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Abstract
On the way towards general Visual Question
Answering (VQA) systems that are able to an-
swer arbitrary questions, the need arises for
evaluation beyond single-metric leaderboards
for specific datasets. To this end, we pro-
pose a browser-based benchmarking tool for
researchers and challenge organizers, with an
API for easy integration of new models and
datasets to keep up with the fast-changing land-
scape of VQA. Our tool helps test general-
ization capabilities of models across multiple
datasets, evaluating not just accuracy, but also
performance in more realistic real-world sce-
narios such as robustness to input noise. Ad-
ditionally, we include metrics that measure bi-
ases and uncertainty, to further explain model
behavior. Interactive filtering facilitates dis-
covery of problematic behavior, down to the
data sample level. As proof of concept, we per-
form a case study on four models. We find that
state-of-the-art VQA models are optimized for
specific tasks or datasets, but fail to general-
ize even to other in-domain test sets, for exam-
ple they cannot recognize text in images. Our
metrics allow us to quantify which image and
question embeddings provide most robustness
to a model. All code1 is publicly available.

1 Introduction

VQA refers to the multi-modal task of answering
free-form, natural language questions about images
- a task sometimes referred to as a visual Turing
test (Xu et al., 2018). The number and variety of
datasets for evaluating such systems has continued
to increase over the last years (Antol et al., 2015;
Hudson and Manning, 2019; Agrawal et al., 2018;
Kervadec et al., 2021; Johnson et al., 2017). These
datasets aim to test models’ abilities with respect to
different skills, such as commonsense or external
knowledge reasoning, visual reasoning, or read-
ing text in images. Traditionally, evaluation relies

* Authors contributed equally
1https://github.com/patilli/vqa_benchmarking

Figure 1: Tool landing page with aggregated metrics
for each model (larger version in Appendix A). Statis-
tics can be expanded per model to view performance
on each dataset.

solely on answering accuracy. However, it is mis-
leading to believe that a single number, like high
accuracy on a given benchmark, corresponds to a
system’s ability to answer arbitrary questions with
high quality. Each dataset contains biases which
state-of-the-art deep neural networks are prone to
exploit, resulting in higher accuracy scores (Goyal
et al., 2017; Das et al., 2017; Agrawal et al., 2016;
Jabri et al., 2016). Thus, most VQA models, if eval-
uated on multiple benchmarks at all, are re-trained
per dataset to achieve higher numbers in special-
ized leaderboards. Further shortcomings of current
leaderboards include ignoring prediction cost and
robustness, as discussed in (Ethayarajh and Juraf-
sky, 2020) for NLP. In VQA, we need even more
specialized evaluation due to the challenges inher-
ent to open-ended, multi-modal reasoning.

In order to successfully develop VQA systems
that are able to answer arbitrary questions with
human-like performance, we should overcome
the previously mentioned shortcomings of current
leaderboards as one of the first essential steps. To
this end, we propose a benchmarking tool, to our
knowledge the first of its kind in the VQA domain,
that goes beyond current leaderboard evaluations.
It follows the four following principles:

1. Realism To better simulate real-world condi-
tions, we test robustness to semantic-preserving
input perturbations to images and questions.
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2. Generalizability We include six carefully
chosen benchmark datasets, each evaluating differ-
ent abilities as well as model behavior on changing
distributions to test model generalizability. Ad-
ditionally, we provide easy python interfaces for
adding new benchmarking datasets and state-of-the-
art models as they arise. The full tool is released
under an open-source license.

3. Explainability To provide more insight into
model behavior and overcome the problem of
single-metric comparisons, we measure scores such
as biases and uncertainty, in addition to accuracy.

4. Interactivity Aggregated statistics can be
drilled down and filtered, providing interactive ex-
ploration of model behavior from a global dataset
perspective down to individual data samples. The
above functionalities not only support detailed
model comparison, but also facilitate development
and debugging of models in the VQA domain.

As proof of concept, we integrate several pop-
ular and state-of-the-art models from public code
repositories and investigate their abilities and weak-
nesses. Through our case study, we demonstrate
that all of these models fail to generalize, even to
other in-domain test sets. Our metrics quantify the
influence of model architecture decisions, which ac-
curacy cannot capture, such as the effect of image
and question embeddings on model robustness.

2 Related Work

VQA Benchmarks Benchmarks often emphasize
certain sub-tasks of the general VQA problem. For
example, CLEVR (Johnson et al., 2017) tests visual
reasoning abilities such as shape recognition and
spatial relationships between objects, rather than
real-world scenarios. Other approaches change the
answer distributions of existing datasets, such as
VQA-CP (Agrawal et al., 2018) originating from
VQA2 (Goyal et al., 2017) or GQA-OOD from
GQA (Kervadec et al., 2021). These changes are
intended to mitigate learnable bias. Another ap-
proach to mitigating biases was proposed by Hud-
son and Manning (2019), who created a dataset for
real world visual reasoning with a tightly controlled
answer distribution. Kervadec et al. (2021) went
one step further by analyzing and changing the
test sets to evaluate on rarely occurring question-
answer pairs rather than on frequent ones. Finally,
Li et al. (2021) proposed an adversarial benchmark-
ing dataset to evaluate system robustness.

Metrics For more automated, dataset-level in-
sight, many methods try to analyze single aspects
of VQA models. For example, Halbe (2020) use
feature attribution to assess the influence of indi-
vidual question words on model predictions. Das
et al. (2017) compare human attention to machine
attention to explore whether they focus on the same
image regions. To measure robustness w.r.t. ques-
tion input, Huang et al. (2019) collect a dataset of
semantically relevant questions, and rank them by
similarity, feeding the top-3 into the network to
observe changes in prediction.

Identifying Biases Agrawal et al. (2016) mea-
sured multiple properties: generalization to novel
instances as selected by dissimilarity, question un-
derstanding based on length and POS-tags, and
image understanding by selecting a subset of ques-
tions which share an answer but have different im-
ages. Another approach to analyze bias towards
one modality is to train a uni-modal network that
excludes the other modality in the training phase
(Cadene et al., 2019). However, this requires train-
ing one model per modality and cannot be applied
easily to all architectures, e.g. to attention mecha-
nisms computed on joint feature spaces.

Robustness and Adversarial Examples Adver-
sarial examples originate from image classification,
where perturbations barely visible to a human fool
the classifier and cause sudden prediction changes
(Szegedy et al., 2014). The same idea was later
applied to NLP, where, e.g., appending distracting
text to the context in a question answering scenario
resulted in F1-score dropping by more than half
(Jia and Liang, 2017).

Benchmarking Tools Liu et al. (2021) propose
a leaderboard for NLP tasks to compare model per-
formance. They differentiate among several NLP
tasks and datasets. All methods are applied post-
hoc to analyze the predictions a model outputs.
Other benchmarking tools, for example, focus on
runtime comparisons (Shi et al., 2016; Liu et al.,
2018). Our benchmarking tool not only analyzes
system outputs, but also modifies input modalities
as well as feature spaces and provides metrics be-
yond just accuracy.

3 VQA Benchmark Tool

Our tool facilitates global evaluation of model
performance w.r.t general and specific tasks
(generalizability), such as real-world images and
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reading capabilities. To simplify integration of fu-
ture benchmark datasets and models, we provide a
well-documented python API. We measure model-
inherent properties, such as biases and uncertainty
(explainability) as well as robustness against in-
put perturbations (realism). Model behavior can
be further inspected using interactive diagrams
and filtering methods for all metrics, supporting
sample-level exploration of suspicious model be-
havior (interactivity). All data is collected post-
hoc and can be explored in a web application, elim-
inating the need to re-train existing models.

3.1 Datasets

In this section, we describe the datasets supported
out-of-the-box. These serve the principle of bench-
marking generalizability, by including real-world
scenarios as well as task-specific and even syn-
thetic datasets. Where labels are publicly available,
we rely on test sets, otherwise on validation sets
(marked with ∗). To reduce computational cost
and resources (including environmental impact),
we limit each dataset to a maximum of ∼15,000
randomly drawn samples , which is referred to in
the following paragraphs as a sub-set.

VQA2∗ This dataset (Goyal et al., 2017) repre-
sents a balanced version of the vanilla VQA dataset
(Antol et al., 2015). It is intended to mirror real-
world scenarios and used as the de-facto baseline
for model comparisons.

GQA The GQA dataset (Hudson and Manning,
2019), derived from Visual Genome (Krishna et al.,
2017), is designed to test models’ real-word vi-
sual reasoning capabilities, in particular, robust-
ness, consistency and semantic understanding of
vision and language. Similar to VQA2, it also pro-
vides a balanced version.

GQA-OOD According to Kervadec et al. (2021),
evaluating on rare instead of frequent question-
answer pairs is better suited for measuring reason-
ing abilities. Hence, they introduce the GQA-OOD
dataset as a new split of the original GQA dataset
to evaluate out-of-distribution questions with im-
balanced distributions.

CLEVR∗ CLEVR (Johnson et al., 2017) is a syn-
thetic dataset, containing images of multiple geo-
metric objects in different colors, materials and
arrangements. It aims to test models’ visual rea-
soning abilities by asking questions that require a

model to identify objects based on attributes, pres-
ence, count, and spacial relationships.

OK-VQA∗ Marino et al. (2019) introduce a
dataset that requires external knowledge to answer
its questions, thereby motivating the integration of
additional knowledge pools.

Text VQA∗ Singh et al. (2019) consider the prob-
lem of understanding text in images, an important
problem to consider in VQA benchmarking sys-
tems, as one application of VQA is intended to aid
the visually impaired.

3.2 Metrics
In addition to the evaluation of accuracy across
datasets with different distributions and focuses, we
implement metrics such as bias of models towards
one modality and uncertainty (explainability), as
well as robustness to noise and adversarial ques-
tions (realism). All metrics are in range [0, 100].

Accuracy Our tool supports multiple ground
truth answers with different scores per sample, pro-
viding the flexibility to evaluate for single-answer
accuracy as well as e.g. the official VQA2 accu-
racy measure acc(a) = min(1, #humans(a)

3 ) (Antol
et al., 2015).

Modality Bias Here, we refer to a model’s fo-
cus on one modality over the other. Given an
image of a zoo and the question “What animals
are shown?”, if we replace this picture with a
fruit bowl, we would expect the model to change
its prediction. However, if the prediction stays
unaltered, the model’s answer cannot depend on
the image input. For each prediction on altered
inputs (i′, q) or (i, q′), we evaluate how many
times the answer a′ of the replacement pairs is the
same as answer a predicted on the original inputs
(i, q). Averaging across N trials yields a Monte-
Carlo estimate of the bias towards one modality as
1/N

∑
q′ 1f(q,i)=f(q′,i). Heuristics, such as ensur-

ing no overlap between subjects and objects of q
and q′, help reduce cases where q′ would just be a
rephrasing of q. High values in modality bias corre-
spond to models ignoring input from one modality
for many samples, e.g. a question bias of 100 indi-
cates a model that completely ignores images.

Robustness to Noise An important considera-
tion when deploying a model in the real world, is its
susceptibility to noise. Noise might be induced nat-
urally by data acquisition methods (VQA-setting:
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camera), for example a color-question should not
be affected by subtle tone shifts between two cam-
eras. On the question side, semantic-preserving
input changes can be induced through paraphrases,
synonyms or region-dependent spelling.

For measuring robustness to noise in images, we
support adding Gaussian-, Poisson-, salt&pepper-
and speckle-noise to the original input image. We
also support adding Gaussian noise in image fea-
ture space. To obtain a realistic input range, we
calculate the standard deviation from 500 randomly
sampled image feature vectors. After multiple tri-
als, we average how often the prediction on the
noisy inputs matches the original prediction. Ap-
plying noise to the original image input tests the
robustness of the image feature extractor, which, in
many models, is external and thus easy to swap and
interesting to compare. On the other hand, apply-
ing noise in feature space tests model robustness
towards noisy feature extractors.

Measuring robustness to question noise is done
by adding Gaussian noise in embedding space, a
reasonable approach under the assumption that sim-
ilar vectors in embedding space have similar mean-
ing. Again, multiple trials are performed.

High values in robustness correspond to models
unaffected by noise in one modality for many sam-
ples, e.g. a question robustness of 100 indicates
a model that never changed its predictions due to
noise added in question embedding space.

Robustness to Adversarial Questions Semanti-
cally Equivalent Adversarial Ruless (SEARs) alter
textual input according to a set of rules, while pre-
serving original semantics (Ribeiro et al., 2018).
For the questions in the VQA dataset, the authors
come up with the four rules that most affect the
predictions in their tests, using a combination of
Part-of-Speech (POS)-Tags and vocabulary entries:

• Rule 1 WP VBZ→WP’s

• Rule 2 What NOUN→Which NOUN

• Rule 3 color→ colour

• Rule 4 ADV VBZ→ ADV’s

High values in robustness against SEARs cor-
respond to models unaffected by adversarial ques-
tions, e.g. a robustness of 100 indicates a model
that never changed its predictions due to the appli-
cation of any of the above rules. Therefore, higher
values are preferable.

Uncertainty To measure model certainty, we
leverage the dropout-based Monte-Carlo method
(Gal and Ghahramani, 2016). Forwarding a sample
multiple times with active dropout, the averaged
output vector 1

N

∑N
n=1 f(x).

3.3 Views
We support inspection of the included metrics at
different levels of granularity, from comparisons
across multiple datasets to filtering of individual
samples (interactivity). On each level, we sup-
plement the accuracy measure by additional met-
rics helpful for understanding and debugging VQA
models (explainability).

Gobal View The global view (see figure 1) acts
as the main entry to our tool. At a glance, it shows a
leaderboard with statistics averaged on all datasets,
providing users with an impression of the models’
performance and properties across tasks and dis-
tributions. All columns are sortable to allow easy

Figure 2: Expanded details on the overview page
(larger version in Appendix A).

comparisons between models for each metric. Each
row in the overview table describes a model’s aver-
age performance and can be expanded to provide
additional information on a per-dataset level (see
figure 2).

Metrics View Clicking a model row in the global
view navigates to the metrics view, which provides
graphs on all metrics and datasets for the selected
model in detail (see figure 3). Users have the choice
to change dataset and metric via selection boxes.
For easy comparison between datasets of different
sizes, all values are recorded in percentages of the
dataset.

Filter View Our tool supports searching for pat-
terns of suspicious model behavior by providing a
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Figure 3: Metric view, showing bias towards images on
the GQA dataset for the MDETR model (larger version
in Appendix A).

filter view (see figure 4). Once model, dataset and
metric are selected, users are presented a list of all
samples within the chosen range. The range can
be adjusted using a slider, which updates the list of
matching data samples in real-time.

Figure 4: Filter view. Enables filtering for unexpected
model behavior on sample level (larger version in Ap-
pendix A).

Sample View Finally, once the desired range of
samples has been filtered, clicking a data sample
navigates to the sample view (see figure 5). There,
the original input image and question are displayed,
along with ground truth and the model’s top-3 pre-
dictions. Additionally, the scores and answers for
each single metric are shown. For example, if ap-
plying noise to the image changed the prediction
multiple times, we show all the answers that were
predicted using those noisy inputs.

4 Case Study

As a case study, we explore a range of models
from well-established, previously high ranking en-
tries in the VQA2 competition to more recent,
transformer-based architectures and report the in-
sights we gained by inspecting them with our tool.

Figure 5: Sample view with Image Bias Word Space
metric. Similar cards exist for each metric (larger ver-
sion in Appendix A).

4.1 Evaluated Models

We chose a widely used VQA-baseline BAN,
two transformer-based architectures MDETR and
MCAN, and MMNASNET.

BAN (Kim et al., 2018) is a strong baseline using
bilinear attention. It won third place in the VQA2
2018 challenge and was still in the top-10 entries
in 2019. We use the 8-layer version.

MCAN (Yu et al., 2019) improves BAN with a
co-attention feature fusion mechanism.

MMNASNET Yu et al. (2020) is a more recent
state-of-the-art model constructed using neural ar-
chitecture search. It is one of the top-10 entries of
the VQA2 2020 challenge.

MDETR (Kamath et al., 2021) is a state-of-the
art transformer using more recent question (Liu
et al., 2019) and image embedding approaches (Car-
ion et al., 2020). MDETR achieves competitive
accuracies on both GQA and CLEVR.

4.2 Results and Lessons Learned

Table 1 contains the aggregated results of all mod-
els, averaged across the development (sub-)splits
of all datasets. For details about the computation
of each metric, see section 3.2. Table 2 shows
model accuracy per dataset. Unsurprisingly, mod-
els performed best when evaluated on the develop-
ment (sub-)split of the dataset they were originally
trained on, and worse on datasets they were not
trained on. These performance drops are observ-
able for all models, suggesting that VQA models
cannot yet generalize well across tasks. Low per-
formance of current highly ranked VQA models
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Average Results
Model Accuracy Modality Bias Robustness Image Robustness SEARs Uncer- Parameters

Image Quest. Image Feature Question tainty
MCAN 41.30 4.83 2.57 99.98 81.09 63.14 58.45 31.77 201,723,191
MMNASNET 40.80 4.67 2.51 99.99 79.90 65.18 59.65 31.75 211,166,871
BAN-8 38.62 5.21 3.31 99.99 82.22 70.09 53.53 66.10 112,167,258
MDETR 38.82 4.77 2.60 36.33 90.10 100.00 100.00 24.58 185,847,022

Table 1: Average results of our evaluated models across all development (sub-)splits. We split the columns modality
bias and robustness against image modifications into two sub-columns. These columns should be read as the
modality bias (lower values are better) measured for the image space and question space. Robustness (higher
values are better) against image changes is divided into alterations on the image itself as well as modifications
inside image feature space . All metrics are in range [0, 100].

on new datasets can partially be attributed to their
fixed answer spaces. This implies the need for more
research into systems that are able to generate an-
swers instead of treating VQA as a multiple-choice
problem. However, even changing distributions
of the same dataset leads to a large performance
drop, as we observe, for example, in GQA and
its out-of-distribution variants, GQA-OOD-HEAD
and GQA-OOD-TAIL. By swapping the original
GQA dataset for the GQA-OOD-TAIL distribution,
MDETR accuracy decreased by more than 11, 6%.
That out-of-distribution testing causes such high
losses in accuracy indicates models are still relying
on biases learned from the training dataset.

All systems struggled to read text in images,
in fact, the highest accuracy score on TextVQA
was only 8.81%, achieved by MMNASNET. This
might be improved by extending existing VQA-
architectures with additional inputs, e.g. from opti-
cal character recognition, or adapting the training
of currently used image feature extractors.

Applying noise in image space has almost no
impact on models using bottom-up-topdown fea-
ture extraction (Anderson et al., 2018), in contrast
to MDETR, the only model using an alternative
approach. In feature space, all models are sim-
ilarly stable, which could imply that the feature
extractor in MDETR could be made more robust
by augmenting training with noisy images.

All models show highest modality bias and low
accuracy on the CLEVR dataset. Given that no
models were trained on synthetic images or ques-
tions involving such complex selection and spatial
reasoning, this hints at the models not understand-
ing either modality well. Inspection using the filter
view on modality biases provides more evidence
of understanding problems here, showing that for
example BAN-8 nearly always guesses yes or no,
regardless of the question asked or the image given.

In general, BAN-8 displays the highest modality
bias, indicating more recent models have become
better at jointly reasoning over image and text.

SEAR and question robustness metrics show that
RoBERTa (Liu et al., 2019) provides substantial ro-
bustness to question perturbation; there were zero
cases causing MDETR to change predictions, sug-
gesting that context-aware embeddings should be a
standard consideration for future VQA models.

Our metrics show that state-of-the-art VQA mod-
els are optimized for specific tasks or datasets,
but fail to generalize even across other in-domain
datasets. In order to be successful in real-world ap-
plications, systems must demonstrate a variety of
abilities, not merely good performance on a single-
purpose test set.

5 Conclusion

Our proposed benchmarking tool is the first of its
kind in the domain of VQA and addresses the prob-
lems of current single-metric leaderboards in this
domain. It provides easy to use and fast compar-
ison of integrated models on a global level. The
performance of each model is evaluated across mul-
tiple special-purpose as well as general-purpose
datasets to test generalizability and capabilities.
Each model can be quantified by metrics such as ac-
curacy, biases, robustness, and uncertainty, reveal-
ing strengths and weaknesses w.r.t to given tasks,
i.e. measuring the properties models offer as well
as their real-world robustness. Exploration via fil-
tering can be used to identify suspicious behaviour
down to single data sample level. Through this, our
tool provides deeper insights into the strengths and
weaknesses of each model across tasks and metrics
and how architectural choices can affect behavior,
encouraging researchers to develop VQA systems
with rich sets of abilities that stand up to real-world
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Model CLEVR GQA GQA-OOD-ALL GQA-OOD-HEAD GQA-OOD-TAIL OK-VQA TextVQA VQA2
MCAN 32.87 44.58 41.67 44.78 36.59 35.46 8.49 85.94
MMNASNET 31.95 44.50 40.24 42.01 37.35 35.09 8.81 86.51
BAN-8 28.64 41.86 38.95 40.97 35.65 32.88 8.40 81.60
MDETR 25.44 61.42 55.76 59.43 49.76 9.83 4.70 44.22

Table 2: Accuracy across the development (sub-)splits of different datasets. Bold entries mark best accuracy per
model and coincides in all cases with the dataset it was trained on.

environments. The open-source tool itself can be
installed as a package and extended with new mod-
els, datasets and metrics using our python API.

In the future, we plan to extend this tool with
new datasets as they are released. Moreover, we are
looking for more metrics for model evaluation as
well as more detailed dataset analysis, e.g. answer
space overlap. Last but not least, interactivity could
be extended towards live model feedback, allowing
to change inputs, e.g. the image noise level, and
observe model outputs at runtime.
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Figure 7: Figure 1 in full size.

Figure 8: Figure 4 in full size.
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Figure 9: Figure 5 in full size.


