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Abstract

We present a deep neural model of spoken
word recognition which is trained to retrieve
the meaning of a word (in the form of a
word embedding) given its spoken form, a task
which resembles that faced by a human lis-
tener. Furthermore, we investigate the influ-
ence of variability in speech signals on the
model’s performance. To this end, we conduct
a set of controlled experiments using word-
aligned read speech data in German. Our ex-
periments show that (1) the model is more sen-
sitive to dialectical variation than gender varia-
tion, and (2) recognition performance of word
cognates from related languages reflect the de-
gree of relatedness between languages in our
study. Our work highlights the feasibility of
modeling human speech perception using deep
neural networks.

1 Introduction

Human speech is highly complex and variable. The
sources underlying this variability include speaker-
related factors such as vocal tract shape, gender,
age, and dialect as well as context-related factors
such as word surprisal and phonological promi-
nence. As a result, two acoustic realizations of
the same word are unlikely to be identical even if
produced by the same speaker. Nevertheless, lis-
teners can reliably recognize spoken words despite
the lack of acoustic-phonetic invariance in speech
(Pisoni and Levi, 2007). The robust human ability
to decode the intended message from a highly vari-
able, noisy speech signal enables speakers of dif-
ferent but related languages to communicate with
each other using their own mother tongue — a
phenomenon that has been referred to as receptive
multilingualism (Gooskens, 2019).

To gain a better understanding of human speech
processing, a vast body of research at the intersec-
tion of speech perception and cognitive modeling

has been dedicated to developing computational
models of spoken word recognition (cf. Weber and
Scharenborg (2012) for an overview). In a nut-
shell, models of spoken word recognition aim to
simulate and explain the process of accessing the
mental lexicon given a representation of an audi-
tory word stimulus (McClelland and Elman, 1986;
Marslen-Wilson, 1987; Norris, 1994; Gaskell and
Marslen-Wilson, 1997). Despite the considerable
differences in the representational specificity of the
proposed models in the literature, there is a con-
sensus among them with respect to the activation
of multiple word candidates which leads to compe-
tition for lexical access (Weber and Scharenborg,
2012). One model of word recognition that we take
inspiration from in this paper is the Distributed Co-
hort Model (DCM) (Gaskell and Marslen-Wilson,
1997), which is a connectionist model that defines
the process of spoken word recognition as a map-
ping of low-level acoustic features onto the stored
semantic and phonological representations, allow-
ing efficient lexical access. A computational model
of spoken word recognition allows researchers to
simulate the conditions of behavioral experiments
on human listeners and investigate whether the pre-
dictions of the model show human-like behavior.

Although deep neural networks (DNNs) have be-
come the dominant paradigm for automatic speech
recognition (ASR) research in the last decade
(Graves et al., 2006; Mohamed et al., 2009; Hinton
et al., 2012), using DNN-based ASR components
to model human speech processing has only been
explored recently with the EARSHOT model (Mag-
nuson et al., 2020). EARSHOT is an incremental
model based a long short-term memory (LSTM)
that captures the temporal structure of speech. The
training data for the EARSHOT model are spo-
ken words produced using a speech synthesizer
and each word is associated into a sparse vector
that represents the word semantics. The authors
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use a unique but arbitrary sparse vector for each
word, thus the semantic relatedness of words is
not encoded in their representations. EARSHOT
is trained to map each acoustic word form onto its
semantic vector.

In this paper, we attempt to bridge between the
connectionist view of word recognition and the re-
cent advances in spoken language learning using
deep neural networks. We also address some of the
modeling limitations in the EARSHOT model. Pre-
cisely, our contribution is two-fold: (1) we propose
a model of spoken word recognition based on a
deep neural network that maps a spoken word form
onto a distributed meaning representation. Our
model is trained on naturalistic data that consists
of actual acoustic realizations of spoken words
extracted from the German portion of the Spo-
ken Wikipedia Corpus. And (2) we investigate
the degree to which the emergent representations
from the model can generalize with respect to two
sources of variability in speech signals — inter-
speaker variability and cross-lingual variability.

2 A neural model of spoken word
recognition

Our proposed model can be described at the high
level as a function that maps the acoustic form of
a word onto its lexical meaning. In the following,
we describe the different representation schemes of
our model.

2.1 Acoustic form representation

Human speech is modeled with various low-level
signal representations. In this paper, we adopt
the conventional approach in automatic speech
recognition (ASR) which converts a time-domain
speech waveform into a time-frequency frame-
based representation using a standard signal pro-
cessing pipeline. In particular, we convert each
acoustic segment of a spoken word into a sequence
of MFCC vectors x1:T = (x1, . . . ,xT ), where
xt ∈ Rk is a spectral feature vector, or a frame,
at timestep t and T is the number of frames.

2.2 Meaning representation

Following previous studies that adopted the dis-
tributional approach to represent lexical meaning
(Pimentel et al., 2019; Williams et al., 2020), we
use pre-trained distributed word representations, or
word embeddings, as a proxy for the stored lexi-
cal representations of word forms. This modeling

Figure 1: A schematic view of our proposed model for
spoken word recognition.

choice can be justified since word embeddings have
been shown to reliably encode lexical features such
as taxonomic information (Rubinstein et al., 2015).

2.3 Proposed model
Architecture. Similar to the architecture pre-
sented in work of Maas et al. (2012), our proposed
spoken word recognition model is based on a multi-
layer convolutional neural network that maps an
acoustic input onto a meaning representation (de-
picted in Figure 1). However, instead of vector re-
gression as the objective function, the training pro-
cedure of our model builds on the ideas of visually-
grounded learning of spoken language (Harwath
et al., 2016; Chrupała et al., 2017a). While in pre-
vious work models have been trained to project an
image and its corresponding spoken caption onto
a shared representation space, we train our model
to project an acoustic segment of a word onto its
word embedding. This process can be formalized
as a mapping function using a deep neural network
as follows:

u = f(x1:T ; θ)

where u is the meaning representation computed
by the model, f(.) is the model presented as a
parametric function, x1:T is the observed acoustic
word segment, and θ are the model’s parameters
learned in a supervised approach.
Training. Given a training dataset of N tu-
ples {(x1

1:T ,v
1), (x2

1:T ,v
2), . . . , (xN

1:T ,v
N )}, our

model is trained to take an acoustic word token
x1:T as input, build up a meaning representation u,
and then minimize the distance between the com-
puted representation u and the embedding of the



98

word v. This learning objective can be realized by
projecting the acoustic word token into the word
embedding space in such a way that an acoustic
segment and embedding of the same word type
are encouraged to end up closer in space than mis-
matched word embeddings. Concretely, we use a
triplet margin loss function as follows:

L =
N∑
i=1

max
(
0, α+ d(ui,vi)− d(ûi,vi)

)
+ max

(
0, α+ d(ui,vi)− d(ui, v̂i)

)
where d(.) is the cosine distance metric and ui and
vi are the matching computed representation and
embedding of a word, while ûi and v̂i are the un-
matched computed representation and embedding
that are sampled from the mini-batch of N sam-
ples. α is the margin hyperparameter of the loss
function.

3 Experimental setup

3.1 Experimental data
We use the multilingual Spoken Wikipedia Corpus
(SWC), which consists of recordings of Wikipedia
articles read by volunteers in German, Dutch, and
English (Köhn et al., 2016). A large portion of
the dataset has been word-aligned and each arti-
cle is associated with a metadata file that option-
ally includes (self-identified) information about the
speaker’s gender and dialect. Therefore, this re-
source is highly suitable for our experimental aims
concerning speech variability.

3.2 Model hyperparameters
Low-level speech features. We use 39-
dimensional MFCC feature vectors as well as
frame-level averaged energy as low-level speech
features. Frames are extracted from speech seg-
ment of 25ms with 10ms overlap between frames.
Each speech sample is then scaled with word-level
zero mean and unit variance.
Speech encoder. We employ three convolutional
layers over the temporal dimension with 128, 128,
and 256 channels respectively and strides of 1 step
for each layer. Batch normalization and ReLU non-
linearity are applied after each convolutional oper-
ation. The speech representation is down-sampled
by applying a single max pooling operation at the
end of the convolution block. Then, the resulting
vector from the convolutional layers is fed into two
fully-connected layers with dropout (p = 0.5) and

dim R@1 R@5 R@10

GloVe 300 0.159 0.451 0.608
FastText (FT) 300 0.176 0.461 0.610
Flair 4096 0.216 0.530 0.665
FT + Flair 4396 0.227 0.557 0.696

Table 1: Comparison of the model’s retrieval perfor-
mance using different word embeddings.

ReLU non-linearity, followed by a linear projection
that outputs a representation in the same dimension-
ality as the word embedding.

Training details. The triplet margin loss is used
with α = 0.2 for all presented experiments. We
use the Adam optimizer with a learning rate of
1× 10−3 and train our models with a batch size of
32 samples for 60 epochs.

4 Experiments

We present and discuss the results of our experi-
ments in this section. We first investigate the effect
of different pre-trained word embeddings on the
model performance. In the variability experiments,
we aim to probe the model’s ability to generalize
to unheard speaker types as well as to recognize
spoken word cognates in two languages that are
phylogenetically related to German: Dutch and
English. Following Chrupała et al. (2017b), we
use the R @ N metric to evaluate our models for
N = {1, 5, 10}.

4.1 Choice of word embeddings

In this experiment, we train our model on a sub-
set of the SWC consisting of 1500 word types, 20
tokens per type, with each of the following word
embeddings: GloVe (Pennington et al., 2014), Fast-
Text (Bojanowski et al., 2017), bidirectional Flair
(Akbik et al., 2018), and stacked Flair and FastText.

The retrieval scores of the model with different
word embeddings are reported in Table 1. Although
the difference is not dramatic, the best-performing
model is the one that uses stacked FastText and
Flair embeddings. It seems that stacking the embed-
dings provides richer semantic representations that
benefit the model during training. Therefore, we
proceed to the variability experiments with stacked
Flair and FastText word embeddings as meaning
representations.
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R@1 R@5 R@10 med. R

heard 0.473 0.850 0.970 2
speaker 0.348 0.688 0.812 3
gender 0.297 0.615 0.756 3
dialect 0.240 0.515 0.643 5

Table 2: Retrieval performance across speaker types.

4.2 Speaker variability

In this experiment, we aim to probe the model’s ro-
bustness against speaker variability by comparing
its performance on various speaker groups: un-
heard utterances by heard speakers, unheard speak-
ers, unheard gender (female speakers), and un-
heard dialect (speakers who self-identified as native
speakers of the Swiss German variety). To this end,
we train a separate model on a subset of the German
portion of the SWC consisting of 2500 word types,
10-100 tokens per type, which were produced by
native male speakers of standard German. This
training set size is chosen as a trade-off between
having a representative training set that includes a
variety of words with different lexical properties
and practical considerations such as training time
and scalability of the model. The test sets we use
for evaluation are matched at the token level, the
only difference being the speaker characteristics.

Retrieval scores, including median rank of the
correct embeddings, are reported in Table 2, and
average cosine similarity of the computed mean-
ing representation from the input signal to the cor-
responding embedding is displayed in Figure 2.
Overall, one can observe that signal variability due
to speaker-related factors that are unobserved dur-
ing training degrades the model’s performance. A
one-way ANOVA test on the cosine similarities
revealed significant differences between speaker
types (χ2(3) = 230.2, p <0.001).1 Post-hoc Tukey
HSD revealed significant differences between all
groups except unheard speaker and unheard gen-
der (p >0.5).

The model performs best at recognizing words
when they are spoken by a speaker heard during
training, suggesting that the representations learned
by the model are not entirely speaker invariant. In-
terestingly, the model is quite good at generalizing
to unheard gender, performing on a par with un-
heard speakers of the same gender. We hypothesize

1We used cosine similarities for statistical testing because
ranks are not normally distributed; most words have low rank.

0.1

0.2

0.3

0.4

heard
speaker

unheard
speaker

unheard
gender

unheard
dialect

co
si

ne
 s

im
ila

ri
ty

Figure 2: Average cosine similarity of utterance-
embedding pairs by speaker type.

that the model learns to abstract from pitch vari-
ations because there was pitch variability present
in the training data. Finally, spoken words from
an unheard dialect (i.e., Swiss German) are more
challenging for the model to correctly recognize,
which suggests that the representations induced
by the model are more sensitive to fine-grained
acoustic-phonetic variations in the signal than pitch
variations.

4.3 Cross-lingual variability

Speakers of related languages are often able to de-
code some information from each other’s speech
without ever having had to explicitly learn the corre-
spondences because related languages exhibit pre-
lexical as well as lexical similarities. Gooskens
et al. (2018) have shown that the comprehension
ability of speakers of related languages correlates
very strongly with the degree of language related-
ness from a phylogenetic point of view. In this
experiment, we explore whether and to what ex-
tent the model which has only been exposed to
German will be able to recognize cognates in two
related languages, English and Dutch. We also ask
the question: does the cross-lingual performance
reflect the degree of language relatedness? Since
German and Dutch are a part of the continental
West Germanic dialect continuum, while English is
not, we hypothesize that the model should be better
at recognizing spoken Dutch words than spoken
English words.

To this end, we use the same model as for
the speaker variability experiment. The test sets
contain cognates in German, English and Dutch,
aligned at the token level. Words in the German
and Dutch test sets are produced by unheard male
speakers of the standard language variety, while
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R@1 R@5 R@10 med. R

German 0.388 0.715 0.819 2
Dutch 0.041 0.138 0.203 133.5
English 0.011 0.064 0.111 177.5

chance ≈ 0.0004 ≈ 0.002 ≈ 0.04 —

Table 3: Retrieval performance on cognates.

words in the English test set are produced by male
native speakers of American English.2 Spoken
word representations for Dutch and English are
obtained via a forward pass through the speech en-
coder, the same way as for German, and the model
receives no explicit information that the cognates
are in a different language.

Retrieval scores @1, 5 and 10, as well as me-
dian rank, for all three languages are reported in
Table 3. Average cosine similarities of matching
utterance-embedding pairs for the three languages
are reported in Figure 3. The standard error is rela-
tively high for the two related languages, especially
for Dutch, because the model’s guess for some
cognates was quite poor. One-way repeated mea-
sures ANOVA reveals unsurprising significant dif-
ferences between groups (χ2(2)=362.3, p<0.0001):
the model is much better at recognizing German
since this is the language that the model was trained
on. If we compare the retrieval scores for Dutch
and English to chance performance,3 we observe
that the model is relatively good at recognizing
cognates in the two related languages, with 20%
and 11% of words in Dutch and English respec-
tively within the top 10 retrieved word embeddings.
The difference in performance on the two related
languages is shown to be significant in post-hoc
Tukey HSD (p=0.004), supporting our hypothesis
that cross-lingual word recognition performance
reflects language relatedness.

We look more closely at the model’s recogni-
tion performance on cognates (a selection is re-
ported in Figure 4). Cognates which are well-
recognized are mostly identical word forms, ex-
cept for vowel length or slightly different conso-

2We would have favoured to include British English in the
study as well but that was not feasible since not enough data
of that kind is available in the SWC.

3We approximate chance performance by assuming that the
probability of a word ending up at each of the 2500 positions
is equally high. This approximation is not perfect since it does
not take into account the fact that more frequent words are
relatively more likely to end up in the top positions. However,
this is very computationally expensive to calculate.
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Figure 3: Average cosine similarity of utterance-
embedding pairs by language.

nant quality (e.g., the Dutch jaar (/ja:r/) and the
German Jahr (/ja:5„/). However, other interesting
correspondences are apparent. For example, we
observe that for the word ship (/SIp/), the model
is better at recognizing the English word, which
is different from the German Schiff (/SIf/) only in
the final consonant, than the Dutch schip (/sxIp/),
where the word onset is different. This finding
suggests that the model might have learned to pay
closer attention to the beginnings of words. Future
work could explore systematically which sound cor-
respondences make it easy or difficult to recognize
cognates.
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Figure 4: Average cosine similarity between match-
ing utterance-pair embeddings for cognates in the three
languages (words depicted as German/English/Dutch).
Higher cosine similarity corresponds to a more accu-
rate acoustic representation and, in turn, better recogni-
tion. For example, the word cellar is recognized better
in English than in Dutch (reflected in a relatively higher
cosine similarity). Lighter shades of blue correspond to
higher cosine similarity for German utterances.
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5 Discussion and future work

We observe that the representations produced by
the model seem to be largely gender-invariant since
the model’s performance on unheard female speak-
ers is on a par with its performance on unheard
male speakers. On the other hand, dialect vari-
ability seems to have a stronger impact than gen-
der which suggests that the model is sensitive to
low-level acoustic-phonetic variance in the speech
signal. We would expect a human listener to ex-
hibit similar patterns in case of little exposure to
dialectical variability.

Our model operates by creating a general rep-
resentation of a word, which it uses to generalize
to unheard speakers. However, there is evidence
in psycholinguistics which suggests that we adapt
to individuals’ pronunciation and create speaker-
specific representations (Kleinschmidt and Jaeger,
2015). This could be simulated by fine-tuning the
trained model on more data by a particular speaker.

When tested on cognates in related languages
in a zero-shot fashion, the model shows reason-
ably good cognate recognition performance. There
is also a significant difference in the model’s per-
formance on Dutch and on English, reflecting the
closer phylogenetic relationship between German
and Dutch. One could imagine using the proposed
model to test mutual intelligibility: if trained on
Dutch, would such a model be better at recogniz-
ing German cognates than the other way around?
This would be a test of intelligibility that eliminates
extra-linguistic factors that cannot be isolated in
behavioral experiments (van Heuven et al., 2012).

Since this is a word-level model of word recogni-
tion, there is no facilitatory effect of context, which
human listeners are known to rely on to a large
extent when there is uncertainty as to which word
was uttered. In the cross-lingual experiment, too,
we would expect that a model which is able to
benefit from context would show much better per-
formance. Such sentence-level models of related
language comprehension are an exciting avenue to
pursue in future work.
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Arne Köhn, Florian Stegen, and Timo Baumann. 2016.
Mining the spoken wikipedia for speech data and be-
yond.

Andrew L Maas, Stephen D Miller, Tyler M O’neil,
Andrew Y Ng, and Patrick Nguyen. 2012. Word-
level acoustic modeling with convolutional vector re-
gression. In Proc. ICML Workshop Representation
Learn.

James S Magnuson, Heejo You, Sahil Luthra, Mon-
ica Li, Hosung Nam, Monty Escabi, Kevin Brown,
Paul D Allopenna, Rachel M Theodore, Nicholas
Monto, et al. 2020. Earshot: A minimal neural net-
work model of incremental human speech recogni-
tion. Cognitive science, 44(4):e12823.

William Marslen-Wilson. 1987. Functional parallelism
in spoken word-recognition. Cognition, 25:71–102.

James L McClelland and Jeffrey L Elman. 1986. The
TRACE model of speech perception. Cognitive Psy-
chology, 18(1):1 – 86.

Abdel-rahman Mohamed, George Dahl, and Geoffrey
Hinton. 2009. Deep belief networks for phone
recognition. In NIPS workshop on deep learning
for speech recognition and related applications, vol-
ume 1, page 39. Vancouver, Canada.

Dennis Norris. 1994. Shortlist: a connectionist
model of continuous speech recognition. Cognition,
52(3):189 – 234.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Tiago Pimentel, Arya D McCarthy, Damian Blasi,
Brian Roark, and Ryan Cotterell. 2019. Meaning
to form: Measuring systematicity as information. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1751–
1764.

David B Pisoni and Susannah Levi. 2007. Some ob-
servations on representations and representational
specificity in speech perception and spoken word
recognition. In The Oxford Handbook of Psycholin-
guistics, pages 3–18. Oxford University Press.

Dana Rubinstein, Effi Levi, Roy Schwartz, and Ari
Rappoport. 2015. How well do distributional mod-
els capture different types of semantic knowledge?
Volume 2: Short Papers.

Andrea Weber and Odette Scharenborg. 2012. Models
of spoken-word recognition. Wiley Interdisciplinary
Reviews: Cognitive Science, 3(3):387–401.

Adina Williams, Tiago Pimentel, Arya McCarthy, Ha-
gen Blix, Eleanor Chodroff, and Ryan Cotterell.
2020. Predicting declension class from form and
meaning. In Proceedings of the 58th Annual Meet-
ing for the Association of Computational Linguistics.
York.

https://doi.org/10.1016/0010-0277(87)90005-9
https://doi.org/10.1016/0010-0277(87)90005-9
https://doi.org/https://doi.org/10.1016/0010-0285(86)90015-0
https://doi.org/https://doi.org/10.1016/0010-0285(86)90015-0
https://doi.org/https://doi.org/10.1016/0010-0277(94)90043-4
https://doi.org/https://doi.org/10.1016/0010-0277(94)90043-4

