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Abstract

Lexical collocations are idiosyncratic com-
binations of two syntactically bound lexical
items (e.g., “heavy rain”, “take a step” or

“undergo surgery”). Understanding their de-
gree of compositionality and idiosyncrasy, as
well their underlying semantics, is crucial for
language learners, lexicographers and down-
stream NLP applications alike. In this paper
we analyse a suite of language models for col-
location understanding. We first construct a
dataset of apparitions of lexical collocations
in context, categorized into 16 representative
semantic categories. Then, we perform two
experiments: (1) unsupervised collocate re-
trieval, and (2) supervised collocation classi-
fication in context. We find that most models
perform well in distinguishing light verb con-
structions, especially if the collocation’s first
argument acts as a subject, but often fail to
distinguish, first, different syntactic structures
within the same semantic category, and second,
finer-grained categories which restrict the set
of correct collocates1.

1 Introduction

Language models (LMs) such as BERT (Devlin
et al., 2018), and its variants SpanBERT (Joshi
et al., 2020), ALBERT (Lan et al., 2019), RoBERTa
(Liu et al., 2019), etc. have proven extremely flexi-
ble, as they behave as unsupervised multitask learn-
ers (Radford et al., 2019), and can be leveraged
in a wide array of NLP tasks almost out-of-the-
box (see, e.g., the GLUE and SuperGLUE results
in Wang et al. (2019b) and Wang et al. (2019a),
respectively). They have also been harnessed as
supporting resources for knowledge-based NLP
(Petroni et al., 2019), as they capture a wealth of

1The resources associated with this paper are available at
https://github.com/luisespinosaanke/
lexicalcollocations.

linguistic phenomena (Rogers et al., 2020). Re-
cently, a great deal of research analyzed the degree
to which they encode, e.g., morphological (Edmis-
ton, 2020), syntactic (Hewitt and Manning, 2019),
or lexico-semantic structures (Joshi et al., 2020).
However, less work explored so far how LMs in-
terpret phraseological units at various degrees of
compositionality. This is crucial for understanding
the suitability of different text representations (e.g.,
static vs contextualized word embeddings) for en-
coding different types of multiword expressions
(Shwartz and Dagan, 2019), which, in turn, can be
useful for extracting latent world or commonsense
information (Zellers et al., 2018).

One central type of phraselogical units are
lexical collocations, defined as restricted co-
occurrences of two syntactically bound lexical
items (Kilgarriff, 2006), such that one of the items
(the base) conditions the selection of the other item
(the collocate) to express a specific meaning. For
instance, the base lecture conditions the collocates
give or deliver to express the meaning ‘perform’,
the base applause conditions the selection of the
collocate thunderous to express the meaning ‘in-
tense’, and so on. Lexical collocations are of high
relevance to lexicography, NLP and second lan-
guage learning alike, and constitute a challenge for
computational models because of their heterogene-
ity in terms of idiosyncrasy and degree of semantic
composition (Mel’čuk, 1995).

In this paper, we analyze a suite of LMs in the
context of two tasks that involve lexical colloca-
tion modeling. First, unsupervised collocate re-
trieval, where we mask a collocation’s collocate
(e.g., “heavy” in “heavy rain”), and quantify how
well a LM of choice (BERT in particular) pre-
dicts, via its masked language modeling (MLM)
objective, a valid collocate for that particular base
({“heavy”, “torrential”, “violent”, . . . } for the
base “rain” and the meaning intense). Second, su-

https://github.com/luisespinosaanke/lexicalcollocations
https://github.com/luisespinosaanke/lexicalcollocations
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pervised in-context collocation categorization,
where we fine-tune LMs on the task of predict-
ing a semantic category of a collocation in terms
of its lexical function (LF), given its sentential con-
text; cf. Section 3.1. Modeling, recognizing, and
classifying collocations in corpora has obvious ap-
plications for automatically creating and expand-
ing lexicographic resources, as well as for various
downstream NLP applications, among them, e.g.,
machine translation (Seretan, 2014), word sense
disambiguation (Maru et al., 2019), or natural lan-
guage generation (Wanner and Bateman, 1990).
The two main contributions of this paper thus are:

1. A “collocations-in-context” dataset, with in-
stances of collocations of 16 different seman-
tic categories (in terms of LFs) in context, and
with a fixed and lexical (i.e., no overlapping)
train/dev/test split (Section 3).

2. An evaluation framework for assessing the
degree of compositionality of lexical collo-
cations, pivoting around two tasks: unsuper-
vised collocate retrieval (Section 4) and in-
context collocation categorization (Section 5).

Our results suggest that modeling collocations
in context is a challenge, even for widely used
LMs, and that this is particularly true for less se-
mantic (and thus less compositional and more id-
iosyncratic) collocations. We also find that jointly
recognizing the semantics and the syntactic struc-
ture (e.g., whether the collocate acts as subject or
object in verbal constructions) of a collocation also
constitutes non-trivial challenges for current archi-
tectures. Moreover, as a byproduct of our analysis,
we also find an interesting behaviour in LMs when
modeling antonymy in adjectives, specifically that
their representations undergo substantial transfor-
mations as they flow through BERT’s transformer
layers, with many contextualized embeddings clus-
tered together in the tip of a narrow cone that seems
to represent adjectives in collocations denoting in-
tensity (“heavy” rain) and weakness (“minor” is-
sue).

2 Related Work

In this section, we discuss related works in two
methodological areas that are relevant to this pa-
per, namely conditioning MLMs (Section 2.1) and
recognition of multiword epressions (MWEs) (Sec-
tion 2.2).

2.1 Conditioning MLMs

A Masked Language Model (MLM) can be used as
a proxy for gaining insights into how language is
encoded by the weights of the (usually transformer-
based) LM architecture. Moreover, simply asking
an LM to predict words in context (without task-
specific fine-tuning) has proved useful in NLP ap-
plications dealing with lexical items (affixes, words
or phrases). For example, Wu et al. (2019) use
BERT’s MLM for augmenting their training data
in sentiment analysis tasks; Qiang et al. (2019) use
BERT for lexical simplification by conditioning
the predictions over the [MASK] token by provid-
ing the original sentence as context; and Zhou et al.
(2019) obtain SotA results in lexical substitution by
conditioning BERT via embedding dropout on the
target (unmasked) word. Inspired by the findings
in these works (especially Qiang et al. (2019)), we
will explore the predictions of BERT over masked
lexical collocations (with and without conditioning)
in Section 4, with the aim to understand whether
these predictions can be used to measure the id-
iosyncrasy of the underlying semantics of a lexical
collocation, i.e., whether the restrictions imposed
by a collocation’s base are due to the frozenness
of the phrase itself or, on the contrary, sentential
context is neccessary.

2.2 Distributional Lexical Composition

Building representations that account for non-
compositional meanings within the broader spec-
trum of encoding semantic relations between words
is a long-standing problem in computational seman-
tics (Baroni and Zamparelli, 2010; Mitchell and La-
pata, 2010; Boleda et al., 2013). Interestingly, there
seems to be little agreement on how these repre-
sentations should be defined, with recent attempts
focusing on verbal multiword expressions (see an
overview of approaches in Ramisch et al. (2018)),
phrases of variable length encoded via LSTMs,
based on their definitions (Hill et al., 2016), or ar-
bitrary lexical and commonsense relations between
word pairs for downstream NLP. As a testimony of
the broad methods explored in the most recent liter-
ature, let us refer to, for instance, the combination
of word vector averages with conditional autoen-
coders (Espinosa-Anke and Schockaert, 2018), ex-
pectation maximization (Camacho-Collados et al.,
2019), LSTMs for predicting word pair contexts
(Joshi et al., 2019), and explicit encoding of gener-
alized lexico-syntactic patterns (Washio and Kato,
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LF BERT input Masked sentence Pred. collocates Orig. collocate

Oper1
Masked sent iran feared that the u.s and israel may [MASK] an air raid on its controversial nuclear facilities perform, conduct, mount, launch
Orig sent [SEP]
Masked sent

iran feared that the u.s and israel may launch an air raid on its controversial nuclear facilities [SEP]
iran feared that the u.s and israel may [MASK] an air raid on its controversial nuclear facilities

launch, conduct, order launch

Real1
Masked sent if that happens, lindsey will use explosive triggers to [MASK] the landing gear destroy, stop, remove lower
Orig sent [SEP]
Masked sent

if that happens , lindsey will use explosive triggers to lower the landing gear [SEP]
if that happens , lindsey will use explosive triggers to [MASK] the landing gear

destroy, stop, trigger lower

Magn
Masked sent the EU is driving a [MASK] bargain over Swiss demands for greater access to EU airspace . plea, hard, new hard
Orig sent [SEP]
Masked sent

the EU is driving a hard bargain over Swiss demands for greater access to EU airspace . [SEP]
the EU is driving a [MASK] bargain over Swiss demands for greater access to EU airspace .

plea, hard, tough hard

Table 1: Illustrative behaviour of BERT when prompted to predict a collocate in the position of a masked token,
for three LFs: Oper1 (‘launch an air raid’), Real1 (‘lower the landing gear’) and Magn (‘hard bargain’), under two
settings, when not conditioned (Masked sent) and when conditioned on the original (unmasked) sentence (Orig
sent [SEP] Masked sent).

2018). Parting ways with the above works, in this
paper we will follow the experimental setting de-
scribed in Shwartz and Dagan (2019), based on
injecting sentential contexts into multiword ex-
pressions (in our case, only lexical collocations)
to leverage the contextual nature of current LMs.
However, our goal is not to compare different com-
binations of feature-extraction and training/fine-
tuning methods, but rather to understand lexical
collocations’ learnability, idiosyncrasy and their
internal vector-space representations.

3 Data and Resources

3.1 Lexical Collocations

Let us first introduce the notion of lexical col-
location and LF. The term collocation has been
used in computational linguistics research to denote
two different concepts. On the one hand, follow-
ing Firth (1957), Church and Hanks (1989); Evert
(2007); Pecina (2008) and others, a collocation has
been assumed to be a combination of words that
have the tendency to occur together in discourse.
Typical examples are doctor – hospital, mop –
bucket, real – estate, look – for, etc. On the other
hand, for instance, Wanner et al. (2006); Gelbukh
and Kolesnikova. (2012); Rodrı́guez Fernández
et al. (2016); Garcia et al. (2017) adopt the def-
inition that is common in lexicography and phrase-
ology (Hausmann, 1985; Cowie, 1994; Mel’čuk,
1995), according to which, a collocation is an id-
iosyncratic combination of two lexical items, the
base and the collocate, as defined above in Section
1. This interpretation states that collocations are
phraseological units, although their degree of com-
positionality can vary. For instance, win [a] war
is perceived to possess a higher degree of (free)
composition than, e.g., hold [a] meeting, and heavy

rain is less compositional than [a] well-justified
argument. We adopt this definition of the notion
of collocation, and in order to avoid any confusion,
we refer to it, following Krenn (2000), as lexical
collocation.

Lexical collocations can be typified with respect
to the meaning of the collocate and the syntac-
tic structure formed by the base and the collocate.
LFs provide a fine-grained typology of this kind
(Mel’čuk, 1996). An LF can be considered a func-
tion f(L) that delivers for a base L a set of syn-
onymous collocates that express the meaning of
f . Where pertinent, f also codifies the subcatego-
rization structure of the base+collocate combina-
tion. LFs are assigned Latin acronyms as names;
cf., e.g., “Oper1” (‘operare’), which means ’per-
form’ and realizes the first argument of the base
as subject: Oper1(lecture) = {deliver, give, hold};
“Magn” (‘magnum’), which stands for ‘intense’:
Magn(applause) = {thunderous, loud, . . .}.2

The encoding of LFs in NLP research has
in recent years revolved around applying word
embeddings-based techniques, e.g., in terms of lin-
ear projections (Rodrı́guez Fernández et al., 2016)
and semantic generalizations (Espinosa-Anke et al.,
2016). Recently, Shwartz and Dagan (2019) ana-
lyzed, from the perspective of “static” vs. “con-
textualized” representations and their applicability
to studying compositional phenomena like “mean-
ing shift”, one specific type of lexical collocations,
namely light verb constructions (LVCs), which are
well illustrated by the LFs Oper1 and Oper2 (and
also, partially, by Real1 and Real2). While we find
that the above research directions (i.e., embeddings-
based and contextualized representations for mod-
eling MWEs) are complementary, in this work, we

2For simplicity we will write Oper1(lecture) = deliver, etc.
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LF semantic gloss example
Oper1 ‘perform’; 1st argument→ subject Oper1(support) = lend

IncepOper1 ‘begin to perform’; 1st argument→ subject IncepOper1(impression) = gain
Oper2 ‘undergo’; 2nd argument→ subject Oper2(support) = find
Real1 ‘realize’; 1st argument→ subject Real1(accusation) = prove
Real2 ‘apply’; 2nd argument→ subject Real2(support) = enjoy

AntiReal2 ‘fail to apply’; 2nd argument→ subject AntiReal2(war) = lose
CausFunc0 ‘cause the existence’ CausFunc0(hope) = raise

Caus1Func0 ‘cause the existence; 1st argument’ Caus1Func0(hope) = gain
LiquFunc0 ‘cause termination of the existence’ LiquFunc0(hope) = destroy

IncepPredPlus ‘increase’ IncepPredPlus(temperature) = rise
Magn ‘intense’ Magn(smoker) = heavy

AntiMagn ‘little’, ‘weak’ AntiMagn(smoker) = occasional
Ver ‘genuine’ Ver(demand) = legitimate

AntiVer ‘non-genuine’ AntiVer(demand) = illegitimate
Bon ‘positive’ Bon(performance) = good

AntiBon ‘negative’ AntiBon(performance) = poor

Table 2: LFs used in this paper. The ‘semantic gloss’ column provides both a definition and the actantial structure,
which is required in cases where one LF may express the same semantics but with a different syntactic structure
(e.g., Real1 vs. Real2).

specifically focus on the existing (and learnable)
knowledge LMs have concerning lexical colloca-
tions, and whether they can be used to recognize
and categorize LFs in free text.

For our experiments, we use, as initial lexical col-
location source, a collocations dataset, LEXFUNC

(Espinosa-Anke et al., 2019), which we have ex-
tended to cover a wider range of LFs (listed in Table
2). The original LEXFUNC dataset and this extended
version are both the result of an initial collection of
collocations categorized into LFs made available
by Igor Mel’čuk. Each collocation has been man-
ually lemmatized, and bases and collocates have
been manually annotated with part-of-speech tags
and their syntactic dependency relation.

With the lexical collocations of the extended
LEXFUNC dataset at hand, we first compile from the
English Gigaword3 a collocations corpus, which
contains the occurrences of these lexical colloca-
tions. In principle, the identification of a given col-
location in corpora is a straightforward procedure,
as we know its elements (base and collocate) and
the syntactic dependency relation between them.
However, automatic dependency parsing is far from
perfect, which complicates the task. Therefore, and
in order not to lose any relevant collocation occur-
rence in the GigaWord corpus, we apply a cascaded
procedure for their identification on the lemmatized
and POS- and head-modifier relation tagged Giga-

3Gigaword contains newswire material, a register balanc-
ing the staticity of encyclopedic English (e.g., Wikipedia)
and the noisiness of user-generated text, and is a rich source
of lexical collocations in well-formed grammatical contexts
(Rodrı́guez Fernández et al., 2016)
https://catalog.ldc.upenn.edu/LDC2011T07.

Word.4 In the first stage, we identify sentences in
which between the collocation elements in ques-
tion one of the relevant syntactic dependency re-
lations has been identified. In the second (more
relaxed) stage, we match adjacent lemmatized col-
location elements and their PoS tags. In the third
stage, finally, we match lemmatized collocation
elements and their PoS tags within a distance of
up to 5 tokens. While this procedure inevitably
introduces some noise (we might retrieve sentences
where base and collocate co-occur, but not as a
collocation), we performed a manual inspection
on a random sample, and calculated precision of
our collocation retrieval strategy, which resulted in
>0.95. This confirms the quality of our retrieval
strategy, and hence, our resource.

In terms of corpus statistics, Table 3 indicates
the number of sentences for each LF distributed
across training (70% of the sentences), develop-
ment (15%) and test (15%) sets. The split was done
maintaining this proportion across all LF. Note that
these splits are constructed such that there are no
overlapping collocations, in an effort to avoid the
well-known phenomenon of lexical memorization
(Levy et al., 2015), which may artificially inflate
the results on the test set. The number of differ-
ent collocations per split, globally and for each
LF, also maintains the same proportions (70/15/15
±1%), such that, e.g., AntiReal2 has 55 different
collocations in the 942 sentences of the training set
and 11 different collocations in the development
and test sets, distributed across 205 and 200 sen-

4We preprocess GigaWord with the NLP4J parser
https://emorynlp.github.io/nlp4j/.

https://catalog.ldc.upenn.edu/LDC2011T07
https://emorynlp.github.io/nlp4j/


1410

Label Train Dev Test Total

Magn 28,748 6,113 6,164 41,025
Oper1 11,746 2,517 2,493 16,756
Real1 3,481 746 743 4,970

AntiMagn 2,959 638 649 4,246
IncepOper1 2,489 541 539 3,569

Oper2 2,408 515 520 3,443
AntiVer 1,874 397 405 2,676

AntiBon 1,815 385 393 2,593
CausFunc0 1,714 370 367 2,451

Real2 1,570 336 337 2,243
Bon 1,471 298 315 2,084

LiquFunc0 1,398 301 297 1,996
AntiReal2 942 203 200 1,345

Ver 926 198 196 1,320
Caus1Func0 686 151 149 986

IncepPredPlus 624 147 138 909

Total 64,851 13,856 13,905

Table 3: Statistics (in number of sentences) of our col-
locations in context dataset (ordered by frequency).

tences respectively. In the overall corpus, there
is an average of 18 samples per collocation (work
hard being the most frequent one with 102 sam-
ples). Hope, attack, criticism, fire and thread are
bases that each co-occur with more than 30 differ-
ent collocates, across most LF. These bases are also
among the ones with more samples in the corpus.
On the other side, half of the bases are combined
with one single collocate only. Overall, the statis-
tical properties of our dataset arguably make it a
faithful replica of the distribution of collocations
in, at least, newswire corpora. At the same time, it
is a challenging dataset, as the results we report in
this paper suggest.

4 Experiment 1: Collocate Retrieval

4.1 Setup

In the first experiment, we aim to analyze how well
an MLM retrieves valid collocates for a given base
when being provided with the original (sentence-
level) context. We use BERT (bert-base) (De-
vlin et al., 2018), as it is the de-facto model on
top of most specialized and distilled/quantized lan-
guage models. Its behaviour should thus be a good
proxy for the general distributional behaviour of
lexical collocations. This experiment serves, first,
as an opportunity to understand how much seman-
tics that is underlying LFs can be encoded via
a MLM pretraining objective, and second, as a

testbed for exploring conditioning strategies often
used in tasks involving data augmentation and lexi-
cal substitution and simplification (cf. Section 2.1).
Since this is an “in-context collocate retrieval” task,
we consider it a ranking problem. Intuitively, if
BERT is able to retrieve a base’s valid collocates
(e.g., {heavy, torrential, violent, . . . } for rain as
base for Magn) in the position of a masked token,
this could mean that: (1) the sentence is giving
enough context for the model to “know” the lexical
restrictions involved in that collocation, and/or (2)
the LF is sufficiently frozen, and therefore the base
alone may restrict which collocates are acceptable.
For the first point, and continuing with the heavy
rain example, consider the following sentence.

(1) Hurricane Katrina brought [MASK] rain to Louisiana.

Intuitively, we would expect the sentential con-
text to be informative enough for the model to se-
lect heavy or any other collocate denoting the no-
tion of intensity, and restricted by the presence of
the base rain. In fact, here, BERT predicts heavy
with 79.5% probability. However, in example (2)

(2) Policeman earns applause for staying on duty in
[MASK] rain.

there is much lesser evidence for the rain to be
‘intense’, and in fact BERT predicts here ‘the’ with
85.1% probability. This disparity lets us investigate
ways to prompt BERT to select heavy or any other
valid collocate for example (2). Thus, in addition
to simply passing one masked sentence, we explore
an approach based on passing the masked sentence
concatenated with the original sentence, which is
a natural way to encode not only the context sur-
rounding the word, but also the meaning of the
target word itself. This strategy was successfully
used for the task of unsupervised lexical simplifi-
cation (Qiang et al., 2019). For the second point
above, the works of Espinosa-Anke et al. (2019);
Shwartz and Dagan (2019) already point to the fact
that light verb constructions (LVCs) are easy to
recognize in text. Further evidence is provided in
Table 1, which shows BERT’s top predictions for
three sentences containing Oper1, Real1 and Magn
collocations. It is immediately obvious that the
nature of the LF itself, as well as the amount of
the information provided by the sentential context,
are crucial. Note that, in the case of Oper1, by
providing the original sentence as context, BERT’s
grasp of the LF improves, as it tends to predict the
correct collocate, whereas for Real1 or Magn, this
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improvement results in assigning higher probabil-
ity to tokens which are more similar to the LF’s
abstract meaning (e.g., trigger the landing gear for
Real1 or tough bargain for Magn).

With the above considerations in mind, we run
BERT’s MLM head over our GigaWord-based test
set, and compute Mean Reciprocal Rank (MRR)
and Mean Average Precision (MAP) over each LF.
Recall that we consider as valid hits all the collo-
cates for a given base and its corresponding LF. In
practice, this means that for bases that have just one
valid collocate, both metrics yield the same score.
We lemmatize BERT’s predictions using SpaCy’s
lemmatizer.5

4.2 Results and Discussion

Our results (Table 4) show, first, that conditioning
BERT’s MLM by passing the original sentence as
additional context for the [MASK] token is useful
for predicting an embedding whose semantics is
more related to the original collocate. The improve-
ments are particularly relevant for LVCs (Oper1,
and, to a certain extent, Real1 and Real2), suggest-
ing that these LFs, while perhaps easy to distin-
guish from others (cf. Section 5.1), they do benefit
from additional contexts to be well represented. In-
terestingly, the Magn LF has small gains in both
MRR and MAP, clearly showing that additional
context helps little, and thus highlighting a strong
semantic dependency between sentence meaning
and the collocation’s base.

A potential limitation of this setup, however, is
that we cannot possibly include all possible collo-
cates for all the bases in our resource. An estimate
of the quality of BERT’s predictions can be ob-
tained by measuring the semantic similarity (for
instance, by cosine distance) between the original
masked collocate and the predicted collocates. In
the example we already referred to above, heavy
rain, the similarity between ‘the’ and ‘heavy’ is
low, whereas, if the model predicts hard or even
any other adjective, it should be considered less
wrong. We obtain a broad picture of the quality of
BERT’s predictions by plotting a histogram (Fig-
ure 1) of the similarities obtained by comparing the
original collocate’s and BERT’s predicted GloVe
embeddings (Pennington et al., 2014) under both
settings (MASKED and CONDITIONED) for the same
three LFs as in Table 1), namely Magn, Oper1 and
Real1. The conditioning strategy is helpful; it con-

5https://spacy.io/api/lemmatizer.

Figure 1: Histograms showing the distribution of simi-
larities between gold and predicted (lemmatized) collo-
cates for the three LFs Magn, Oper1 and Real1 (from
left to right).

MASKED CONDITIONED

MRR MAP MRR MAP

AntiBon 13.78 13.57 61.64 57.37
AntiMagn 30.16 27.11 82.18 66.89
AntiReal2 39.14 36.32 70.58 62.13

AntiVer 11.38 10.68 40.5 37.12
Bon 25.13 24.87 62.49 59.34

Caus1Func0 52.77 45.93 95.94 80.36
CausFunc0 61.14 53.53 86.2 73.52
IncepOper1 54.38 48.36 88.52 74.61

IncepPredPlus 7.27 6.375 12.27 10.67
LiquFunc0 45.51 43.12 71.14 63.60

Magn 33.43 31.67 74.72 66.92
Oper1 73.12 62.58 95.22 81.15
Oper2 63.84 53.86 93.63 76.86
Real1 59.87 53.31 90.96 75.02
Real2 55.36 46.87 76.60 64.64

Ver 33.06 29.37 72.02 63.18

Table 4: Results of the collocate retrieval experi-
ment when passing to the MLM the masked sentence
(MASKED) or with the original sentence as context
(CONDITIONED).

tributes not only to retrieving the original collocate
(which would be trivial if we do not mask it), but
also candidates with clearly similar meanings. We
see, for instance, more cases for Oper1 and Real1,
where the correct verb is predicted, whereas for
Magn we see a more sustained improvement across
all similarities, but not necessarily for retrieving
the original collocate.

5 Experiment 2: Collocation
categorization

In the second experiment, we test the performance
of a number of well-known LMs for the task of LF
categorization using the train/test splits we sampled
and annotated from GigaWord (Section 3). This
experiment serves two purposes. First, we expect
to learn about the predictability of LFs in context,

https://spacy.io/api/lemmatizer
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which is a long-standing problem in computational
lexicography and the cornerstone of automatic con-
struction of collocation resources. Second, previ-
ous work has shown that some LFs are quite easy
to distinguish, without (Espinosa-Anke et al., 2019)
and with sentential context (Shwartz and Dagan,
2019). However, it is still unclear whether, by
focusing exclusively on the phenomenon of collo-
cations, and excluding, e.g., idiomatic expressions
or non-compositional phrasal verbs (which are not
only semantically but, more importantly, syntacti-
cally different from collocations), an LM can in-
deed be used to construct a resource for second lan-
guage learners, or whether (and to what extent) an
LM can be trained to select appropriate collocates.
Our setting is essentially a sentence-pair classifi-
cation problem, where the second sentence is the
lexical collocation itself. Specifically, a training
instance is a tuple <sentence, collocation, label>,
as in Example (3) (where we use ; as a wildcard
concatenation token, as these are different across
LMs):

(3) The US military launched an airstrike on what it de-
scribed as a safehouse in the Iraqi town of Fallujah ;
launched an airstrike→ Oper1

We use as labels the LFs listed in Table 2, with
their respective training/test splits, and train all
LMs with the same hyperparameters.6 The con-
sidered LMs are BERT (base and large, uncased)
(Devlin et al., 2018), RoBERTa (base and large)
(Liu et al., 2019), DistilBERT (Sanh et al., 2019),
ALBERT (Sanh et al., 2020) and XLNet (base and
large) (Yang et al., 2019). We use the implementa-
tion in the Transformers Python library (Wolf et al.,
2020).7

5.1 Results and discussion

The results of this experiment (cf. Table 5) clearly
highlight what has already pointed out in Shwartz
and Dagan (2019): the prototypical LVCs (as mod-
eled by Oper1) can be identified with a rather high
quality. Interesting enough, this is not true for
LVCs captured by Oper2, whose only difference
to Oper1 is the subcategorization frame: while in
Oper1, it is the 1st argument of the base that is
realized as the grammatical subject, in Oper2, it is
the 2nd argument. Frequency cannot explain this
discrepancy since, e.g., IncepOper1, which appears

6All models are trained for 1 epoch, with a learning rate of
4e−05, the Adam with weight decay optimizer and a warmup
ratio of 0.06.

7https://huggingface.co/transformers/.

in our corpus in nearly the same number of sen-
tences as Oper2, is categorized with a significantly
higher quality.

Results are also lower for some other verbal
LFs with more semantic load, among them, e.g.,
Real1/2 and Caus1Func0, suggesting that the se-
mantics expressed in the notions of ‘realize’ and
‘cause’, especially when the 2nd argument of the
collocation functions as a subject, are more chal-
lenging. Again, these results cannot be fully ex-
plained by the amount of training data and neither
by the semantic load. Thus, the categorization of
IncepPredPlus achieves the highest score (the best
model on IncepPredPlus obtains an average F1 of
95.21 with little variability across runs), and it is
clearly an LF with a semantic load, namely ‘in-
crease’. Interestingly, Ver (‘genuine’) and Bon
(‘positive’) are the worst categorized LFs in our
sample, while their antonyms AntiVer and Anti-
Bon are categorized considerably better.

As for the considered LMs, the best overall per-
forming model is the RoBERTa family, with an
overall F1 score of 71.19% for RoBERTa-base and
70.6% for RoBERTa-large, and both models ac-
counting for the best results on 7 of the 16 target
LFs. The second best results are achieved by XL-
Net (base and large), with XLNet-large being the
best model on both Magn and AntiMagn, two LFs
which have been traditionally challenging to tell
apart due to the fact that the representations of
antonyms are clustered together in distributional
spaces. We also note that, interestingly, DistilBERT
is the best at categorizing Oper1 and Real2, which
may suggest that small models may be sufficient to
obtain good performnace on categorizing LVCs.

In order to gain further insights on why a LM
may err in the task of in-context collocation cate-
gorization, we display a confusion matrix obtained
from random runs for the two LMs with the highest
avg score for Oper1 (Distilbert) and Oper2 (XLNet-
base) (Figure 2) – the two LVC LFs that differ
only in terms of their subcategorization patterns
(cf. above). We may hypothesize that the cat-
egorization of a collocation based mainly on its
actantial structure is challenging, and indeed, we
observe that for these two models,8 syntax-based
categorization over the same semantics proves hard.
Specifically, XLNet-base has as the greatest source
for confusion regarding Oper1, precisely, Oper2;

8As a matter of fact, it can be assumed that this applies to
all the LMs evaluated in this paper.

https://huggingface.co/transformers/


1413

and this also occurs with Real1 vs. Real2 (which
also differ only with respect to their subcategoriza-
tion pattern). The results for DistilBERT show
a greater spread among the misclassifications of
Oper1, namely across Oper2, Caus1Func0 and In-
cepOper1, and for Oper2 across Oper1 and Caus-
Func0. Caus1Func0 and IncepOper1 have the same
subcategorization pattern as Oper1 (but different se-
mantics). In the case of CausFunc0 (‘cause the exis-
tence’, e.g., CausFunc0(hope) = raise), the subcat-
egorization pattern is very similar to Caus1Func0,
only that the grammatical subject of the correspond-
ing syntactic construction is not an argument of
the base. As we can observe, CausFunc0 is eas-
ily miscategorized as a full LVC. Finally, let us
highlight the fact that while Magn is generally well
categorized, the few misclassifications come, as
would be expected, from collocations which con-
vey a similar notion of amplification (e.g., Bon),
but interestingly, also collocations that convey op-
posite semantics, such as AntiMagn or AntiBon.

Figure 2: Confusion matrix for the two best perform-
ing models on average on Oper2 (Xlnet-base, left) and
Oper1 (DistilBERT, right).

6 Subspace Analysis

In this section, we further explore the semantics
of some selected LFs. We generate visualizations
of PCA-projected BERT vectors for all collocation
mentions of Magn, AntiMagn, Oper1 and Oper2.
These four LFs are sufficiently frequent, and they
encode different morphosyntactic structures.9 We
can see that antonymy (Ono et al., 2015; Schwartz
et al., 2015; Nguyen et al., 2016) is relatively well
captured in contextualized models, although the
subspaces are clearly different between the embed-
ding and the last transformer layer. More specifi-
cally, as the representations of collocates for Magn

9<Magn,AntiMagn> are most frequently expressed by
adj+noun combinations, whereas <Oper1,Oper2> are always
realized by a verb+noun pattern.

Figure 3: Oper1 (red) and Oper2 (blue) collocate em-
beddings for BERT’s embedding layer (top row, left),
and for the 1st (top row, right), and 5th and 12th trans-
former layers (second row, left and right, respectively).
The bottom quadrant corresponds to Magn (blue) vs
AntiMagn (red), with the same arrangements (embed-
ding, 1st, 5th and 12th layer).

and AntiMagn undergo the self-attention-based
transformations through BERT’s layers, many of
these contextualized embeddings tend to group in
a narrow cone, with many antonymic collocates in-
distinguishably overlapping with each other. Simi-
larly, we also observe a tendency of representation
overlap in the Oper1 vs Oper2 case, with the em-
beddings in the last transformer layer showing a
cluttered distribution, suggesting that there is lit-
tle inherent knowledge in BERT to categorize a
collocation into the syntactic typification of a LF.
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BERT-base BERT-large Albert DistilBERT

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

AntiBon 67.92±5.99 72.01±4.03 69.85±4.67 71.73±11.50 72.43±3.03 71.81±6.29 77.00±3.90 75.31±1.66 76.11±2.21 69.89±5.13 70.90±4.55 70.35±4.42

AntiMagn 85.59±3.30 78.22±4.83 81.60±1.14 85.05±2.93 74.93±3.54 79.66±3.26 84.55±1.90 74.83±0.69 79.38±0.58 85.29±3.56 75.55±2.09 80.10±2.38

AntiReal2 81.67±1.48 78.50±2.29 80.02±0.56 84.74±3.38 78.50±3.50 81.40±0.77 81.39±12.70 82.50±4.33 81.58±6.90 71.23±2.33 79.16±1.89 74.98±2.02

AntiVer 61.32±4.03 72.51±4.82 66.28±1.91 61.21±2.44 71.76±6.26 66.01±3.67 62.35±3.00 79.25±1.28 69.78±2.37 63.33±2.20 73.33±10.40 67.63±3.18

Bon 50.95±4.34 43.06±3.96 46.54±2.64 53.52±9.98 56.71±4.09 54.91±6.98 55.23±7.97 49.52±8.27 52.19±8.06 54.52±13.50 51.64±10.80 53.02±12.10

Caus1Func0 67.18±5.53 46.97±15.10 53.77±10.10 51.49±7.12 41.83±9.77 45.47±5.95 59.19±3.67 43.62±7.56 50.13±6.25 64.21±10.60 42.05±8.06 50.51±8.25

CausFunc0 72.37±10.20 59.30±7.90 64.41±2.97 71.10±7.40 58.21±6.02 63.75±4.08 78.63±7.92 60.39±5.61 68.07±3.99 74.12±2.79 65.57±1.59 69.56±1.52

IncepOper1 79.30±3.50 76.43±1.95 77.82±2.28 78.44±7.49 75.13±5.46 76.40±1.19 81.60±4.03 76.87±1.31 79.14±2.53 79.61±1.22 77.55±4.01 78.53±2.39

IncepPredPlus 97.21±3.03 91.06±0.41 94.02±1.63 93.85±6.16 90.57±1.91 92.08±2.32 97.73±2.21 85.99±6.69 91.43±4.68 98.46±2.01 90.57±0.72 94.34±0.68

LiquFunc0 88.02±6.34 91.02±2.36 89.43±3.96 88.35±3.32 87.54±2.75 87.94±2.94 88.70±2.86 91.80±5.57 90.10±1.22 85.72±2.55 87.76±1.40 86.70±0.93

Magn 92.47±0.75 93.91±0.77 93.18±0.32 92.87±0.80 93.67±2.23 93.26±1.50 92.74±0.52 93.78±0.93 93.26±0.62 92.80±1.16 94.58±0.32 93.68±0.74

Oper1 78.89±1.08 91.69±0.92 84.80±0.27 78.01±1.94 90.26±1.54 83.69±1.76 78.69±0.36 92.77±2.82 85.14±1.18 79.58±1.50 91.89±1.94 85.28±1.27

Oper2 70.16±2.87 48.07±6.46 56.79±3.97 66.19±1.82 52.17±5.14 58.24±3.04 71.03±9.65 51.98±2.25 59.85±3.83 67.82±4.49 48.01±2.22 56.17±2.34

Real1 70.03±2.29 59.71±4.38 64.44±3.48 69.91±2.31 59.21±2.24 64.12±2.24 70.52±4.10 62.18±1.63 66.02±1.60 70.81±8.46 62.44±4.33 66.25±5.57

Real2 58.36±2.86 53.41±7.12 55.48±3.12 64.99±5.87 54.79±5.44 59.13±1.98 63.52±2.53 47.47±8.75 54.14±6.64 69.69±0.79 54.30±12.80 60.51±8.24

Ver 40.15±7.96 24.31±3.82 30.23±4.92 37.59±12.30 22.27±2.90 27.38±4.40 31.54±16.10 22.61±11.60 25.95±13.40 43.15±25.20 20.91±9.93 28.07±14.50

Average 72.60±4.10 67.51±4.45 69.29±3.00 71.82±5.42 67.50±4.11 69.08±3.22 73.40±5.21 68.18±4.43 70.14±4.13 73.14±5.47 67.89±4.82 69.73±4.41

XLNet-base XLNet-large RoBERTa-base RoBERTa-large

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

AntiBon 67.74±9.42 74.72±2.49 70.88±6.14 70.30±6.48 76.75±3.99 73.25±4.11 71.57±11.90 75.82±9.03 73.51±10.20 77.44±10.10 76.42±10.10 76.82±10.00

AntiMagn 85.26±5.43 76.52±2.05 80.62±3.36 86.18±5.10 77.86±4.67 81.78±4.62 90.02±4.44 77.19±3.90 83.10±3.90 84.52±9.63 75.86±9.63 79.84±5.16

AntiReal2 81.96±3.72 77.83±2.92 79.83±3.16 85.06±10.40 78.83±1.60 81.65±5.21 81.72±12.30 80.00±2.78 80.61±6.89 80.64±3.95 82.66±3.95 81.64±4.08

AntiVer 65.29±2.14 67.57±1.99 66.37±0.36 67.60±3.54 70.20±6.34 68.86±4.91 69.37±1.08 75.39±9.19 72.11±4.89 69.93±9.95 72.92±9.95 71.18±5.85

Bon 51.70±6.46 47.40±2.16 49.41±4.10 52.08±15.90 47.51±3.42 49.24±8.88 53.95±7.90 46.87±2.06 50.01±4.13 50.84±7.58 54.70±7.58 52.70±7.85

Caus1Func0 64.71±9.52 44.29±15.40 50.52±9.85 64.46±24.90 40.93±11.70 47.48±5.79 68.68±12.20 47.87±22.40 52.47±15.40 59.92±11.70 42.05±11.70 49.41±10.20

CausFunc0 75.65±9.76 59.58±7.49 66.35±6.80 79.15±14.70 60.39±2.38 68.17±5.83 78.06±6.82 67.21±2.45 72.15±3.85 75.56±8.38 63.30±8.38 68.81±6.47

IncepOper1 73.37±3.87 78.16±1.08 75.65±1.94 79.35±4.77 75.20±2.35 77.13±1.86 79.38±4.43 79.03±1.76 79.16±2.54 83.29±8.40 76.49±8.40 79.61±4.24

IncepPredPlus 99.21±0.01 91.54±2.32 95.21±1.26 97.89±2.00 89.37±2.21 93.43±1.88 96.31±4.49 90.33±0.83 93.18±1.71 92.79±12.40 91.06±12.40 91.58±6.04

LiquFunc0 87.38±2.63 92.48±4.18 89.83±2.63 87.95±4.60 91.91±6.18 89.68±1.09 88.75±0.35 93.04±4.01 90.82±1.89 90.15±2.41 91.58±2.41 90.86±2.81

Magn 91.93±0.85 93.91±0.48 92.91±0.54 93.41±1.66 94.24±1.66 93.82±1.62 92.57±1.31 94.95±1.60 93.74±1.43 92.90±1.29 94.73±1.29 93.81±1.68

Oper1 77.80±0.97 91.09±0.20 83.92±0.48 78.90±0.94 91.80±0.78 84.86±0.22 78.33±2.36 91.18±1.78 84.25±1.46 78.41±1.85 92.40±1.85 84.81±1.79

Oper2 72.13±8.13 52.69±3.66 60.85±5.12 74.05±4.18 50.70±7.88 59.86±4.83 72.05±1.20 50.70±8.57 59.18±5.79 70.19±5.83 52.56±5.83 59.97±1.06

Real1 72.00±1.43 59.84±0.99 65.36±0.96 66.09±3.48 64.60±4.19 65.33±3.82 71.11±4.52 61.05±4.51 65.66±4.10 72.59±4.37 62.49±4.37 66.90±5.70

Real2 66.37±1.17 51.23±4.45 57.77±3.13 64.01±12.30 54.20±7.40 58.67±9.52 66.12±3.52 52.91±8.66 58.67±6.65 64.58±7.64 51.03±7.64 56.92±9.77

Ver 32.58±12.90 15.98±10.50 21.37±12.90 32.94±19.20 26.70±22.00 29.21±21.10 48.10±29.10 22.78±5.97 30.38±11.30 41.46±4.40 18.02±4.40 24.77±3.23

Average 72.82±4.90 67.18±3.90 69.18±3.92 73.71±8.38 68.20±5.55 70.15±5.33 75.38±6.75 69.15±5.59 71.19±5.38 74.08±6.87 68.64±6.87 70.60±5.37

Table 5: Average Precision, Recall and F1 results for the collocation classification experiment, computed by aver-
aging the results of three independent runs. We also report standard deviation figures. Results are provided per LF
as well as the average over each metric (Average).

7 Conclusions

We have analyzed LMs in tasks revolving around
modeling, recognizing and categorizing lexical col-
locations. We conclude that some prominet types
of LVCs require little context to be well encoded,
as opposed to other LFs involving, e.g., nouns and
adjectives, and that predictability of LFs is chal-
lenging, not a function of training data, and that
syntax plays a major role.

8 Future Work

In the future, we will make this work multilin-
gual using linguistic equivalences as anchors, in
the spirit of cross-lingual embedding research, in
order to align collocations of the same LF across
languages (e.g., in English and Norwegian we take
a nap, in German, we ‘make’ it, in Portuguese we
‘pull’ it, in Spanish, we ‘throw’ it, etc.). We would
also like to explore the idea of “semantic masking”
for collocate discovery, where we would train mod-
els for dynamically masking (or removing) idiosyn-
cratic information such that only the semantics of

the collocate remain, thus largely corresponding
to a latent abstraction over the LF. This approach
has been applied recently in the lexical substitution
task, with the limitation, however, that the dropout
rate was tuned in a validation set, whereas a promis-
ing avenue to explore would be to automatically
learn the embedding dropout in a fully supervised
setting. Finally, motivated by the observed large
gap in performance between the categorization of,
e.g., Oper1 and Oper2, Bon and AntiBon, Ver and
AntiVer, we plan to investigate in more depth the
codification of collocational information in pre-
trained LMs.
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