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Abstract

Named Entity Recognition is a fundamental
task in information extraction and is an es-
sential element for various Natural Language
Processing pipelines. Adversarial attacks have
been shown to greatly affect the performance
of text classification systems but knowledge
about their effectiveness against named entity
recognition models is limited. This paper in-
vestigates the effectiveness and portability of
adversarial attacks from text classification to
named entity recognition and the ability of ad-
versarial training to counteract these attacks.
We find that character-level and word-level
attacks are the most effective, but adversar-
ial training can grant significant protection at
little to no expense of standard performance.
Alongside our results, we also release SeqAt-
tack, a framework to conduct adversarial at-
tacks against token classification models (used
in this work for named entity recognition) and
a companion web application to inspect and
cherry pick adversarial examples.

1 Introduction

Named Entity Recognition (NER) is the task of rec-
ognizing named entities in a chunk of text. Named
entities are words (one or more) belonging to a par-
ticular semantic category, such as location, person
or organization. NER is used both as a standalone
tool and as an essential component in several Natu-
ral Language Processing (NLP) pipelines, such as
Information Retrieval (Petkova and Croft, 2007)
and Machine Translation (Babych and Hartley,
2003). Traditionally, NER has been attempted with
rule-based approaches, Hidden Markov Models
and Conditional Random Fields (Li et al., 2020a).
In recent years, deep learning has outperformed
these methods (Li et al., 2017) (Liu et al., 2019a),
especially with the introduction of general-purpose
language models such as BERT (Devlin et al.,
2019).

Neural networks are vulnerable to adversarial
attacks, which can be defined as processes that
craft incorrectly-predicted samples from correctly-
predicted inputs by applying small perturbations,
an example of which can be seen in Figure 1. This
shows that deep learning models are fragile and
might not be ready for deployment in a critical sce-
nario. The most popular technique to overcome this
issue is adversarial training, which uses adversarial
attacks to craft additional training samples and re-
trains the model from scratch (Li et al., 2020b) (Li
et al., 2021). Adversarial attacks and training were
largely explored with regards to text classification,
but current research on NER has only explored
attacks based on adversarial typos (Araujo et al.,
2020) and the effectiveness of more complex at-
tacks (at the word and sentence levels) is unknown.
Word-level attacks are particularly important be-
cause they generate adversarial examples highly
likely to appear in the real world, providing valu-
able additional training data (an example can be
seen in Figure 1). This paper aims to tackle this
problem by investigating the following research
questions:

• RQ1: How robust are named entity recog-
nition models against adversarial attacks at
the character, word and sentence level? In
particular, this paper focuses on a BERTbase
cased model trained on CoNLL2003 (Tjong
Kim Sang and De Meulder, 2003) in order to
maintain consistency across the paper.

Figure 1: Word-level adversarial example for NER
from CoNLL2003 (Tjong Kim Sang and De Meulder,
2003). Changing standings to ranking induces an in-
correct classification of Super G as a non-entity.
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• RQ2: How do word and character level adver-
sarial training affect a named entity recogni-
tion model’s robustness?

2 Related Work

2.1 Adversarial attacks

Several attack strategies are available to fool text
classification models. In this paper, we follow the
taxonomy by (Yuan et al., 2019), focusing on the
properties in the list below, with the addition of
granularity (Zhang et al., 2020):

• Model knowledge: if all the model informa-
tion is known, attacks are defined as white box.
Black box attacks instead have access only to
the confidence scores. This paper focuses on
black box attacks.

• Specificity: attacks which aim to change
the model’s prediction to a specific class are
called targeted, whereas untargeted attacks
consider any incorrect prediction valid.

• Granularity: adversarial examples can be
crafted by applying perturbations at the char-
acter (e.g. swap, insertion), word (e.g. word
replacement, insertion) or sentence level (e.g.
paraphrasing).

Some popular attack strategies organized by
granularity are presented below.

2.2 Attack strategies

At the character-level DeepWordBug (Gao et al.,
2018) generates at each step candidate adversaries
by swapping adjacent characters, substituting a
character with a random one, deleting or inserting a
character. At the word-level TextFooler (Jin et al.,
2020) ranks the words in a sample by prediction
relevance and replaces the most important ones
using a word embedding optimized for synonyms
(Mrkšić et al., 2016). BERT-Attack (Li et al.,
2020b) and CLARE (Li et al., 2021) operate
similarly, but they respectively use BERT and
DistillRoBERTa (Sanh et al., 2019) (Liu et al.,
2019b) as language models to suggest potential
candidates. CLARE supports token replacements,
insertions, and merges. Meanwhile, BERT-Attack
and TextFooler only support token replacements.
All word-level attacks enforce a semantic similarity
constraint using the Universal Sentence Encoder
(Cer et al., 2018). Finally, at the sentence-level,

SCPN (Iyyer et al., 2018) generates paraphrases
that match one of its built-in syntactic forms.

In comparison to text classification, to the au-
thors’ knowledge, adversarial attacks (and training)
for NER only appears in two work (Araujo et al.,
2020) and (Wang et al., 2020). The former tackles
biomedical NER, showing that BERT-based mod-
els are susceptible to character swaps, keyboard
typo noise and synonym-based entity-word sub-
stitutions. The latter integrates adversarial train-
ing in the train loop of an LSTM-CNN: at each
training step adversarial examples are obtained by
perturbing the word embeddings directly. This pa-
per contributes by evaluating a larger number of
attack strategies and the portability of adversarial
attacks for text classification to token classifica-
tion problems. Moreover, we provide new insights
and a comparison of the samples generated by the
different attack strategies.

2.3 Adversarial training

Adversarial training aims to improve a model’s ro-
bustness using adversarial examples. This task can
be achieved mainly in two ways: via data augmen-
tation and by integrating adversarial training within
the model train loop.

The first method attacks the victim model us-
ing the training set as the attack input and, once
obtained enough samples, retrains the model from
scratch. One of the first work to use this technique
is (Alzantot et al., 2018), in which the authors ad-
versarially train a sentiment classification model
on the IMDB dataset without success. Later work,
such as (Li et al., 2020b) and (Li et al., 2021) show
more interesting results: the former uses adversar-
ial training to make a natural language inference
model more robust, gaining 15% after-attack accu-
racy at the expense of a minimal test accuracy loss.
The latter adversarially trains BERT and TextCNN
models on the AG news dataset obtaining simi-
lar improvements: without loss of test accuracy
the authors manage to reduce the attack rate by
12.3% and 3.5% for BERT and TextCNN respec-
tively. The second method is used by (Wang et al.,
2020), where adversarial training is integrated in
the training loop using a loss function that takes
into account adversarial perturbations. Using this
technique, the authors improve the model’s gener-
alizability by reducing overfitting.
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3 The SeqAttack framework

The most popular frameworks for conducting ad-
versarial attacks are TextAttack (Morris et al.,
2020) and OpenAttack (Zeng et al., 2021), but
they do not support token classification problems
such as named entity recognition, in which each
token is either classified as being the beginning
of (B), inside (I) or outside an entity (O) accord-
ing to the inside-outside-beginning (IOB) schema
(Ramshaw and Marcus, 1995). In order to attack
NER models we developed SeqAttack, a frame-
work for conducting adversarial attacks against to-
ken classification models. The framework extends
TextAttack and inherits its design, where at-
tacks are composed of a goal function (the objec-
tive to optimize), transformations (how the input
text is perturbed), constraints which limit the candi-
date perturbations and a search method. The frame-
work can be used by NLP practitioners to attack
models, for data augmentation and to quickly pro-
totype attack strategies. Inheriting the structure of
TextAttack also means that its attack strategies
can be easily ported and used against NER models.
In TextAttack, every attack optimizes a goal
function, which in the case of text classification
is defined as 1 − pŷ. Where ŷ is the ground truth
and pŷ is the normalized confidence score for the
ground truth. In SeqAttack, in order to support
NER, the goal function is reformulated as follows:

yadv =

∑N
i=0 goal(yi, ŷi)

countEntities(x)

goal(y, ŷ) =


0 if ŷ = 0

1− pŷ if ŷ 6= 0 ∧ ŷ = y

1 if ŷ 6= 0 ∧ ŷ 6= y

Where y is the model prediction, N the number
of tokens in the sample and x the attacked sam-
ple. countEntities(x) returns the number of entity
tokens in a sample. We call this function the un-
targeted NER goal function. goal(y, ŷ) considers
valid any incorrect classification of an entity token.
It’s important to note that this function assigns no
score to newly introduced entities. This is due to
the fact that the CoNLL2003 metrics consider only
the classification of ground truth named entities.
We also define the untargeted-strict NER goal
function, which assigns no score to flips between I-
CLS and B-CLS. Figure 3 highlights the difference
between the two goal functions.

3.1 Adversarial attacks

This paper employs attack strategies implemented
in TextAttack that proved to be successful for
text classification to attack NER models with minor
adaptations. In particular the following modifica-
tions were applied:

3.1.1 DeepWordBug

We use two different versions of this attack strategy:
DeepWordBug-I, true to the original implementa-
tion and DeepWordBug-II, which is not allowed
to modify named entities. Both attacks have a Lev-
enshtein distance constraint, whose maximum al-
lowed distance is specified with a subscript, as in
DeepWordBug-I5.

3.1.2 BERT-Attack

The sentence similarity constraint was set to 0.4
and the replacement of numeric tokens with al-
phanumeric ones was forbidden (i.e. "4" cannot
be replaced by "car"). Only non-entity tokens are
allowed to be replaced (to avoid the generation of
trivial examples, e.g. swapping a location with a
person’s name) and candidate replacements which
are named entities are also rejected (e.g. the can-
didate replacement "Amsterdam" will be rejected).
The attack can perturb up to 40% of the words in a
sample.

3.1.3 CLARE

The implementation of CLARE used in this paper
only supports replacements and insertions. Sim-
ilarly to BERT-Attack, the replacement of entity
tokens is forbidden and candidate replacements
which are named entities are rejected. When a new
token is inserted, it is automatically labelled as be-
ing outside an entity (O). If a token insertion splits
a named entity the beginning/inside labels will be
adjusted accordingly.

3.1.4 SCPN

Using the OpenAttack implementation, the algo-
rithm iteratively generates candidate paraphrases,
using the original sample or a paraphrase as the
starting point. The candidates are processed to re-
move identical consecutive unigrams and bigrams,
and only the candidates which preserve at least one
named entity are kept. Every token which is not
an entity in the original sample is labelled as being
outside an entity (O). An example can be seen in
Figure 2.
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Figure 2: A paraphrase generated by SCPN (bottom) and its original counterpart (top). Named entities in the
paraphrase were re-labelled with the corresponding ground truth and the other tokens were labelled as non-entities.
Original sample from CoNLL2003 (Tjong Kim Sang and De Meulder, 2003).

Figure 3: Changing two numbers causes Caen’s la-
bel to flip from B-ORG to I-ORG. The untargeted
goal function would consider Caen to be an incor-
rect classification (and thus a success) meanwhile the
untargeted-strict goal function would not. Example
from CoNLL2003 (Tjong Kim Sang and De Meulder,
2003).

3.2 Adversarial training

This paper approaches adversarial training using
the training dataset augmentation strategy: we at-
tack the model using its training set as the input,
generating at most one adversarial example per
train sample, and we retrain the model with the
augmented dataset. DeepWordBug-I5 and BERT-
Attack were chosen as the attack strategies so as
to investigate the different effect of word-level and
character-level adversarial training.

4 Experiments

4.1 Adversarial attacks

The attack techniques in section 3 were evaluated
on a BERTbase cased model (Devlin et al., 2019),
fine tuned on the CoNLL2003 dataset for three
epochs using the transformers library (Wolf
et al., 2020). All attacks use the untargeted-strict
goal function and target a subset of 256 samples
from the test set, selected such that the model incor-
rectly predicts up to 10% of the entities contained
in each sample. For each sample, the attack is al-
lowed up to 120 seconds and a maximum of 512
model invocations (queries).

4.1.1 Evaluation metrics
The attacks are evaluated following previous work
(Li et al., 2021), (Jin et al., 2020), (Morris et al.,
2020), which employ the following automated met-
rics (in addition to accuracy, recall and F1 score as

in the CoNLL2003 task):

• Attack Rate (A-Rate): percentage of adver-
sarial examples that can fool the model. An
adversarial example is considered successful
when at least one entity is incorrectly classi-
fied.

• Modification Rate (Mod): percentage of
modified tokens. Insert operations increase
by one the modified tokens count (Li et al.,
2021).

• ∆ Grammar Errors (∆GErr): difference in
the number of grammar errors between the ad-
versarial example and its original counterpart,
calculated with LanguageTool (Naber et al.,
2003).

• Textual similarity (Sim): cosine similarity
between the adversarial example and the orig-
inal input calculated via the Universal Sen-
tence Encoder.

We also define the Labels Score (L-Score) met-
ric as the percentage of incorrectly classified en-
tities in a sample. All metrics defined above are
averaged over the successful samples (with the ex-
ception of the attack rate). Table 1 lists the metrics
for the original and attacked datasets.

4.2 Adversarial training
Table 1 shows that our victim model is vulnerable
to adversarial attacks, which raises the question:
is it possible to exploit attacks to make the model
more robust while maintaining a reasonable perfor-
mance on standard data? And what is the difference
in model performance between models adversar-
ially trained with word-level and character-level
adversarial examples, both in normal conditions
and when under attack?

To answer this question we trained a BERTbase
cased model, named NERsmall, on 1/3 of the
CoNLL2003 dataset, equivalent to 5000 examples.
A smaller dataset simulates a low-resource scenario
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Attack Acc Recall F1 A-Rate ↑ Mod ↓ L-Score ↑ Sim ↑ ∆GErr ↓
Bert-Attack 72% 88% 79% 44% 22% 20% 84% 0.26
CLARE 78% 81% 79% 37% 70% 56% 86% 0.33
DeepWordBug-II5 86% 92% 89% 27% 18% 24% 86% 1.6
DeepWordBug-II30 82% 93% 87% 30% 21% 23% 83% 3.05
DeepWordBug-I5 48% 49% 49% 78% 24% 64% 77% 1.4
SCPN 90% 92% 91% 18% 66% 58% 59% 0.92
Original 98% 99% 98%

Table 1: Comparison of attack strategies on the CoNLL2003 test set using the untargeted strict goal function.
The metrics were calculated using seqeval (Nakayama, 2018). ↑ (↓) indicate whether the higher (or lower) the
better from the attack perspective.

Model Acc Recall F1 A-Rate ↑ Mod ↓ L-Score ↑ Sim ↑ ∆GErr ↓
NERsmall 500 73% 71% 72% 84% 26% 71% 73% 1.5
NERsmall 1000 78% 77% 77% 82% 27% 70% 73% 1.54
NERsmall 1500 77% 77% 77% 84% 26% 68% 73% 1.47
NERsmall 2000 79% 79% 79% 82% 28% 67% 72% 1.48
NERsmall (baseline) 52% 50% 51% 89% 24% 78% 75% 3.83

Table 2: Comparison of CoNLL2003 models against DeepWordBug-I5, trained using a different amount of adver-
sarial examples generated by DeepWordBug (specified next to the model) and the untargeted goal function. The
attack had up to 45 seconds to successfully attack an input sample. ↑ (↓) indicate whether the higher (or lower) the
better from the attack perspective.

and highlights the differences between the two ad-
versarial training strategies. The model achieves a
reasonable performance on the test set (Table 4, last
row) but it can be fooled by both DeepWordBug-
I5 (Table 2) and BERT-Attack (Table 3). The ad-
versarial data augmentation was done by attack-
ing NERsmall using its own training set as the at-
tack input. We respectively generated 2000 and
1000 adversarial examples for DeepWordBug-I5
and BERT-Attack, which were then used to train
robust models, whose performance on CoNLL2003
is listed in Tables 4 and 5.

4.2.1 Model evaluation
To evaluate the effectiveness of adversarial training
we ran the same attacks against NERsmall and its
robust counterparts, using the same CoNLL2003
subset used for evaluating attack strategies. Both
attack strategies were allowed up to 512 model
invocations. DeepWordBug-I5 and BERT-Attack
were respectively allowed up to 45 and 60 seconds
to attack each sample.

5 Results and discussion

5.1 Adversarial attacks

Table 1 lists the after-attack metrics for the var-
ious attack strategies. By observing the metrics

we can notice that DeepWordBug-I5 is the most
effective. Its success is most likely due to the fact
that it can modify named entities. In fact, when
named entities are preserved as in DeepWordBug-
II5, the attack rate drops to 27% and increasing
the Levenshtein distance constraint to 30 has little
effectiveness. Word-level attacks are less effec-
tive than unconstrained character-level attacks, but
perform better than similarly constrained character-
level attacks, decreasing a model’s accuracy by up
to 26% in the case of BERT-Attack. Even if less ef-
fective, word-level attack strategies may be useful
for adversarial training since the generated samples
are highly grammatical (introducing less than 0.5
grammar errors per sample), have a low percent-
age of modified words (except when insertions are
used) and maintain a high sentence similarity: 84-
86% for BERT-Attack and CLARE versus 77% for
DeepWordBug-I5. Some adversarial examples gen-
erated respectively by BERT-attack and CLARE
can be seen in the appendix (Figures 8 and 9). Fu-
ture work may attempt to apply word-level attacks
also on the entities themselves, making sure to pre-
serve the entity class. This would both speed up the
adversarial examples generation (due to the higher
sensitivity) and uncover examples highly likely to
appear in the real world.
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Model Acc Recall F1 A-Rate ↑ Mod ↓ L-Score ↑ Sim ↑ ∆GErr ↓
NERsmall 500 94% 95% 94% 16% 19% 52% 89% 0.08
NERsmall 1000 94% 95% 94% 12% 19% 50% 89% 0.2
NERsmall (baseline) 88% 89% 89% 20% 18% 55% 88% 0.17

Table 3: Comparison of CoNLL2003 models against BERT-Attack, trained using a different amount of adversarial
examples generated by BERT-Attack (specified next to the model) and the untargeted goal function. The attack
had up to 60 seconds to successfully attack an input sample. ↑ (↓) indicate whether the higher (or lower) the better
from the attack perspective.

5.2 Adversarial training

Tables 2 and 3 respectively summarize the at-
tack metrics for DeepWordBug-I5 and BERT-
Attack. In line with the adversarial attacks re-
sults, DeepWordBug-I5 obtains a largely better suc-
cess than BERT-Attack, reducing the model’s after-
attack accuracy to 52%, where BERT-Attack only
manages to reduce the accuracy to 88%.

Adversarial training grants a significant pro-
tection from both attacks: in the case of
DeepWordBug-I5 (Table 2) adding only 500 sam-
ples to the training set already increases the after at-
tack accuracy by 21%, without affecting the test set
metrics, causing at the same time an increase in the
modification rate and a decrease in the similarity
score. The improvement is statistically significant:
a paired t-test with regards to the modification rate
and the labels score respectively yields p-values
of 0.0086 and 2.42e-09, confirming the added ro-
bustness of the adversarially trained model. The
improvement is also visible in Figure 4, where the
labels score distribution of the attacked dataset for
the normal model is more skewed towards the right
than its robust counterpart, showing a smaller at-
tack success on individual samples for the robust
model. Similarly, the modification rate distribution
for the normal model is more skewed towards the
left, thus more words need to be perturbed to fool
the robust model. Adding more samples further
improves the after attack scores at a small cost of
the standard metrics (Table 4), but the improve-
ment over the robust model with 500 samples is
statistically significant only when 2000 adversarial
examples are used, and only in regards to the labels
score (p = 0.017).

Similarly, the robust models trained with BERT-
attack have a performance similar to NERsmall on
the test set, even improving the model’s F1 score
by 1% (Table 5). Using only 500 samples the after-
attack accuracy increases by 6% and the attack-rate
drops by 4%. Adding more samples further reduces

the attack rate (Table 3). Using only 500 samples
causes a significant improvement in the modifica-
tion rate needed to break the model, yielding a
p-value of 2.66e-05, but does not grant significant
improvement in the labels score (p = 0.4). The lat-
ter improves significantly only when 1000 samples
are used, where the p-value for the labels score is
0.011. These results are very encouraging, since
the added robustness does not affect the test-set
metrics and even improves it, suggesting that this
attack method could be used for data augmenta-
tion in low-resource scenarios, a potential direction
for future research. The difference in the number
of samples needed to grant a significant robust-
ness against DeepWordBug-I5 and BERT-Attack
may be explained by the initial effectiveness of the
attack strategy: the former reduces the baseline ac-
curacy to 52%, meanwhile the latter only reduces
it to 88%.

Figure 4: KDE plots for the labels score and modifica-
tion rate distributions for NERsmall and its robust coun-
terpart, when attacked with DeepWordBug-I5. To be
successful, the attack needs to alter more words for the
robust model, and nonetheless achieves a lower labels
score on average.
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Examples Acc Recall F1
500 examples 91% 90% 90%
1000 examples 90% 89% 90%
1500 examples 90% 90% 90%
2000 examples 90% 89% 90%
NERsmall 91% 90% 90%

Table 4: CoNLL2003 test set metrics for the adversari-
ally trained models against DeepWordBug. Adding ad-
versarial examples slightly worsens the metrics due to
overfitting.

Examples Acc Recall F1
500 examples 91% 90% 91%
1000 examples 91% 90% 91%
NERsmall 91% 90% 90%

Table 5: CoNLL2003 test set metrics for the adversari-
ally trained models against BERT-Attack. Adversarial
examples slightly improve the metrics, potentially cov-
ering blind spots in the training set.

6 Conclusion

In this paper we showed that NER models are
vulnerable to adversarial attacks at the character,
word and sentence level. When allowed to alter
named entities, DeepWordBug is the most effec-
tive, but it produces highly ungrammatical samples
(appendix Figures 6, 7). Thus, character-level
attacks are not recommended for adversarial
training or data augmentation since the produced
samples are unlikely to appear in a real-world
setting. Word-level attacks instead produce more
fluent adversarial examples (appendix Figures 8,
9), which can be used both for adversarial training
and for data augmentation. Finally, with regards
to sentence-level attacks, this paper finds that
they often produce low-quality samples for this
particular dataset (appendix Figure 5). This is
probably due to the fact that SCPN paraphrases
are generated following a small set of target
syntactic forms, which are incompatible with
CoNLL2003. Further research in this direction
is recommended, as paraphrasing methods
produce a richer variety of samples and may
reveal weaknesses in a model which cannot be
discovered by character-level or word-level attacks.

To help NLP practitioners evaluate and im-
prove their models’ robustness and to foster re-
search on adversarial attacks in token classifica-
tion (and named entity recognition) we release

SeqAttack1, a Python library for conducting ad-
versarial attacks against token classification models.
The library is accompanied by a web application2

to inspect the generated adversarial examples and
cherry pick them for adversarial training.
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Figure 5: Adversarial examples generated by SCPN, when attacking a BERT-based model trained on CoNLL2003.
For each pair the top row represents the original sample and the bottom row its attacked counterpart. The modified
words are underlined in red.

Figure 6: Adversarial examples generated by DeepWordBug-I, when attacking a BERT-based model trained on
CoNLL2003. For each pair the top row represents the original sample and the bottom row its attacked counterpart.
The modified words are underlined in red.

Figure 7: Adversarial examples generated by DeepWordBug-II, when attacking a BERT-based model trained on
CoNLL2003. For each pair the top row represents the original sample and the bottom row its attacked counterpart.
The modified words are underlined in red.
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Figure 8: Adversarial examples generated by BERT-Attack, when attacking a BERT-based model trained on
CoNLL2003. For each pair the top row represents the original sample and the bottom row its attacked counterpart.
The modified words are underlined in red.

Figure 9: Adversarial examples generated by CLARE, when attacking a BERT-based model trained on
CoNLL2003. For each pair the top row represents the original sample and the bottom row its attacked counterpart.
The modified words are underlined in red.


