
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 238–243
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

238

Paladin: an annotation tool based on active and proactive learning

Minh-Quoc Nghiem1,2, Paul Baylis2, Sophia Ananiadou1

1 National Centre for Text Mining
School of Computer Science, The University of Manchester, United Kingdom

2 Bott and Co Solicitors
{minh-quoc.nghiem, sophia.ananiadou}@manchester.ac.uk

p.baylis@bottonline.co.uk

Abstract

In this paper, we present Paladin, an open-
source web-based annotation tool for creat-
ing high-quality multi-label document-level
datasets. By integrating active learning and
proactive learning to the annotation task, Pal-
adin makes the task less time-consuming and
requiring less human effort. Although Paladin
is designed for multi-label settings, the system
is flexible and can be adapted to other tasks in
single-label settings.

1 Introduction

Labelled data is essential in many NLP tasks based
on Machine Learning. Manually annotating such
data is time-consuming, and require a lot of human
effort. Active learning has been used to ease this
process by choosing the data points for annotation
instead of annotating all instances of the unlabeled
data (Settles, 2009). Some recent research has also
utilized proactive learning, in which the system is
allowed to assign specific unlabeled instances to
specific annotators (Li et al., 2019). The annotators,
in these scenarios, only have to annotate a small
set of representative and informative data which
they can provide reliable labels. It helps reduce the
labelling effort and at the same time makes the best
use of available annotators.

To date, there are many tools available for ac-
tive learning, such as the TexNLP (Baldridge and
Palmer, 2009), the Active-Learning-Scala (Santos
and Carvalho, 2014), the JCLAL (Reyes et al.,
2016), the LibAct (Yang et al., 2017) libraries, the
Vowpal Wabbit1. These tools, however, focus only
on the active learning algorithms and provide no
user interface thus making it difficult to use for
the end-users. On the other hand, several tools
have been made with user-friendly interface such

1http://hunch.net/˜vw/

as BRAT (Stenetorp et al., 2012), WebAnno (Yi-
mam et al., 2013), PubAnnotation (Kim and Wang,
2012), doccano2. Some of the tools offer ac-
tive/proactive learning such as APLenty (Nghiem
and Ananiadou, 2018), DUALIST (Settles and Zhu,
2012), AlpacaTag (Lin et al., 2019), Discrete Ac-
tive Learning Coref (Li et al., 2020a). Currently,
these tools support sequence labelling/coreference
resolution tasks but not document classification
tasks. To the best of our knowledge, there is no
such tool for document classification which sup-
ports active/proactive learning. Prodigy3 supports
active learning for both sequence labelling and doc-
ument classification tasks but it is a commercial
product.

To compensate for the lack of available
document-level annotation tool, we develop Pal-
adin (Proactive learning annotator for document
instances), an open-source web-based system for
creating labelled data using active/proactive learn-
ing4. The main innovation of Paladin is the com-
bination of a user-friendly annotation tool with ac-
tive/proactive learning. Specifically:

1. Active/proactive learning integration: Paladin
makes annotation easy, time-efficient, and re-
quire less human effort by offering active and
proactive learning.

2. An easy-to-use interface for annotators: Pal-
adin adapts the interface of doccano, making
annotation intuitive and easy to use.

3. Suitable for multi-label document annotation
tasks: Paladin is best used for multi-label doc-
ument annotation tasks, although it can be
used for other single-label classification prob-
lems.

2https://github.com/doccano
3https://prodi.gy/
4The source code is publicly available at https://

github.com/bluenqm/Paladin

http://hunch.net/~vw/
https://github.com/doccano
https://prodi.gy/
https://github.com/bluenqm/Paladin
https://github.com/bluenqm/Paladin


239

The remainder of this paper is organized as fol-
lows. Section 2 presents details of Paladin. Sec-
tion 3 describes a case study of using Paladin for
a multi-label document annotation task. Section
4 concludes the paper and points to avenues for
future work.

2 System Descriptions

Paladin is a web-based tool implemented in Python
using Django web framework and Vue.js. The main
user interface consists of a project management
page and an annotation page. Below, this section
describes Paladin in detail.

2.1 Project management

In Paladin, there are two main types of user role:
the project manager role and the annotator role. A
project manager can create/customise annotation
projects and add annotators to the projects. The
annotators can annotate text assigned to them. The
interface allows the project manager to: 1. create
a project 2. define the tagset 3. upload the seeding
and unlabelled data to the webserver 4. assign an-
notators to a project 5. choose the active/proactive
learning strategy. The project manager can addi-
tionally set how the batch is allocated, the sam-
pling and proficiency thresholds, the steps before
retraining and samples per session as illustrated in
Figure 1.

Figure 1: Project Settings

When creating a new annotation project, the
project manager needs to upload two datasets (in
Tab Separated Values format) to the server. The
first dataset is the seeding dataset, which will be

used by the system to train the classifier and es-
timate the annotators’ proficiency. The second
dataset is the unlabelled dataset, on which the sys-
tem chooses the text to assign to the annotators. If
there is no seeding data, the system will select ran-
dom text from the unlabelled dataset for annotation
in the first batch. Figure 2 shows the text when
successfully uploaded to the system.

Figure 2: Dataset/Seed Dataset

2.2 Annotation interface

For annotation and visualization of annotated doc-
uments, we adapted the doccano annotation inter-
face. The annotation interface displays a set of
documents that are assigned to the annotator, one
at a time as illustrated in Figure 3. The annotator
can navigate to next or previous documents dur-
ing annotation using the “Prev” or “Next” buttons.
When working on Paladin, the annotator uses the
mouse or keyboard shortcut to select label(s) for
the current document. When finishing the assigned
documents, the annotator can click on “Finish An-
notation”. The system will validate the annotated
documents, retrain the classifier, and assign new
documents to the annotator. Each annotator can
only see the documents assigned to him/her in the
current batch.

2.3 Active learning

Depending on the project manager’s settings, the
system chooses different document instances to
send to the annotators. The project manager can
choose to prioritise the most informative instances
for the classifier or to maintain the balance be-
tween the number of instances in each class. With
the first option, the system prioritises the most



240

Figure 3: Annotation interface. The displayed sentence
was taken from the Sentiment140 dataset. All labels are
shown in the blue rectangle box with the shortcut keys
next to them. Annotated labels are shown above the
sentence.

informative documents, regardless of the class.
Paladin currently employs the least confidence
uncertainty-based strategy (Culotta and McCallum,
2005) based on the classification outputs from a
Transformer model (Devlin et al., 2019). A lin-
ear model is added to the embedding output to
predict the score for the labels. Previous research
has established that active learning can increase
the performance of Transformer-based text classi-
fiers (Grießhaber et al., 2020). With the second op-
tion, the system uses the same classification outputs
but unlabelled instances are taken from each class
in equal amounts. The default option in Paladin is
the second one. This setting aims to minimise the
unbalanced data problems where we have unequal
instances for different classes.

Paladin uses pool-based sampling scenario,
where the data samples are chosen for labeling
from the unlabeled dataset. The project manager,
however, can upload additional unlabeled data to
an existing annotation project at anytime.

2.4 Proactive learning

In many annotation tasks, we assume that the anno-
tators are experts who always provide correct an-
notations. But in reality, different annotators have
different levels of expertise in different domains.
It has been demonstrated that proactive learning is
helpful for task allocation in crowdsourcing setting
where the level of expertise varies from annota-
tor to annotator (Donmez and Carbonell, 2010; Li
et al., 2017, 2019, 2020b). Proactive learning is

useful in modelling the annotator reliability which
can be used to assign the unlabelled instances to
the best possible annotators.

Before any annotation, Paladin estimates the pro-
ficiency of the annotators for each class by assign-
ing the documents in the seed dataset to all anno-
tators. When the annotators finish labelling these
seed documents, the system calculates the likeli-
hood that a particular annotator provides a correct
label for a particular label. Then, when assigning
new documents to the annotators, Paladin will as-
sign the documents to the best possible annotators
by combining the predicted label(s) and the like-
lihood that the annotator provides a correct label
for a particular label. The system will update the
estimation after every annotation batch.

3 Use cases

The typical use cases of Paladin are as following:

1. A user wishes to add more data to an existing
dataset to improve model performance: the
user can use the existing labelled dataset as the
seed to train the initial model, the labels will
be automatically extracted from the labelled
dataset. The model will select instances from
the unlabelled dataset and then distribute them
to the annotators for annotation.

2. A user wishes to create a labelled dataset from
scratch: the user needs to provide the tag set
and the unlabelled data. The first iteration
will select unlabelled instances for annotation
randomly. After the first iteration, the process
is the same as the previous use case.

3. A user wishes to add more data to an exist-
ing unbalanced dataset: the user can choose
“maintain class balance” option in Settings.
With this option, the model will try to select
more data from the potential minority classes
for annotation.

4 Experiments and Results

4.1 Simulated Annotators
We used the Toxic Comment Classification Chal-
lenge dataset5 for this experiment. The dataset
contains Wikipedia comments which have been
manually labelled for toxic behaviour. There are

5https://www.kaggle.com/c/
jigsaw-toxic-comment-classification-challenge/
data

https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data


241

six classes: toxic, severe toxic, obscene, threat, in-
sult, and identity hate. In the experiment, we used
60 comments as the initial training data (seed), 600
comments as test data, and 18,000 for unlabelled
data. The instances forming the seed and test data
are randomly taken from the original data but we
make sure that each class has at least 10 instances
and 100 instances in the seed and test data respec-
tively.

We compare three settings in this case study.
The first one is Random Sampling: the system ran-
domly chooses the next documents for annotation.
The second one is Active Learning: the system uses
the output of the trained model to assign new docu-
ments to an expert (annotator who always provide
correct labels). The third one is Proactive Learn-
ing: same as Active Learning, but we have two
annotators, one expert, and one fallible annotator
(annotator who makes mistakes with a probability
of 0.1). Figure 4 shows the F1 scores on the test
set. In all cases, active/proactive learning setting
outperformed Random Sampling setting.

0 0.5 1 1.5

·104

65

70

75

80

85

Training instances

F1
sc

or
e

on
te

st
da

ta

Random Sampling
Active Learning
Proactive Learning

Figure 4: Learning curve

4.2 Real-World Annotators
For this experiment, we worked with a consumer
law firm analysing 6,880 emails. Each email can
have one or more labels from a predefined list
which consist of 15 labels. Some examples are
“update query”, “payment query”, and “fee query”.
Given an email, the annotator had to annotate all
labels that are applicable to that email. There are a
total of 2,000 emails which were already annotated.

This dataset is an unbalanced dataset where
nearly two-thirds of the emails belong to the 5
most common labels while less than 7 percent of

the emails come from the 5 least common labels.
In the experiment, we used 1,000 emails as the ini-
tial training data, 1,000 emails as test data, and the
rest (4,880) as unlabelled data. The purpose of the
experiment was to investigate the performance of
Paladin with an unbalanced seed dataset.

Using Paladin, we created an annotation project
with four annotators and in each annotation ses-
sion, an annotator must annotate 20 emails. All
annotators are members of the law firm with legal
background. We used “maintain class balance” and
“best annotators first” for active learning strategy
and proactive learning strategy respectively. We
stopped when a total of 1,000 emails were anno-
tated. Figure 5 shows the F1 scores and the stack-
ing percentages of label instance count. The results
showed that the F1 score and percentage of mi-
nority classes were gradually increased after each
annotation batch.

1.0 1.2 1.4 1.6 1.8 2.0
Training instances (1000)

5 most common labels
others

5 least common labels
40

45

50

55

60

65

F1
sc

or
e

on
te

st
da

ta

F1 score

Figure 5: F1 scores and percentages of label instance
count. We grouped 5 labels together for readability.

We used an Intel Core i9 9820X Linux server
with 64GB RAM and a Titan RTX GPU. When
allocating a new annotation batch (retraining the
model, predicting the unlabelled instances, select-
ing new instances for annotation), Paladin runs con-
sistently at the rate of around 0.01 to 0.02 seconds
per document and it takes less than two minutes to
get results. The average level of satisfaction (with
ratings from 1 to 5 of three aspects: responsiveness,
easy to annotate, easy to navigate) of the annotators
with the annotation tool is 4.5/5.



242

5 Conclusion

We introduced Paladin, a web-based open environ-
ment for constructing multi-label document-level
datasets using active and proactive learning. Pal-
adin can support the quick development of high-
quality labelled data needed to train and evaluate
NLP tools for different applications.

Considerably more work will need to be done
to further enhance Paladin to work with other ac-
tive/proactive learning algorithms. Besides that,
a natural progression of this work is to evaluate
Paladin in a large scale annotation project.

Acknowledgments

This research has been carried out with funding
from KTP11612. We would like to thank the anony-
mous reviewers for their helpful comments.

References
Jason Baldridge and Alexis Palmer. 2009. How well

does active learning actually work?: Time-based
evaluation of cost-reduction strategies for language
documentation. In Proceedings of the 2009 Con-
ference on Empirical Methods in Natural Language
Processing: Volume 1-Volume 1, pages 296–305. As-
sociation for Computational Linguistics.

Aron Culotta and Andrew McCallum. 2005. Reduc-
ing labeling effort for structured prediction tasks. In
AAAI, volume 5, pages 746–751.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Pinar Donmez and Jaime G Carbonell. 2010. From ac-
tive to proactive learning methods. In Advances in
Machine Learning I, pages 97–120. Springer.

Daniel Grießhaber, Johannes Maucher, and
Ngoc Thang Vu. 2020. Fine-tuning BERT for
low-resource natural language understanding via
active learning. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 1158–1171, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Jin-Dong Kim and Yue Wang. 2012. Pubannota-
tion: a persistent and sharable corpus and annota-
tion repository. In Proceedings of the 2012 Work-
shop on Biomedical Natural Language Processing,
pages 202–205. Association for Computational Lin-
guistics.

Belinda Z. Li, Gabriel Stanovsky, and Luke Zettle-
moyer. 2020a. Active learning for coreference res-
olution using discrete annotation. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 8320–8331, On-
line. Association for Computational Linguistics.

Maolin Li, Arvid Fahlström Myrman, Tingting Mu,
and Sophia Ananiadou. 2019. Modelling instance-
level annotator reliability for natural language la-
belling tasks. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 2873–2883, Minneapolis, Minnesota.
Association for Computational Linguistics.

Maolin Li, Nhung Nguyen, and Sophia Ananiadou.
2017. Proactive learning for named entity recogni-
tion. In BioNLP 2017, pages 117–125, Vancouver,
Canada,. Association for Computational Linguistics.

Maolin Li, Hiroya Takamura, and Sophia Ananiadou.
2020b. A neural model for aggregating corefer-
ence annotation in crowdsourcing. In Proceedings
of the 28th International Conference on Compu-
tational Linguistics, pages 5760–5773, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Bill Yuchen Lin, Dong-Ho Lee, Frank F. Xu, Ouyu
Lan, and Xiang Ren. 2019. AlpacaTag: An active
learning-based crowd annotation framework for se-
quence tagging. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 58–63, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Minh-Quoc Nghiem and Sophia Ananiadou. 2018.
APLenty: annotation tool for creating high-quality
datasets using active and proactive learning. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 108–113, Brussels, Belgium.
Association for Computational Linguistics.

Oscar Reyes, Eduardo Pérez, Marı́a Del Carmen
Rodrı́guez-Hernández, Habib M Fardoun, and Se-
bastián Ventura. 2016. JCLAL: a Java framework
for active learning. The Journal of Machine Learn-
ing Research, 17(1):3271–3275.

Davi P Santos and André CPLF Carvalho. 2014. Com-
parison of active learning strategies and proposal of
a multiclass hypothesis space search. In Hybrid Arti-
ficial Intelligence Systems, pages 618–629. Springer.

Burr Settles. 2009. Active learning literature survey.
Computer Sciences Technical Report 1648, Univer-
sity of Wisconsin–Madison.

Burr Settles and Xiaojin Zhu. 2012. Behavioral fac-
tors in interactive training of text classifiers. In
Proceedings of the 2012 Conference of the North

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.coling-main.100
https://doi.org/10.18653/v1/2020.coling-main.100
https://doi.org/10.18653/v1/2020.coling-main.100
https://doi.org/10.18653/v1/2020.acl-main.738
https://doi.org/10.18653/v1/2020.acl-main.738
https://doi.org/10.18653/v1/N19-1295
https://doi.org/10.18653/v1/N19-1295
https://doi.org/10.18653/v1/N19-1295
https://doi.org/10.18653/v1/W17-2314
https://doi.org/10.18653/v1/W17-2314
https://doi.org/10.18653/v1/2020.coling-main.507
https://doi.org/10.18653/v1/2020.coling-main.507
https://doi.org/10.18653/v1/P19-3010
https://doi.org/10.18653/v1/P19-3010
https://doi.org/10.18653/v1/P19-3010
https://doi.org/10.18653/v1/D18-2019
https://doi.org/10.18653/v1/D18-2019


243

American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 563–567. Association for Computational Lin-
guistics.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. BRAT: a web-based tool for NLP-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 102–107. Association for Computational Lin-
guistics.

Yao-Yuan Yang, Shao-Chuan Lee, Yu-An Chung,
Tung-En Wu, Si-An Chen, and Hsuan-Tien Lin.
2017. libact: Pool-based active learning in Python.
Technical report, National Taiwan University. Avail-
able as arXiv preprint https://arxiv.org/abs/
1710.00379.

Seid Muhie Yimam, Iryna Gurevych, Richard Eckart
de Castilho, and Chris Biemann. 2013. WebAnno:
A flexible, web-based and visually supported system
for distributed annotations. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages
1–6.

https://github.com/ntucllab/libact
https://arxiv.org/abs/1710.00379
https://arxiv.org/abs/1710.00379

