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Abstract

Generating diverse texts is an important fac-
tor for unsupervised text generation. One ap-
proach is to produce the diversity of texts
conditioned by the sampled latent code. Al-
though several generative adversarial networks
(GANs) have been proposed thus far, these
models still suffer from mode-collapsing if the
models are not pre-trained. In this paper, we
propose a GAN model that aims to improve
the approach to generating diverse texts con-
ditioned by the latent space. The generator
of our model uses Gumbel-Softmax distribu-
tion for the word sampling process. To en-
sure that the text is generated conditioned upon
the sampled latent code, reconstruction loss
is introduced in our objective function. The
discriminator of our model iteratively inspects
incomplete partial texts and learns to distin-
guish whether they are real or fake by using
the standard GAN objective function. Exper-
imental results using the COCO Image Cap-
tions dataset show that, although our model is
not pre-trained, the performance of our model
is quite competitive with the existing baseline
models, which requires pre-training.

1 Introduction

Generative adversarial networks (GANs) (Goodfel-
low et al., 2014) have recently received significant
attention in the field of unsupervised text genera-
tion, which aims to generate realistic texts by unsu-
pervised learning approach.

For language GANs, the diversity of the gener-
ated texts is an important evaluation metric. There
are mainly two approaches to produce the diversity
of texts by the generative models. One approach,
which includes SeqGAN (Yu et al., 2017) and Leak-
GAN (Guo et al., 2018), is to generate the diverse
texts by sampling words during the text-generation
process. The generators of these models set the ini-
tial state as zero and randomly sample every word

depending on the word distribution, and thus we
cannot control the generated text depending on any
conditions. The other approach, which includes
TextGAN (Zhang et al., 2017) and FM-GAN (Chen
et al., 2018), produces the diversity of texts depend-
ing on the randomly sampled latent code from the
prior distribution. These models set the latent code
information at the initial state or the input of every
time step for the generator.

In this paper, we propose a GAN model that
aims to improve the approach to generating diverse
texts from the latent space. As for TextGAN and
FM-GAN, the generator almost decisively selects
each word using soft-argmax approximation to gen-
erate a sentence depending on the latent space in-
formation. To avoid mode-collapsing, instead of
using standard GAN objective function, the dis-
criminator of each model respectively measures
the Maximum Mean Discrepancy (MMD) or the
Feature Mover’s Distance (FMD) between the true
text representations and fake ones. These models
succeed in generating diverse texts if the generators
are pre-trained by a Variational Autoencoder. How-
ever, it is verified that these methods still fall into
mode-collapsing if the generator is not pre-trained
(Section 4.3.1). One of the possible reasons for
the mode-collapsing is the deterministic word sam-
pling process through a soft-argmax approximation
from the beginning of the training. Deterministic
word sampling process hinders the generator from
exploring a variety of text generation, which may
lead the generator to fall into sub-optimal point.
The second possible reason is that the discrimina-
tor tries to discriminate the completed sentences.
Generating a good-completed sentence from the
beginning of the training is too difficult for the
generator because the possible number of combina-
tions of words increases exponentially if the num-
ber of words sampled becomes large. Therefore,
there is a possibility that, without pre-training, the
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discriminator does not serve useful signals to the
generator if the discriminator looks at only com-
pleted sentences. Based on these assumptions, our
model adopts the following approach: The gen-
erator randomly samples words depending on the
word probability distribution using the Gumbel-
Softmax distribution (Jang et al., 2016). To ensure
that the texts generated are conditioned upon the
latent code, a reconstructor is introduced, which is
fed the generated sentence and outputs the recon-
structed latent code. The generator and the recon-
structor cooperatively minimize the reconstruction
loss. The discriminator of our model iteratively
inspects incomplete partial texts and learns to dis-
tinguish whether they are real or fake using the
standard GAN objective.

We trained our model using the COCO Image
Captions dataset (Lin et al., 2014) for the experi-
ment. The results show that although our model
is not pre-trained, its performance is quite compet-
itive with the existing baseline models. We also
found that, by controlling the weight of the recon-
struction loss coefficient, our model can obtain a
higher diversity of generated texts even when texts
are generated by greedy decoding.

2 Related Work

The language GANs, in which the generator and
discriminator optimize their objective functions in
an adversarial manner to generate realistic texts,
have two main perspectives.

As the first perspective, a reinforcement learn-
ing approach is used for optimizing the generator.
SeqGAN (Yu et al., 2017), LeakGAN (Guo et al.,
2018), MaskGAN (Fedus et al., 2018), RankGAN
(Lin et al., 2017), RL-GAN (Caccia et al., 2019),
and ScratchGAN (de Masson d’Autume et al.,
2019) are typical models. These models are non-
differentiable from the discriminator to the genera-
tor. Therefore, the generator cannot be optimized
using a standard GAN approach. Instead, the out-
put of the discriminator is regarded as a reward for
the sampling of words, and the expected rewards
are maximized to optimize the generator. This
reinforcement approach generally produces the di-
versity of texts during the word sampling process.

As the second perspective, the model is end-to-
end differentiable from the discriminator to the
generator. TextGAN (Zhang et al., 2017), RelGAN
(Nie et al., 2018), and FM-GAN (Chen et al., 2018)
are typical models. The sampling of words is ap-

Model
Generate text
Conditioned by
Latent space

Require
Pretraining

SeqGAN,
LeakGAN, etc

No Yes (MLE)

ScratchGAN,
COT, MLE

No No

TextGAN,
FM-GAN

Yes Yes (VAE)

Ours[GAN],
VAE-Based

Yes No

Table 1: Summary of previous studies, where ( · ) indi-
cates a pretraining approach. MLE, Maximum Likeli-
hood Estimator; VAE, Variational Autoencoder.

proximated using a soft-argmax approximation or
the Gumbel-Softmax distribution, which is used
to create approximated one-hot vectors by lower-
ing the temperature of the softmax function. Some
models of this approach produce the diversity of
texts by sampling latent code from the prior distri-
bution. Note that GSGAN (Kusner and Hernández-
Lobato, 2016) is also an end-to-end differentiable
model for discretized data, but does not verify the
effectiveness in the case of text generation.

Other text generation approaches beyond those
described above also exist, such as a VAE-based
model (Bowman et al., 2016; Bao et al., 2019)
and COT(Lu et al., 2019) among others (Gagnon-
Marchand et al. (2019), Li et al. (2019)).

To the best of our knowledge, our approach is the
first GAN model that does not require variational
Autoencoder pre-training and is able to generate
texts conditioned by the latent code1. Previous
studies are summarized in Table 1.

3 Model

Figure 1 shows a schematic illustration of the pro-
posed method. We describe the details in the fol-
lowing paragraphs.

Our goal is to generate sentences conditioned
by the latent space in a GAN framework. When
training language GANs, if the discriminator only
looks at the complete sentences, the generator ob-
tains no learning signals early in the training be-

1For FM-GAN, no description regarding the necessity of
pre-training is provided in this paper. However, their released
code refers to the pre-training procedure and is available
at https://github.com/vijini/FM-GAN. We also
verified that a model without VAE pre-training cannot achieve
the expected performance (Figure 3).

https://github.com/vijini/FM-GAN
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Figure 1: Overview of our model. The latent code z sampled from the prior distribution is fed into the fully
connected layer and set as the initial state of the generator. The generator iteratively generates soft one-hot vectors
of words using the Gumbel-Softmax distribution. The discriminator is fed the soft one-hot vectors and outputs the
dense reward iteratively for the GAN loss. The reconstructor is fed the vector-quantized hard one-hot vectors and
outputs the reconstructed latent code for the reconstruction loss. This network is end-to-end differentiable from
the discriminator/reconstructor to the generator.

・・・
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Figure 2: Example of vector quantization of words from soft one-hot vector to hard one-hot vector. This approach
can back-propagate the loss from the reconstructor to the generator using only the sampled word parameters.
Implementation details: hard one-hot = onehot(Argmax(soft one-hot)) - StopGradient[soft one-hot] + soft one-hot

cause the complete sentences generated are easily
determined to be fake by the discriminator(de Mas-
son d’Autume et al., 2019). To address this prob-
lem, following the idea of Fedus et al. (2018), Se-
meniuta et al. (2018), and de Masson d’Autume
et al. (2019), our discriminator Dφ iteratively in-
spects incomplete partial texts and learns to dis-
tinguish whether they are real or fake. Therefore,
the generator can obtain more informative signals
from the recurrent discriminator during the iterative
word sampling process. By using this recurrent dis-
criminator, it is expected that our model does not
require pre-training, as reported in ScratchGAN
(de Masson d’Autume et al., 2019). The objec-
tive function of the discriminator Dφ is the same
as that in ScratchGAN, except that the generator
pθ generates a sequence of tokens {x1, ..., xT } de-
pending on the sampled latent code z from the prior
distribution p(z).

max
φ

T∑
t=1

Ep∗(xt|x<t)[logDφ(xt|x<t)] (1)

+
T∑
t=1

Ep(z)pθ(xt|z,x<t)[log(1−Dφ(xt|x<t))],

where x<t := {x1, .., xt−1} denotes a sequence
of words before timestep t, and p∗ is the real data
distribution.

In a practical sense, the typical word sampling
process makes the differentiability from the dis-
criminator to the generator impossible because sam-
pling a word from a word probability distribution
is equivalent to creating a non-differentiable one-
hot vector. As a workaround, we use the Gumbel-
Softmax distribution (Jang et al., 2016), which en-
ables our model to sample words from pθ by creat-
ing an approximated one-hot vector while making
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the differentiability from the discriminator to the
generator possible. Here, we call this one-hot vec-
tor a ”soft one-hot vector.” The Gumbel-Softmax
distribution used to create the soft one-hot vector x̃
is set as follows:

x̃ = softmax((log(pθ) + g)/τ1)

where pθ = softmax(o/τ2)
(2)

Here, g is a randomly sampled value from the
Gumbel distribution Gumbel(0, 1), o is the output
from the generator. Note that τ1 is the Gumbel-
Softmax temperature, and τ2 is the word probability
distribution temperature.

To ensure that the texts generated are condi-
tioned by the sampled latent code, our model intro-
duces a reconstructor Rψ, which is fed the gener-
ated text and outputs a reconstructed latent code to
minimize the reconstruction loss between the latent
code and the reconstructed code. The generator pθ
and reconstructorRψ are optimized simultaneously.
Therefore, the objective function of the reconstruc-
tor is added to that of the generator multiplied by a
coefficient λ.

min
θ,ψ

T∑
t=1

Ep(z)pθ(xt|z,x<t)[log(1−Dφ(xt|x<t))]

+λEp(z)pθ(x1..,xt)
[ 1

Nz
||Rψ(x1, .., xt)−z||22

]
(3)

where Nz denotes the dimension size of the
latent code z. It should be noted that the joint
distribution pθ(x1...xt) is decomposed into the
iterative conditional distribution pθ(x1...xt) =
pθ(x1)pθ(x2|x1)...pθ(xt|x<t) such that condi-
tional sampling can be executed using the Gumbel-
Softmax distribution described above.

We found several heuristic approaches for stabi-
lizing the training. As the first, vector quantization
(Van Den Oord et al., 2017) is applied to the soft
one-hot vector to create a ”hard one-hot vector”
for the reconstructor input. Vector quantization
can back-propagate the loss from the reconstructor
to the generator using only the sampled word pa-
rameters. By using this approach, reconstruction
loss training is stabilized. Figure 2 illustrates an
example of the vector quantization process. As
the second technique, if a blank token is chosen
at any time step by the Gumebel softmax of the
generator, the rest of the sentence is automatically
padded with blank tokens. The pseudocode is given
in Appendix C.

4 Experiment

First, we describe the data setting and evaluation
metrics for the experiment. Second, we describe
the experimental results to better evaluate the per-
formance of our model.

4.1 Data Setting

We experimentally evaluated the quality and diver-
sity of our generated models using a real sentence
dataset, i.e., COCO Image Captions (Lin et al.,
2014). We used the same sampled data as in Zhu
et al. (2018), which consist of 10,000 training texts
and 10,000 evaluation texts2. The maximum sen-
tence length was 37 tokens, the average length of
the sentence was 11.3 tokens, and the vocabulary
size was 6577. For the experiment, the end of the
text was padded with blank tokens.

4.2 Evaluation Metrics

The quality and diversity of the generated text were
measured using the Negative BLEU score and the
Self-BLEU score (Zhu et al., 2018), respectively.
In tuition, the BLEU score measures the quality of
the generated sentences through a comparison with
real sentences from the viewpoint of how much the
N-gram words overlap. The negative BLEU score
is defined as the -1 ∗ BLEU score. The Self-BLEU
scores measure the diversity of every generated sen-
tence by comparing with the other generated sen-
tences by inspecting how much the N-gram words
overlap. Therefore, a lower value indicates a better
performance for both metrics. We draw the temper-
ature curve(Caccia et al., 2019) for each model, in
which the texts are generated by gradually chang-
ing the temperature of the softmax function, and
plotting the quality and diversity score for every
temperature point on a two-dimensional quality-
diversity canvas. Therefore, the closer the curve
is to the origin, the better the performance of the
model. We plot the results for temperatures at inter-
vals of 0.0 to 1.0 with 0.1 increments. Note that at
a temperature of 0.0, the model generates the text
using a greedy approach, which can be interpreted
as temperature τ → 0. In principle, as the temper-
ature decreases, the quality of the generated texts
increases, but the diversity decreases. Thus, the
greedy decoding case is the upper leftmost point
on each temperature curve. We generate 10,000
texts from the trained model at every temperature

2The dataset is available at https://github.com/
geek-ai/Texygen/tree/master/data

https://github.com/geek-ai/Texygen/tree/master/data
https://github.com/geek-ai/Texygen/tree/master/data
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Figure 3: Performance comparison of our model with
baseline models. The lower value indicates the better
performance for diversity and quality metrics.
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Figure 4: Effect of changing reconstruction loss coeffi-
cient λ.

for evaluation. The generated sample texts can be
found at Table 2. Note that in the Gumbel-Softmax
distribution, the changing target of the temperature
is τ2, and not τ1 in equation (2).

4.3 Results

4.3.1 Comparison with Baseline Models

We compared the performance of our model
with the baseline models: VAE, FM-GAN, and
TextGAN. VAE used the CNN-LSTM autoencoder
architecture as in Gan et al. (2017). FM-GAN and
TextGAN require VAE pre-training. Our model
settings and hyperparameter details can be found in
Appendix A and B. Figure 3 illustrates the temper-
ature curves for each model to compare the perfor-
mance from the viewpoint of quality and diversity.
This result indicates that the overall performance of
our model is slightly inferior to that of the baseline
models, but is quite competitive despite our model

not being pre-trained. We also evaluated FM-GAN
and TextGAN without pre-training case. Both of
them achieved far worse performance than the pre-
trained case. This result indicates that these models
without pre-training fall into mode-collapsing.

4.3.2 Effect of Changing Value of λ
We observe the effect of changing the value of the
reconstruction coefficient λ in equation (3) on the
performance of our model. Figure 4 shows the
temperature curves for different coefficients. The
result indicates that, as the value of λ increases, the
performance of our models improves. However, if
the value of λ is too high such as λ = 2.0, the qual-
ity of the generated sentence significantly worsens.
We also found that for the greedy decoding case,
which is the upper-left point of each curve, as λ
increases, the diversity of the generated sentences
increases and the quality-diversity distribution be-
comes closer to that of the training data. Greedy
decoding is the most extreme case for verifying
if the generated sentences are conditioned by the
latent space. Therefore, it can be assumed that
the reconstruction loss has the ability to make the
generated text more dependent on the latent space
information.

5 Conclusion and Discussion

This paper proposed a GAN model that aims to
improve the approach to generating diverse texts
conditioned by a latent space. In a quantitative ex-
periment using the COCO Image Captions dataset,
it was shown that although our model is not pre-
trained, its performance is quite competitive with
the existing baseline models, which require pre-
training. Future work will include further improve-
ments to the performance of our model, and ap-
plication of our model to other tasks that need to
transform the data between domains through a la-
tent space, such as improving the quality and diver-
sity of machine translation or multi-modal learning
related to text generation.
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Real Data

a bicycle replica with a clock as the front wheel.
a black honda motorcycle parked in front of a garage.
a room with blue walls and a white sink and door.
a car that seems to be parked illegally behind a legally parked car
a large passenger airplane flying through the air.
there is a gol plane taking off in a partly cloudy sky.
blue and white color scheme in a small bathroom.
this is a blue and white bathroom with a wall sink and a lifesaver on the wall.
a blue boat themed bathroom with a life preserver on the wall

VAE

a bathroom sink with only the tub in the bathroom
a large boy and a plane sitting on the landing .
a clock tower with pots and windows
a car at an open door leading to a bunch of foot .
office space force force jet on display during day .
an image of benches on a street and chairs being terminal .
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a couple of an airplane flying through the clear blue oven .
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Table 2: Randomly selected samples of COCO Image Captions from real data, VAE, FM-GAN, TextGAN, and our
model. Text generations are based on greedy decoding for all models.
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A Model Settings

• For the generator, reconstructor, and dis-
criminator, we used long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997).

• Two different fully connected layers are set to
linearly transform z into the initial states C0

and H0 respectively for the LSTM network of
the generator.

• Positional information of 8-dimensions in size
(de Masson d’Autume et al., 2019) is concate-
nated with the word embeddings in each net-
work.

• A dropout is applied to the word embeddings
before the word embeddings are fed into each
LSTM network of the discriminator.

• All trainable parameters are optimized using
Adam (Kingma and Ba, 2015). A weight de-
cay is applied to all trainable parameters of
the discriminator using an L2 penalty.

• The prior distribution of Latent space is de-
fined as Gaussian distribution G(0, 1).

B Hyperparameters of Our Model for
COCO Image Captions Experiment

• LSTM feature size of the discriminator: 64

• LSTM feature size of the generator: 128

• LSTM feature size of the reconstructor: 128

• Dimension size of latent code z: 8

• Learning rate for Adam: 0.0002

• β1 for Adam: 0.5

• β2 for Adam: 0.999

• Minibatch size: 256

• Dropout rate for word embedding: 0.1

• τ1 in Equation (2): 0.1

• τ2 in Equation (2): 0.1

• λ in Equation (3): 1.0

• Weight decay rate: 0.0001

• Iteration size: 50000

C Training Algorithm of Our Model

Algorithm 1
GS:=GumbelSoftmax,
VQ:=VectorQuantization,
SG:=StopGradient

Require: initial generator parameter θ, discrimi-
nator parameter φ, reconstructor parameter ψ.

1: while θ, φ, ψ has not converged do
2: Sample x ∼ p∗(x), z ∼ p(z)
3: for t = 1, ..., T do
4: if Argmax( ˜xt−1) = BlankID then
5: x̃t ← Onehot(BlankID)
6: else
7: x̃t ← GS(Pθ(x̃t|z, ¨x<t))
8: end if
9: ẋt ← V Q(x̃t)

10: ẍt ← SG(ẋt)
11: end for
12: Dt ← − 1

T

∑T
t=1 logDφ(xt|x<t)

13: Df ← − 1
T

∑T
t=1 log(1−Dφ(x̃t| ˜x<t))

14: L ← Dt +Df

15: φ← Adam(∇φL, φ)
16:

17: Sample z ∼ p(z)
18: for t = 1, ..., T do
19: if Argmax( ˜xt−1) = BlankID then
20: x̃t ← Onehot(BlankID)
21: else
22: x̃t ← GS(Pθ(x̃t|z, ¨x<t))
23: end if
24: ẋt ← V Q(x̃t)
25: ẍt ← SG(ẋt)
26: end for
27: Df ← 1

T

∑T
t=1 log(1−Dφ(x̃t| ˜x<t))

28: L ← Df + λRψ(ẋ1, ..., ẋT )
29: θ ← Adam(∇θL, θ)
30: ψ ← Adam(∇ψL, ψ)
31: end while


