can immediately switch
from the labels of one inventory to those of an-
other, independently of the input language, without
reloading the Web page. We argue that this Web
interface should help teachers explain SRL to their
students, allow linguists to compare linguistic in-
ventories on particular case studies, attract new
researchers to the field, and inspire others to ex-
ploit SRL in downstream tasks or even real-world
scenarios.

5 Conclusion and Future Work

Over the years, the research community has greatly
advanced the field of SRL, proposing ever more
complex approaches to tackle the task more effec-
tively. However, despite the growing interest in
cross-lingual NLP, there have been very few efforts
to develop automatic tools to perform SRL in mul-
tiple languages. Our objective with InVeRo-XL is
to fill this gap and equip researchers with an easy-
to-use, high-performing system capable of provid-
ing predicate sense and semantic role annotations
in over 40 languages with 7 linguistic inventories.
Users can take advantage of our state-of-the-art sys-

tem for cross-lingual SRL through a RESTful API
that relieves them from the need to reimplement
complex neural models and/or to build an efficient
preprocessing/postprocessing pipeline.

Although InVeRo-XL is a major step forward
compared to its predecessor, we intend to further
improve our system by adopting future and more
advanced SRL model architectures and by includ-
ing new training datasets, such as UniteD-SRL
(Tripodi et al., 2021). We strongly believe that
InVeRo-XL will facilitate the integration of SRL
into downstream cross-lingual tasks, hopefully aid-
ing further advancements in cross-lingual Natural
Language Understanding.

Acknowledgments
The authors gratefully acknowledge
the support of the ERC Consolida-
tor Grant MOUSSE No. 726487
and the European Language Grid
project No. 825627 (Universal Se-
mantic Annotator, USeA) under the
European Union’s Horizon 2020 re-
search and innovation programme.

325

References
Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186, Sofia, Bulgaria.

Rexhina Blloshmi, Simone Conia, Rocco Tripodi, and
Roberto Navigli. 2021. Generating Senses and
RoLes: An end-to-end model for dependency- and
span-based Semantic Role Labeling. In Proceedings
of the Thirtieth International Joint Conference on
Artificial Intelligence, IJCAI-21, pages 3786–3793.
Main Track.

Jiaxun Cai, Shexia He, Zuchao Li, and Hai Zhao. 2018.
A full end-to-end semantic role labeler, syntactic-
agnostic over syntactic-aware? In Proceedings of
the 27th International Conference on Computational
Linguistics, pages 2753–2765, Santa Fe, New Mex-
ico, USA.

Rui Cai and Mirella Lapata. 2019a. Semi-supervised
Semantic Role Labeling with cross-view training. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1018–
1027, Hong Kong, China.

Rui Cai and Mirella Lapata. 2019b. Syntax-aware Se-
mantic Role Labeling without parsing. Trans. Assoc.
Comput. Linguistics, 7:343–356.

Xinchi Chen, Chunchuan Lyu, and Ivan Titov. 2019.
Capturing argument interaction in Semantic Role La-
beling with capsule networks. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5415–5425, Hong Kong,
China.

Janara Christensen, Mausam, Stephen Soderland, and
Oren Etzioni. 2010. Semantic Role Labeling for
open information extraction. In Proceedings of the
NAACL HLT 2010 First International Workshop on
Formalisms and Methodology for Learning by Read-
ing, pages 52–60, Los Angeles, California.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel P. Kuksa.
2011. Natural language processing (almost) from
scratch. J. Mach. Learn. Res., 12:2493–2537.

Simone Conia, Andrea Bacciu, and Roberto Navigli.
2021. Unifying cross-lingual Semantic Role Label-
ing with heterogeneous linguistic resources. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
338–351, Online.

Simone Conia, Fabrizio Brignone, Davide Zanfardino,
and Roberto Navigli. 2020. InVeRo: Making Se-
mantic Role Labeling accessible with intelligible
verbs and roles. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 77–84,
Online.

Simone Conia and Roberto Navigli. 2020. Bridg-
ing the gap in multilingual Semantic Role Label-
ing: A language-agnostic approach. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 1396–1410, Barcelona,
Spain (Online).

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota.

Andrea Di Fabio, Simone Conia, and Roberto Navigli.
2019. VerbAtlas: A novel large-scale verbal seman-
tic resource and its application to Semantic Role La-
beling. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
627–637, Hong Kong, China.

Saurabh Gupta and Jitendra Malik. 2015. Visual Se-
mantic Role Labeling. arXiv, abs/1505.04474.

Jan Hajič, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antònia Martí, Lluís
Màrquez, Adam Meyers, Joakim Nivre, Sebastian
Padó, Jan Štěpánek, Pavel Straňák, Mihai Surdeanu,
Nianwen Xue, and Yi Zhang. 2009. The CoNLL-
2009 shared task: Syntactic and semantic depen-
dencies in multiple languages. In Proceedings of
the Thirteenth Conference on Computational Natu-
ral Language Learning (CoNLL 2009): Shared Task,
pages 1–18, Boulder, Colorado.

Jan Hajic, Jarmila Panevová, Zdenka Urešová,
Alevtina Bémová, Veronika Kolárová, and Petr Pa-
jas. 2003. PDT-VALLEX: Creating a large-coverage
valency lexicon for treebank annotation. In Proceed-
ings of the second workshop on treebanks and lin-
guistic theories, volume 9, pages 57–68.

Luheng He, Mike Lewis, and Luke Zettlemoyer. 2015.
Question-answer driven Semantic Role Labeling:

326

Using natural language to annotate natural language.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
643–653, Lisbon, Portugal.

Shexia He, Zuchao Li, and Hai Zhao. 2019a. Syntax-
aware multilingual Semantic Role Labeling. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5350–
5359, Hong Kong, China.

Shexia He, Zuchao Li, and Hai Zhao. 2019b. Syntax-
aware multilingual Semantic Role Labeling. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, November 3-7, 2019, pages 5349–
5358.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy:
Industrial-strength Natural Language Processing in
Python.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient text
classification. In Proceedings of the 15th Confer-
ence of the European Chapter of the Association for
Computational Linguistics: Volume 2, Short Papers,
pages 427–431, Valencia, Spain.

Peter Koomen, Vasin Punyakanok, Dan Roth, and Wen-
tau Yih. 2005. Generalized inference with multiple
Semantic Role Labeling systems. In Proceedings
of the Ninth Conference on Computational Natural
Language Learning (CoNLL-2005), pages 181–184,
Ann Arbor, Michigan.

Zuchao Li, Shexia He, Hai Zhao, Yiqing Zhang, Zhu-
osheng Zhang, Xi Zhou, and Xiang Zhou. 2019.
Dependency or span, end-to-end uniform Seman-
tic Role Labeling. In The Thirty-Third AAAI Con-
ference on Artificial Intelligence, AAAI 2019, The
Thirty-First Innovative Applications of Artificial In-
telligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial In-
telligence, EAAI 2019, Honolulu, Hawaii, USA, Jan-
uary 27 - February 1, 2019, pages 6730–6737.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu
Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei Han.
2020. On the variance of the adaptive learning rate
and beyond. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020.

Chunchuan Lyu, Shay B. Cohen, and Ivan Titov. 2019.
Semantic Role Labeling with iterative structure re-
finement. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
1071–1082, Hong Kong, China.

Diego Marcheggiani, Jasmijn Bastings, and Ivan Titov.
2018. Exploiting semantics in Neural Machine
Translation with graph convolutional networks. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 486–492, New Or-
leans, Louisiana.

Diego Marcheggiani, Anton Frolov, and Ivan Titov.
2017. A simple and accurate syntax-agnostic neu-
ral model for dependency-based Semantic Role La-
beling. In Proceedings of the 21st Conference on
Computational Natural Language Learning (CoNLL
2017), pages 411–420, Vancouver, Canada.

Lluís Màrquez, Xavier Carreras, Kenneth C. Litkowski,
and Suzanne Stevenson. 2008. Special issue in-
troduction: Semantic Role Labeling: An introduc-
tion to the special issue. Computational Linguistics,
34(2):145–159.

George A. Miller. 1992. WordNet: A lexical database
for English. In Speech and Natural Language: Pro-
ceedings of a Workshop Held at Harriman, New
York, February 23-26, 1992.

Roberto Navigli. 2018. Natural Language Understand-
ing: Instructions for (present and future) use. In Pro-
ceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI 2018,
July 13-19, 2018, Stockholm, Sweden, pages 5697–
5702.

Roberto Navigli, Michele Bevilacqua, Simone Conia,
Dario Montagnini, and Francesco Cecconi. 2021.
Ten years of BabelNet: A survey. In Proceedings
of the Thirtieth International Joint Conference on
Artificial Intelligence, IJCAI-21, pages 4559–4567.
Survey Track.

Roberto Navigli and Simone Paolo Ponzetto. 2012.
BabelNet: The automatic construction, evaluation
and application of a wide-coverage multilingual se-
mantic network. Artif. Intell., 193:217–250.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The Proposition Bank: An annotated cor-
pus of semantic roles. Computational Linguistics,
31(1):71–106.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237, New Orleans, Louisiana.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 shared task: Modeling multilingual unre-
stricted coreference in OntoNotes. In Joint Confer-
ence on EMNLP and CoNLL - Shared Task, pages
1–40, Jeju Island, Korea.

327

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D. Manning. 2020. Stanza: A
Python Natural Language Processing toolkit for
many human languages. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics: System Demonstrations, pages
101–108, Online.

Peng Shi and Jimmy Lin. 2019. Simple BERT mod-
els for relation extraction and semantic role labeling.
CoRR, abs/1904.05255.

Mariona Taulé, M. Antònia Martí, and Marta Recasens.
2008. AnCora: Multilevel annotated corpora for
Catalan and Spanish. In Proceedings of the Sixth In-
ternational Conference on Language Resources and
Evaluation (LREC’08), Marrakech, Morocco.

Rocco Tripodi, Simone Conia, and Roberto Navigli.
2021. UniteD-SRL: A unified dataset for span- and
dependency-based multilingual and cross-lingual Se-
mantic Role Labeling. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Mark Yatskar, Luke S. Zettlemoyer, and Ali Farhadi.
2016. Situation Recognition: Visual Semantic Role
Labeling for image understanding. In 2016 IEEE
Conference on Computer Vision and Pattern Recog-
nition, CVPR 2016, Las Vegas, NV, USA, June 27-30,
2016, pages 5534–5542.

328

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 329–338
November 7–11, 2021. ©2021 Association for Computational Linguistics

SummerTime: Text Summarization Toolkit for Non-experts

Ansong Ni† Zhangir Azerbayev† Mutethia Mutuma† Troy Feng†

Yusen Zhang♣ Tao Yu† Ahmed Hassan Awadallah♦ Dragomir Radev†
†Yale University ♣Penn State University ♦Microsoft Research
{ansong.ni, tao.yu, dragomir.radev}@yale.edu

Abstract

Recent advances in summarization provide
models that can generate summaries of higher
quality. Such models now exist for a number
of summarization tasks, including query-based
summarization, dialogue summarization, and
multi-document summarization. While such
models and tasks are rapidly growing in the
research field, it has also become challenging
for non-experts to keep track of them. To
make summarization methods more accessible
to a wider audience, we develop SummerTime
by rethinking the summarization task from the
perspective of an NLP non-expert. Summer-
Time is a complete toolkit for text summa-
rization, including various models, datasets
and evaluation metrics, for a full spectrum
of summarization-related tasks. SummerTime
integrates with libraries designed for NLP
researchers, and enables users with easy-to-
use APIs. With SummerTime, users can
locate pipeline solutions and search for the
best model with their own data, and visual-
ize the differences, all with a few lines of
code. We also provide explanations for mod-
els and evaluation metrics to help users un-
derstand the model behaviors and select mod-
els that best suit their needs. Our library,
along with a notebook demo, is available
at https://github.com/Yale-LILY/
SummerTime.

1 Introduction

The goal of text summarization is to generate short
and fluent summaries from longer textual sources,
while preserving the most salient information in
them. Benefiting from recent advances of deep
neural networks, in particular sequence to sequence
models, with or without attention (Sutskever et al.,
2014; Bahdanau et al., 2014; Vaswani et al., 2017),
current state-of-the-art summarization models pro-
duce high quality summaries that can be use-
ful in practice cases (Zhang et al., 2020a; Lewis
et al., 2020). Moreover, neural summarization

Models

Datasets

Evaluation Metrics

User-
created

Existing
Datasets

Multi-
doc

Dialogue
-based

…

ROUGE

BERT-score

…

HMNet

SAMSum

ROUGEROUGEROUGE

HMNetHMNet

x

HMNet

Evaluation

Visualization

User select

Architecture Workflow

Figure 1: SummerTime is a toolkit for helping non-
expert users to find the best summarization models for
their own data and use cases.

has broadened its scope with the introduction of
more summarization tasks, such as query-based
summarization (Dang, 2005; Zhong et al., 2021),
long-document summarization (Cohan et al., 2018),
multi-document summarization (Ganesan et al.,
2010; Fabbri et al., 2019), dialogue summariza-
tion (Gliwa et al., 2019; Zhong et al., 2021). Such
summarization tasks can also be from different do-
mains (Hermann et al., 2015; Zhang et al., 2019;
Cohan et al., 2018).

However, as the field rapidly grows, it is often
hard for NLP non-experts to follow all relevant new
models, datasets, and evaluation metrics. Moreover,
those models and datasets are often from different
sources, making it a non-trivial effort for the users
to directly compare the performance of such mod-
els side-by-side. This makes it hard for them to
decide which models to use. The development of
libraries such as Transformers (Wolf et al., 2020) al-
leviate such problems to some extent, but they only

329

cover a narrow range of summarization models and
tasks and assume certain proficiency in NLP from
the users, thus the target audience is still largely
the research community.

To address those challenges for non-expert users
and make state-of-the-art summarizers more acces-
sible as a tool, we introduce SummerTime, a text
summarization toolkit intended for users with no
NLP background. We build this library from this
perspective, and provide an integration of differ-
ent summarization models, datasets and evaluation
metrics, all in one place. We allow the users to
view a side-by-side comparison of all classic and
state-of-the-art summarization models we support,
on their own data and combined into pipelines that
fit their own task. SummerTime also provides the
functionality for automatic model selection, by con-
structing pipelines for specific tasks first and itera-
tively evaluation to find the best working solutions.
Assuming no background in NLP, we list “pros and
cons” for each model, and provide simple expla-
nations for all the evaluation metrics we support.
Moreover, we go beyond pure numbers and pro-
vide visualization of the performance and output of
different models, to facilitate users in making de-
cisions about which models or pipelines to finally
adopt.

The purpose of SummerTime is not to replace
any previous work, on the contrary, we integrate
existing libraries and place them in the same frame-
work. We provide wrappers around such libraries
intended for expert users, maintaining the user-
friendly and easy-to-use APIs.

2 Related Work

2.1 Text Summarization

Text summarization has been a long-standing task
for natural language processing. Early systems
for summarization had been focusing on extractive
summarization (Mihalcea and Tarau, 2004; Erkan
and Radev, 2004), by finding the most salient sen-
tences from source documents. With the advance-
ment of neural networks (Bahdanau et al., 2014;
Sutskever et al., 2014), the task of abstractive sum-
marization has been receiving more attention (Rush
et al., 2015; Chopra et al., 2016; Nallapati et al.,
2016; Celikyilmaz et al., 2018; Chen and Bansal,
2018; Lebanoff et al., 2019) while neural-based
methods have also been developed for extractive
summarization (Zhong et al., 2019b,a; Xu and Dur-
rett, 2019; Cho et al., 2019; Zhong et al., 2020;

Jia et al., 2020). Moreover, the field of text sum-
marization has also been broadening into several
subcategories, such as multi-document summariza-
tion (McKeown and Radev, 1995; Carbonell and
Goldstein, 1998; Ganesan et al., 2010; Fabbri et al.,
2019), query-based summarization (Daumé III and
Marcu, 2006; Otterbacher et al., 2009; Wang et al.,
2016; Litvak and Vanetik, 2017; Nema et al., 2017;
Baumel et al., 2018; Kulkarni et al., 2020) and di-
alogue summarization (Zhong et al., 2021; Chen
et al., 2021a,b; Gliwa et al., 2019; Chen and Yang,
2020; Zhu et al., 2020). The proposed tasks, along
with the datasets can also be classified by domain,
such as news (Hermann et al., 2015; Fabbri et al.,
2019; Narayan et al., 2018), meetings (Zhong et al.,
2021; Carletta et al., 2005; Janin et al., 2003), sci-
entifc literature (Cohan et al., 2018; Yasunaga et al.,
2019), and medical records (DeYoung et al., 2021;
Zhang et al., 2019; Portet et al., 2009).

2.2 Existing Systems for Summarization

Transformers (Wolf et al., 2020) includes a large
number of transformer-based models in its Mod-
elhub1, including BART (Lewis et al., 2020) and
Pegasus (Zhang et al., 2020a), two strong neural
summarizers we also use in SummerTime. It also
hosts datasets for various NLP tasks in its Datasets2

library (Lhoest et al., 2021). Despite the wide cov-
erage in transformer-based models, Transformers
do not natively support models or pipelines that
can handle aforementioned subcategories of sum-
marization tasks. Moreover, it assumes certain
NLP proficiency in its users, thus is harder for non-
expert users to use. We integrate with Transformers
and Datasets to import the state-of-the-art models,
as well as summarization datasets into Summer-
Time, under the same easy-to-use framework.

Another library that we integrate with is Sum-
mEval (Fabbri et al., 2020), which is a collection
of evaluation metrics for text summarization. Sum-
merTime adopts a subset of such metrics in Sum-
mEval that are more popular and easier to under-
stand. SummerTime also works well with Sum-
mVis (Vig et al., 2021), which provides an inter-
active way of analysing summarization results on
the token-level. We also allow SummerTime to
store output in a format that can be directly used
by SummVis and its UI.

Other systems also exist for text summarization.

1https://huggingface.co/models
2https://huggingface.co/datasets

330

MEAD3 is a platform for multi-lingual summariza-
tion. Sumy4 can produce extractive summaries
from HTML pages or plain texts, using several tra-
ditional summarization methods including Mihal-
cea and Tarau (2004) and Erkan and Radev (2004).
OpenNMT5 is mostly for machine translation, but
it also hosts several summarization models such as
Gehrmann et al. (2018).

3 SummerTime

The main purpose of SummerTime is to help non-
expert users navigate through various summariza-
tion models, datasets and evaluation metrics, and
provide simple yet comprehensive information for
them to select the models that best suit their needs.
Figure 1 shows how SummerTime is split into dif-
ferent modules to help users achieve such goal.

We will describe in detail each component of
SummerTime in the following sections. With Sec-
tion 3.1, we introduce the models we support in
all subcategories of summarization; in Section 3.2
we list all the existing datasets we support and how
users can create their own evaluation set. Finally
in Section 3.3, we explain the evaluation metrics
included with SummerTime and how they can help
users find the most suitable model for their task.

3.1 Summarization Models
Here we introduce the summarization tasks Sum-
merTime covers and the models we include to
support these tasks. We first introduce the single-
document summarization models (i.e., “base mod-
els”) in SummerTime, and then we show how those
models can be used in a pipeline with other meth-
ods to complete more complex tasks such as query-
based summarization and multi-document summa-
rization.

Single-document Summarization
The following base summarization models are used
in SummerTime. They all take a single document
and generate a short summary.
TextRank (Mihalcea and Tarau, 2004) is a graph-
based ranking model that can be used to perform
extractive summarization;
LexRank (Erkan and Radev, 2004) is also a graph-
based extractive summarization model, which is
originally developed for multi-document summa-
rization, but can also be applied to a single docu-

3http://www.summarization.com/mead/
4https://github.com/miso-belica/sumy
5https://github.com/OpenNMT/OpenNMT-py

ment. It uses centrality in a graph representation of
sentences to measure their relative importance;
BART (Lewis et al., 2020) is an autoencoder model
trained with denoising objectives during training.
This seq2seq model is constructed with a bidirec-
tional transformer encoder and a left-to-right trans-
former decoder, which can be fine-tuned to perform
abstractive summarization;
Pegasus (Zhang et al., 2020a) proposes a new
self-supervised pretraining objective for abstrac-
tive summarization, by reconstructing the target
sentence with the remaining sentences in the docu-
ment, it also shows strong results in low-resource
settings;
Longformer (Beltagy et al., 2020) addresses the
problem of memory need for self-attention models
by using a combination of sliding window atten-
tion and global attention to approximate standard
self-attention. It is able to support input length
of 16K tokens, a large improvement over previous
transformer-based models.

Multi-document Summarization
For multi-document summarization, we adopt two
popular single-document summarizers to complete
the task, as this is shown to be effective in previous
work (Fabbri et al., 2019).
Combine-then-summarize is a pipeline method
to handle multiple source documents, where the
documents are concatenated and then a single doc-
ument summarizer is used to produce the sum-
mary. Note that the length of the combined docu-
ments may exceed the input length limit for typical
transformer-based models;
Summarize-then-combine first summarizes each
source document independently, then merges the re-
sulting summaries. Compared to the combine-then-
summarize method, it is not affected by overlong
inputs. However, since each document is summa-
rized separately, the final summary may contain
redundant information (Carbonell and Goldstein,
1998).

Query-based Summarization
For summarization tasks based on queries, we
adopt a pipeline method and first use retrieval meth-
ods to identify salient sentences or utterances in
the original document or dialogue, then generate
summaries with a single-document summarization
model.
TF-IDF retrieval is used in a pipeline to first re-
trieve the sentences that are most similar to the

331

Pegasus:
Introduced in 2019, a large neural abstractive summarization model
trained on web crawl and news data.
Strengths:
- High accuracy;
- Performs well on almost all kinds of non-literary written text;

Weaknesses:
- High memory usage

Initialization arguments:
- `device = 'cpu'` specifies the device the model is stored on and

uses for computation. Use `device='gpu'` to run on an Nvidia GPU.

Figure 2: A short description of the Pegasus model,
SummerTime includes such short descriptions for each
supported models to help user making choices.

query based on the TF-IDF metric;
BM25 retrieval is used in the same pipeline, but
BM25 is used as the similarity metric for retrieving
the top-k relevant sentences.

Dialogue Summarization
Dialogue summarization is used to extract salient
information from a dialogue. SummerTime in-
cludes two methods for dialogue summarization.
Flatten-then-summarize first flattens the dia-
logue data while preserving the speaker informa-
tion, then a summarizer is used to generate the sum-
mary. Zhong et al. (2021) found that this presents
a strong baseline for dialogue summarization.
HMNet (Zhu et al., 2020) explores the semantic
structure of dialogues and develops a hierarchical
architecture to first encode each utterance then ag-
gregate with another encoder in modeling the long
dialogue script. It also exploits role vectors to per-
form better speaker modeling.

Since we assume no NLP background of our
target users, we provide a short description for
every model to illustrate the strengths and weak-
nesses for each model. Such manually written
descriptions are displayed when calling a static
get_description() method on the model
class. A sample description is shown in Figure 2.

3.2 Datasets

With SummerTime, users can easily create or con-
vert their own summarization datasets and evaluate
all the supporting models within the framework.
However, in the case that no such datasets are avail-
able, SummerTime also provides access to a list of
existing summarization datasets. This way, users
can select models that perform the best on one or
more datasets that are similar to their task.
CNN/DM (Hermann et al., 2015) contains news

articles from CNN and Daily Mail. Version 1.0.0
of it was originally developed for reading compre-
hension and abstractive question answering, then
the extractive and abstractive summarization an-
notations were added in version 2.0.0 and 3.0.0,
respectively;
Multi-News (Fabbri et al., 2019) is a large-scale
multi-document summarization dataset which con-
tains news articles from the site newser.com with
corresponding human-written summaries. Over
1,500 sites, i.e. news sources, appear as source
documents, which is higher than the other common
news datasets.
SAMSum (Gliwa et al., 2019) is a dataset with chat
dialogues corpus, and human-annotated abstractive
summarizations. In the SAMSum corpus, each dia-
logue is written by one person. After collecting all
the dialogues, experts write a single summary for
each dialogue.
XSum (Narayan et al., 2018) is a news summariza-
tion dataset for generating a one-sentence summary
aiming to answer the question “What is the article
about?”. It consists of real-world articles and corre-
sponding one-sentence summarization from British
Broadcasting Corporation (BBC).
ScisummNet (Yasunaga et al., 2019) is a human-
annotated dataset made for citation-aware scientific
paper summarization (Scisumm). It contains over
1,000 papers in the ACL anthology network as well
as their citation networks and their manually la-
beled summaries.
QMSum (Zhong et al., 2021) is designed for query-
based multi-domain meeting summarization. It col-
lects the meetings from AMI and ICSI dataset, as
well as the committee meetings of the Welsh Parlia-
ment and Parliament of Canada. Experts manually
wrote summaries for each meeting.
ArXiv (Cohan et al., 2018) is a dataset extracted
from research papers for abstractive summariza-
tion of single, longer-form documents. For each
research paper from arxiv.org, its abstract is used
as ground-truth summaries.
PubMedQA (Jin et al., 2019) is a question answer-
ing dataset on the biomedical domain. Every QA
instance contains a short answer and a long answer,
latter of which can also be used for query-based
summarization.
SummScreen (Chen et al., 2021a) consists of com-
munity contributed transcripts of television show
episodes from The TVMegaSite, Inc. (TMS) and
ForeverDream (FD). The summary of each tran-

332

Dataset Domain Size Src. length Tgt. length Query Multi-doc Dial. Lang.

CNN/DM(3.0.0) News 300k 781 56 7 7 7 En
Multi-News News 56k 2.1k 263.8 7 3 7 En
SAMSum Open-domain 16k 94 20 7 7 3 En
XSum News 226k 431 23.3 7 7 7 En
ScisummNet Scientific articles 1k 4.7k 150 7 7 7 En
QMSum Meetings 1k 9.0k 69.6 3 7 3 En
ArXiv Scientific papers 215k 4.9k 220 7 7 7 En
PubMedQA Biomedial 273.5k 239 43 3 7 7 En
SummScreen TV shows 26.9k 6.6k 337.4 7 7 3 En

MLSum News 1.5M 635 31.8 7 7 7
Fr, De, Es,

Ru, Tr

Table 1: The summarization datasets included in SummerTime. “Dial.” is short for “Dialogue” while “Lang.”
denotes the languages of each of the datasets.

script is the recap from TMS, or a recap of the FD
shows from Wikipedia and TVMaze.
MLSum (Scialom et al., 2020) is a large-scale
multilingual summarization dataset. It contains
over 1.5M news articles in five languages, namely
French, German, Spanish, Russian, and Turkish.

A summary of all datasets included in Summer-
Time is shown as Table 1, it is worth noticing that
the fields in this table (i.e., domain, query-based,
multi-doc, etc) are also incorporated in each of the
dataset classes (e.g., SAMSumDataset) as class
variables, so that such labels can later be used to
identify applicable models. Similar with the mod-
els classes, we include a short description for each
of the datasets. Note that the datasets, either ex-
isting ones or user created are mainly for evalua-
tion purposes. We leave the important task of fine-
tuning the models on these datasets for future work,
for which we describe in more detail in Section 5.

3.3 Evaluation Metrics

To evaluate the performance of each supported
model on certain dataset, SummerTime integrates
with SummEval (Fabbri et al., 2020) and provides
the following evaluation metrics for the users to
understand model performance:
ROUGE (Lin, 2004) is a recall-oriented method
based on overlapping n-grams, word sequences,
and word pairs between the generated output and
the gold summary;
BLEU (Papineni et al., 2002) measures n-gram pre-
cision and employs a penalty for brevity, BLEU
is often used as an evaluation metric for machine
translation;
ROUGE-WE (Ng and Abrecht, 2015) aims to
go beyond surface lexical similarity and uses pre-
trained word embeddings to measure the similarity
between different words and presents a better cor-

QMSum
is_query_base=True
is_dialogue_based=True
is_multi_doc=False

…

Query-based

TF-IDF

BM25

Single-doc
Summarization

… (5 in total)

TextRank

Dialogue-based

Flatten-then
-summarize

HMNet
BART

Pegasus

pipeline
construction

Total # solutions: 2*1 + 2*1*5 = 12

Figure 3: An illustration of how SummerTime finds so-
lutions to a specific tasks defined by a dataset. The red
star denotes that an ending point is reached.

relation with human judgements;
METEOR (Lavie and Agarwal, 2007) is based
on word-to-word matches between generated and
reference summaries, it consider two words as
“aligned” based on a Porter stemmer (Porter, 2001)
or synonyms in WordNet (Miller, 1995);
BERTScore (Zhang et al., 2020b) computes token-
level similarity between sentences with the contex-
tualized embeddings of each tokens.

Since we assume no NLP background from our
target users, we make sure that SummerTime pro-
vides a short explanation for each evaluation metric
as well as a clarification whether high or low scores
are better for a given evaluation metric, to help the
non-expert users understand the meaning of the
metrics and use them to make decisions.

333

Algorithm 1 SELECT(M,D, E)
Input: M: a pool of models to choose from, D: a set of

examples from a dataset, T : a set of evaluation metrics,
d: initial resource number, k: increase resource factor

Output: M ⊆M: a subset of models;
1: Initialize M =M,M ′ = ∅
2: while M ′ 6= M do
3: D = sample(D, d)
4: for each m ∈M, e ∈ E do
5: rem = eval(m,D, e)
6: end for
7: M ′ = M
8: for each m ∈M do
9: if ∃m′ s.t. rem′ > rem,∀e ∈ E then

10: M = M\m
11: end if
12: end for
13: d = d ∗ k
14: end while

4 Model Selection

In this section, we describe in detail about the work-
flow of SummerTime and how it can help our non-
expert users find the best models for their use cases,
which is one of the main functionalities that makes
SummerTime stands out from similar libraries. A
concrete code example of this is shown in Figure 4.

Create/select datasets The user would first load
a dataset with the APIs we provide. During
the process, the users also need to specify some
Boolean attributes (e.g., is_query_based,
is_dialogue_based) to facilitate next steps.
Alternatively, the user can also choose to use one
of the datasets that are included in SummerTime,
where such attributes are already specified in Ta-
ble 1.

Construct pipelines After identifying the po-
tential pipeline modules (e.g., query-based mod-
ule, dialogue-based module) that are applicable
to the task, SummerTime automatically constructs
solutions to a specific dataset by combining the
pipelines and summarization models specified in
Section 3.1. It further places all such constructed
solutions in a pool for further evaluation and se-
lection purposes. An example of this process in
shown in Figure 3.

Search for the best models As shown in Fig-
ure 3, there can be a large pool of solutions to be
evaluated. To save time and resources in search-
ing for best models, SummerTime adopts the idea
of successive halving (Li et al., 2017; Jamieson
and Talwalkar, 2016). More specifically, Summer-
Time first uses a small number of examples from

import dataset
import model
import evaluation

load a supported dataset
dataset.list_all_dataset()
dataset.CnndmDataset.show_description()
cnn_dataset = dataset.CnndmDataset()

OPTION 1: user manually select and evaluate
model.list_all_models()
model.BartModel.show_capability()
exp_model = model.BartModel()

summaries = exp_model.summarize(articles)
targets = [instance.summary for instance in

cnn_dataset.test_set]

bert_metric = evaluation.BertScore()
bert_metric.evaluate(summaries, targets)

OPTION 2: automatic pipeline assembly
Here we use a more complex task: query-
based + dialogue-based summarization
qmsum_dataset = dataset.QMsumDataset()
assembled_models =

assemble_model_pipeline(QMsumDataset)

AND automatic model selection
model_selector = evaluation.ModelSelector(

models=assembled_models,
dataset=qmsum_dataset,
metrics=[bert_metric])

eval_table = model_selector.run()
model_selector.visualize()

Figure 4: Example code for using SummerTime. Ad-
ditionally, we show two ways for performing model se-
lection and evaluation.

the dataset to evaluate all the candidates and elimi-
nate models that are surpassed by at least one other
model on every evaluation metric, then it does so
iteratively and gradually increases the evaluation
set size to reduce the variance. As shown in Al-
gorithm 1, the final output is a set of competing
models M that are better6 than one another on at
least one metric.

Visualization In addition to showing the numeri-
cal results as tables, SummerTime also allows the
users to visualize the differences between differ-
ent models with different charts and SummVis (Vig
et al., 2021). Figure 5 shows some examples of
such visualization methods SummerTime provides.
A scatter plot can help the users understand the
distribution of the model’s performance over each
example, while the radar chart is an intuitive way
of comparing different models over various metrics.

6Note that in line 9 of the algorithm, the symbol “>” is
conceptual and should be interpreted as “better than”

334

Hallucination Misinterpretation

Abstraction Extraction

(a) Visualize the performance distribution of the models
over the examples.

BERTScore

ROUGE-1-F1

ROUGE-2-F1

ROUGE-L-F1

METEOR

BLEU

(b) Visualize the performance of models over dif-
ferent evaluation metrics.

Figure 5: Examples of the visualization SummerTime
provides for the users to better compare the perfor-
mance between different models.

SummerTime can also output the generated sum-
maries to file formats that are directly compatible
with SummVis (Vig et al., 2021), so that the users
can easily use it to visualize the per-instance output
differences on the token level.

5 Future Work

An important piece of future work for Summer-
Time is to include more summarization models
(e.g., multilingual, query-aware, etc) to enlarge the
number of choices for the users, and more datasets
to increase the chance of users finding similar tasks
or domain for evaluation when they do not have a
dataset of their own. We also plan to add more visu-
alization methods for the users to better understand
the differences between the outputs of various mod-
els and the behavior of each individual model itself.
Moreover, we would like to enable fine-tuning for
a subset of smaller models we support, to enable
better performance on some domains or tasks for

which no pretrained models are available. With all
such potential improvements in the near future, we
plan to supply SummerTime not only as a way for
non-expert users to access state-of-art summariza-
tion models, but also as a go-to choice to quickly
establishing baseline results for researchers as well.

6 Conclusion

We introduce SummerTime, a text summariza-
tion toolkit designed for non-expert users. Sum-
merTime includes various summarization datasets,
models and evaluation metrics and covers a wide
range of summarization tasks. It can also automat-
ically identify the best models or pipelines for a
specific dataset and task, and visualize the differ-
ences between the model outputs and performances.
SummerTime is open source under the Apache-2.0
license and is available online.

Acknowledgements

The authors would like to thank Rui Zhang, Alexan-
der Fabbri, Chenguang Zhu, Budhaditya Deb, Asli
Celikyilmaz and Rahul Jha for their advice for this
work. This work is supported in part by a grant
from Microsoft Research.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Tal Baumel, Matan Eyal, and Michael Elhadad. 2018.
Query focused abstractive summarization: Incorpo-
rating query relevance, multi-document coverage,
and summary length constraints into seq2seq mod-
els. arXiv preprint arXiv:1801.07704.

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
arXiv:2004.05150.

Jaime Carbonell and Jade Goldstein. 1998. The use of
mmr, diversity-based reranking for reordering doc-
uments and producing summaries. In Proceedings
of the 21st annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 335–336.

Jean Carletta, Simone Ashby, Sebastien Bourban, Mike
Flynn, Mael Guillemot, Thomas Hain, Jaroslav
Kadlec, Vasilis Karaiskos, Wessel Kraaij, Melissa
Kronenthal, et al. 2005. The ami meeting corpus:
A pre-announcement. In International workshop on
machine learning for multimodal interaction, pages
28–39. Springer.

335

Asli Celikyilmaz, Antoine Bosselut, Xiaodong He, and
Yejin Choi. 2018. Deep communicating agents for
abstractive summarization. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), volume 1, pages 1662–1675.

Jiaao Chen and Diyi Yang. 2020. Multi-view sequence-
to-sequence models with conversational structure
for abstractive dialogue summarization. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
4106–4118, Online. Association for Computational
Linguistics.

Mingda Chen, Zewei Chu, Sam Wiseman, and Kevin
Gimpel. 2021a. Summscreen: A dataset for ab-
stractive screenplay summarization. arXiv preprint
arXiv:2104.07091.

Yen-Chun Chen and Mohit Bansal. 2018. Fast abstrac-
tive summarization with reinforce-selected sentence
rewriting. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 675–686.

Yulong Chen, Yang Liu, Liang Chen, and Yue
Zhang. 2021b. Dialsumm: A real-life scenario
dialogue summarization dataset. arXiv preprint
arXiv:2105.06762.

Sangwoo Cho, Logan Lebanoff, Hassan Foroosh, and
Fei Liu. 2019. Improving the similarity measure of
determinantal point processes for extractive multi-
document summarization. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1027–1038.

Sumit Chopra, Michael Auli, and Alexander M Rush.
2016. Abstractive sentence summarization with at-
tentive recurrent neural networks. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 93–98.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,
Trung Bui, Seokhwan Kim, Walter Chang, and Na-
zli Goharian. 2018. A discourse-aware attention
model for abstractive summarization of long docu-
ments. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 615–621,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Hoa Trang Dang. 2005. Overview of duc 2005. In Pro-
ceedings of the document understanding conference,
volume 2005, pages 1–12.

Hal Daumé III and Daniel Marcu. 2006. Bayesian
query-focused summarization. In Proceedings of
the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 305–312,

Sydney, Australia. Association for Computational
Linguistics.

Jay DeYoung, Iz Beltagy, Madeleine van Zuylen, Bai-
ley Kuehl, and Lucy Lu Wang. 2021. Ms2: Multi-
document summarization of medical studies.

Günes Erkan and Dragomir R Radev. 2004. Lexrank:
Graph-based lexical centrality as salience in text
summarization. Journal of artificial intelligence re-
search, 22:457–479.

Alexander Fabbri, Irene Li, Tianwei She, Suyi Li, and
Dragomir Radev. 2019. Multi-news: A large-scale
multi-document summarization dataset and abstrac-
tive hierarchical model. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 1074–1084, Florence, Italy.
Association for Computational Linguistics.

Alexander R Fabbri, Wojciech Kryściński, Bryan
McCann, Caiming Xiong, Richard Socher,
and Dragomir Radev. 2020. Summeval: Re-
evaluating summarization evaluation. arXiv
preprint arXiv:2007.12626.

Kavita Ganesan, ChengXiang Zhai, and Jiawei Han.
2010. Opinosis: a graph-based approach to abstrac-
tive summarization of highly redundant opinions. In
Proceedings of the 23rd International Conference on
Computational Linguistics, pages 340–348.

Sebastian Gehrmann, Yuntian Deng, and Alexander
Rush. 2018. Bottom-up abstractive summarization.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4098–4109.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and
Aleksander Wawer. 2019. SAMSum corpus: A
human-annotated dialogue dataset for abstractive
summarization. In Proceedings of the 2nd Workshop
on New Frontiers in Summarization, pages 70–79,
Hong Kong, China. Association for Computational
Linguistics.

Karl Moritz Hermann, Tomáš Kočiskỳ, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Proceedings of the 28th Inter-
national Conference on Neural Information Process-
ing Systems-Volume 1, pages 1693–1701.

Kevin Jamieson and Ameet Talwalkar. 2016. Non-
stochastic best arm identification and hyperparame-
ter optimization. In Artificial Intelligence and Statis-
tics, pages 240–248. PMLR.

Adam Janin, Don Baron, Jane Edwards, Dan Ellis,
David Gelbart, Nelson Morgan, Barbara Peskin,
Thilo Pfau, Elizabeth Shriberg, Andreas Stolcke,
et al. 2003. The icsi meeting corpus. In 2003 IEEE
International Conference on Acoustics, Speech, and
Signal Processing, 2003. Proceedings.(ICASSP’03).,
volume 1, pages I–I. IEEE.

336

Ruipeng Jia, Yanan Cao, Hengzhu Tang, Fang Fang,
Cong Cao, and Shi Wang. 2020. Neural extractive
summarization with hierarchical attentive heteroge-
neous graph network. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 3622–3631.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William
Cohen, and Xinghua Lu. 2019. PubMedQA: A
dataset for biomedical research question answering.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2567–
2577, Hong Kong, China. Association for Computa-
tional Linguistics.

Sayali Kulkarni, Sheide Chammas, Wan Zhu, Fei Sha,
and Eugene Ie. 2020. Aquamuse: Automatically
generating datasets for query-based multi-document
summarization. arXiv preprint arXiv:2010.12694.

Alon Lavie and Abhaya Agarwal. 2007. Meteor: An
automatic metric for mt evaluation with high levels
of correlation with human judgments. In Proceed-
ings of the second workshop on statistical machine
translation, pages 228–231.

Logan Lebanoff, Kaiqiang Song, Franck Dernoncourt,
Doo Soon Kim, Seokhwan Kim, Walter Chang, and
Fei Liu. 2019. Scoring sentence singletons and pairs
for abstractive summarization. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 2175–2189.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Šaško, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
sière, Lysandre Debut, Stas Bekman, Pierric Cistac,
Thibault Goehringer, Victor Mustar, François Lagu-
nas, Alexander M. Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Ros-
tamizadeh, and Ameet Talwalkar. 2017. Hyperband:
A novel bandit-based approach to hyperparameter
optimization. The Journal of Machine Learning Re-
search, 18(1):6765–6816.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Marina Litvak and Natalia Vanetik. 2017. Query-based
summarization using MDL principle. In Proceed-
ings of the MultiLing 2017 Workshop on Summariza-
tion and Summary Evaluation Across Source Types
and Genres, pages 22–31, Valencia, Spain. Associa-
tion for Computational Linguistics.

Kathleen McKeown and Dragomir R Radev. 1995.
Generating summaries of multiple news articles. In
Proceedings of the 18th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 74–82.

Rada Mihalcea and Paul Tarau. 2004. TextRank:
Bringing order into text. In Proceedings of the 2004
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 404–411, Barcelona, Spain.
Association for Computational Linguistics.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
Ça glar Gulçehre, and Bing Xiang. 2016. Abstrac-
tive text summarization using sequence-to-sequence
rnns and beyond. CoNLL 2016, page 280.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
Topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, Brussels, Belgium.

Preksha Nema, Mitesh M. Khapra, Anirban Laha, and
Balaraman Ravindran. 2017. Diversity driven atten-
tion model for query-based abstractive summariza-
tion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1063–1072, Vancouver,
Canada. Association for Computational Linguistics.

Jun-Ping Ng and Viktoria Abrecht. 2015. Better sum-
marization evaluation with word embeddings for
ROUGE. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 1925–1930, Lisbon, Portugal. Association for
Computational Linguistics.

Jahna Otterbacher, Gunes Erkan, and Dragomir R
Radev. 2009. Biased lexrank: Passage retrieval us-
ing random walks with question-based priors. Infor-
mation Processing & Management, 45(1):42–54.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Compu-
tational Linguistics, pages 311–318.

337

Martin F Porter. 2001. Snowball: A language for stem-
ming algorithms.

François Portet, Ehud Reiter, Albert Gatt, Jim Hunter,
Somayajulu Sripada, Yvonne Freer, and Cindy
Sykes. 2009. Automatic generation of textual sum-
maries from neonatal intensive care data. Artificial
Intelligence, 173(7-8):789–816.

Alexander M Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 379–389.

Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier,
Benjamin Piwowarski, and Jacopo Staiano. 2020.
MLSUM: The multilingual summarization corpus.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 8051–8067, Online. Association for Computa-
tional Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
Advances in Neural Information Processing Systems,
27:3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in Neural Information Process-
ing Systems, 30:5998–6008.

Jesse Vig, Wojciech Kryscinski, Karan Goel, and
Nazneen Fatema Rajani. 2021. Summvis: Inter-
active visual analysis of models, data, and eval-
uation for text summarization. arXiv preprint
arXiv:2104.07605.

Lu Wang, Hema Raghavan, Vittorio Castelli, Radu
Florian, and Claire Cardie. 2016. A sentence
compression based framework to query-focused
multi-document summarization. arXiv preprint
arXiv:1606.07548.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Jiacheng Xu and Greg Durrett. 2019. Neural extrac-
tive text summarization with syntactic compression.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing, Hong
Kong, China. Association for Computational Lin-
guistics.

Michihiro Yasunaga, Jungo Kasai, Rui Zhang, Alexan-
der R Fabbri, Irene Li, Dan Friedman, and
Dragomir R Radev. 2019. Scisummnet: A large an-
notated corpus and content-impact models for scien-
tific paper summarization with citation networks. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 33, pages 7386–7393.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020a. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In In-
ternational Conference on Machine Learning, pages
11328–11339. PMLR.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020b. Bertscore:
Evaluating text generation with bert. In Interna-
tional Conference on Learning Representations.

Yuhao Zhang, Derek Merck, Emily Bao Tsai, Christo-
pher D Manning, and Curtis P Langlotz. 2019. Op-
timizing the factual correctness of a summary: A
study of summarizing radiology reports. arXiv
preprint arXiv:1911.02541.

Ming Zhong, Pengfei Liu, Yiran Chen, Danqing Wang,
Xipeng Qiu, and Xuanjing Huang. 2020. Extractive
summarization as text matching. In Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2020, Online, July 5-10,
2020, pages 6197–6208. Association for Computa-
tional Linguistics.

Ming Zhong, Pengfei Liu, Danqing Wang, Xipeng Qiu,
and Xuan-Jing Huang. 2019a. Searching for effec-
tive neural extractive summarization: What works
and what’s next. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1049–1058.

Ming Zhong, Danqing Wang, Pengfei Liu, Xipeng
Qiu, and Xuanjing Huang. 2019b. A closer look at
data bias in neural extractive summarization models.
EMNLP-IJCNLP 2019, page 80.

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia
Mutuma, Rahul Jha, Ahmed Hassan Awadallah, Asli
Celikyilmaz, Yang Liu, Xipeng Qiu, and Dragomir
Radev. 2021. QMSum: A new benchmark for query-
based multi-domain meeting summarization. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
5905–5921, Online. Association for Computational
Linguistics.

Chenguang Zhu, Ruochen Xu, Michael Zeng, and Xue-
dong Huang. 2020. A hierarchical network for ab-
stractive meeting summarization with cross-domain
pretraining. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 194–
203, Online. Association for Computational Linguis-
tics.

338

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 339–349
November 7–11, 2021. ©2021 Association for Computational Linguistics

Chandler: An Explainable Sarcastic Response Generator

Silviu Vlad Oprea1, Steven R. Wilson1,2, Walid Magdy1

1School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
2School of Engineering and Computer Science, Oakland University, Rochester, MI, USA
{silviu.oprea,steven.wilson}@ed.ac.uk,wmagdy@inf.ed.ac.uk

Abstract

We introduce Chandler, a system that gener-
ates sarcastic responses to a given utterance.
Previous sarcasm generators assume the in-
tended meaning that sarcasm conceals is the
opposite of the literal meaning. We argue that
this traditional theory of sarcasm provides a
grounding that is neither necessary, nor suffi-
cient, for sarcasm to occur. Instead, we ground
our generation process on a formal theory that
specifies conditions that unambiguously differ-
entiate sarcasm from non-sarcasm. Further-
more, Chandler not only generates sarcastic re-
sponses, but also explanations for why each re-
sponse is sarcastic. This provides accountabil-
ity, crucial for avoiding miscommunication be-
tween humans and conversational agents, par-
ticularly considering that sarcastic communi-
cation can be offensive. In human evalua-
tion, Chandler achieves comparable or higher
sarcasm scores, compared to state-of-the-art
generators, while generating more diverse re-
sponses, that are more specific and more co-
herent to the input.

1 Introduction

The prevalence of sarcasm on the social web (Kho-
dak et al., 2018; Sykora et al., 2020) has motivated
more and more computational investigations across
the research community. Most focus on textual
sarcasm detection (Riloff et al., 2013; Joshi et al.,
2016; Wallace et al., 2015; Rajadesingan et al.,
2015; Bamman and Smith, 2015; Amir et al., 2016;
Hazarika et al., 2018; Oprea and Magdy, 2019):
the task of classifying whether or not a given text
is sarcastic.

Recently, a new research direction considers sar-
casm generation. This is motivated by the poten-
tial to create approachable conversational agents.
These would be more effective at emulating a hu-
man correspondent, considering that sarcasm is
a natural part of human discourse (Mishra et al.,
2019). The limited amount of work on sarcasm

generation is spread across two variants of the task:
generating a sarcastic response to an input utter-
ance (Joshi et al., 2015); and generating a sarcastic
paraphrase of an input utterance (Mishra et al.,
2019; Chakrabarty et al., 2020).

A major limitation of existing sarcasm gener-
ation systems is that they rely on variants of the
traditional theory of sarcasm: that the intended
meaning concealed by sarcasm is the opposite of
the literal meaning. Driven by this assumption,
their aim is to generate phrases that either express
two incongruous propositions (Joshi et al., 2015;
Mishra et al., 2019; Chakrabarty et al., 2020), or
express a proposition that is incongruous to the dis-
course setting (Joshi et al., 2015). However, the
traditional theory provides a grounding that is nei-
ther necessary, nor sufficient, for sarcasm to occur,
as discussed in Section 3. Furthermore, it is less ob-
vious how previous systems that consider the task
of generating sarcastic paraphrases, rather than re-
sponses, could be used for enabling conversational
agents to generate sarcasm.

To overcome these limitations, we first select
a formal theory that, from a linguistic-theoretical
perspective, specifies devices whose presence is
both necessary and sufficient to identify sarcasm,
unambiguously differentiating it from non-sarcasm.
Grounded on this theory, we propose our sarcasm
generation system, Chandler1. Being grounded in
a theory, Chandler is also explainable. That is, we
are able to generate not only sarcastic responses,
but also explanations for why each response is sar-
castic. We believe this kind of accountability is
crucial for avoiding miscommunication between
humans and conversational agents, particularly con-
sidering the potentially offensive nature of sarcastic
communication (Wilson, 2006).

We employ human annotators on a crowdsourc-
ing platform to evaluate Chandler against state-
of-the-art generators, across multiple dimensions.

1Inspired by the popular TV sitcom.

339

Chandler achieves comparable or higher sarcasm
scores, while generating responses that are more
diverse, and are perceived as more specific and co-
herent than those of previous sarcasm generators.

A live demo of the system, allowing users
to input an utterance and view sarcastic re-
sponses, along with their explanations, is available
at https://bit.ly/ChandlerEMNLP. We
will also release, along with the camera ready ver-
sion, all inputs, responses, model checkpoints, and
the code that implements Chandler, our explainable
sarcasm generator, under a Creative Commons CC
BY-NC license.

2 Related Work

The earliest work on sarcasm generation is that of
Joshi et al. (2015), who introduce SarcasmBot, a
sarcastic response generation system. SarcasmBot
generates a response based on one of eight possi-
ble generators, each containing a set of predefined
patterns. The generators do not in fact account for
the meaning of the input, rather, they only focus on
aspects such as the overall sentiment or presence
of swear words.

Mishra et al. (2019) suggest a sarcastic para-
phrase generator. They assume that the input is
always of negative polarity, and use an unsuper-
vised pipeline of four modules to convert such an
input u(−) to a sarcastic version. In the Sentiment
Neutralisation module, they filter out negative sen-
timent words from u(−) to produce u(0). In the
Positive Sentiment Induction module, they modify
u(0) to convey positive sentiment, producing u(+).
Next, in the Negative Situation Retrieval module,
they mine a phrase v(−) that expresses a negative
situation. v(−) is selected from a set of predefined
phrases, based on the similarity to the original input.
Finally, the Sarcasm Synthesis module constructs
the sarcastic paraphrase from u(+) and v(−).

Chakrabarty et al. (2020) present a similar
pipeline. Their R3 system first employs a Reversal
of Valence module, which replaces input words of
negative valence with their lexical antonyms using
WordNet (Miller, 1995) to produce u(+). Next, it
builds an utterance v that is incongruous to u(+),
and generates sarcasm from u(+) and v.

Second, they all rely on variants of the tradi-
tional theory of sarcasm, which provides a ground-
ing that is neither necessary, nor sufficient, for sar-
casm to occur, as discussed in Section 3. Third, the
systems of Mishra et al. (2019) and Chakrabarty

et al. (2020) are only designed to work with
negative inputs. However, sarcastic communi-
cation can have many communicative goals, in-
cluding to praise (Bruntsch and Ruch, 2017), or
strengthen friendships (Jorgensen, 1996; Pexman
and Zvaigzne, 2004)

3 Linguistic Grounding

The goal of this section is to select a linguistic
theory on which to ground the sarcasm generation
process.

Gricean Theory In the traditional theory, sar-
casm is a form of figurative language that is cre-
ated by literally saying one thing but meaning the
opposite. As Sperber and Wilson (1981) point out,
a semantic theory of sarcasm that provides such
an explanation would need to provide (a) a mech-
anism of deriving figurative meaning, (b) and an
explanation of why figurative meaning exists in the
first place. The traditional theory is incomplete be-
cause it does not provide answers to such questions.
Moving further Grice (Grice, 1975) sees sarcasm
as a blatant flouting of the first maxim of quality
(“do not say what you believe is false”), giving
rise to a conversational implicature that ensures
the cooperative principle is observed. That is, the
sarcastic speaker does not figuratively mean, but
conversationally implicates the opposite of what
they say. A main limitation of the Gricean view
is that the flouting is not necessary for sarcasm to
occur. For instance, consider sarcastic understate-
ments such as saying "This was not the best movie
ever" to mean the movie was bad. Violation is also
not sufficient. For instance, it also occurs in the
construction of certain stylistic devices, such as
metaphors.

Echoic Theories Consider the following sce-
nario:

[Scenario 1] Alice and Bob go for a walk. De-
spite Alice’s requests, Bob refuses to bring along
an umbrella, assuring her it would not rain. Mo-
mentarily after leaving the house, it starts raining.
Alice to Bob:

(1) a. It’s definitely not raining.

Sperber and Wilson (1981) invite us to reconsider
the goal of sarcastic utterances. According to the
theories discussed so far, Alice’s goal is to sarcasti-
cally convey her belief about the weather—a belief
that is the opposite of what she says. Note, how-

340

ever, that especially when prosodic or other con-
textual cues are missing, knowing her belief is a
prerequisite for, not a consequence of, recognising
her sarcasm. Sperber and Wilson (1981) suggest a
different goal that she might have, mainly that of
conveying a belief not about the weather, but about
the content of 1a itself. In their view, the utterance
is not used2 by Alice, but is an echoic mention of
a previous proposition, mainly the one expressed
by Bob’s claim that it would not rain. Through
the mention, Alice expresses a dissociative attitude
towards Bob’s claim, perhaps suggesting it was
ridiculous of him to expect a dry weather. This
echoic mention theory offers an explanation for
why sarcasm exists in the first place. However, it
does not cover all instances of sarcasm. An ex-
ample of a non-echoic sarcastic utterance is Alice
saying:

(1) b. Thanks for leaving the umbrella at home.

The echoic mention theory is also unable to differ-
entiate between sarcastic and non-sarcastic echoic
mentions. Several variants of the echoic mention
theory have been suggested (Kreuz and Glucks-
berg, 1989; Wilson and Sperber, 1992; Sperber and
Wilson, 1998), however they all suffer from similar
limitations. We invite the interested reader to fur-
ther consult Giora (1995), Kumon-Nakamura et al.
(1995), and Utsumi (2000).

Pretense Theories Clark and Gerrig (1984) in-
troduce the pretense theory of sarcasm which
claims that a sarcastic speaker pretends to be an
injudicious person speaking to an imaginary unini-
tiated audience who would accept the literal inter-
pretation of the speaker’s utterance. This way, the
speaker expresses a negative attitude towards the
pretended person, the imaginary audience, and the
situation portrayed through their acting. A vari-
ant of the pretense theory is viewing sarcasm as a
joint pretense of the speaker and the listener (Clark,
1996). That is, instead of the speaker pretending to
be an imaginary person, both interlocutors pretend
to be in an imaginary situation in which they are
performing a serious communicative act directed at
the listener. Sarcasm is caused by the joint pretense
of the speaker and the listener that the imaginary
situation is taking place. Both theories fail to dis-
tinguish sarcasm from non-sarcastic pretense, such
as parody. Their assumptions are, therefore, not

2See Sperber and Wilson (1981) for a discussion on the
use–mention distinction.

sufficient to explain sarcasm. They are also not nec-
essary. An argument in this direction is provided
by Utsumi (2000, p. 1782).

3.1 Implicit Display Theory

The theories reviewed so far make assumptions
about the nature of sarcasm that are neither neces-
sary, nor sufficient, for sarcasm to occur. We now
introduce the Implicit Display Theory (IDT) (Ut-
sumi, 1996), which focuses specifically on making
the distinction between sarcasm and non-sarcasm.
Because of this, we chose it to serve as a ground-
ing for our generation process. We provide a brief
introduction here, but invite the interested reader
to consult (Utsumi, 2000) for an overview of how
it overcomes the limitations of previous theories.

The IDT first defines the concept of an ironic
environment. We say a situation in which an utter-
ance occurs is surrounded by an ironic environment
if the discourse context includes the following com-
ponents:

1. The speaker has expectation Q at time t0;
2. Q fails at time t1 > t0;
3. The speaker has a negative attitude towards

the failure of Q.

In Utsumi (1996)’s view, such a situation within
the discourse context facilitates the use of sarcasm.
Note that the negative attitude could have several
intensities, could be serious, or joking. Note also
that the idea of linking sarcasm to an expectation
is not new to Utsumi (1996), rather it is supported
by previous work (Kreuz and Glucksberg, 1989;
Kumon-Nakamura et al., 1995).

From here, according to the IDT, an utterance is
sarcastic if and only if it is given in a situation sur-
rounded by an ironic environment and it implicitly
displays all three components of the ironic environ-
ment. Implicit display is realised if the utterance:

1. alludes to the speaker’s failed expectation Q;
2. includes pragmatic insincerity, by intention-

ally violating one of the pragmatic principles;
3. implies (indirectly expresses) the speaker’s

negative attitude towards the failure of Q.

The pragmatic principles that we are referring to in-
clude, among others, Grice’s maxims (Grice, 1975),
and the felicity conditions for well-formed speech
acts (Searle and Searle, 1969).

A final claim of the theory is that sarcasm is a
prototype-based category characterised by implicit
display. That is, the degree of sarcasm of an utter-

341

ance is proportional to how many implicit display
conditions the utterance meets.

4 Methodology

The IDT directly suggests an algorithm for sarcasm
generation that identifies an ironic environment,
then creates an utterance that implicitly displays
it. We now discuss how we implement each step.
Ironic Environment Let Uin be an input text to

our system. Herein, we assume the expectation Q
that is part of the ironic environment negates what
Uin proposes. For instance, say Uin expresses the
event P = [<user> wins the marathon]. We assume
Q = ¬P = [<user> does not win the marathon].
As we shall see, the algorithm we suggest will not,
in fact, require us to formulate Q, but it relies on
the above assumption.

Allusion to Q Following Utsumi (2000), we de-
fine allusion in terms of coherence relations, sim-
ilar to the relations of rhetorical structure theory
(RST) (Mann and Thompson, 1987). That is, if U
is an utterance that expresses proposition α, we say
U alludes to the expectation Q if and only if there
is a chain of coherence relations from α to Q. So,
we need to first select a proposition α to either start
or end the coherence chain, then specify the chain
between α and Q, and formulate U such that it ex-
presses α. We suggest defining such α as objects of
if-then relations, where the subject is P , the propo-
sition expressed by input text Uin. That is, relations
of the form “if P then α” should hold. To infer α
given Uin, we use COMET (Bosselut et al., 2019),
an adaptation framework for constructing common-
sense knowledge. Specifically, we use the COMET
variant fine-tuned on ATOMIC (Sap et al., 2019),
a dataset of typed if-then relations. 3. COMET
inputs the subject of the relation, along with the
relation type, and outputs the relation object. In our
case, the subject is Uin, and we set α to the output.

We leverage four relation types. In the examples
that follow, assume the input text is Uin =‘<user>
won the marathon’: (1) xNeed: the object α of
a relation of this type specifies an action that the
user needed to perform before the event took place,
e.g. “if Uin then α = [xNeed to train hard]”; (2)
xAttr: the object α specifies how a user that would
perform such an action is seen, e.g. “if P then
α = [xAttr competitive]”; (3) xReact: the object
α specifies how the user could feel as a result of

3We use the COMET checkpoint published at http://
bit.ly/comet-checkpoints.

Algorithm 1: Generate sarcastic response
input: utterance Uin;
ironic environment

Let Q := ¬P be the failed expectation;

implicit display
Choose an if-then relation type τ from xNeed,

xAttr, xReact, and xEffect;
Let α = COMET(Uin, τ);

return response U that expresses emotion(¬α);

the event, e.g. “if P then α = [xReact happy]”;
and (4) xEffect: the object specifies a possible ef-
fect that the action has on the user, e.g. “if P then
α = [xEffect gets congratulated]”. In Table 1 we
show, for each relation type, the coherence chains
between the relation object α and the failed expec-
tation Q. Under these conditions, to generate an
utterance U that alludes to Q, we simply need to
choose U to expresses α.

Pragmatic insincerity The second requirement for
implicit display is that the utterance generated U
should include pragmatic insincerity. In this pa-
per, we focus on violating Grice’s maxim of qual-
ity (Grice, 1975), where we aim for the proposi-
tional contents of U (generated utterance) and Uin
(input text) to be incongruous. To achieve this,
we first choose an if-then relation type, then in-
fer the relation object α from Uin using COMET,
and construct U to express ¬α. For instance, if
Uin =‘<user> won the marathon’, and we have
chosen the xAttr relation type, U could be chose to
express ¬α = [<user> is not competitive].

Negative attitude To fulfill the last requirement
of implicit display, the utterance generated should
imply a negative attitude towards the failure of the
expectation Q. As pointed out by Utsumi (1996),
this can be achieved by embedding verbal cues
usually associated with such attitudes, including
hyperbole and interjections.

Logical form and explainability At this point we
formulate Algorithm 1 for generating a sarcastic
response U , given an input utterance Uin that ex-
presses proposition P . We refer to emotion(¬α) as
the logical form of the sarcastic response we gen-
erate. Here, emotion is a function that augments
¬α to express a negative attitude. Note that the
logical form, together with the coherence chain
between α and the failed expectation Q, provide
a complete explanation for how and why sarcasm
occurs. The explanation is ε = (emotion(¬α), C),
where is the coherence chain from α to Q. The co-

342

relation type example relation coherence chain

xNeed if P then α = [xNeed to train hard] volitional-cause(α, P) and contrast(P,Q)
xAttr if P then α = [xAttr competitive] condition(α, IP) ∧ purpose(IP , P) ∧ contrast(P,Q)
xReact if P then α = [xReact happy] contrast(Q,P) ∧ volitional-result(P, α)
xEffect if P then α = [xEffect gets congratulated] contrast(Q,P) ∧ non-volitional-result(P, α)

Table 1: Coherence chains between the object α of an if-then relation and the failed expectation Q, for each
relation type, as discussed in Section 4. Here, P is the proposition expressed by the input text Uin. In the examples,
Uin =‘<user> won the marathon’.

herence chain for each relation type can be selected
from Table 1. This makes our sarcasm generation
process accountable.

Logical Form to Text To convert the logical form
to text, we rely on predefined patterns for each
if-then relation type. As a running example, as-
sume the input utterance Uin =‘<user> won the
marathon’ and the chosen relation type is xAttr. Say
α = COMET(Uin, xAttr) = [xAttr competitive].
The logical form is emotion(¬[xAttr competitive]).
We construct an intermediate utterance U0

out us-
ing the rule <user> <verb> competitive, where
<verb> is a verb specific to each relation type. In
our example, U0

out could be ‘<user> is competitive’.
From U0

out, we generate a sarcastic response Uout
to Uin as follows. We first apply a rule-based algo-
rithm to generate the negation of U0

out in a manner
similar to Chakrabarty et al. (2020), discussed in
Section 2. The result could be ‘<user> is not com-
petitive’, expressing ¬[xAttr competitive]. Next,
in a pattern-based manner, we augment this with
hyperbole and interjections, as indicated by Utsumi
(2000), to get Uout, expressing emotion(¬[xAttr
competitive]). This could be ‘<user> is definitely
not competitive, yay!’. A full list of patterns is
shown in the Appendix A.

In the running example we focused on the xAttr
relation type. Recall there are four relation types
that we consider, xNeed, xAttr, xReact, and xEffect.
As such, for each input text Uin, we generate 4
responses, one for each relation type. We use the
pattern Ch-<relation > to refer to each response
of our system, Chandler. For instance, Ch-xAttr
refers to Uout built considering the xAttr relation,
while Ch-xNeed refers to Uout built considering the
xNeed relation.

Note that other strategies for converting the log-
ical form of sarcasm to text are possible. For in-
stance, using policy-based generation with external
rewards (Mishra et al., 2019) might have lead to
higher perceived sarcasticness of our generated re-
sponses. We leave this to future work. Our goal

was to provide a theory-based, explainable, genera-
tion framework.

5 Experiments

5.1 Setup

To evaluate Chandler, we built a survey4 that we
published on the Prolific Academic5 crowdsourc-
ing platform. In the survey, we presented anno-
tators with the input text Uin, along with the re-
sponses produced by Chandler-xNeed, Chandler-
xAttr, Chandler-xReact, and Chandler-xEffect.

We also included a response from Di-
aloGPT (Zhang et al., 2020), a recent dialogue sys-
tem that is not built to be sarcastic; a response pro-
duced by SarcasmBot, the sarcastic response gener-
ator of Joshi et al. (2015); and a response produced
by R3, the state-of-the-art sarcastic paraphrase gen-
erator of Chakrabarty et al. (2020). While not de-
signed to produce responses, we applied R3 to the
output of DialoGPT to get a sarcastic rephrase of a
response to the input.

As inputs, we selected texts from the corpus
published by Wilson and Mihalcea (2019). The
corpus contains short texts (extracted from tweets)
where users describe actions they performed. We
compute the sentiment polarity of each text using
the classifier of Barbieri et al. (2020), a RoBERTa
model (Liu et al., 2019) fine-tuned on the tweet
sentiment dataset of Rosenthal et al. (2017). Next,
we form five partitions of 50 texts each: very nega-
tive and very positive, containing the top 50 texts
based on their negative and positive probabilities,
respectively; negative, containing random texts for
which the probability of being negative was higher
that the probabilities of being positive or neutral;
and positive and neutral, partitions that we formed
analogously to how we formed the negative par-
tition. Our final input dataset contains 250 texts.
For each input, we collected 3 annotations for its

4Participant information sheet is shown in Appendix C.
5https://prolific.co

343

system response

DialoGPT I’m not sure if you’re being sarcastic or not.
DialoGPT+R3 I’m sure if you’re being sarcastic or not. No one has yet

been hurt.
SarcasmBot That is a very useful piece of information! LMAO

Ch-xNeed Yay! Good job not knowing how to write.
Ch-xAttr Yay! You’re not a very unintelligent person, that’s for sure.
Ch-xReact You’re not feeling very embarrassed right now, that’s for

sure. Yay!
Ch-xEffect You’re not really going to sigh in frustration right now,

that’s for sure. Brilliant!

Table 2: Responses generated by all systems to the ut-
terance “I ran out of characters :drooling_face:”, as dis-
cussed in Section 5.1.

System sarc. hum. coh. spec. diversity
DialoGPT (non-sarcastic) 0.6 0.3 2.3 2.0 0.92
DialoGPT+R3 0.8 0.3 0.9 1.3 0.92
SarcasmBot 2.5 0.8 1.4 0.9 0.14
Ch-xNeed 1.9 0.6 1.3 1.6 0.80
Ch-xAttr 2.1 0.6 1.3 1.4 0.80
Ch-xReact 1.7 0.4 1.0 1.0 0.35
Ch-xEffect 1.6 0.5 1.1 1.3 0.67

Table 3: Means of the sarcasm, humour, specificity, and
coherence scores provided by annotators, for each vari-
ant of Chandler (Ch), as discussed in Section 5.2. Di-
versity is the ratio of unique responses generated for
our 250 inputs.

responses.
Table 2 shows an example input utterance, along

with responses from all systems.
All in all, each survey instance contained a spe-

cific input text, and seven responses generated as
mentioned above and presented in a random or-
der. In the survey, we asked annotators to evaluate
each response across four dimensions: (1) Sarcasm:
How sarcastic is the response? (2) Humour: How
funny is the remark? (3) Coherence: How coherent
is the remark to the input? It is coherent if it sounds
like sensible response that a person might give in a
real conversation; and (4) Specificity: How specific
is the remark to the input? It is not specific if it can
be used as a response to many other inputs. Each
dimension ranged from 0 to 4, in line with previous
work (Chakrabarty et al., 2020).

5.2 Results

In Table 3 we show mean sarcasm, humour, speci-
ficity, and coherence scores provided by annotators
for each variant of Chandler, across all inputs.

We have four strategies for alluding to the failed
expectation, depending on the relation type con-
sidered. We notice the highest sarcasm score is
achieved by Ch-xAttr, followed by Ch-xNeed, Ch-
xReact and Ch-xEffect. Out of the allusion strate-
gies selected, the responses perceived as most sar-

castic are those that mention attributes of the user.
Similarly, we notice that, among variants of Chan-
dler, those that use the xAttr and xNeed relations
are perceived and the most coherent and specific to
the input, and achieve the highest humour score.

Chandler achieves lower specificity and coher-
ence scores compared to DialoGPT, which is to
be expected considering that DialoGPT is not de-
signed to conceal the intended meaning using sar-
casm. The sarcasm score, however, for all variants
of Chandler, is considerably higher compared to
DialoGPT. The situation is similar when comparing
Chandler to DialoGPT+R3.

When comparing to SarcasmBot, while speci-
ficity is considerably higher for most variants of
Chandler, and coherence is similar, sarcasm score
is slightly lower. In particular, the most sarcastic
variant of Chandler, Ch-xAttr, achieves a sarcasm
score of 2.1, compared 2.5 achieved by Sarcasm-
Bot. This is expected, considering that SarcasmBot
provides responses from a fixed set of responses
that were carefully curated for sarcasm. However,
using SarcasmBot in the real world is not practical,
as the original authors point out (Joshi et al., 2015).
When analysing its outputs, we noticed a very low
diversity, as shown in Table 3, where we define
diversity as ratio of unique responses generated
across our 250 inputs. In particular, SarcasmBot
produced a total of only 28 unique responses6. In
a real scenario of a user interacting with a con-
versational agent, the user might not appreciate
repeatedly receiving the same response, that is not
even specific to the meaning of the input. Indeed, in
our experiments, we noticed that most of the time
a fallback generator of SarcasmBot was employed,
returning the simple concatenation of a random pos-
itive phrase to a random negative one, from a set of
predefined phrases that have no specific connection
to the input.

6 Conclusion

We have presented Chandler, a linguistically in-
formed framework for generating sarcastic re-
sponses to an input utterance. Chandler is the first
such system that does not rely exclusively on pre-
defined patterns, and focuses on explainable gener-
ation, grounded on a linguistic theory of sarcasm
that overcomes the limitations of previous theories
assumed by previous sarcasm generators.

6All 28 responses are listed in the Appendix B.

344

Acknowledgments

This work was supported in part by the EPSRC Cen-
tre for Doctoral Training in Data Science, funded
by the UK Engineering and Physical Sciences Re-
search Council (grant EP/L016427/1); the Univer-
sity of Edinburgh; and The Financial Times.

References
Silvio Amir, Byron C. Wallace, Hao Lyu, Paula Car-

valho, and Mario J. Silva. 2016. Modelling context
with user embeddings for sarcasm detection in social
media. In CoNLL, pages 167–177. ACL.

David Bamman and Noah A. Smith. 2015. Contextual-
ized sarcasm detection on twitter. In ICWSM, pages
574–577. AAAI Press.

Francesco Barbieri, Jose Camacho-Collados, Luis Es-
pinosa Anke, and Leonardo Neves. 2020. TweetE-
val: Unified benchmark and comparative evaluation
for tweet classification. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2020,
pages 1644–1650, Online. ACL.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.
2019. COMET: Commonsense transformers for
automatic knowledge graph construction. In ACL,
pages 4762–4779. ACL.

Richard Bruntsch and Willibald Ruch. 2017. Study-
ing irony detection beyond ironic criticism: Let’s in-
clude ironic praise. Frontiers in Psychology, 8:606.

Tuhin Chakrabarty, Debanjan Ghosh, Smaranda Mure-
san, and Nanyun Peng. 2020. Rˆ3: Reverse, retrieve,
and rank for sarcasm generation with commonsense
knowledge. In ACL, pages 7976–7986. ACL.

Herbert H. Clark. 1996. Using Language. Cambridge
University Press.

Herbert H. Clark and Richard J. Gerrig. 1984. On the
pretense theory of irony. Journal of Experimental
Psychology: General, 113(1):121–126.

Rachel Giora. 1995. On irony and negation. Discourse
Processes, 19(2):239–264.

H. P. Grice. 1975. Logic and conversation. In Pe-
ter Cole and Jerry L. Morgan, editors, Syntax and
Semantics: Vol. 3: Speech Acts, pages 41–58. Aca-
demic Press, Cambridge, UK.

Devamanyu Hazarika, Soujanya Poria, Sruthi Gorantla,
Erik Cambria, Roger Zimmermann, and Rada Mi-
halcea. 2018. Cascade: Contextual sarcasm detec-
tion in online discussion forums. In COLING, pages
1837–1848. ACL.

Julia Jorgensen. 1996. The functions of sarcastic irony
in speech. Journal of Pragmatics, 26(5):613–634.

Aditya Joshi, Anoop Kunchukuttan, Mark James Car-
man, and Pushpak Bhattacharyya. 2015. Sarcasm-
bot: An open-source sarcasm-generation module for
chatbots. In WISDOM at KDD. ACM.

Aditya Joshi, Vaibhav Tripathi, Kevin Patel, Pushpak
Bhattacharyya, and Mark Carman. 2016. Are word
embedding-based features useful for sarcasm detec-
tion? In EMNLP, pages 1006–1011. ACL.

Mikhail Khodak, Nikunj Saunshi, and Kiran Vodrahalli.
2018. A large self-annotated corpus for sarcasm. In
LREC. ELRA.

Roger J. Kreuz and Sam Glucksberg. 1989. How to Be
Sarcastic: The Echoic Reminder Theory of Verbal
Irony. Journal of Experimental Psychology: Gen-
eral, 118(4):374–386.

Sachi Kumon-Nakamura, Sam Glucksberg, and Mary
Brown. 1995. How about another piece of pie: The
allusional pretense theory of discourse irony.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

William C. Mann and Sandra A. Thompson. 1987.
Rhetorical Structure Theory: Description and Con-
struction of Text Structures, pages 85–95. Springer
Netherlands, Dordrecht.

George A. Miller. 1995. Wordnet: A lexical
database for english. Communications of the ACM,
38(11):39–41.

Abhijit Mishra, Tarun Tater, and Karthik Sankara-
narayanan. 2019. A modular architecture for unsu-
pervised sarcasm generation. In EMNLP-IJCNLP,
pages 6144–6154. ACL.

Silviu Oprea and Walid Magdy. 2019. Exploring au-
thor context for detecting intended vs perceived sar-
casm. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 2854–2859, Florence, Italy. Association
for Computational Linguistics.

Penny M. Pexman and Meghan T. Zvaigzne. 2004.
Does irony go better with friends? Metaphor and
Symbol, 19(2):143–163.

Ashwin Rajadesingan, Reza Zafarani, and Huan Liu.
2015. Sarcasm detection on twitter: A behav-
ioral modeling approach. In WSDM, pages 97–106.
ACM.

Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalindra
De Silva, Nathan Gilbert, and Ruihong Huang. 2013.
Sarcasm as contrast between a positive sentiment
and negative situation. In EMNLP, pages 704–714.
ACL.

345

Sara Rosenthal, Noura Farra, and Preslav Nakov. 2017.
SemEval-2017 task 4: Sentiment analysis in Twit-
ter. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 502–518, Vancouver, Canada. ACL.

Maarten Sap, Ronan Le Bras, Emily Allaway, Chan-
dra Bhagavatula, Nicholas Lourie, Hannah Rashkin,
Brendan Roof, Noah A. Smith, and Yejin Choi. 2019.
Atomic: An atlas of machine commonsense for if-
then reasoning. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 33(01):3027–3035.

John R Searle and John Rogers Searle. 1969. Speech
acts: An essay in the philosophy of language, vol-
ume 626. Cambridge University Press, Cambridge,
UK.

Dan Sperber and Deirdre Wilson. 1981. Irony and the
use-mention distinction. Philosophy, 3:143–184.

Dan Sperber and Deirdre Wilson. 1998. Irony and rel-
evance: A reply to seto, hamamoto and yamanashi.
In R. Carston and S. Uchida, editors, Relevance the-
ory: Applications and implications, pages 289–293.
Benjamins, Amsterdam.

Martin Sykora, Suzanne Elayan, and Thomas W Jack-
son. 2020. A qualitative analysis of sarcasm, irony
and related #hashtags on twitter. Big Data & Soci-
ety, 7(2):2053951720972735.

Akira Utsumi. 1996. Implicit display theory of verbal
irony: Towards a computational model of irony. In
Proceedings of the International Workshop on Com-
putational Humor (IWCH’96).

Akira Utsumi. 2000. Verbal irony as implicit dis-
play of ironic environment: Distinguishing ironic
utterances from nonirony. Journal of Pragmatics,
32(12):1777–1806.

Byron C. Wallace, Do Kook Choe, and Eugene Char-
niak. 2015. Sparse, contextually informed models
for irony detection: Exploiting user communities,
entities and sentiment. In ACL, pages 1035–1044.
ACL.

Deirdre Wilson. 2006. The pragmatics of verbal irony:
Echo or pretence? Lingua, 116(10):1722–1743.

Deirdre Wilson and Dan Sperber. 1992. On verbal
irony. Lingua, 87(1):53–76.

Steven Wilson and Rada Mihalcea. 2019. Predict-
ing human activities from user-generated content.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
2572–2582, Florence, Italy. Association for Compu-
tational Linguistics.

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen,
Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing
Liu, and Bill Dolan. 2020. DialoGPT : Large-scale
generative pre-training for conversational response
generation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 270–278. ACL.

A Logical Form to Text Patterns

In this Section we show the patterns used by Chan-
dler to convert the logical form of sarcasm to text,
as discussed in Section 4. We show patterns for
each if-then relation type, xNeed, xAttr, xReact,
and xEffect.

In the patterns below, <inten> is an intensifier,
<suff_inten> is an intensifier added at the end of
a phrase, <pos> is a positive emotion word, and
<interj> an interjection. Inspired by (Utsumi, 2000)
and (Joshi et al., 2015), each of these were ran-
domly chosen from the following sets:

• <inten> : [very]
• <suff_inten> : [for sure]
• <pos> : [Good job, Well done]
• <intrj> : [Yay!, Brilliant!]

<obt> below is the object of the corresponding if-
then relation object, as provided by COMET when
taking in the input tweet.

A.1 Patterns for the Complete Version of
Chandler

xNeed patterns:
• You didn’t <obt> , that’s <suff_inten> . <pos>

!
xAttr patterns:
• <interj> You’re not <inten> <obt> , that’s

<suff_inten> .
• <interj> <pos> not being <obt> .
• <interj> You’re not a very <obt> person that’s

<suff_inten> ."
xReact patterns:
• You’re not feeling <inten> <obt> right now,

that’s <suff_inten> . <interj>
xEffect patterns:
• You’re not <inten> going to obt_inf right now,

that’s <suff_inten> . <interj>

B SarcasmBot Responses

As discussed in Section 5.2, we noticed Sarcasm-
Bot produced a total of only 28 unique responses
to our set of 250 inputs. Here they are:

1. Unbelievable that you just said ’sucky’! You
are really very classy!

2. Awesome!
3. Brilliant!
4. Let’s party!
5. Oh you poor thing!
6. You owe me a drink for that awesome piece

of news!
346

7. Wow, you said ’sucks’, didn’t you? Your mom
will be really proud of you!

8. Wow, you said ’suck’, didn’t you? Your mom
will be really proud of you!

9. I’d feel terrible if I were you!
10. You are such a simple person!
11. Aww!! That’s so adorable!
12. That deserves an applause.
13. I am so sorry for you!
14. Yay! Yawn!
15. How exciting! Yawn!
16. How exciting! *rolls eyes*
17. Wow! *rolls eyes*
18. Yay! *rolls eyes*
19. Yay! LMAO
20. Wow! Yawn!
21. How exciting! LMAO
22. Wow! LMAO
23. That is a very useful piece of information!

rolls eyes
24. That is a very useful piece of information!

LMAO
25. That is a very useful piece of information!

Yawn!
26. Unbelievable that you just said ’sobbing’! You

are really very classy!
27. Unbelievable that you just said ’sucks’! You

are really very classy!
28. Unbelievable that you just said ’bloody’! You

are really very classy!

C Participant Information Sheet

C.1 What will I do?

Imagine someone (we’ll call them PersonX), makes
a statement. You will be shown a few responses
to that statement. The responses were generated
by chatbots (computer programs). Some sentences
talk about sensitive topics, such as tragic life events.
Responses to such sentences could be potentially
inappropriate, or even offensive or harmful. Un-
fortunately, chatbots do not understand whether or
not a topic is sensitive for a human. Please be fully
aware of this when accepting to take part in our
study.

For each response, you will be asked:

1. How sarcastic you find the response? (0 - not
sarcastic, 3 - very sarcastic)

2. How funny you find the response? (0 - not
funny, 3 - very funny)

3. How specific is the response to PersonX’s
statement? The response is specific if it men-
tions details that show a good understanding
of PersonX’s statement and its implications.
Otherwise it’s general. (0 - very general, 3 -
very specific).

4. How coherent is the response to PersonX’s
statement? The response is coherent if it
makes sense as a response. That is, it’s a clear
and sensible response that someone might ac-
tually give. It does not matter if it’s specific or
general. (0 - not coherent, 3 - very coherent).

Let’s take a quick example. In this example,
imagine that PersonX’s statement is "I went to the
grocery store". Here are some responses about this
statement.

About being specific:

• "That’s great." - Very general response. You
can say this as a response to pretty much any-
thing.

• "Nice to hear you are enjoying this sunny
day." - General response. It does provides
some details about the day (that it’s sunny).
However, those details are not uniquely re-
lated to PersonX’s statement.

• "You must be tired." - More specific response.
It shows an understanding that going some-
where (anywhere at all) may cause tiredness.

• "You probably bought a lot of vegetables." -
Specific response. It shows an understanding
of what a grocery store is. That is, a place
where you can probably buy vegetables.

• "You must have been quite hungry for car-
rots." - Very specific response. It shows an un-
derstanding of what a grocery store is, about
what carrots are, and about the link between
carrots and the store (mainly, that carrots are
sold there).

About being coherent:

• "I’m cold." - Not coherent. It has nothing to
do with PersonX’s statement

• "I went to the grocery store". It’s not a suitable
response that someone would normally give.

347

• "I had such a wonderful dream last night, there
were a lot of awesome cars painted blue." -
Not coherent. It does not make sense as a
response to PersonX’s statement.

• "I sometimes dream about eating carrots."
- More coherent response. Someone might
sometimes say this as a response, although
it’s not a common response.

• "OK thanks." - Very coherent. One might
actually say this as a response. Notice it’s not
specific to PersonX’s statement. You can say
it as a response to many other statements. Still,
it’s coherent to PersonX’s statement. Thanks
a lot for getting me those carrots, I’ll pay you
back next week. - Very coherent and very
specific to PersonX’s statement.

C.2 Participant Information Sheet and
Consent Form

• Principal investigator: Prof. Walid Magdy

• Researcher collecting data: Silviu Oprea

• Funder (if applicable): EPSRC, Financial
Times

This study is in the process of being certified ac-
cording to the Informatics Research Ethics Process,
RT number 2019/87618. Please take time to read
the following information carefully. You should
keep this page for your records.

C.3 Who are the researchers?

We are the Social Media Analysis and Support for
Humanity (SMASH) group, a research group that
brings together a range of researchers from the
University of Edinburgh in order to build on our
existing strengths in social media research. This
research group focuses on mining structures and
behaviours in social networks. The principal inves-
tigator is Prof. Walid Magdy.

C.4 What is the purpose of the study?

This study aims to understand what linguistic style
people associate with sarcasm.

C.5 Why have I been asked to take part?

We target everyone registered as living in the
United Kingdom on the Prolific Academic plat-
form.

C.6 Do I have to take part?

No—participation in this study is entirely up to
you. You can withdraw from the study at any time,
without giving a reason. Your rights will not be
affected. If you wish to withdraw, contact the PI.
We will stop using your data in any publications or
presentations submitted after you have withdrawn
consent. However, we will keep copies of your
original consent, and of your withdrawal request.

C.7 What will happen if I decide to take
part?

You will be asked to fill in a survey. The flow of
the survey is the following:

• You will be shown a short text (originating
from a tweet) and asked whether it is, in your
view, appropriate to respond sarcastically to
that text.

• If you say “no”, you will be shown another
text. The process will repeat until you say
“yes” or 10 texts have been shown.

• If you say “yes”:

– You will be shown 7 responses to the text
that you selected;

– For each response, you will be asked to
specify, on a scale from 1 to 5: (a) How
sarcastic it is; (b) How funny it is; (c)
How coherent it is to the original text; It
is coherent if it sounds like a reasonable
response that a person might give. (d)
How specific it is to the original text; It
is specific if it mentions details about
the original text, or its implications, that
make this response not appropriate as a
response to many other texts.

We estimate it will take around 3 minutes to com-
plete the survey.

C.8 Compensation

You will be paid £0.38 for your participation in this
study.

C.9 Are there any risks associated with
taking part?

Please note: some of the texts that you will see
include content that you might consider sensitive,
or might trigger unwanted memories. For instance,

348

they might mention losing a family member, los-
ing friends, break-ups, failure in exams, or health
issues.

C.10 Are there any benefits associated with
taking part?

Financial compensation of £0.38.

C.11 What will happen to the results of this
study?

The results of this study may be summarised in pub-
lished articles, reports and presentations. Quotes or
key findings will be anonymized: We will remove
any information that could, in our assessment, al-
low anyone to identify you. With your consent,
information can also be used for future research.
Your data may be archived for a minimum of 2
years.

C.12 Data protection and confidentiality
Your data will be processed in accordance with
Data Protection Law. Throughout your entire in-
teraction with us, the only information collected
about you specifically is your Prolific Academic
identification number. This data will only be
viewed by the team members of the SMASH group,
listed here: http://smash.inf.ed.ac.uk.
All other data, including the responses you pro-
vide, and the amount of time you took to fill in
the survey, will be made public on the internet
as part of Open Science, available to be indexed
by search engines. The Open Science initiative
is described here: https://en.wikipedia.
org/wiki/Open_science.

C.13 What are my data protection rights?
The University of Edinburgh is a Data Controller
for the information you provide. You have the right
to access information held about you. Your right
of access can be exercised in accordance Data Pro-
tection Law. You also have other rights including
rights of correction, erasure and objection. How-
ever, we will have no control for the data that will
be made public, as specific in the previous section.
For more details, including the right to lodge a
complaint with the Information Commissioner’s
Office, please visit www.ico.org.uk. Ques-
tions, comments and requests about your personal
data can also be sent to the University Data Pro-
tection Officer at dpo@ed.ac.uk. For general
information about how we use your data, go to:
edin.ac/privacy-research.

C.14 Who can I contact?
If you have any further questions about the study,
please contact the lead researcher, Silviu Oprea,
silviu.oprea@ed.ac.uk. If you wish to
make a complaint about the study, please con-
tact inf-ethics@inf.ed.ac.uk. When you
contact us, please provide the study title and detail
the nature of your complaint.

C.15 Updated information
If the research project changes in any way, an up-
dated Participant Information Sheet will be made
available on http://web.inf.ed.ac.uk/
infweb/research/study-updates.

C.16 Consent
By proceeding with the study, you agree to all of
the following statements:

• I have read and understood the above informa-
tion.

• I understand that my participation is voluntary,
and I can withdraw at any time.

• I consent to my anonymised data being used
in academic publications and presentations, as
well as published publicly on the internet, as
part of Open Science.

• I am aware that I will see potentially offensive,
harmful, or hurtful content.

• I allow my data to be used in future ethically
approved research.

349

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 350–360
November 7–11, 2021. ©2021 Association for Computational Linguistics

TABPERT: An Effective Platform for Tabular Perturbation

Nupur Jain
IIT Kanpur

nupurj@iitk.ac.in

Vivek Gupta
University of Utah

vgupta@cs.utah.edu

Anshul Rai
IIT Kanpur

anshulra@iitk.ac.in

Gaurav Kumar
IIT Kanpur

gauravkg@iitk.ac.in

Abstract

To truly grasp reasoning ability, a Natural Lan-
guage Inference model should be evaluated on
counterfactual data. TABPERT facilitates this
by assisting in the generation of such counter-
factual data for assessing model tabular rea-
soning issues. TABPERT allows a user to up-
date a table, change its associated hypotheses,
change their labels, and highlight rows that
are relevant for the hypothesis classification.
TABPERT also captures information about the
techniques used to automatically produce the
table, as well as the strategies employed to gen-
erate the challenging hypotheses. These coun-
terfactual tables and hypotheses, as well as the
metadata, can then be used to explore an ex-
isting model’s shortcomings methodically and
quantitatively.

1 Introduction

Given factual evidence, a crucial part of NLP model
reasoning capacity is evaluating whether a given
hypothesis is an entailment (true), a contradiction
(false), or is neutral (cannot be determined). Cur-
rent transformers-based models have been shown
to outperform humans on these tasks when the
evidence is presented as simple unstructured text
(Wang et al., 2018, 2019); however, when tested
with semi-structured evidence (Gupta et al., 2020;
Chen et al., 2019), such as tables, as shown in
Figure 1, the very same models struggle to match
human accuracy (Neeraja et al., 2021; Wang et al.,
2021; Aly et al., 2021).

Furthermore, there can be several reasons for a
model’s correct predictions on a particular example.
For example, Poliak et al. (2018); Gururangan et al.
(2018) show that multiple NLI datasets such as the
SNLI and MNLI datasets (Bowman et al., 2015;
Williams et al., 2018) exhibit hypothesis bias, i.e.,
the hypothesis-only model performs significantly
better than the majority label baseline. In the con-
text of tables, Gupta et al. (2020); Neeraja et al.

New York Stock Exchange

Type Stock exchange
Location New York City, New York, U.S.
Founded May 17, 1792; 226 years ago
Currency United States dollar
No. of listings 2,400
Volume US$20.161 trillion (2011)

H1: NYSE has fewer than 3,000 stocks listed.
H2: Over 2,500 stocks are listed in the NYSE.
H3: S&P 500 stock trading volume is over $10 trillion.

Figure 1: A tabular premise example. The table’s first
and second columns correspond to the keys and their
associated values, respectively. The hypothesis H1 is
entailed by the data in the table, H2 is a contradiction,
and H3 is neutral, i.e., neither entailed nor contradic-
tory.

(2021); Gupta et al. (2021) show that the right pre-
diction does not always imply reasoning: there can
be dataset biases in semi-structured datasets too,
such as hypothesis or premise artefacts (spurious
patterns) which can wrongly support a particular
label.

Additionally, a model can also ignore the ground
evidence and use its pre-trained knowledge for
making predictions (Gupta et al., 2021). When
deployed in the real world on out-of-domain (dif-
ferent category) or counterfactual (stories tables)
examples, these models fail embarrassingly. One
way to avoid this inflated performance projection
is to test models on several challenging sets be-
fore deployment. For example, Gupta et al. (2020);
Neeraja et al. (2021) evaluate the RoBERTaLarge
(Liu et al., 2019) models on two additional adversar-
ial sets (hypothesis-perturbed and out-of-domain)
and observe a significant performance drop. How-
ever, manually creating such challenge sets can be
tricky, both in terms of the annotation cost involved
and the actual annotation process, especially with
tabular data of semi-structured nature.

Recently, Ribeiro et al. (2020a) have shown that
one can deploy simple tricks to semi-automate

350

this process of altering existing data. This semi-
automated approach can then generate difficult ad-
versarial counterfactual contrast sets, which can
subsequently be utilised to perform behavioural
testing of existing NLP models. However, such
methods are currently only applicable to unstruc-
tured data and cannot be directly used for semi-
structured text such as tables.

To fill this gap, in this work, we present
TABPERT. TABPERT is an annotation platform
specifically designed to work on semi-structured
tabular data. For example, TABPERT can support
the semi-automatic creation of tabular counterfac-
tual data. Through TABPERT, annotators can mod-
ify tables in several ways, such as (a) deleting in-
formation: deleting an attribute-value pair or an
existing row completely, (b) inserting information:
inserting an attribute-value pair for an existing row
or creating a fresh row, (c) modifying information:
editing the attribute or values cells of an existing
row, and (d) modifying hypotheses or labels: modi-
fying an existing hypothesis and its inference label.
Furthermore, each component of TABPERT can
be customized to meet the individual needs of a
project that necessitates tabular perturbations.

TABPERT additionally logs the strategy used to
modify each attribute-value of the table. In ad-
dition to the gold label, users can manually log
information about the technique used for perturb-
ing a table-hypothesis pair and the rows relevant
to the hypothesis. This information is crucial in
understanding the challenges annotated data poses
to the existing model, and therefore, can be utilized
to probe a model’s yet-unknown shortcomings sys-
tematically.

The contributions of our work can be sum-
marised as below:

1. TABPERT can help delete, modify, and insert
information in semi-structured tabular data for
creating counterfactual examples.

2. TABPERT auto-logs table perturbation meta-
data and supports manual hypothesis modifi-
cation and inference labels annotation.

3. TABPERT assists users in logging metadata,
including hypothesis-related table rows and
the perturbation strategy used, which is crucial
for model performance analysis.

4. We present a case study for TABPERT via the
generation and evaluation of a counterfactual

INFOTABS dataset and RoBERTaLarge model,
respectively.

The TABPERT source code, the annotated
counterfactual INFOTABS dataset, the NLI
RoBERTaLarge model, the annotation instruc-
tions with examples set, and all other associ-
ated scripts, are available at https://tabpert.

github.io. The annotator instruction video de-
scribing TABPERT usage is accessible at https:
//www.youtube.com/watch?v=sbCH_zD53Kg.

2 Tables are Challenging

One might argue that creating a counterfactual
dataset for tables is not a challenging task and
that table modification can be fully automated by
merely ‘shuffling’ or ‘inserting’ attribute values
of one table row into another table row (with the
same attribute) as long as they are from similar cat-
egories, e.g. shuffle ‘Producer’ of one movie with

‘Producer’ of another movie). One can extend this
further by shuffling rows with different attributes in
the same as well as different tables (same category)
as long as the name-entity type for values is similar,
e.g. shuffle ‘Producer’ with the ‘Director’ of the
same or a different movie with each other.

This method, however, does not automate the
updation of associated hypotheses and inference la-
bels. Furthermore, such automated shuffling quite
often flagrantly violates common-sense logical con-
straints. For example, a person’s ‘Birth Date’ must
be before their ‘Died Date’, a person’s ‘Marriage
Date’ should be after their ‘Birth Date’ and be-
fore their ‘Died Date’, an album’s ‘Released Date’
should be after its ‘Recording date’ and so on. The
updated table may be self-contradictory if these
constraints are not enforced. While some of these
constraints can be automatically met and therefore
not violated, the vast majority of them inevitably
sneak through due to their enormous diversity and
variance1. Furthermore, due to the domain-specific
nature of these constraints, enforcing them auto-
matically during perturbation is a challenging task.
Keeping this in mind, automated perturbations like
these are only appropriate for table initialization.
Human annotators can then manually analyze and
modify the initialized tables for self-consistency,
i.e., no logical common sense constraint violation.

1In real data, these constraints are naturally satisfied.

351

3 TABPERT Functions, Aspects, and
Usability

TABPERT is currently supported on common web
browsers such as Google Chrome and can be in-
stalled to run locally2. We start with a dataset of ta-
bles along with already annotated labelled hypothe-
ses. We utilize the INFOTABS dataset for the case
study provided in this research. INFOTABS is a
semi-structured natural language inference dataset
that consists of entity tables and human-written
hypotheses. We create three counterfactual tables
(labelled A, B, and C) for each original table in
the dataset. There are three main steps required for
successful annotation, as described below.

3.1 Automatic Initialization
First, we initialise TABPERT with original tables
and counterfactual tables generated via automatic
random ‘shuffling’ of table rows or attribute val-
ues3. Automatic initialization is beneficial as man-
ual table creation is both time-consuming and
highly error-plausible.

The values used for shuffling (referred to as the
‘shuffle source’) can be taken from one of several
possible locations. Table 1 explains how these val-
ues can be picked from these locations. The loca-
tion of the shuffle source that is used is recorded
in the metadata of the attribute-value in the first 4
bits of a 7-bit string, as described in Table 1. For
example, suppose the value ‘The Coca-Cola Com-
pany’ in the ‘Manufacturer’ key in a table in the

‘Food’ category is replaced with the value ‘Hood
River Distillers’ which is a value in the ‘Distrib-
utor’ key of a table in the ‘Food’ category of the
external split. Then, ‘Hood River Distillers’ will
have the metadata ‘1011000’ after initialization4.
These bits can be used to determine which way of
shuffling was more effective, i.e., generate counter-
factual data which have a greater impact on model
performance, as demonstrated in the performance
analysis (Section 4). The last 3 bits are explained
in Section 3.2.

The initialization for the hypotheses and their
labels is done by copying them exactly from the
original dataset, and they are modified by human
annotators using the TABPERT platform.

2https://github.com/utahnlp/tabpert
3Only a subset of all values are shuffled at random. The

location of the shuffle source (described later) is likewise
picked at random among this subset.

4Values taken from different keys, must have the same
entity-type, as explained in Section 3.2.

Bit Location Same Different

1 Split 0 1
2 Category 0 1
3 Table 0 1
4 Key 0 1

Table 1: First Four Bits of Table Value Metadata. These
bits represent the location of the shuffle source. The 1st bit
indicates whether is an external set (1) or the same set (0), the
2nd bit indicates whether it is a different (1) or the same (0)
table category, the 3rd bit represents if it is the same (0) or a
different (1) table, and the 4th represents whether it is the same
(0) or a different (1) key. For values that do not change, the
initial four bits are ‘0000’. Also, when the 3rd bit is 0, then
the first two bits are necessarily 0.

3.2 Modifying Tables

Annotators can now modify these automatically-
perturbed tables from initialization to remove self-
contradictions and inconsistency to create valid
counterfactual examples. All the cells (attributes
and values) in the three counterfactual tables (A,
B, and C) can be edited5. Table rows can be modi-
fied via the dragging and dropping of a value cell
from (a) same counterfactual table (cut-paste ef-
fect), (b) from another counterfactual table (cut-
paste effect), or (c) from the original table (copy-
paste effect). To minimise errors during this drag-
and-drop operation, a type validation check runs
in the background, which prevents drag and drop
between different key categories (for example, it
is forbidden to drag a Person’s Name into Date of
Birth). To achieve such type validation, key ‘entity
type’ must be provided before beginning the anno-
tation procedure6. Keys for which this information
is missing can be dropped anywhere without re-
striction.

TABPERT also supports five additional functions
for more challenging edits. The ‘Add Value’ box
allows annotators to add new values by dragging
and dropping a new cell to the correct location and
inputting the desired new value. Additionally, one
can utilise the ‘Add Section’ button for inserting an
entirely new row. For deleting a value, drag and
drop the desired cell to the ‘Delete Vaue’ Box. A
complete row can also be deleted with the ‘Edit
Section Name or Delete Section’ option. To edit
the text, ‘click’ on the value and then edit it. These
modification details are recorded automatically in
the last 3 bits of the 7-bit metadata: the 5th bit
represents a copy-paste from the original table, the

5The original table cannot be changed. This is done to
prevent inadvertent edits.

6This can be done manually or using NER tagging.

352

6th represents a value update operation, and the 7th

bit represents a new cell or row addition.
Figure 3a shows the main parts of the TABPERT

platform for counterfactual table perturbation.

3.3 Hypothesis Modification and Metadata

The text of a hypothesis of a counterfactual table
can be edited directly, and its corresponding label
can also be selected from drop-down menu options.
In addition, the annotator enters the following meta-
data information:

1. The strategies used by the annotator to modify
the hypothesis. The five main strategies can
be selected using check-boxes (selecting mul-
tiple values is allowed), as shown in Figure
3c. The ‘Other’ option corresponds to hypoth-
esis changes that do not fall into the five main
strategies.

2. All the relevant rows of the table which are
necessary for deciding the inference label.

Figure 3b shows the main TABPERT view for
hypothesis modification, with hypothesis and in-
ference label. The annotator inserts metadata by
clicking the ‘+’ symbol on the left side of each
counterfactual hypothesis (below label drop-down),
as shown in Figure 3b. This opens a metadata col-
lection window, as shown in Figure 3c. We use 6
bits to store this metadata information: each of the
initial 5 bits represents a strategy (the order of the
bits is the same as the order in which the strategies
are mentioned on TABPERT as shown in Figure 3c).
The last bit represents the ‘Other’ option. Addition-
ally, the relevant rows’ ‘attribute keys’ are stored in
a list (array) along with each modified hypothesis.

3.4 TABPERT Aspects

The TABPERT web-app’s core tech stack consists
of ReactJS7 and Flask8. Here, Flask is used as
the main back-end Python web framework, and
Javascript library ReactJS is used for the front-end.
We used Flask because it is easy to extend, giving
us the ability to easily integrate Python libraries
to manipulate JSON and TSV files quickly. We
used ReactJS because of the react-beautiful-dnd
library9 essential for simulating the drag-and-drop
function.

7https://reactjs.org/
8https://flask.palletsprojects.com/en/2.0.x/
9https://www.npmjs.com/package/react-beautiful-dnd

4 Case Study on INFOTABS

We used TABPERT to create counterfactual data
for the INFOTABS dataset. Each table is saved
as a JSON file with keys and values as attributes
in INFOTABS. We sampled 47 tables with 423
table-hypothesis pairs taken from the α1 set of IN-
FOTABS. For initialization, we shuffled the entities
in this sampled α1 set with those in the tables from
both the Train set (the ‘external’ set) and the com-
plete α1 set (the ‘internal’ set). Including both sets
creates more diversity in automatic initialization10.

Annotation Guidelines Following a similar line
as earlier works by Ribeiro et al. (2020b) and Sak-
aguchi et al. (2020) for creating challenging ad-
versarial test sets, we guided the annotators in an-
notating three counterfactual tables (A, B, C) for
each original α1 table. This ensures enough diver-
sity and coverage in the collected counterfactual
data. For each counterfactual table, we encouraged
annotators to use the following strategies: (a) For
Table A: change the table such that the entailment
(E) and contradiction (C) labels are flipped, but
the hypothesis remains unchanged, (b) For Table
B: change the hypothesis so that the entailment (E)
and contradiction (C) labels are flipped; make any
necessary changes to the table, and (c) For Table
C: write a new but related hypothesis with similar
reasoning; the table can be modified as needed. We
also recommend that annotators modify the neu-
trals (N) by adding more ‘true’ information from
the table to the hypotheses to make them more
challenging. The above-discussed procedure en-
sures that (a) the final labels are balanced, (b) the
reversed label eliminates hypothesis bias (Gupta
et al., 2020; Chen et al., 2019), and (c) due to lexi-
cal overlap, neutrals (N) are closer to entailments
(E) (Glockner et al., 2018). Finally, after annota-
tion, we have 109 counterfactual tables with a total
of 982 table-hypothesis pairs, with Table A having
423, Table B having 405, and Table C having 154
pairs.

Experiment and Analysis To check if the anno-
tated counterfactual data is challenging for existing
models, we use RoBERTaLarge to obtain prediction
labels for the original and counterfactual data. We
also obtain hypothesis-only baseline predictions
using the RoBERTaLarge model on the two sets.
Table 2 shows the performance results in the form

10As discussed earlier, annotators manually fix the con-
straint violations during annotation.

353

(a) Table Perturbation: 1 Table Title 2 a Key (Section Name) 3 the Values associated with a Key 4 Add Value 5
Add Section 6 Delete Value 7 Edit Section Name or Delete Section

1

3

2

7

4 6

5

1

4

5

2

3

6

7

(b) Hypotheses Perturbation: 1 Tables corresponding to
the hypothesis sets 2 an Original Hypothesis 3 a Counter-
factual Hypothesis of Table A 4 the NLI Label corresponding
to an Original Hypothesis 5 the NLI Label corresponding
to a Table A Counterfactual Hypothesis 6 Open Modal for
Hypothesis Metadata (Figure 3c) 7 Save Option

1
2

3

4

5

6

(c) Hypothesis Metadata: (Select Relevant Rows and Hy-
pothesis Perturbation Strategies) 1 the Hypothesis 2 Table
Name 3 a Relevant Row (checkbox selected) 4 an Irrele-
vant Row (checkbox unselected) 5 a Used Strategy (check-
box selected) 6 an Unused Strategy (checkbox unselected)

Figure 2: Main Features of the TABPERT Platform

354

of accuracy. The table-sentence data was repre-
sented in ‘para’ form (Gupta et al., 2020) in two
ways: (a) with all table rows, (b) using only the
relevant rows (obtained via annotated metadata)
(Gupta et al., 2021).

Performance Analysis It is evident from Table
2 that RoBERTaLarge has difficulty in predicting
labels correctly for counterfactual data. Further-
more, the model’s higher performance with rele-
vant rows indicates that it most likely utilises irrel-
evant rows as artefacts when making predictions
(Neeraja et al., 2021). On counterfactual data, the
hypothesis-only model’s performance is close to
majority-label baselines, confirming a reduction
in hypothesis bias. Humans, on the other hand,
find both datasets equally difficult and obtain an
accuracy of ≈ 85% on each11.

Model Type Original Counterfactual

Majority 33.33 33.33
Hypo Only 64.32 44.85
All Rows 78.91 61.26

Relevant Rows 74.11 65.85
Human 84.8 85.8

Table 2: Performance (accuracy %) of the INFOTABS
RoBERTaLarge model on original and counterfactual anno-
tated data.

Perturbation Analysis We also study the hy-
pothesis annotation metadata to see which hypothe-
sis modification strategies are more effective. From
Figure 4, it is evident that manual Table Change
with Label Flip (TC + LF) is more effective than
manual Hypothesis Change with Label Flip (HC
+ LF). Furthermore, all Label Flip methods are
typically more effective than Hypothesis Prompt
(HypoPrompt) and Text Overlap (Overlap). This,
we believe, is due to the ineffectiveness of hypoth-
esis bias with flipped labels. Surprisingly, there is
a modest performance increase on new hypothe-
ses, showing that simple data generation is an un-
successful method. Furthermore, no Other pertur-
bation techniques result in any substantial perfor-
mance drop.

We also did a similar analysis on the table pertur-
bation metadata; refer to Section A of the Appendix
for details. Refer to Section C of the Appendix ex-
amples of counterfactual perturbation using each
strategy.

11There is no difference in performance between A, B, and
C type counterfactual table-example pairs. See Figure 5 in the
Appendix.

79.13
75.74

72.6

80.68

87.73

70.27 69.23

46.09

58.3
54.79

70.45
73.62

75.68

69.23

Hypothesis Pertubation Strategy

P
er

fo
rm

an
ce

 A
cc

ur
ac

y
(%

)

40

50

60

70

80

90

TC +
LF

HC +
LF

TC +
HC +

LF

Hyp
oP

rom
pt

Ove
rla

p

New
Hyp

o
Othe

r

Original Counterfact

41.75

23.03 24.53

12.68
16.08

-7.7

0

Hypothesis Perturbation Strategy
A

cc
ur

ac
y

D
ro

p
(R

el
at

iv
e

%
)

-10

0

10

20

30

40

50

TC +
LF

HC +
LF

TC +
HC +

LF

Hyp
oP

rom
pt

Ove
rla

p

New
Hyp

o
Othe

r

Figure 4: Performance drop after counterfactual pertur-
bation with various strategies.

5 TABPERT Utility

Main Platform TABPERT is a tool designed for
efficient and accurate table perturbation. One
such case is creating tabular data for tabular in-
ference tasks, as demonstrated through this paper.
TABPERT supports several features which aid in
the creation of effective counterfactual tabular data.
It has numerous optimizations with a friendly user
interface to ensure fast annotation of data. This
ensures huge data collection, leading to scalabil-
ity. TABPERT enables a larger range of services
compared to using spreadsheets or the MTurk plat-
form. For example, the drag-and-drop functionality
simplifies annotation and helps easily visualise a
complicated job. All the tabular data can be exam-
ined in a single view. The automatic type validation
during initialisation and modification reduces the
chances of unintended errors.

Customizing TABPERT Functionality The ini-
tialization source code, as well as the platform, are
designed to be modular. This facilitates component
addition, deletion, and updation. For example, the
ability to reorganize table parts, copy values across
table triplets (in addition to cut-paste), auto-save
work12, and an undo option, as well as checkpoints

12Currently, the Save button must be pressed manually to
save work. However, even semi-completed work can be saved

355

added to reverse mistakes, may all be readily im-
plemented. The augmentation initialization code
can also be configured to suit the requirements of
the task.

Metadata Counterfactual data can be utilized
as a difficult adversarial test set to assess tabular
model reasoning. For example, as demonstrated
in Section 4, The model performs poorly on coun-
terfactual hypotheses with flipped labels on tables
with relevant rows drawn from the external set (in
our case, the Train set), indicating model over-
fitting on pre-trained knowledge. The recorded
metadata can also be utilized to guide annotators
in creating increasingly difficult data. For example,
annotators can be encouraged to focus more on La-
bel Flip methods with external set-initialised tables
rows to generate more challenging counterfactual
data. Label flipping techniques can also be used
to test a model for hypothesis bias. The metadata
associated with hypotheses-specific relevant rows
assists in pruning premise tables, which improves
inference model reasoning and interpretability, as
shown in Section 4. These are only a handful of
the countless possible application scenarios.

In Section B of the Appendix, we also compare
and contrast TABPERT with spreadsheets on effec-
tiveness, visual benefits, and metadata aspects.

6 TABPERT Limitations and Future

During our pilot study, the platform was run lo-
cally by three annotators. This was not an issue
because the number of annotators was limited, and
the tables were divided among them manually. If
we want numerous annotators to be able to make
simultaneous modifications for large-scale distri-
bution, we must host our platform on a centralized
server. This is something we intend to accomplish
in the not-too-distant future.

Finally, the counterfactual data generated by
modifications has to be manually stored by pressing
a button. This was done so that if the user made a
mistake, the original data would not be erased, and
the user may save the data after they are satisfied
with the modifications. To accommodate both of
these circumstances, we would like to include an
auto-save function along with an undo option.

7 Conclusions

TABPERT is an effective platform for examining

by pressing the button several times at regular intervals.

semi-structured tabular data and generating coun-
terfactual tabular perturbations. Annotators can use
the platform to alter tables and hypothesis phrases,
as well as collect related metadata information, in
order to produce tabular counterfactual data. The
metadata collected can be utilised to analyze the un-
known vulnerabilities with existing NLP systems
quantitatively and methodically. We believe that
TABPERT will be helpful to academics that work
with semi-structured data such as tables. Many
non-academic industrial scenarios that require table
modification, such as e-commerce product speci-
fication tables, financial and tax statements tables,
and so on, may also leverage TABPERT.

8 Acknowledgements

We appreciate the Utah NLP group members’ valu-
able suggestions at various phases of the project,
as well as the reviewers’ helpful remarks. We also
acknowledge NSF grants #1801446 (SATC) and
#1822877 (Cyberlearning), as well as a kind dona-
tion from Verisk Inc. We also like to thank Alokit
Innovations for providing a mentoring platform.

References

Rami Aly, Zhijiang Guo, Michael Schlichtkrull,
James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, Oana Cocarascu, and Arpit
Mittal. 2021. FEVEROUS: Fact extraction and
VERification over unstructured and structured
information. arXiv preprint arXiv:2106.05707.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A Large Anno-
tated Corpus for Learning Natural Language Infer-
ence. In Proceedings of the 2015 Conference on Em-
pirical Methods in Natural Language Processing.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and
William Yang Wang. 2019. TabFact: A large-scale
dataset for table-based fact verification. In Interna-
tional Conference on Learning Representations.

Max Glockner, Vered Shwartz, and Yoav Goldberg.
2018. Breaking NLI systems with sentences that re-
quire simple lexical inferences. In The 56th Annual
Meeting of the Association for Computational Lin-
guistics (ACL), Melbourne, Australia.

Vivek Gupta, Riyaz A. Bhat, Atreya Ghosal, Man-
ish Srivastava, Maneesh Singh, and Vivek Srikumar.
2021. Is my model using the right evidence? sys-
tematic probes for examining evidence-based tabu-
lar reasoning. CoRR, abs/2108.00578.

356

Vivek Gupta, Maitrey Mehta, Pegah Nokhiz, and Vivek
Srikumar. 2020. INFOTABS: Inference on tables as
semi-structured data. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 2309–2324, Online. Association
for Computational Linguistics.

Suchin Gururangan, Swabha Swayamdipta, Omer
Levy, Roy Schwartz, Samuel Bowman, and Noah A.
Smith. 2018. Annotation artifacts in natural lan-
guage inference data. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 107–112, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A Robustly Optimized BERT Pretraining
Approach. arXiv preprint arXiv:1907.11692.

J. Neeraja, Vivek Gupta, and Vivek Srikumar. 2021. In-
corporating external knowledge to enhance tabular
reasoning. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2799–2809, Online. Association for
Computational Linguistics.

Adam Poliak, Jason Naradowsky, Aparajita Haldar,
Rachel Rudinger, and Benjamin Van Durme. 2018.
Hypothesis only baselines in natural language in-
ference. In Proceedings of the Seventh Joint Con-
ference on Lexical and Computational Semantics,
pages 180–191, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020a. Beyond Accuracy: Be-
havioral testing of NLP models with CheckList. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4902–
4912.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020b. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4902–
4912, Online. Association for Computational Lin-
guistics.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-
vatula, and Yejin Choi. 2020. WINOGRANDE: An
adversarial winograd schema challenge at scale. In
AAAI.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R Bowman. 2019. SuperGLUE: a
stickier benchmark for general-purpose language un-
derstanding systems. In Proceedings of the 33rd In-
ternational Conference on Neural Information Pro-
cessing Systems, pages 3266–3280.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355.

Nancy XR Wang, Diwakar Mahajan, Marina Danilevsk
Rosenthal, et al. 2021. SemEval-2021 task 9: Fact
verification and evidence finding for tabular data
in scientific documents (SEM-TAB-FACTS). arXiv
preprint arXiv:2105.13995.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

A Appendix: Performance vs
Perturbation

Figure 5 shows the relative accuracy drop of the
model performance for each table perturbation
strategy. There is no significant difference in the
average accuracy across the A, B, and C counterfac-
tual types. Figure 6 shows the number of examples
for each hypothesis perturbation strategy. Label
Flip (LF) is frequently used by the annotators with
either the hypothesis or the table changes. Annota-
tors also regularly use the HypoPrompt and Hypoth-
esis overlap strategy for creating counterfactuals.
Annotators avoid making new hypotheses.

B Appendix: TABPERT vs Spreadsheets

Effectiveness When utilizing spreadsheets for
annotation, it becomes quite difficult and time-
consuming to cut/copy-paste cells. The efficient
drag-drop feature with automatic type restrictions
in TABPERT makes it a much easier and faster pro-
cedure. Editing and altering text in TABPERT is
also easier compare to that on a spreadsheet. Our
study found that it takes around 7 minutes on av-
erage to annotate a new table with 9 statements
using TABPERT, but the same work done using a
spreadsheet takes more than 30 minutes.

Visualization Benefits TABPERT’s table visual-
isation provides a view of the entire data on a
single screen. Seeing the entire picture (tables
and hypotheses) is incredibly helpful for assess-
ing the quality of annotations. It also allows the

357

Table Row Perturbation Metadata

A
cc

ur
ac

y
D

ro
p

(R
el

at
iv

e
%

)

0

10

20

30

40

50

"00
00

00
0"

"10
10

01
0"

"10
10

00
0"

"11
11

01
0"

"11
10

01
0"

"00
10

00
0"

"00
00

10
0"

"11
11

00
0"

"11
10

00
0"

"00
00

01
0"

"01
10

01
0"

"01
11

01
0"

"01
11

00
0"

"01
10

00
0"

"00
10

01
0"

"00
00

11
0"

"11
10

11
0"

"O
the

rs"

Figure 5: (Top) Performance drop with counterfactual pertur-
bation with several perturbation strategies (using Table 1 for
interpreting the analysis). (Bottom) Performance on A,B and
C counterfactual tables.

230 235

73

176
163

74
13

Hypothesis Perturbation Strategy

N
um

be
r o

f E
xa

m
pl

es

0

50

100

150

200

250

TC +
LF

HC +
LF

TC +
HC +

LF

Hyp
oP

rom
pt

Ove
rla

p

New
Hyp

o
Othe

r

si

Figure 6: Number of examples of each hypothesis perturba-
tion strategy.

annotator to quickly follow label and hypothesis
changes, which is not feasible in a cumbersome
spreadsheet’s view.

Furthermore, having a single screen ‘Focus
View’ on a single counterfactual table makes al-
tering hypotheses even easier. Using this focus
feature, updating the labels or adding new informa-
tion to the hypothesis is straightforward. This focus
view is not viable with a spreadsheet; to make ap-
propriate alterations, one must search and navigate
to each spreadsheet cell.

In addition to this, the lack of scrolling required
while dragging and dropping on our platform saves
annotators time. To discover the relevant cells in a
spreadsheet, one must execute numerous scrolling
operations to the up, down, left, or right.

Finally, in TABPERT, the cell size is set to ex-
actly fit its contents, but in a spreadsheet, cells in
each row and columns have the same height and
width, making it quite problematic to view text
properly.

Metadata Collection TABPERT makes it sim-
ple to gather information such as methods used
to change a hypothesis and rows utilized to answer
each hypothesis, using checkboxes. In a spread-
sheet, this would require 9 columns of checkboxes
for each table or manually writing the metadata,
which is now automatically done with a single click,
thus making the process simple and efficient. More-
over, automatic metadata collection about a drag
and drop location is not possible in a spreadsheet.

C Appendix: Qualitative Counterfactual
Perturbation Examples

Tables 3, 4, 5, 6, 7 illustrate the five strategies
used for counterfactual table-hypothesis perturba-
tion. Here, Before and After row represent hypothe-
sis and corresponding relevant table rows13 before
and after counterfactual perturbation. In the After
row, we also provide the 7-bit meta-data associ-
ated with each row value. Finally, the Automatic
Initialisation row explains the meaning of the first
four bits of this meta-data, and the Manual Editing
row explains the last three bits, for all the value in
concern.

13For simplicity, we only include the rows of the table
relevant to the hypotheses.

358

Premise Hypothesis Label Predicted
Before (T14) Box Office

1. $61.3 million
Budget

1. $26 million

Flatliners made over
double what it cost to
make at the box office.

E E

After (T14A) Box Office
1. $ 140.7 million (1010 010)

Budget
1. $85 million (0111 010)

Flatliners made over
double what it cost to
make at the box office.

C E

Automatic
Initialisation 1010: different dataset, same category, different table, same key

0111: same dataset, different category, different table, different key
Manual
Editing 010: value text edited

Table 3: Example using Strategy 1
Strategy: Change table to flip label (TC+LF)

Premise Hypothesis Label Predicted
Before (T14) Box Office

1. $61.3 million
Budget

1. $26 million

Flatliners made over
double what it cost to
make at the box office

E E

After (T14B) Box Office
1. $ 13.3 million (1010 010)

Budget
1. $5.9 million (0110 010)

Flatliners made over
triple what it cost to
make at the box office.

C E

Automatic
Initialisation 0110: same dataset, different category, different table, same key

1010: different dataset, same category, different table, same key
Manual
Editing 010: value text edited

Table 4: Example using Strategy 2
Strategy: Change hypothesis to flip label (HC+LF)

Premise Hypothesis Label Predicted
Before (T14) Produced by

1. Michael Douglas
2. Rick Bieber

Directed by
1. Joel Schumacher

Rick Bieber put more
money into Flatliners
than Michael Douglas
did.

N N

After (T14A) Produced by
1. Rick Bieber (0000 100)
2. Michael Douglas (0000 100)

Directed by
1. Empress Teimei (1111 000)

Rick Bieber put more
money into Flatliners
directed by Empress
Teimei, than Michael
Douglas did

N N

Automatic
Initialisation 0000: same dataset, same category, same table, same key

1111: different dataset, different category, different table, different key
Manual
Editing 000: no change

100: copied from the original table

Table 5: Example using Strategy 3
Strategy: Add ‘true’ information from the table to confuse the model (Overlap)

359

Premise Hypothesis Label Predicted
Before (T14) Edited by

1. Robert Brown
Written by

1. Peter Filardi

Flatliners was Peter
Filardi’s first writing
credit.

N N

After (T14B) Edited by
1. James Newton Howard (0000

100)
2. Robert Brown (0000 000)

Written by
1. Lee Beom-seon (1110 000)

Flatliners was mostly
edited by Robert
Brown.

N E.

Automatic
Initialisation 0000: same dataset, same category, same table, same key

1110: different dataset, different category, different table, same key
Manual
Editing 000: no change

100: copied from the original table

Table 6: Example using Strategy 4
Strategy: Use the original hypothesis to write a new hypothesis (HypoPrompt)

Premise Hypothesis Label Predicted
Before (T14) Box Office

1. $61.3 million
Budget

1. $26 million

Flatliners made 50 mil-
lion over it’s budget at
the box office.

C E

After (T14C) Box Office
1. US$85.4 million (December

2017) (0111 000)
Budget

1. $26 million (0000 000)

Flatliners costed around
$25 million in making
and was a hit.

E C

Automatic
Initialisation 0000: same dataset, same category, same table, same key

0111: same dataset, different category, different table, different key
Manual
Editing 000 : no change

Table 7: Example using Strategy 5
Strategy: Write a completely new hypothesis (NewHypo)

360

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 361–371
November 7–11, 2021. ©2021 Association for Computational Linguistics

DRIFT: A Toolkit for Diachronic Analysis of Scientific Literature

Abheesht Sharma∗

Dept. of CS&IS
BITS Pilani, Goa Campus
f20171014@goa.bits-pilani.ac.in

Gunjan Chhablani∗
Dept. of CS&IS

BITS Pilani, Goa Campus
chhablani.gunjan@gmail.com

Harshit Pandey∗

Dept. of Computer Science
Pune University
hp2pandey1@gmail.com

Rajaswa Patil
Dept. of E & E Engineering
BITS Pilani, Goa Campus
f20170334@goa.bits-pilani.ac.in

Abstract

In this work, we present to the NLP commu-
nity, and to the wider research community as a
whole, an application for the diachronic anal-
ysis of research corpora. We open source an
easy-to-use tool coined DRIFT, which allows
researchers to track research trends and devel-
opment over the years. The analysis methods
are collated from well-cited research works,
with a few of our own methods added for good
measure. Succinctly put, some of the anal-
ysis methods are: keyword extraction, word
clouds, predicting declining/stagnant/growing
trends using Productivity, tracking bi-grams
using Acceleration plots, finding the Semantic
Drift of words, tracking trends using similarity,
etc. To demonstrate the utility and efficacy of
our tool, we perform a case study on the cs.CL
corpus of the arXiv repository and draw infer-
ences from the analysis methods. The toolkit
and the associated code are available here.

1 Introduction

Historians perform comparative studies between
the past and the present to explain certain phenom-
ena. Studying the past also helps us in making plau-
sible predictions about the future. Major sources of
information about the past are old-age texts, tomes
and manuscripts. Language changes and shifts with
changes in society and culture. For example, words
such as curglaff and lunting have become obsolete,
the word gay’s meaning has changed entirely and
new words such as LOL and ROFL have gained
prominence with the emergence of the “texting
generation”.

In the research world, analysis of old articles
and papers is gaining importance. Analysing old
documents can revive research topics which have
been forgotten over the decades; removing the cob-

∗ Equal contribution. Author ordering determined by coin flip.

webs on these topics can inspire path-breaking re-
search. Explanations of why we arrived at cer-
tain conclusions can also be gleaned by peeping
into the past. Performing such diachronic analy-
sis of text has become easy because of the rapid
growth of NLP. Temporal word embeddings such
as TWEC (Di Carlo et al., 2019) enable us to do
so.

In this paper, we introduce a hassle-free appli-
cation for the diachronic analysis of research cor-
pora. We name our application DRIFT, an acronym
for DiachRonic Analysis of ScientIFic LiTerature.
DRIFT provides researchers a one-click way to
perform various diachronic analyses.

Our contribution is two-fold: 1) We assemble
(and propose) different methods for diachronic
analysis of research corpora; 2) We make it ex-
tremely convenient for researchers to analyse re-
search trends; this, in turn, will encourage re-
searchers to find latent, quiescent topics which may
have huge research potential in the near future. The
main principles behind the design for DRIFT are
ease of usage and flexibility.

The rest of the paper is organised as follows. In
Section 2, we perform an extensive literature sur-
vey. Section 3 describes the research corpora and
the methods for crawling the corpora. In Section 4,
we explain the training methodology for obtaining
diachronic embeddings and our easy-to-use appli-
cation’s dashboard and layout in detail. Section 5
elucidates the various analysis methods which re-
searchers can employ with a mere click of a button.

2 Related Works

2.1 Diachronic Embeddings

Savants have attempted to leverage word embed-
dings to study semantic changes of words over
time (Hamilton et al., 2016; Kulkarni et al., 2014).

361

Choose your
analysis type

Choose your own
corpus and
trained models

Play around with
hyperparameters

Select Plot
Parameters

Plot your own
words or choose
from a list of
suggested
words.

Switch between
analysis and
training modes

Figure 1: Snapshot for the application dashboard.

The major issue has been the inability to com-
pare word vectors of two different time periods
since word embedding algorithms are stochastic in
nature and invariant under rotation, i.e., they be-
long to different coordinate systems (Kutuzov et al.,
2018). Therefore, attempts have been made to align
these vectors (Szymanski, 2017; Schlechtweg et al.,
2019; Bamman et al., 2014). The most recent at-
tempt to resolve this issue is TWEC (Di Carlo et al.,
2019), which implicitly aligns the word vectors.
We use TWEC in our work.

2.2 Analysis Attempts and Tools for
Research Corpora

Many researchers have devoted their time to
analysing different research corpora with respect
to time. Most of the analysis is citation-based, or
the researchers analyse the diversity of the research
world (age-based, gender-based analysis) (Moham-
mad, 2019). In some, authors have introduced
new research corpora such as the NLP4NLP Cor-
pus (Mariani et al., 2019). Gollapalli and Li (2015)
perform comparative analyses between two con-
ferences such as EMNLP and ACL by expressing
both venues as a probability distribution over time.
A good amount of research has also focused on sta-
tistical techniques. For example, Schumann (2016)
uses frequency and productivity to identify emerg-
ing/stagnant/falling topics. Others have devised
Machine Learning/Deep Learning methods to iden-
tify future trends (Francopoulo et al., 2016).

NLP Scholar (Mohammad, 2020) is an inter-
active, visual tool which makes it simpler for re-
searchers to find impactful scientific articles in by-
gone years from the ACL Anthology based on the

number of citations, searching for relevant related
works, study the changes in the number of articles
and citations, etc.

While significant effort has gone into procuring
research corpora and in devising different analysis
methods, not much work has been done in building
a user-friendly, convenient application which ties
up statistical, learning-based analysis and temporal
embedding-based methods and makes it easy for
the research community to draw inferences and
identify research trends.

3 Datasets

arXiv1 is a free-access repository of e-prints of sci-
entific papers, articles, essays and studies, launched
in 1991 by Cornell University. arXiv covers a
vast array of disciplines such as Computer Science,
Mathematics, Physics, Chemistry, etc. We perform
our experiments and analysis on a burgeoning sub-
domain of Computer Science, namely, Computa-
tion and Language (cs.CL).

Moreover, we perform our analyses on abstracts.
The rationale behind this is: 1) The abstract of a
paper condenses and encapsulates the whole paper
and conveys its major contributions; 2) The rest of
the paper may have tables, figures, arcane mathe-
matical equations, intricacies and esoteric jargon
which are difficult to work with.

We restrict our analysis to the 1994-2021 pe-
riod for the following reasons: 1) arXiv has cs.CL
and cs.CV papers from 1994 onwards; 2) We con-
sidered crawling the abstracts of papers published
prior to 1994 from their PDFs (we obtained the

1https://arxiv.org/

362

URLs from the ACL Anthology2). However, this
proved to be no mean feat, considering that the old
PDFs used different font styles, unselectable texts,
etc. The procured abstracts had grammatical flaws.

We use the arXiv API to obtain the metadata of
the papers (specifically, URL, date of submission,
title, authors, and abstract). To ensure that low
quality articles are not included, we sort the papers
by their relevance. In total, we analyse 27,384
abstracts.

4 Methodology

4.1 Diachronic Embeddings

As mentioned earlier, we use TWEC (Di Carlo
et al., 2019) (Temporal Word Embeddings with
Compass) to create dynamic word embeddings for
each time slice. TWEC uses Word2Vec (Mikolov
et al., 2013) and trains it on data for all the
years to learn atemporal embeddings. Then, the
“pre-trained” target embeddings are frozen, which
serves as the “compass” and temporal embeddings
are learned for each year as context embeddings.
We use this method because it scales well with
large corpora, and it also makes the training simple
and efficient.

4.2 Application

We build our application using Streamlit3, a frame-
work in Python for making data applications. An
overview of the application dashboard is shown in
Figure 1. The dashboard has two modes: Train and
Analysis. The general workflow of the application
is shown in Figure 2 and described as follows:

DRIFT

Train Analysis

Acceleration Plot

Semantic Drift

Tracking Clusters

Acceleration Heatmap

WordCloud

Productivity Plot

Frequency Plot

Tracking Trends

Keyword Visualization

Preprocessing

Training

LDA Topic Modeling

Figure 2: System design for the application.

4.2.1 Train Mode
For flexibility, in the Train mode, we give users an
option to upload their corpus and train the TWEC
model with a click of a button. The sidebar has two
subsections.

2
https://github.com/acl-org/acl-anthology

3https://streamlit.io/

Preprocessing Before training TWEC, the
dataset has to be preprocessed. The preprocess-
ing pipeline we employ comprises simple steps:
convert to lower-case, lemmatisation, remove punc-
tuation and stopwords, remove non-alphanumerics,
etc. We also remove words which frequently appear
in research papers such as paper, systems, result,
approach, etc. This subsection has three input text
boxes: JSON Path for the input dataset/corpus, Text
Key for the key whose corresponding value contains
raw text, Data Path, where the preprocessed data
is to be stored. On clicking the button Preprocess,
the raw text is preprocessed.

Training TWEC hyperparameters such as em-
bedding size, number of static iterations, dy-
namic iterations, negative samples, window size
are presented as text boxes/drop-down menus
here. On clicking the button Train, the
TWEC model is trained on the corpus. Op-
tions/hyperparameters/input paths for preprocess-
ing and TWEC training are presented as text
boxes/drop-down menus in the sidebar.

4.2.2 Analysis Mode
The Analysis mode is the most vital component
of the application. The analysis method can be
chosen from a drop-down menu. Once an analy-
sis method is chosen, the sidebar displays several
parameters which generally include data path, K
(number of keywords to choose from compass),
whether to use TF-IDF or use particular Parts-of-
Speech, etc. As an example, method-specific pa-
rameters for Semantic Drift include: model path,
K(sim.) (top-k most similar words to be shown
around chosen words), K(drift) (allows user to se-
lect from top-k most drifted words), and distance
metric (euclidean/cosine distance).

The page for every analysis method contains
an expander, i.e., a collapsible section which has
options such as a slider to decide the range of
years to be considered for analysis, or a text box
for a particular word to be analysed. Below the
expander, interactive graphs, t-SNE (Maaten and
Hinton, 2008)/UMAP (McInnes et al., 2020)/PCA
plots and tables are displayed, based upon user’s
selection. Every button, text box, drop-down menu
has a “help” option to guide users on its usage and
purpose.

On the right-hand side, there is an option to ex-
port graphs in different formats such as PDF, SVG,
etc. for easy integration with research papers.

363

5 Analysis Methods and Discussion

5.1 Word Cloud
A Word Cloud is a graphical representation of the
keywords of a corpus, i.e., words which have higher
frequency are given more importance. This impor-
tance is translated in terms of size and colour in the
visualisation. We give the user an option to choose
the year for which the analysis is to be done. Other
options in the sidebar include minimum and maxi-
mum font size, number of words to be displayed,
colour, width and height of the word cloud. The
user can select the year from the expander. On the
main page, we display the word cloud. An example
is shown in Figure 7.

5.2 Productivity/Frequency Plot
Schumann (2016) uses normalized term frequency
and term productivity as measures for identifying
growing/consolidated/declining terms. Term pro-
ductivity is a measure of the ability of a concept to
produce new multi-word terms. In our case, we use
bigrams. For each year y and single-word term t,
and associated n multi-word terms m, the produc-
tivity is given by the entropy:

e(t, y) = −
n∑

i=1

log2(pmi,y).pmi,y (1)

where

pm,y =
f(m)∑n
i=1 f(mi)

(2)

and f(m) is frequency of the term. Based on these
two measures (over the years), words are clustered
into three categories:

• Growing Terms: Those which have increas-
ing frequency and productivity in the recent
years.

• Consolidated Terms: Those that are growing
in frequency, but not in productivity.

• Terms in Decline: Those which have reached
an upper bound of productivity and have low
frequency.

In the sidebar, the user can choose the N in
N-gram and the K in Top-K. The default for key-
word extraction in all the methods is normalised
frequency, but the user can opt for frequency or
TF-IDF. Alternatively, the user can also choose the
POS tag for filtering the keywords.

In the expander, the user can select words from
the suggested keywords or add their own words for
analysis. In the main section, the productivity and
normalised frequency graphs are displayed. Below
these graphs, we have a dataframe which displays
which clusters the words belong to. An example is
shown in Figure 10.

5.3 Acceleration Plot
Inspired by Dridi et al. (2019), we analyse the se-
mantic shift of a pair of words with respect to each
other. We aim to identify fast converging keywords
using “acceleration”. The acceleration matrix is
calculated as the difference between similarity ma-
trices of two different time periods, where each
entry is:

acc(wi, wj)
t→(t+1) =

sim(wi, wj)
(t+1) − sim(wi, wj)

t (3)

where (wi, wj) is the word pair being analysed,
sim(wi, wj) is the cosine similarity between words
wi and wj , and (t, t + 1) is the time range. If the
words wi and wj converge, the cosine similarity
value between them will increase, or in other words,
acc(wi, wj)

t→(t+1) > 0. We pick the word pairs
with the highest acceleration values.

To demonstrate the convergence of a pair of
words, we plot the pair on a two-dimensional plot,
along with the top-K most similar words around
them. An example is shown in Figure 4.

In addition to K, POS Tag Filters and an op-
tion to opt for TF-IDF, we also have K(acc.) and
K(sim.). The parameter, K(sim.), is for decid-
ing how many words to plot around the two chosen
words. K(acc.) is for finding the top-K most ac-
celerated pair of words.

The expander has a slider for selecting the range
of years, below which there is a dataframe, listing
the top-K most accelerated keywords. There are
two drop-downs for selecting the pair of words to
be analysed.

The main section has the graph of the embedding
space, showing the convergence/divergence of the
chosen pair of words.

5.4 Semantic Drift
The semantics of words perpetually change over
time, i.e., words drift from one point to another.
This incessant semantic drift is a product of chang-
ing social and cultural norms, transition in linguis-
tic usage, amongst other factors. Since we use

364

model₂₀₁₀ gmms₂₀₁₁ markov₂₀₁₄ hmm₂₀₁₆ asr₂₀₁₇ acoustic₂₀₁₉
0

1

2

3

4

gmms₂₀₁₁ (0.6) subspace₂₀₁₄ (0.78) hmm₂₀₁₆ (0.68) markov₂₀₁₇ (0.61) e2e₂₀₂₀ (0.5) phonetic₂₀₂₁ (0.5)

gaussian₂₀₁₁ (0.51) mixture₂₀₁₄ (0.71) hmms₂₀₁₆ (0.66) dnn₂₀₁₇ (0.59) hmm₂₀₂₀ (0.49) spectrograms₂₀₂₀ (0.47)

hide₂₀₁₁ (0.51) gaussian₂₀₁₄ (0.69) dnn₂₀₁₆ (0.55) gmm₂₀₁₇ (0.58) acoustic₂₀₁₉ (0.48) audio₂₀₂₁ (0.46)

mixture₂₀₁₁ (0.5) markov₂₀₁₄ (0.67) conditional₂₀₁₆ (0.55) hmms₂₀₁₇ (0.56) transcription₂₀₁₈ (0.47) ppgs₂₀₂₀ (0.46)

allocation₂₀₁₃ (0.47) factorial₂₀₁₃ (0.66) cd₂₀₁₅ (0.53) asr₂₀₁₇ (0.52) transcriptions₂₀₁₉ (0.47) mfcc₂₀₂₀ (0.45)

Figure 3: Tracking the word “model” from the year 2010 to the year 2019 with stride=3.

Figure 4: Convergence of the words: “Translation” and “Attention” (2015-2021).

TWEC embeddings, the representations of a word
across time periods are implicitly aligned and we
can directly compute the shift as the distance be-
tween the two representations.

We compute the drift as the Euclidean Distance
or the Cosine Distance between the first year em-
bedding of the word and the last year embedding
of the word. We sort the words according to their
drift (in descending order). For more details on the
algorithm, refer to Subsection A.1 in the Appendix.

In order to visualise the drift, we plot the two
representations of the word on a UMAP/tSNE/PCA
plot, along with the most similar words in the re-
spective years which are clumped around the two
representations. Plotting the top-k most similar
words helps the user in analysing the shift in mean-
ing.

Other than the usual parameters - K, POS Tag
Filters, TF-IDF, the sidebar has options to choose
K(sim.) and K(drift). The expander has a slider
for selecting the range of years. Below the graphs,
a drop-down menu has the top-K(drift) most drifted
words as suggestions. The user can also input a
custom word.

A couple of examples are shown in Figure 5.
Clearly, the word “model” has drifted from the
vicinity of bayesian, markov, bag, gram, logics
in 2017 to albert, roberta, xlnet, mbert, bart in
2021. This makes sense, because back in 1994,
a conventional NLP model was related to bag-of-
words, and Markov/HMM-based (Fosler-Lussier,

1998)/Bayesian methods, while in 2021, the focus
has shifted to RoBERTa (Liu et al., 2020), XL-
Net (Yang et al., 2019), BART (Lewis et al., 2020)
and other transformer models.

5.5 Tracking Clusters

Word meanings change over time. They come
closer or drift apart. In any given year, certain
words are clumped together, i.e., they belong to
one cluster. But over time, clusters can break into
two/coalesce together to form one. Unlike the pre-
vious module which tracks movement of one word
at a time, here, we track the movement of clusters.

Our implementation is simple. Given a range
of years, and some common keywords, we clus-
ter the words for every year, and display the
UMAP/tSNE/PCA graph (with clusters) for every
year separately. We use the KMeans Clustering
Algorithm. A visualisation is shown in Figure 9.

The additional options in the sidebar include
number of clusters and max. number of clusters.
If number of clusters is set to 0, the application
finds the optimal number by searching between
[3,Max. Number of Clusters] using Silhouette
score. Additionally, we have an option to choose
the library of implementation: faiss4/scikit-learn5.
Faiss is up to 10 times faster than sklearn.

4
https://github.com/facebookresearch/faiss

5
https://github.com/scikit-learn/scikit-learn

365

Figure 5: Semantic Drift of the word “model” (1994-2021).

5.6 Acceleration Heatmap

We use the same acceleration measure as in Sec-
tion 5.3. Instead of listing the top-K pairs based on
acceleration, we plot a heatmap of the acceleration
between two years. This can be useful in analysing
how different word-pairs are converging at differ-
ent rates between two years. This heatmap can
be used in combination with the Acceleration Plot,
where a representation of the word-pairs selected
based on the heatmap can be explored. Refer to
Figure 6 to get an idea of the visualisation.

5.7 Track Trends with Similarity

We wish to chart the trajectory of a word/topic from
year 1 to year 2. To accomplish this, we allow the
user to pick a word from year 1. At the same time,
we ask the user to provide the desired stride. We
search for the most similar word in the next stride
years. We keep doing this iteratively till we reach
year 2, updating the word at each step via user input
from the top-K similar words. An overview of the
algorithm is given in Subsection A.2. An example
is given in Figure 3. The trajectory we follow is
model, gmms, markov, hmm, asr, phonetic. This
makes sense, because HMMs, GMMs were used
for ASR in the past.

5.8 Keyword Visualisation

Here, we use the YAKE Keyword Extraction
method (Campos et al., 2020) to extract keywords.
Yake Score is indirectly proportional to the key-
word importance. Hence, we report the scores dif-
ferently6.

The user can select Max. N − gram in the
sidebar. The year can be selected from the slider
in the expander. The main section has a bar graph,

6new_score = 1
105×yake_score

with n-grams on the y-axis and their importance
scores on the x-axis. A visualisation is shown in
Figure 11.

5.9 LDA Topic Modelling

Latent Dirichlet Allocation (LDA) (Blei et al.,
2003) is a generative probabilistic model for an
assortment of documents, generally used for topic
modelling and extraction. LDA clusters the text
data into imaginary topics. Every topic can be rep-
resented as a probability distribution over n-grams
and every document can be represented as a proba-
bility distribution over these generated topics.

We train LDA on a corpus where each document
contains the abstracts of a particular year. We ex-
press every year as a probability distribution of
topics. An example is shown in Figure 8.

6 Accessibility

The code for the toolkit is open-sourced, and is
distributed under a MIT License. The latest stable
code release is available here. An online demo of
the application is hosted here. A set of short video
demonstrations can be found here.

7 Conclusion and Future Work

In this paper, we present DRIFT, a hassle-free, user-
friendly application for diachronic analysis of sci-
entific literature. We compile well-cited research
works and provide an interactive and intuitive user-
interface using Streamlit. We perform a case-study
on cs.CL corpus from arXiv repository, and demon-
strate the effectiveness and utility of our applica-
tion in analysing such corpora. As an extension
of our work, apart from adding upcoming analy-
sis methods (citation-based/statistical/knowledge
graphs), we also intend to make our application

366

modular to make it easier for users to add their own
methods, provide semi-automated inference from
the graphs/tables, and allow easy integration with
LATEX.

References
David Bamman, Chris Dyer, and Noah A. Smith. 2014.

Distributed representations of geographically situ-
ated language. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 828–
834, Baltimore, Maryland. Association for Compu-
tational Linguistics.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent dirichlet allocation. J. Mach. Learn.
Res., 3(null):993–1022.

Ricardo Campos, Vítor Mangaravite, Arian Pasquali,
Alípio Jorge, Célia Nunes, and Adam Jatowt. 2020.
Yake! keyword extraction from single documents
using multiple local features. Information Sciences,
509:257–289.

Valerio Di Carlo, Federico Bianchi, and Matteo Pal-
monari. 2019. Training temporal word embeddings
with a compass. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 33(01):6326–6334.

Amna Dridi, Mohamed Medhat Gaber, R. Muham-
mad Atif Azad, and Jagdev Bhogal. 2019. Deephist:
Towards a deep learning-based computational his-
tory of trends in the nips. In 2019 International Joint
Conference on Neural Networks (IJCNN), pages 1–
8.

Eric Fosler-Lussier. 1998. Markov models and hidden
markov models: A brief tutorial. International Com-
puter Science Institute.

Gil Francopoulo, Joseph Mariani, and Patrick
Paroubek. 2016. Predictive modeling: Guessing
the NLP terms of tomorrow. In Proceedings of the
Tenth International Conference on Language Re-
sources and Evaluation (LREC’16), pages 336–343,
Portorož, Slovenia. European Language Resources
Association (ELRA).

Sujatha Das Gollapalli and Xiaoli Li. 2015. EMNLP
versus ACL: Analyzing NLP research over time.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2002–2006, Lisbon, Portugal. Association for Com-
putational Linguistics.

William L. Hamilton, Jure Leskovec, and Dan Jurafsky.
2016. Diachronic word embeddings reveal statisti-
cal laws of semantic change. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1489–1501, Berlin, Germany. Association for Com-
putational Linguistics.

Vivek Kulkarni, Rami Al-Rfou, Bryan Perozzi, and
Steven Skiena. 2014. Statistically significant detec-
tion of linguistic change.

Andrey Kutuzov, Lilja Øvrelid, Terrence Szymanski,
and Erik Velldal. 2018. Diachronic word embed-
dings and semantic shifts: a survey. In Proceedings
of the 27th International Conference on Computa-
tional Linguistics, pages 1384–1397, Santa Fe, New
Mexico, USA. Association for Computational Lin-
guistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2020.
Ro{bert}a: A robustly optimized {bert} pretraining
approach.

L. V. D. Maaten and Geoffrey E. Hinton. 2008. Visual-
izing data using t-sne. Journal of Machine Learning
Research, 9:2579–2605.

Joseph Mariani, Gil Francopoulo, and Patrick
Paroubek. 2019. The nlp4nlp corpus (i): 50 years of
publication, collaboration and citation in speech and
language processing. Frontiers in Research Metrics
and Analytics, 3:36.

Leland McInnes, John Healy, and James Melville.
2020. Umap: Uniform manifold approximation and
projection for dimension reduction.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Saif M. Mohammad. 2019. The state of nlp literature:
A diachronic analysis of the acl anthology.

Saif M. Mohammad. 2020. NLP scholar: An interac-
tive visual explorer for natural language processing
literature. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 232–255, Online. As-
sociation for Computational Linguistics.

Dominik Schlechtweg, Anna Hätty, Marco Del Tredici,
and Sabine Schulte im Walde. 2019. A wind of
change: Detecting and evaluating lexical seman-
tic change across times and domains. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 732–746, Flo-
rence, Italy. Association for Computational Linguis-
tics.

367

Anne-Kathrin Schumann. 2016. Brave new world: Un-
covering topical dynamics in the ACL Anthology
reference corpus using term life cycle information.
In Proceedings of the 10th SIGHUM Workshop on
Language Technology for Cultural Heritage, Social
Sciences, and Humanities, pages 1–11, Berlin, Ger-
many. Association for Computational Linguistics.

Terrence Szymanski. 2017. Temporal word analogies:
Identifying lexical replacement with diachronic
word embeddings. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 448–
453, Vancouver, Canada. Association for Computa-
tional Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural In-
formation Processing Systems, volume 32. Curran
Associates, Inc.

A Algorithms

A.1 Semantic Shift
An overview of the approach is given in Algo-
rithm 1. The dist(x, y) function can either be the
Euclidean Distance or Cosine Distance. In the al-
gorithm, we find the most drifted words from a
given list of words by sorting them according to
the distance. year_x_model is the aligned TWEC
Model for year x.

Algorithm 1: Semantic Shift
Data: words, year_1, year_2
Result: word_dist

word_dist← {}
for word in words do

year_1_emb← year_1_model(word)
year_2_emb← year_2_model(word)
word_dist[word]←
dist(year_1_emb, year_2_emb)

end
word_dist← sort_by_value(word_dist, “desc”)

A.2 Track Trends with Similarity
Algorithm 2 gives an overview of our approach.
MSW (word, range = [year+1, year+stride])
finds the most similar word to word in the years
year + 1, year + 2, ..., year + stride. Here, we
have demonstrated (for the sake of simplicity) that
the most similar word is chosen at every step. In
the actual implementation, we allow the user to
choose from the top-K most similar words at every
step. stride is available as an argument in the
sidebar, along with K(sim.). In the main section,

Algorithm 2: Track Trends with Similarity
Data: word, year_1, year_2
Result: word_traj

year ← year_1
word_iter ← word
word_traj ← [(word, year_1)]
while year ≤ year_2 do

word_iter ←MSW (word_iter, range =
[year + 1, year + stride])

year ← get_year(word_iter)
word_traj.append((word_iter, year))

end

a table (which is dynamically updated) displays the
trajectory taken by the initial word.

B Additional Demonstrative Analyses

Figure 6: Acceleration Heatmap for top-K words be-
tween two years. A darker red colour implies a higher
positive acceleration value.

368

(a) Word Cloud for the year 2000. (b) Word Cloud for the year 2018.

Figure 7: Word Cloud Demonstrations.

Figure 8: LDA Topic Modeling for the year 2014. The major topics in 2014 are 2 and 7. Topic 2 is primarily
composed of “visual”, “embeddings”, etc. and Topic 7 is composed of “nmt”, “tweet”, “rnn”, etc.

369

Figure 9: Tracking Clusters from 2018 to 2020.

370

Figure 10: Productivity and Normalised Frequency Plots for the words “BERT”, “LSTM”, “train” (2015-2020).
We can classify “BERT” as a growing term, “train” as a consolidated term and “LSTM”, a declining term.

Figure 11: Keyword Visualisation using the YAKE keyword extraction method for the year 2019. Top keywords
with n = 2 include “language model”, “deep learn”, “generative model”, etc.

371

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 372–381
November 7–11, 2021. ©2021 Association for Computational Linguistics

FAST: Fast Annotation tool for SmarT devices

Shunyo Kawamoto, Yu Sawai∗, Kohei Wakimoto∗, Peinan Zhang∗

CyberAgent, Inc.
{kawamoto_shunyo,sawai_yu,wakimoto_kohei,zhang_peinan}@cyberagent.co.jp

Abstract

Working with a wide range of annotators
with the same attributes is crucial, as in real-
world applications. Although such application
cases often use crowd-sourcing mechanisms to
gather a variety of annotators, most real-world
users use mobile devices. In this paper, we pro-
pose “FAST,” an annotation tool for applica-
tion tasks that focuses on the user experience
of mobile devices, which has not yet been fo-
cused on thus far. We designed FAST as a web
application for use on any device with a flexi-
ble interface that can be customized to fit var-
ious tasks. In our experiments, we conducted
crowd-sourced annotation for a sentiment anal-
ysis task with several annotators and evalu-
ated annotation metrics such as speed, quality,
and ease of use from the tool’s logs and user
surveys. Based on the results of our experi-
ments, we conclude that our system can anno-
tate faster than existing methods while main-
taining the annotation quality.

1 Introduction

In the annotation of application tasks, it is impor-
tant to work with a wide range of annotators as in
real-world situations such as in the evaluation of
the outputs of natural language generation (NLG)
systems or sentiment analysis for user reviews. For
instance, when evaluating the outputs of an NLG
system for textual-ad creatives, the annotators, of-
ten called workers in a crowd-sourcing context, are
usually required to annotate whether the generated
text is fluent or not1.

Although such applications often use crowd-
sourcing to gather a wide variety of annotators,
statistics have shown that a large percentage of
real-world users currently use mobile devices such
as smartphones (Economic Research Office, 2020).

∗These authors contributed equally.
1We use the term “annotation” to refer to the procedure of

labeling a single instance.

The application task itself, such as sentiment anno-
tation and fluency assessment of the NLG system
outputs, is simple. However, it is important to im-
prove the operation interface and evaluate its con-
tribution in detail. This is because a large amount
of data is annotated by annotators with various op-
eration proficiency levels.

In addition to the level of proficiency, mobile
devices are more likely than desktop devices to be
used on the go, during spare time, and in parallel
with other tasks (Economic Research Office, 2020).
Annotation using mobile devices is expected to
collect more data as the time available for work is
increased and the effort is reduced.

We propose a novel annotation tool called
“FAST”2, and its contributions are summarized be-
low.

• We propose and develop an annotation tool for
the tasks that focuses on the user experience
(UX) on mobile devices, which is important
but has not yet been addressed in previous
studies.

• We demonstrate that our tool is scalable, ex-
tensible, and customizable, and can be applied
not only to the tasks described in this paper,
but also to many other tasks.

• To evaluate the contribution of the tool to the
improvement in the UX, we conducted an eval-
uation experiment with multiple annotators
in a setting close to the practical use and ob-
tained the metrics of annotation efficiency. We
also conducted quantitative evaluations, such
as inter-annotator agreement and subjective
evaluations of UX.

2A short introduction video and the source codes
are available at https://github.com/CyberAgent/
fast-annotation-tool

372

Figure 1: Use-case examples of FAST. In FAST, both texts and images are supported, and users can freely set
questions and answers.

2 Related Work

In this section, we review the work related to the
issues addressed by FAST. First, we note that FAST
is not aimed at performing complete linguistic an-
notations; rather it focuses on applied tasks such as
quality assessment of NLG systems. More specifi-
cally, FAST is designed for the annotation of indi-
vidual tokens and sentences and not for the annota-
tion of relations between tokens and sentences. In
addition, we expect the annotators to be users with
a wide range of attributes, such as those employed
in crowd-sourcing.

Examples of tools that support extensive and
detailed linguistic annotation are Brat (Stenetorp
et al., 2012), MAE (Rim, 2016), INCEpTION (Klie
et al., 2018), and Anafora (Chen and Styler, 2013).
Recently, there have also been open-source soft-
ware (OSS) tools such as doccano (Nakayama et al.,
2018) that are suitable for applied tasks such as
multi-label classification. Doccano is an OSS tool
with mobile support and is currently one of the
most popular annotation tools, with more than
4,000 stars on GitHub. This tool is focused on
industrial targets such as sentiment analysis done
by general users, rather than inter-entity structural
annotation done by experts e.g. dependency struc-
ture annotations or coreference annotations. In
this respect, Doccano and FAST have been devel-
oped based on the same motivation, and the target
tasks are also similar. Although Doccano supports
mobile devices, it essentially has the same UI struc-
ture as its desktop version and thus implementing
extensible UI system on the top of it requires ef-

forts. Therefore, we developed FAST from scratch
and introduced user interfaces dedicated to mobile
devices and mechanisms for the easy custom an-
notation of interface elements which are required
for simulating end-users’ environment as close as
possible.

User Interface and Experience

There are several studies on improving the effi-
ciency of annotation tasks. As a prominent exam-
ple, SLATE (Kummerfeld, 2019) aims to improve
the efficiency of workers who are skilled in key-
board input by focusing on the command line in-
terface. Conversely, in a crowd-sourcing situation,
there is a large variation in the operating skills of
the workers; therefore, FAST adopts a graphical
user interface (UI) and aims to improve efficiency
by devising a new UI.

In application tasks, manual evaluation by a large
number of non-domain experts is crucial. For ex-
ample, in the evaluation of the generation quality of
NLG systems, which is one of the tasks envisioned
by the proposed tool, it is vital to have a group
of evaluators similar to the user population that
will see the generated sentences (van der Lee et al.,
2019). To accommodate a wide variety of workers,
the environment in which the tool operates must
be versatile; in other words, it must have a web-
based interface or a mobile interface. Although
there are tools that support mobile devices, such as
Doccano mentioned earlier, tools that have a user
interface for mobile devices as their primary focus
are scarce. In particular, the mobile UIs of the exist-
ing tools are the same as those of their PC versions;

373

Figure 2: System architecture overview of FAST. The tool consists of serverless backend services and a user-facing
interface for annotators, which can run on both PC and mobile devices.

thus, there is significant room for improving the
efficiency of mobile interfaces. The proposed tool,
FAST, aims to enable users who are not confident
in operating PC terminals or those who are familiar
with the mobile environment to work comfortably
using a standard UI for mobile software.

Evaluation for Annotation Tools
We conclude this chapter with related work on
methods to evaluate the contribution of annotation
tools. A comparison at the functional level is often
performed for tools with a large feature set, such as
RedCoat (Stewart et al., 2019). Conversely, there
are situations in which the performance of actual
tasks are directly evaluated.

TALEN (Mayhew and Roth, 2018) is a tool spe-
cialized for creating Named Entity Recognition
(NER) datasets in “low-resource” languages, which
in some cases the annotators are not aware of. To
assist annotators in this task, it includes “entity-
propagation” where tagging an entity spills over to
others similar to it, and there exists a mechanism
to display the vocabulary of known languages. To
evaluate these contributions, we adopted a method
of comparing the NER task performance of the
“low-resource” language with that of the baseline
tool. In FAST, as in TALEN, we employ metrics
such as the performance in the assumed real task
and the time spent for annotation work as quantita-
tive evaluation indicators.

3 System Description

3.1 Supported Annotation Methods
FAST supports Card UI annotations and Multi-
label UI annotations. Figure 1 shows the screen-
shots of each UI.

As can be observed from the figure 1, FAST is
highly customizable. By flexibly designing ques-
tions and answers, issuers can create annotations

for a variety of tasks, ranging from simple binary
classification to pairwise comparisons and element
selection.

For example, if a set of generated sentences have
to be ranked, we simply need to create pairwise
sentences and then annotate them. Based on the
results, using methods such as TrueSkill(Herbrich
et al., 2007), the score and ranking of the sentences
can be obtained. In addition, since HTML/CSS
can be set as the evaluation target, it is possible to
annotate the UI and the multimodal support close
to the actual application, such as for evaluation
combining images and text.
Card UI In FAST, we adopted the Card UI, which
has been adopted by several mobile applications
such as Tinder3 and Grabble4, as a UI suitable for
mobile environments. In the Card UI, the user is
presented with a card containing text and a question.
The annotator responds with two choices: whether
the content of the card matches the question. The
annotator can answer by swiping the card or tap-
ping the button at the bottom of the screen. One
feature of the Card UI is that the actions to perform
are few. Although ordinary tools require at least
two actions, selection and decision, the card system
allows these actions to be executed with a single
action. In addition, because swiping a card in either
the left or right direction is a very familiar action
in mobile devices, it is intuitive and requires little
time for the user to get used to; it is therefore ex-
pected to provide fast and comfortable annotation
while ensuring quality.
Multi-label UI The UI of the multi-label is de-
picted on the right side of Figure 1. In the Multi-
label UI, multiple buttons are presented to a ques-
tion. Annotators tap one or more buttons to answer
this question. The multi-label method is an anno-

3https://tinder.com/
4https://www.grabble.com/

374

tation method that assumes multiple choices, and
several evaluation tools implement it. Compared
to the Card UI, the Multi-label UI can handle a
wider range of annotations; however, the annota-
tion efficiency is expected to decrease owing to the
difference in the number of actions.

3.2 Architecture and Features

As shown in Figure 2, FAST adopts an architecture
comprising Google Cloud Platform and Firebase.
We adopted such a serverless design instead of
hosting it on our own servers to reduce the man-
agement cost. Once FAST is deployed, there is no
requirement to augment the DB or update the OS
subsequently and can be therefore be conveniently
operated. Additionally, since Firebase is a pay-per-
use system, server costs can be kept very low for
low-frequency access applications such as annota-
tion tools. For example, 100,000 annotations cost
only approximately $0.4. which is significantly
cheaper than purchasing a new machine.
Detailed logs It is important to keep accurate and
detailed logs during an annotation. For example,
when we want to estimate the difficulty of an an-
notation, it is useful to know how long it took the
annotator to complete each question, how many
times the annotator pressed the back button to re-
vise the answer, which device was used to annotate,
and so on. For this reason, FAST collects detailed
logs, for example, the timestamp of the user’s ac-
tion (view, select, submit), the user agent, and the
size of the screen.
In addition, because FAST can be linked to Google
Analytics5, it is possible to know the location, de-
vice, and event information of annotators in real
time.
Device dependency As FAST is a web applica-
tion, it can be run as long as there is an accessible
Internet environment and a browser. In other words,
there is no device dependency, such as being lim-
ited to PCs or mobile devices, and it is possible
to work with a wide range of annotators with at-
tributes closer to those of real applications.
Data communication via API We expect that the
annotation issuers will have a certain level of devel-
oper skills; for example, they could be researchers
or machine learning (ML) model developers.
Data communication via APIs allows such devel-
opers to perform the entire process from issuing
annotations to analyzing the results at a lower cost

5https://analytics.google.com

compared to that in the case of a file format. There-
fore, it can reduce the burden on the issuer in the
use case, where the annotation is performed several
times.

3.3 Overall Flow

The overall flow of the system can be described as
follows:
Step 1. Deploying the app and sharing the URL
As FAST is a web application, it has to be deployed
by the annotation issuer. Then, the URL of the
application has to be shared with the annotator.
Step 2. Creating accounts The annotation is-
suer and the annotator must sign up for a Google
account on the web application in order to create
an account.
Step 3. Creating tasks and assignment The
annotation issuer is then required to create a task
using the annotation API. The data to be sent here
includes not only the ones to be evaluated but also
meta-information, such as the title and format of
the task. After the task is created, the issuer allo-
cates the task to the registered annotators in the
application.
Step 4. Conducting annotations The annotator
confirms that the assigned task has been added to
the home screen and executes the annotation.
Step 5. Checking progress and data retrieval
Annotation issuers can check the progress of each
annotator on the application and receive comple-
tion notifications via Slack. After the annotation is
completed, the issuer retrieves the data via the API
and performs the aggregation process.

4 Experiment

4.1 Metrics

We define some metrics that should be considered
when measuring the effectiveness of annotation
tools and explain what numbers should be tracked
for each metric.
Annotation Efficiency One of the most impor-
tant metrics in annotation tools is annotation effi-
ciency. Additional data could be collected using
a high-efficiency tool within a short period. To
track efficiency, we measured the annotation time
for the application using a fixed number of annota-
tion questions. In practice, annotators may leave
during the annotation process; therefore, in our ex-
periments, logs that took more than 60 seconds
were considered dropped annotations and were ex-
cluded.

375

Annotation Quality The annotated data should
be of high quality. The difficulty of the task and the
ease of use of the tool are considered to contribute
to the quality. We evaluated the correctness rate of
the annotation results and the inter-annotator agree-
ment rate to examine the influence of the UI/UX of
the tool on the performance.
Qualitative Usability In addition to the aforemen-
tioned two metrics, usability as perceived by the
annotators is another key metric. To measure this,
we requested each annotator to perform the follow-
ing six annotation tasks and rank them in terms of
usability. We also collected qualitative impressions
of each task through a user survey in the form of
free descriptions. We calculated the average rank-
ings for each task and evaluated them based on the
annotators’ comments in the experimental results.

4.2 Experiment Setting

We conducted the following three comparative ex-
periments of the evaluation metrics described in
Section 4.1.
PC vs. Mobile As mobile devices are more
portable and convenient to use than PC devices,
people often use them in their spare time. Thus, we
assume that mobile device applications are more
customary and easier to use than that of PC devices.
We conducted a comparison experiment with each
device to verify this assumption.
FAST vs. Existing Tool We compare our pro-
posed tool, FAST, with doccano, which is widely
used in existing annotation tasks, as described in
Section 2.
Card UI vs. Multi-label UI In the proposed tool,
FAST, we compare the Multi-label UI, which is
commonly used in evaluation annotation, with the
Card UI adopted in this study.

Based on the aforementioned scheme, we con-
ducted six annotation tasks through crowd-sourcing
via Lancers, Inc.6 for a total of about 40,000 an-
notations were worked by 18 annotators in five
days. To avoid device mismatch during annotation,
the app acquires the UserAgent and only accepts
mobile annotations for mobile devices and PC an-
notations for PC devices. The annotation fee was
set at $0.045 per annotation, taking into account
the pre-measured work speed.

In the experiment, we used the product review
data crawled from the e-commerce site, which con-
sisted of text with 50 or less Japanese characters

6https://www.lancers.jp

and a five-point rating score. As mentioned in 3.1,
FAST can be used for a variety of tasks, but in
the current study, we simplified the problem for
the sake of evaluation and experiment using a task
in which whether the review was satisfactory or
unsatisfactory has to be selected.

In this study, we removed the data with an inter-
mediate evaluation score of 3 and assigned scores 1
and 2 to “dissatisfied” and scores 4 and 5 to “satis-
fied.” In the actual annotation, the annotator reads
the content of the review and selects whether the
content is satisfactory or unsatisfactory.

We used a task with binary labels for simplicity,
but the Card UI can be applied to tasks with more
labels than binary labels depending on the design.
Hu (Hu et al., 2020) reduced the multiclass problem
to binary labels using pseudo-labels based on a
classification model.

4.3 Experiment Flow

The experiment consisted of five phases: two anno-
tation phases and a user survey phase before and
after each annotation phase. Each phase can pro-
ceed to the next phase only when it is completed.
Phase 1. Tutorial and Pre-Survey Before start-
ing the annotations, we provided each annotator
with a tutorial on the entire process and how each
tool needs to be used. A user survey questionnaire
was also given to the annotators, to collect infor-
mation on their attributes, their level of skill with
PC and mobile devices, and the amount of time
they spend out of the office per day. Based on the
collected information, we assigned the tasks to the
annotators.
Phase 2. General Annotation We requested all
the annotators to perform all the annotations de-
scribed in Section 4.2 on a small set of 50 data
points. This was done to allow each annotator to
know and experience all the annotation methods to
facilitate a fair comparison.
Phase 3. Interim Survey The annotator was
asked to sort the six annotation methods in the order
of their perceived ease of use through the General
Annotation of Phase 2. They were also asked to
describe the reasons why the methods were good
or bad.
Phase 4. Specific Annotation In the General
Annotation of Phase 2, the annotators were famil-
iarized with all the annotation methods. Each anno-
tator was asked to perform a large number of 2,000
annotations using one method in this phase. Ac-

376

Table 1: Experiment results consist of Annotation Efficiency, Annotation Quality, and Qualitative Usability.

Tool Device UI
Annotation Efficiency Annotation Quality Qualitative Usability

Total Time (m) Average Time (s) Accuracy α Average Rankings
(↓ better) (↓ better) (↑ better) (↑ better) (↓ better)

doccano PC 5.9 7.3 0.95 0.87 4.91
Mobile 6.7 8.3 0.98 0.96 5.82

FAST
PC

Multi-label 4.8 5.4 0.97 0.93 2.91
Card 4.0 4.4 0.97 0.94 2.12

Mobile
Multi-label 4.9 5.2 0.97 0.95 3.15
Card 4.6 4.7 0.97 0.96 2.03

cording to the interim user survey results in Phase
1, we assigned three annotators to each annota-
tion method to be equally distributed in terms of
attributes and skill level.
Phase 5. Post-Survey To check whether there
was any change of opinion regarding a Specific
Annotation, we asked the annotators to rank the
ease of use of the six annotation methods again, as
in the interim user survey of Phase 3. In addition,
each annotator was asked to comment on what was
good or bad about the Specific Annotation he or
she was in charge of.

5 Results and Discussion

The experiment results are presented in Table 1.
Annotation Efficiency is the total time required to
complete all the tasks (Total Time) and average
time per task (Average Time). Annotation Qual-
ity that refers to the accuracy and ratings on the
inter-annotator agreement is derived from Krippen-
dorff’s α. Qualitative Usability is calculated from
the average rankings of the Post-Survey ratings.

Notably, we excluded two annotators while cal-
culating the result because they had a markedly low
accuracy compared to others as shown in Figure
3. In addition, the annotation speeds varied sig-
nificantly among the annotators in the experiment.
For the Specific Annotation, the annotators were di-
vided into groups. To reduce user bias between the
groups, we aggregated the annotation efficiencies
from the General Annotation results.
PC vs. Mobile Table 1 shows that the perfor-
mance of PC and mobile devices is almost the same
in terms of the annotation speed and quality. This
suggests that the same level of annotation can be
performed on a mobile device as on a PC. On the
other hand, we could not confirm the superiority
of mobile devices in terms of efficiency because
the experiment was conducted for only five days.
For a more appropriate verification, a comparison

based on the measurement of user’s working speed
and fatigue over a longer period and with regular
annotations is necessary. In terms of usability, the
mobile device with the Card UI received the most
first-place votes in both the interim and post-user
surveys, and its average ranking was 0.23 higher
than that of the PC with the Card UI. The supe-
riority of the mobile devices in terms of usability
was therefore confirmed. Additionally, three out of
nine annotators assigned to mobile devices in the
Specific Annotation performed their annotations
during their spare time, such as in trains, cars, and
cafes, confirming the superiority of mobile devices
that allow work to be performed in any location.
FAST vs. Existing tool Table 1 shows that the av-
erage annotation time for the FAST Card UI is 4.7
seconds on mobile devices, compared to 8.3 sec-
onds for existing tools; therefore, approximately
43% of the annotation time can be reduced using
FAST. One of the reasons for this is the number
of actions required to select and decide. Doccano
requires at least three actions for each annotation,
that is, display of the options, selection, and deci-
sion, but the Card UI of FAST requires only one
action for selection and decision. It is thought that
this difference affects the speed and usability of
the system. Another reason is whether the UI is
designed for mobile devices or not. In the user sur-
vey, we confirmed the following opinions about the
mobile devices of the existing tools: “I could not
operate it with one hand” and “I felt stressed be-
cause I had to scroll because the screen size did not
fit the device.” As for the annotation quality, the
agreement rate of the existing tool on PC was 0.87,
which was lower than the other patterns. In the
annotator’s opinion, “errors occurred” and “some-
times the tool does not respond to button presses”
were confirmed, which is considered to be due to a
problem in the application.
Card UI vs. Multi-label UI Table 1 shows that

377

Figure 3: Sorted annotators’ accuracy in the Phase 4
Specific Annotation.

the Card UI is 18% faster on mobile devices and
25% faster on PCs than the Multi-label UI. The
Card UI is also superior in terms of usability.
For the same reason as in the comparison with
the existing tools, the difference in the number of
actions is considered to have affected the speed and
ease of use.

6 Conclusion

In this study, we proposed and developed FAST, an
annotation tool for application tasks that emphasize
the impact of UI/UX on mobile devices, which is a
crucial topic, although not investigated thus far.

FAST is a web application designed for use on
any device, including mobiles and PCs. This web
application is highly customizable in that the is-
suers can create views that are optimized for their
tasks utilizing two types of UI: Card UI and Multi-
label UI. We compared the devices and UIs, as
well as an existing tool with FAST, in an experi-
ment involving a sentiment analysis task; we also
evaluated their efficiency, quality, and usability.

The results showed that the mobile operation
of FAST provides annotators with a more user-
friendly experience while maintaining the effi-
ciency and quality of the PC. Furthermore, in com-
parison with the existing tools, FAST was able to
reduce the annotation time by 43% and an improve-
ment in work efficiency was also confirmed.

In the future, we plan to conduct quantitative
evaluations using additional detailed indicators
such as the trajectory of user operations, and task
load metrics measured using NASA TLX. More-
over, we aim to increase the number of supported
task types, enhance the management functions, and
support on-premise environments to strengthen its
usefulness as a general-purpose annotation tool.

References
Wei-Te Chen and Will Styler. 2013. Anafora: A web-

based general purpose annotation tool. In Proceed-
ings of the 2013 NAACL HLT Demonstration Ses-
sion, pages 14–19, Atlanta, Georgia. Association for
Computational Linguistics.

Economic Research Office. 2020. Information and
Communications in Japan 2020. White Paper 2020
by The Ministry of Internal Affairs and Communica-
tions of Japan.

Ralf Herbrich, Tom Minka, and Thore Graepel. 2007.
TrueSkill™ : A Bayesian Skill Rating System. In
Advances in Neural Information Processing Systems
19, pages 569–576. MIT Press.

Hengtong Hu, Lingxi Xie, Zewei Du, Richang Hong,
and Qi Tian. 2020. One-bit supervision for image
classification. In Advances in Neural Information
Processing Systems 33: Annual Conference on Neu-
ral Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual.

Jan-Christoph Klie, Michael Bugert, Beto Boullosa,
Richard Eckart de Castilho, and Iryna Gurevych.
2018. The INCEpTION platform: Machine-assisted
and knowledge-oriented interactive annotation. In
Proceedings of the 27th International Conference on
Computational Linguistics: System Demonstrations,
pages 5–9, Santa Fe, New Mexico. Association for
Computational Linguistics.

Jonathan K. Kummerfeld. 2019. SLATE: A super-
lightweight annotation tool for experts. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics: System Demonstra-
tions, pages 7–12, Florence, Italy. Association for
Computational Linguistics.

Stephen Mayhew and Dan Roth. 2018. TALEN: Tool
for annotation of low-resource ENtities. In Proceed-
ings of ACL 2018, System Demonstrations, pages
80–86, Melbourne, Australia. Association for Com-
putational Linguistics.

Hiroki Nakayama, Takahiro Kubo, Junya Kamura, Ya-
sufumi Taniguchi, and Xu Liang. 2018. doccano:
Text Annotation Tool for Human.

Kyeongmin Rim. 2016. MAE2: Portable Annotation
Tool for General Natural Language Use. In Proc
12th Joint ACL-ISO Workshop on Interoperable Se-
mantic Annotation, pages 75–80.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. brat: a web-based tool for NLP-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 102–107, Avignon, France. Association for
Computational Linguistics.

378

Michael Stewart, Wei Liu, and Rachel Cardell-Oliver.
2019. Redcoat: A collaborative annotation tool
for hierarchical entity typing. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP): System Demonstrations, pages
193–198, Hong Kong, China. Association for Com-
putational Linguistics.

Chris van der Lee, Albert Gatt, Emiel van Miltenburg,
Sander Wubben, and Emiel Krahmer. 2019. Best
practices for the human evaluation of automatically
generated text. In Proceedings of the 12th Interna-
tional Conference on Natural Language Generation,
pages 355–368, Tokyo, Japan. Association for Com-
putational Linguistics.

379

A System Details

Figure 4: DB Diagram

Listing 1: Sample of annotated data to be fetched via API
{

"task": {
"id": "card -demo -202000601",
"annotation_type": "card",
"title": "Card Demo",
"question": "This is card demo",
"description": "This is a card demo, so feel free to annotate it as you wish.",
"created_at": "2021 -06 -01 T07:39:38.916473+00:00",
"updated_at": "2021 -06 -01 T07:39:38.916490+00:00"

},
"annotations": [

{
"id": "0 V7KGVUs3cijjr1HG6J6",
"name": "Shunyo Kawamoto",
"email": "kawamoto_shunyo@cyberagent.co.jp",
"data": {

"text": "This is a annotation .",
"show_ambiguous_button": true,
"hidden_data": {

"desc": "Data for aggregation. It can be a dictionary or a string ."
},
"yes_button_label": null,
"question_overwrite": null,
"no_button_label": null,
"baseline_text": null

},
"result_data": {

"result": "No",
},
"order_index": 44,
"user_id": "enTzOydWPXfYyXF9vOhuu38a5DA2",
"user_task_id": "TG9EvlyOUQ43hBYlAM8b",
"annotation_id": "tVlOrySSTMV2m0JEIr1s",
"created_at": "2021 -06 -01 T08:00:54.099000+00:00",
"updated_at": "2021 -06 -01 T08:00:54.099000+00:00"

},
...

]
}

380

B Survey Details

Table 2: Questions in the Pre-Survey

Question Format Options
Email address Free text
Gender Selection Male, Female, Other
Age Selection 10s, 20s, ..., Over 70s
Current address (prefecture) Free text
Occupation Free text
Number of days per week that you go
out for more than one hour

Selection 1day, 2day, ..., 7day

Hours away from home per day Selection Almost none, 1hour, 2hour, ..., Over 10hour
Model name of mobile device Free text
Time spent on the PC per day Selection Almost none, 1hour, 2hour, ..., Over 10hour
Time spent on mobile devices per day Selection Almost none, 1hour, 2hour, ..., Over 10hour
PC, Mobile proficiency 5-point Lik-

ert scale

Table 3: Questions in the Interim Survey

Question Format Options
Email address Free text
Ranking of ease of use for each pattern Selection 1st, 2nd, ..., 6th
Reasons for the patterns that were easi-
est to use

Free text

Reasons for the most difficult patterns
to use

Free text

Other problems during annotation, etc. Free text

Table 4: Questions in the Post-Survey

Question Format Options
Email address Free text
Ranking of ease of use for each pattern Selection 1st, 2nd, ..., 6th
Good points about the tool you were
responsible for in Specific Annotation

Free text

Bad points about the tool you were re-
sponsible for in Specific Annotation

Free text

(Mobile annotators only) The location
where you annotated

Free text

381

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 382–389
November 7–11, 2021. ©2021 Association for Computational Linguistics

deepQuest-py: Large and Distilled Models for Quality Estimation

Fernando Alva-Manchego,1 Abiola Obamuyide,1 Amit Gajbhiye,1 Frédéric Blain,1,2

Marina Fomicheva,1 Lucia Specia1,3

1University of Sheffield, 2University of Wolverhampton, 3Imperial College London
{f.alva,a.obamuyide,a.gajbhiye,m.fomicheva}@sheffield.ac.uk

f.blain@wlv.ac.uk, l.specia@imperial.ac.uk

Abstract

We introduce deepQuest-py, a framework for
training and evaluation of large and light-
weight models for Quality Estimation (QE).
deepQuest-py provides access to (1) state-of-
the-art models based on pre-trained Transform-
ers for sentence-level and word-level QE; (2)
light-weight and efficient sentence-level mod-
els implemented via knowledge distillation;
and (3) a web interface for testing models
and visualising their predictions. deepQuest-
py is available at https://github.com/
sheffieldnlp/deepQuest-py under a
CC BY-NC-SA licence.

1 Introduction

Quality Estimation (QE) for Machine Translation
(MT) aims to predict how good automatic transla-
tions are without comparing them to gold-standard
references (Specia et al., 2009). This is useful in
real-world scenarios (e.g. computer-aided transla-
tion or online translation of social media content),
where users would benefit from knowing how con-
fident they should be of the generated translations.
QE has received increased attention in the MT com-
munity, with Shared Tasks being organised yearly
since 2012 as part of WMT, the main conference
in MT research (Callison-Burch et al., 2012; Bojar
et al., 2013, 2014, 2015, 2016, 2017; Specia et al.,
2018a; Fonseca et al., 2019; Specia et al., 2020).

Given an original-translation sentence pair, QE
scores can be computed in different granularities
(Specia et al., 2018b). At the word-level, each
word in the original and/or translation sentence
receives a tag indicating whether it was correctly
translated or not (e.g. OK or BAD). Gaps in the
translation could also receive labels to indicate
when a word is missing. At the sentence-level,
a single continuous score is predicted for each
original-translation pair. For example, 0-100 for di-
rect assessments (DA, Graham et al., 2017), or 0-1

for human-targeted translation error rate (HTER,
Snover et al., 2006).

Few open-source software is available for im-
plementing QE models. QuEst (Specia et al.,
2013) and QuEst++ (Specia et al., 2015) were
the first ones, and included methods that relied
on extracting linguistically-motivated features to
train traditional machine learning models (e.g. sup-
port vector machines). With the advent of neural-
based approaches, deepQuest (Ive et al., 2018) pro-
vided a TensorFlow-based framework for RNN-
based sentence-level and document-level QE mod-
els, inspired by the Predictor-Estimator approach
(Kim et al., 2017). OpenKiwi (Kepler et al.,
2019) implements a common API for experiment-
ing with several feature-based and neural-based
QE models. More recently, TransQuest (Ranas-
inghe et al., 2020b) released state-of-the-art models
for sentence-level QE based on pre-trained Trans-
former architectures.

As shown in the latest WMT20 QE Shared
Task (Specia et al., 2020), systems are increas-
ingly relying on large pre-trained models to achieve
impressive results in the different proposed tasks.
However, their considerable size could prevent
their application in scenarios where fast inference
is required and small disk space is available. To
overcome this limitation, Gajbhiye et al. (2021) pro-
pose to use Knowledge Distillation (KD, Hinton
et al., 2015) to transfer knowledge from a large top-
performing teacher model into a smaller (in terms
of memory print, computational power and predic-
tion latency) yet well-performing student model.
The authors applied this framework to QE, and
effectively trained light-weight QE models with
similar performance to SoTA architectures trained
on distilled yet large pre-trained representations.

In this paper, we introduce deepQuest-py, a new
version of deepQuest that covers both large and
light-weight neural QE models, with a particular
emphasis on knowledge distillation. The main fea-

382

tures of deepQuest-py are:

• Implementation of state-of-the-art models for
sentence-level (Ranasinghe et al., 2020a) and
word-level (Lee, 2020) QE;

• The first implementation of light-weight
sentence-level QE models using knowledge
distillation (Gajbhiye et al., 2021);

• Easy-to-use command-line interface and API
to train and test QE models in custom datasets,
as well as those from several WMT QE Shared
Tasks thanks to its integration with Hugging-
Face Datasets (Lhoest et al., 2021); and

• An online tool to try out trained models, eval-
uate them and visualise their predictions.

Different from existing open-source toolkits in
the area, our aim is to provide access to neural QE
models for both researchers (via a command-line
interface and python library) and end-users (via a
web-based tool). Additionally, this is the only tool
to provide implementation of knowledge distilla-
tion for QE. In the following sections, we detail
the main functionalities offered by deepQuest-py:
implementation of state-of-the-art sentence-level
and word-level models (Sec. 2); implementation of
light-weight sentence-level models through knowl-
edge distillation (Sec. 3); and evaluation and visu-
alisation of models’ predictions via a web interface
(Sec. 4). We expect that deepQuest-py facilitates
the implementation of QE models, allows useful
analysis of their capabilities, and promotes their
adoption by end-users.

2 Large State-of-the-Art Models

In the WMT20 QE Shared Task (Specia et al.,
2020), the top performing models were based
on fine-tuning pre-trained Transformers (Vaswani
et al., 2017), such as BERT (Devlin et al., 2019)
or XLM-R (Conneau et al., 2020). deepQuest-py
provides access to this type of approaches by build-
ing on the HuggingFace Transformers (Wolf et al.,
2020)1 library. We provide implementations for
sentence-level and word-level QE.

Sentence-Level. deepQuest-py implements
the MonoTransQuest architecture from Tran-
sQuest (Ranasinghe et al., 2020a,b), the overall

1https://github.com/huggingface/
transformers

winner in Task 1 (sentence-level direct assessment)
of the WMT20 QE Shared Task. In this approach,
the original sentence and its translation are
concatenated using the [SEP] token, and passed
through XLM-R to obtain a joint representation
via the [CLS] token. This serves as input to a
softmax layer that is used to predict translation
quality. In order to boost performance, the authors
incorporate two strategies: (1) to use an ensemble
of two models: one that fine-tunes XLM-R-base
and one that fine-tunes XLM-R-large; and (2)
to augment the training data of the QE models
with (subsets of) the training data of the NMT
models, considering their quality scores as perfect.
These extensions are not currently available in
deepQuest-py, but the API is flexible-enough to
incorporate them in the future.

Word-Level. deepQuest-py implements the
model proposed by BeringLab (Lee, 2020), the
winner of Task 2 Word-level QE for En-De in
the WMT20 QE Shared Task. Similar to the
sentence-level models described before, the
original sentence and its translation are fed to
XLM-R to get contextualised word embeddings.
In this approach, both token-level (hidden states)
and instance-level ([CLS] token) representations
are used as input to dedicated linear layers that
predict word-level and sentence-level quality
estimates, respectively. The model is trained
jointly in these two tasks. In order to boost
performance, this approach creates artificial data
in a similar fashion to Negri et al. (2018). Given a
dataset of parallel source-target sentences, an NMT
model is trained using 90% of the data. Then, the
NMT model translates source sentences in the
remaining 10% of the data. After that, HTER
word labels are generated for this 10% of the data,
leveraging their manual references as if they were
post-edits of the translations generated by the NMT
model.deepQuest-py includes scripts and examples
for executing this training pipeline, provided
that the user has access to automatic translations.
For obtaining word-level tags, in particular,
deepQuest-py leverages publicly-available scripts.2

3 Light-Weight Distilled Models

The most distinctive contribution in deepQuest-py
is the ability to train light-weight and efficient
QE models through knowledge distillation. We

2https://github.com/deep-spin/
qe-corpus-builder

383

Name Training data Et-En Ro-En Si-En Ne-En En-Zh

TQTEACHER MLQE-gold 0.77 0.88 0.60 0.75 0.44

BiRNNSTUDENT MLQE-dist 0.45 0.62 0.44 0.46 0.18
BiRNNSTUDENT+AUG Wiki-dist 0.50 0.69 0.45 0.54 0.17

BiRNN MLQE-gold 0.37 0.60 0.40 0.42 0.15
Predictor-Estimator MLQE-gold 0.48 0.69 0.37 0.39 0.19
TQDistilBERT MLQE-gold 0.62 0.78 0.51 0.61 0.36

Table 1: Pearson correlation with human judgments on the MLQE test set. MLQE-gold: training partition of
MLQE dataset; MLQE-dist: distilled version of the MLQE training set with teacher predictions used as labels;
Wiki-dist: the Wikipedia dataset produced by data augmentation. Boldface results indicate our best student models.

implement the approach proposed by Gajbhiye et al.
(2021) to directly distil sentence-level QE models,
where the student architecture can be completely
different from that of the teacher. Namely, they dis-
till large and powerful QE models based on XLM-R
into small bidirectional RNN-based models.

3.1 BiRNN-based Architecture

deepQuest-py implements sentence-level models
following the architecture proposed by Ive et al.
(2018). In this approach, the original sentence and
its translation are encoded independently using ded-
icated BiRNNs. To obtain predictions, these two
representations are concatenated as the weighted
sum of their word vectors, generated by an atten-
tion mechanism. Then, this joint representation is
passed through a dense layer with sigmoid activa-
tion to generate the quality estimates. deepQuest-
py uses AllenNLP (Gardner et al., 2018)3 as its
backbone for the BiRNN model.

3.2 Knowledge Distillation

For cases where large size SotA QE models are
not deployable, Gajbhiye et al. (2021) propose to
use a KD approach to train more efficient and well-
performing models for sentence-level QE. The ap-
proach (illustrated in Figure 1) consists of three
steps described below.

Teacher-Student Training. A large SotA QE
model generates predictions on a gold training
dataset, and these are directly used to train a
light-weight model. Gajbhiye et al. (2021) em-
ploys pre-trained Transformer models (such as
those from Sec. 2) as teachers, and BiRNN mod-
els (such as those from Sec. 3.1) as students. Ta-
ble 2 shows the number of parameters, memory
and disk space requirements, as well as inference
speed for the teacher model (TQXLM−R−Large),

3https://allennlp.org/

Figure 1: Knowledge distillation with data augmenta-
tion and noise filtering based on teacher uncertainty
(Gajbhiye et al., 2021).

Inference

Name #params Speed
(secs.)

RAM
(MiB)

Disk
(M)

TQXLM−R−Large 561M 0.82 9,263.5 2140
TQDistilBERT 135M 1.09 1,979.2 517
BiRNN 18M 0.39 155.6 132

Table 2: Efficiency. Inference speed and RAM for pre-
diction are for 1 sentence on CPU (Intel Xeon Silver
4114 CPU @ 2.20GHz).

student model (BiRNN) and a MonoTransQuest
model built on DistilBERT (TQDistilBERT), using
data in the MLQE Et-En dataset.

Data Augmentation. Teacher predictions on the
gold training dataset may prove insufficient to train
the student. Therefore, Gajbhiye et al. (2021) col-
lect additional monolingual data and: (1) translate
it with the same MT models used for the gold data,
and (2) generate QE scores with the teacher model.

Noise Filtering. Teacher predictions can be
noisy and degrade student performance. To over-
come this, Gajbhiye et al. (2021) propose a filter-
ing approach based on uncertainty quantification
over predictions from an ensemble of teacher mod-
els. Concretely, they propose to: (1) train several
teacher models on the same dataset with different
random initialisations; (2) generate several teacher

384

Figure 2: Submission form for the web tool.

predictions for each instance in the student train-
ing data; and (3) filter out instances for which the
predictions show high variance (i.e. the variance
is more than one standard deviation away from its
mean).

On experiments performed using the MLQE
dataset (Fomicheva et al., 2020), Gajbhiye et al.
(2021) show that their approach results in QE
models that are 4x smaller in disk space with 8x
fewer parameters, and 3x faster in inference speed
than large SotA Transformer-based models. In
particular, as shown in Table 1, distilled models
with augmented data achieved comparable perfor-
mances to training a large model on DistilBERT
(TQDistilBERT), but with a lighter BiRNN-based
architecture. In addition, this approach allows
for substantial improvements over shallow mod-
els trained on gold data (BiRNN and Predictor-
Estimator) for all of the language pairs. For fur-
ther details, we refer the reader to (Gajbhiye et al.,
2021).

deepQuest-py provides command-line function-
alities for all steps in the KD pipeline.

4 Web Tool for Analysis and
Visualisation

deepQuest-py offers a demo web-service with vi-
sualization for sentence-level and word-level QE

models. The user fills in a simple submission form
(Figure 2) indicating: the languages of the origi-
nal sentences and their translations, the sentences
to analyse (either typing them directly or through
a .tsv file), the type of model to use for predic-
tion (e.g. Transformer or BiRNN), and the level of
granularity for the scores (sentence-level or word-
level). After pressing the score button, the user is
presented with varied results for their analysis:

Scores per Instance. For sentence-level predic-
tions, each submitted original-translation pair is
shown alongside its estimated quality score (Fig-
ure 3). The value for this score and its interpreta-
tion depends on the data that the QE model was
trained on. For example, models trained on HTER
scores will output values between 0 and 1, with
lower scores indicating better quality. On the other
hand, models trained on normalised DA scores will
output negative and positive values – the higher the
better.4 Two additional metrics are included: the
proportion of repeated n-grams in the source/target
(named source/target n-grams), and the proportion
of words in the target sentence that are copies of
words in the source (i.e. untranslated words). The
user can navigate through the analysed sentences

4While raw DA scores have a 0-100 value range, their
normalised values will depend on the actual minimum and
maximum scores in the training data.

385

Figure 3: Scores per instance.

Figure 4: Statistics summarising the scores for all submitted sentences.

Figure 5: Histogram with the distribution of predicted scores in the dataset.

386

Figure 6: Visualisation of tokens in original (source) and translation (target) sentences. For the translation side,
tokens in green are predicted to have an ‘OK’ label, while tokens in grey, a ‘BAD’ label. In this example, the
model did not produce word-level predictions for the original sentences.

using the form shown (including searching for in-
stances with specific words), or download all the
information to a .csv file.

Scores Summary. A table summarises the scores
for all the submitted sentences providing some sim-
ple statistics. See Figure 4 for the names and de-
scriptions of the metrics considered.

Scores Distribution. The web tool also shows
a histogram with the distribution of the sentence-
level scores over all submitted instances (Figure 5).
The user can hover over the bars in the plot to see
examples of original-translation pairs whose scores
correspond to the selected range.

Token Annotations. The web tool shows the to-
kenisation of each original-translation pair (Fig-
ure 6). For word-level predictions, in particular,
the predicted quality label for each token is shown
in different colours: green for ‘OK’ and grey for
‘BAD’. The user can also search within the in-
stances looking for sentences with specific words.

The demo web tool includes Transformer-based
sentence-level models for all language pairs in the
MLQE dataset: English-German, English-Chinese,
Romanian-English, Estonian-English, Nepalese-
English, Sinhala-English, and Russian-English.
There is also the option to use a multilingual
model. For Transformer-based word-level predic-
tions, only an English-German model is available.
BiRNN-based (distilled) models for sentence-level
QE are available for a subset of languages. We
note that our purpose with this paper is not to pro-
vide prediction models for multiple languages, but

rather to demonstrate the functionalities of the back-
and front-end in deepQuest-py.

The demo showcasing all the functional-
ities offered by deepQuest-py is available
at https://github.com/sheffieldnlp/
deepQuest-py/tree/main/demo.

5 Conclusions

We have presented deepQuest-py, a new framework
for implementation and evaluation of QE models.
On top of large state-of-art models based on pre-
trained Transformer architectures, deepQuest-py
targets the development of light-weight and effi-
cient models around the teacher-student framework
for knowledge distillation. In addition, deepQuest-
py encourages end-user adoption of QE technolo-
gies by providing a web application to obtain qual-
ity predictions and analyse model performance.

Acknowledgements

This work was supported by funding from the Berg-
amot project (EU H2020 Grant No. 825303).

References
Ondřej Bojar, Christian Buck, Chris Callison-Burch,

Christian Federmann, Barry Haddow, Philipp
Koehn, Christof Monz, Matt Post, Radu Soricut, and
Lucia Specia. 2013. Findings of the 2013 Work-
shop on Statistical Machine Translation. In Proceed-
ings of the Eighth Workshop on Statistical Machine
Translation, pages 1–44, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Ondřej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,

387

Christof Monz, Pavel Pecina, Matt Post, Herve
Saint-Amand, Radu Soricut, Lucia Specia, and Aleš
Tamchyna. 2014. Findings of the 2014 workshop on
statistical machine translation. In Proceedings of the
Ninth Workshop on Statistical Machine Translation,
pages 12–58, Baltimore, Maryland, USA. Associa-
tion for Computational Linguistics.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Shujian Huang,
Matthias Huck, Philipp Koehn, Qun Liu, Varvara Lo-
gacheva, Christof Monz, Matteo Negri, Matt Post,
Raphael Rubino, Lucia Specia, and Marco Turchi.
2017. Findings of the 2017 conference on machine
translation (WMT17). In Proceedings of the Sec-
ond Conference on Machine Translation, pages 169–
214, Copenhagen, Denmark. Association for Com-
putational Linguistics.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck, An-
tonio Jimeno Yepes, Philipp Koehn, Varvara Lo-
gacheva, Christof Monz, Matteo Negri, Aurélie
Névéol, Mariana Neves, Martin Popel, Matt Post,
Raphael Rubino, Carolina Scarton, Lucia Spe-
cia, Marco Turchi, Karin Verspoor, and Marcos
Zampieri. 2016. Findings of the 2016 conference
on machine translation. In Proceedings of the
First Conference on Machine Translation: Volume
2, Shared Task Papers, pages 131–198, Berlin, Ger-
many. Association for Computational Linguistics.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Barry Haddow, Matthias Huck, Chris Hokamp,
Philipp Koehn, Varvara Logacheva, Christof Monz,
Matteo Negri, Matt Post, Carolina Scarton, Lucia
Specia, and Marco Turchi. 2015. Findings of the
2015 workshop on statistical machine translation. In
Proceedings of the Tenth Workshop on Statistical
Machine Translation, pages 1–46, Lisbon, Portugal.
Association for Computational Linguistics.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
Matt Post, Radu Soricut, and Lucia Specia. 2012.
Findings of the 2012 workshop on statistical ma-
chine translation. In Proceedings of the Seventh
Workshop on Statistical Machine Translation, pages
10–51, Montréal, Canada. Association for Computa-
tional Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association

for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Marina Fomicheva, Shuo Sun, Lisa Yankovskaya,
Frédéric Blain, Francisco Guzmán, Mark Fishel,
Nikolaos Aletras, Vishrav Chaudhary, and Lucia
Specia. 2020. Unsupervised quality estimation for
neural machine translation. Transactions of the As-
sociation for Computational Linguistics, 8:539–555.

Erick Fonseca, Lisa Yankovskaya, André F. T. Martins,
Mark Fishel, and Christian Federmann. 2019. Find-
ings of the WMT 2019 shared tasks on quality esti-
mation. In Proceedings of the Fourth Conference on
Machine Translation (Volume 3: Shared Task Papers,
Day 2), pages 1–10, Florence, Italy. Association for
Computational Linguistics.

Amit Gajbhiye, Marina Fomicheva, Fernando Alva-
Manchego, Frédéric Blain, Abiola Obamuyide,
Nikolaos Aletras, and Lucia Specia. 2021. Knowl-
edge distillation for quality estimation. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2021. Association for Computational Lin-
guistics.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A deep semantic natural language pro-
cessing platform. In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), pages 1–
6, Melbourne, Australia. Association for Computa-
tional Linguistics.

Yvette Graham, Timothy Baldwin, Alistair Moffat, and
Justin Zobel. 2017. Can machine translation sys-
tems be evaluated by the crowd alone. Natural Lan-
guage Engineering, 23(1):3–30.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
In NIPS Deep Learning and Representation Learn-
ing Workshop.

Julia Ive, Frédéric Blain, and Lucia Specia. 2018. deep-
Quest: A framework for neural-based quality estima-
tion. In Proceedings of the 27th International Con-
ference on Computational Linguistics, pages 3146–
3157, Santa Fe, New Mexico, USA. Association for
Computational Linguistics.

Fabio Kepler, Jonay Trénous, Marcos Treviso, Miguel
Vera, and André F. T. Martins. 2019. OpenKiwi:
An open source framework for quality estimation.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics: System
Demonstrations, pages 117–122, Florence, Italy. As-
sociation for Computational Linguistics.

Hyun Kim, Jong-Hyeok Lee, and Seung-Hoon Na.
2017. Predictor-estimator using multilevel task
learning with stack propagation for neural quality

388

estimation. In Proceedings of the Second Con-
ference on Machine Translation, pages 562–568,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Dongjun Lee. 2020. Two-phase cross-lingual language
model fine-tuning for machine translation quality es-
timation. In Proceedings of the Fifth Conference on
Machine Translation, pages 1024–1028, Online. As-
sociation for Computational Linguistics.

Quentin Lhoest, Albert Villanova del Moral, Patrick
von Platen, Thomas Wolf, Yacine Jernite, Abhishek
Thakur, Lewis Tunstall, Suraj Patil, Mariama Drame,
Julien Chaumond, Julien Plu, Joe Davison, Simon
Brandeis, Teven Le Scao, Victor Sanh, Kevin Can-
wen Xu, Nicolas Patry, Angelina McMillan-Major,
Philipp Schmid, Sylvain Gugger, Steven Liu, Syl-
vain Lesage, Lysandre Debut, Théo Matussière, Clé-
ment Delangue, and Stas Bekman. 2021. hugging-
face/datasets: 1.11.0.

Matteo Negri, Marco Turchi, Rajen Chatterjee, and
Nicola Bertoldi. 2018. ESCAPE: a large-scale syn-
thetic corpus for automatic post-editing. In Proceed-
ings of the Eleventh International Conference on
Language Resources and Evaluation (LREC 2018),
Miyazaki, Japan. European Language Resources As-
sociation (ELRA).

Tharindu Ranasinghe, Constantin Orasan, and Rus-
lan Mitkov. 2020a. TransQuest at WMT2020:
Sentence-level direct assessment. In Proceedings of
the Fifth Conference on Machine Translation, pages
1049–1055, Online. Association for Computational
Linguistics.

Tharindu Ranasinghe, Constantin Orasan, and Ruslan
Mitkov. 2020b. TransQuest: Translation quality esti-
mation with cross-lingual transformers. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 5070–5081, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Matthew Snover, Bonnie Dorr, Rich Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study
of translation edit rate with targeted human annota-
tion. In Proceedings of the 7th Conference of the As-
sociation for Machine Translation in the Americas:
Technical Papers, pages 223–231, Cambridge, Mas-
sachusetts, USA. Association for Machine Transla-
tion in the Americas.

Lucia Specia, Frédéric Blain, Marina Fomicheva, Er-
ick Fonseca, Vishrav Chaudhary, Francisco Guzmán,
and André F. T. Martins. 2020. Findings of the
WMT 2020 shared task on quality estimation. In
Proceedings of the Fifth Conference on Machine
Translation, pages 743–764, Online. Association for
Computational Linguistics.

Lucia Specia, Frédéric Blain, Varvara Logacheva,
Ramón F. Astudillo, and André F. T. Martins. 2018a.
Findings of the WMT 2018 shared task on quality

estimation. In Proceedings of the Third Conference
on Machine Translation: Shared Task Papers, pages
689–709, Belgium, Brussels. Association for Com-
putational Linguistics.

Lucia Specia, Gustavo Paetzold, and Carolina Scarton.
2015. Multi-level translation quality prediction with
QuEst++. In Proceedings of ACL-IJCNLP 2015 Sys-
tem Demonstrations, pages 115–120, Beijing, China.
Association for Computational Linguistics and The
Asian Federation of Natural Language Processing.

Lucia Specia, Carolina Scarton, and Gustavo Henrique
Paetzold. 2018b. Quality estimation for machine
translation. Synthesis Lectures on Human Language
Technologies, 11(1):1–162.

Lucia Specia, Kashif Shah, Jose G.C. de Souza, and
Trevor Cohn. 2013. QuEst - a translation quality es-
timation framework. In Proceedings of the 51st An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 79–84,
Sofia, Bulgaria. Association for Computational Lin-
guistics.

Lucia Specia, Marco Turchi, Nicola Cancedda, Nello
Cristianini, and Marc Dymetman. 2009. Estimat-
ing the sentence-level quality of machine translation
systems. In Proceedings of the 13th Annual confer-
ence of the European Association for Machine Trans-
lation, Barcelona, Spain. European Association for
Machine Translation.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, NIPS’17, page 6000–6010, Red Hook, NY,
USA. Curran Associates Inc.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

389

Author Index

Adi, Yossi, 143
Aït-Mokhtar, Salah, 106
Akavoor, Vidya Prasad, 242
Al Khatib, Khalid, 185
Alva-Manchego, Fernando, 382
Arkhangorodsky, Arkady, 195
Awadallah, Ahmed Hassan, 329
Azerbayev, Zhangir, 329

Balasubramanian, Aruna, 251
Balasubramanian, Niranjan, 251
Bansal, Mohit, 283
Bar-Haim, Roy, 267
Bekman, Stas, 175
Betke, Margrit, 242
Bevilacqua, Michele, 134
Bhatia, Vibhu, 242
Bikaun, Tyler, 212
Blain, Frédéric, 382
Blloshmi, Rexhina, 134
Bogoychev, Nikolay, 168
Boratko, Michael, 203
Borst, Janos, 153
Bowden, Kevin, 124
Brandeis, Simon, 175
Brignone, Fabrizio, 298, 319
Brun, Caroline, 106
Buys, Jan, 79

Caciularu, Avi, 283
Cao, Qingqing, 251
Carenini, Giuseppe, 220
Caruso, Valentina, 134
Cattan, Arie, 283
Cecconi, Francesco, 298, 319
Chai, Junyi, 11
Chaumond, Julien, 175
Che, Wanxiang, 42
Chen, Peng-Jen, 143
Chen, Yubo, 275
Chhablani, Gunjan, 175, 361
Chheda, Tejas, 203
Cho, Seonhee, 72
Choi, Jinho D., 160

Chu, Christopher, 195
Chung, Seongwon, 72
Cistac, Pierric, 175
Cohen, Jaron, 79
Cohen, Roy, 79
Conia, Simone, 298, 319
Cui, Wen, 124

Dagan, Ido, 283
Dasgupta, Shib Sankar, 203
Davison, Joe, 175
de Souza, Elvis, 35
Debut, Lysandre, 175
Delangue, Clément, 175
Drame, Mariama, 175

Eirew, Alon, 283
Ernst, Ori, 283

Fabiano, Edoardo, 134
Fang, Scot, 195
Feldhus, Nils, 87
Feng, Troy, 329
Feng, Yunlong, 42
Fomicheva, Marina, 382
Freitas, Cláudia, 35
French, Tim, 212

Gajbhiye, Amit, 382
Gan, Zhen, 275
Gehrmann, Sebastian, 96
Goehringer, Thibault, 175
Goyal, Purujit, 203
Gu, Jiatao, 143
Gugger, Sylvain, 175
Guo, Lei, 242
Guo, Quan, 231
Gupta, Vivek, 350

Halim, Edward Edberg, 242
Harrison, Vrindavan, 124
Hashemi, Homa, 11
He, Yujie, 11
Heafield, Kenneth, 168
Heyer, Gerhard, 153

391

Hirsch, Eran, 283
Hodkiewicz, Melinda, 212
Hoover, Benjamin, 96
Hoppenot, Yves, 106
Hsu, Wei-Ning, 143
Huang, Yiqi, 195

Ishwar, Prakash, 242

Jain, Nupur, 350
Jalal, Mona, 242
Jang, Hyeju, 220
Jänicke, Stefan, 185
Jernite, Yacine, 175
Jiang, Denglin, 195
Juraska, Juraj, 124

Kantor, Yoav, 267
Katz, Yoav, 267
Kawamoto, Shunyo, 372
Kim, Hyuna, 72
Kim, Kang-Min, 72
Klimaszewski, Mateusz, 50
Knight, Kevin, 195
Kondapally, Ranganath, 11
Kordjamshidi, Parisa, 231
Kumar, Gaurav, 350

Lagunas, François, 175
Lal, Yash Kumar, 251
Le Scao, Teven, 175
Lee, Ann, 143
Lee, SangKeun, 72
Levy, Sharon, 259
Lhoest, Quentin, 175
Li, Bing, 11
Li, Raymond, 220
Li, Zhucong, 275
Li, Zuchao, 1
Liu, Kang, 275
Liu, Shengping, 275
Liu, Ting, 42
Liu, Wei, 212

MacBride, Jessica, 63
Magdy, Walid, 339
Malik, Bhavitvya, 175
Matussière, Théo, 175
McCallum, Andrew, 203
McMillan-Major, Angelina, 175
Min, Bonan, 63
Mo, Kevin, 259
Möller, Sebastian, 87

Mustar, Victor, 175
Mutuma, Mutethia, 329

Nafar, Aliakbar, 231
Nagesh, Ajay, 195
Navigli, Roberto, 134, 298, 319
Ni, Ansong, 329
Niekler, Andreas, 153

Obamuyide, Abiola, 382
Oprea, Silviu, 339
Orlando, Riccardo, 298, 319

Paik, Sejin, 242
Pandey, Harshit, 361
Park, Hyuntae, 72
Park, Jun-Hyung, 72
Park, San-Hee, 72
Parnow, Kevin, 1
Parveen, Daraksha, 11
Pasunuru, Ramakanth, 283
Patel, Dhruvesh, 203
Patil, Omkar, 124
Patil, Rajaswa, 361
Patil, Suraj, 175
Patry, Nicolas, 175
Perry, Tal, 20
Pino, Juan, 143
Plu, Julien, 175
Polyak, Adam, 143
Potthast, Martin, 185

Qin, Libo, 42
Qiu, Haoling, 63

Radev, Dragomir, 329
Rai, Anshul, 350
Rajaby Faghihi, Hossein, 231
Ratnaparkhi, Adwait, 124
Reed, Lena, 124
Ronen, Hadar, 283
Rozonoyer, Benjamin, 63
Rush, Alexander, 175

Sandor, Agnes, 106
Sanh, Victor, 175
Šaško, Mario, 175
Satyanaryan, Arvind, 96
Sawai, Yu, 372
Schlaf, Antje, 153
Schmid, Philipp, 175
Schwarzenberg, Robert, 87
Shapira, Ori, 283

Sharma, Abheesht, 361
Shi, Yafei, 275
Simoncini, Walter, 308
Singh, Reetu, 251
Slonim, Noam, 267
Smith, Alyssa, 242
Spanakis, Gerasimos, 308
Specia, Lucia, 382
Steffen, Jörg, 28
Stewart, Michael, 212
Strobelt, Hendrik, 96
Sumita, Eiichiro, 1
Sun, Yimeng, 242
Syed, Shahbaz, 185

Thakur, Abhishek, 175
Tilli, Pascal, 114
Tofu, David Assefa, 242
Toledo, Edan, 79
Tran, Trang, 203
Trivedi, Harsh, 251
Tunstall, Lewis, 175

Uszok, Andrzej, 231
Utiyama, Masao, 1

Van der Linde, Jelmer, 168
van Genabith, Josef, 28
Van Gysel, Jens, 160
Väth, Dirk, 114
Venezian, Elad, 267
Villanova del Moral, Albert, 175
von Platen, Patrick, 175
Vu, Ngoc Thang, 114

Wakimoto, Kohei, 372
Walker, Marilyn, 124
Wan, Jing, 275
Wang, Changhan, 143
Wang, Lanjun, 220
Wang, William Yang, 259
Wijaya, Derry Tanti, 242
Wilson, Steven, 339
Wolf, Thomas, 175
Wróblewska, Alina, 50

Xiao, Wen, 220
Xiong, Wenhan, 259
Xu, Canwen, 175
Xu, Wenjin, 11
Xue, Nianwen, 63, 160

Yousef, Tariq, 153, 185

Yu, Tao, 329

Zamanian, Alexander, 63
Zhang, Baoli, 275
Zhang, Boliang, 195
Zhang, Peinan, 372
Zhang, Yusen, 329
Zhao, Hai, 1
Zhao, Jin, 160
Zhao, Jun, 275

	Program
	MiSS: An Assistant for Multi-Style Simultaneous Translation
	Automatic Construction of Enterprise Knowledge Base
	LightTag: Text Annotation Platform
	TransIns: Document Translation with Markup Reinsertion
	ET: A Workstation for Querying, Editing and Evaluating Annotated Corpora
	N-LTP: An Open-source Neural Language Technology Platform for Chinese
	COMBO: State-of-the-Art Morphosyntactic Analysis
	ExcavatorCovid: Extracting Events and Relations from Text Corpora for Temporal and Causal Analysis for COVID-19
	KOAS: Korean Text Offensiveness Analysis System
	RepGraph: Visualising and Analysing Meaning Representation Graphs
	Thermostat: A Large Collection of NLP Model Explanations and Analysis Tools
	LMdiff: A Visual Diff Tool to Compare Language Models
	Semantic Context Path Labeling for Semantic Exploration of User Reviews
	Beyond Accuracy: A Consolidated Tool for Visual Question Answering Benchmarking
	Athena 2.0: Contextualized Dialogue Management for an Alexa Prize SocialBot
	SPRING Goes Online: End-to-End AMR Parsing and Generation
	fairseq S^2: A Scalable and Integrable Speech Synthesis Toolkit
	Press Freedom Monitor: Detection of Reported Press and Media Freedom Violations in Twitter and News Articles
	UMR-Writer: A Web Application for Annotating Uniform Meaning Representations
	TranslateLocally: Blazing-fast translation running on the local CPU
	Datasets: A Community Library for Natural Language Processing
	Summary Explorer: Visualizing the State of the Art in Text Summarization
	MeetDot: Videoconferencing with Live Translation Captions
	Box Embeddings: An open-source library for representation learning using geometric structures
	LexiClean: An annotation tool for rapid multi-task lexical normalisation
	T3-Vis: visual analytic for Training and fine-Tuning Transformers in NLP
	DomiKnowS: A Library for Integration of Symbolic Domain Knowledge in Deep Learning
	OpenFraming: Open-sourced Tool for Computational Framing Analysis of Multilingual Data
	IrEne-viz: Visualizing Energy Consumption of Transformer Models
	Open-Domain Question-Answering for COVID-19 and Other Emergent Domains
	Project Debater APIs: Decomposing the AI Grand Challenge
	CroAno : A Crowd Annotation Platform for Improving Label Consistency of Chinese NER Dataset
	iFacetSum: Coreference-based Interactive Faceted Summarization for Multi-Document Exploration
	AMuSE-WSD: An All-in-one Multilingual System for Easy Word Sense Disambiguation
	SeqAttack: On Adversarial Attacks for Named Entity Recognition
	InVeRo-XL: Making Cross-Lingual Semantic Role Labeling Accessible with Intelligible Verbs and Roles
	SummerTime: Text Summarization Toolkit for Non-experts
	Chandler: An Explainable Sarcastic Response Generator
	TabPert : An Effective Platform for Tabular Perturbation
	DRIFT: A Toolkit for Diachronic Analysis of Scientific Literature
	FAST: Fast Annotation tool for SmarT devices
	deepQuest-py: Large and Distilled Models for Quality Estimation

