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Introduction

Welcome to the Second Workshop on Knowledge Extraction and Integration for Deep Learning
Architectures (DeeLIO)! Following the first successful edition of the workshop at EMNLP 2020, DeeLIO
2021 continues to bring together the knowledge interpretation, extraction and integration lines of research
in deep learning, and to cover the area in between. Now in its second year, DeeLIO has already been
established as a forum for the exchange of ideas on these topics, fostering collaboration within these
research fields.

This volume includes the 14 papers presented at the workshop. DeeLIO 2021 was co-located with the
Annual Conference of the North American Chapter of the Association for Computational Linguistics
(NAACL-HLT 2021) and was held on June 10, 2021 as an online workshop.

We received an exceptional batch of high-quality research papers, and decided to finally accept 14 out of
22 submissions (acceptance rate 63.6%), which were presented at the workshop. It is again great to see
that the accepted papers cover both thematic aspects of DeeLIO: the extraction of linguistic knowledge
from deep neural models as well as the integration of knowledge from external resources, and all this for
different languages and applications. All papers were presented as posters during several online poster
sessions with live interactions and Q&A sessions.

We take this opportunity to thank the DeeLIO program committee for their help and thorough reviews.
We also thank the authors who presented their work at DeeLIO, and the workshop participants for the
valuable feedback and discussions. Encouraged by the great research presented at the workshop and all
the positive feedback received, we hope to continue with the DeeLIO organization in the years to come.
Finally, we are deeply honored to have three excellent talks from our invited speakers Sebastian Riedel,
Vered Shwartz, and Lena Voita.

The DeeLIO workshop organizers,
Eneko Agirre, Marianna Apidianaki, and Ivan Vulić
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Transformer visualization via dictionary learning:
contextualized embedding as a linear superposition of transformer factors

Zeyu Yun∗ 2 Yubei Chen∗ 1,2 Bruno A Olshausen2,4 Yann LeCun1,3

1 Facebook AI Research
2 Berkeley AI Research (BAIR), UC Berkeley

3 New York University
4 Redwood Center for Theoretical Neuroscience, UC Berkeley

Abstract

Transformer networks have revolutionized
NLP representation learning since they were
introduced. Though a great effort has been
made to explain the representation in trans-
formers, it is widely recognized that our un-
derstanding is not sufficient. One important
reason is that there lack enough visualiza-
tion tools for detailed analysis. In this pa-
per, we propose to use dictionary learning
to open up these ‘black boxes’ as linear su-
perpositions of transformer factors. Through
visualization, we demonstrate the hierarchi-
cal semantic structures captured by the trans-
former factors, e.g., word-level polysemy dis-
ambiguation, sentence-level pattern formation,
and long-range dependency. While some
of these patterns confirm the conventional
prior linguistic knowledge, the rest are rela-
tively unexpected, which may provide new in-
sights. We hope this visualization tool can
bring further knowledge and a better under-
standing of how transformer networks work.
The code is available at https://github.
com/zeyuyun1/TransformerVis.

1 Introduction

Though the transformer networks (Vaswani et al.,
2017; Devlin et al., 2018) have achieved great suc-
cess, our understanding of how they work is still
fairly limited. This has triggered increasing efforts
to visualize and analyze these “black boxes”. Be-
sides a direct visualization of the attention weights,
most of the current efforts to interpret transformer
models involve “probing tasks”. They are achieved
by attaching a light-weighted auxiliary classifier at
the output of the target transformer layer. Then
only the auxiliary classifier is trained for well-
known NLP tasks like part-of-speech (POS) Tag-
ging, Named-entity recognition (NER) Tagging,

∗ equal contribution. Correspondence to: Zeyu
Yun <chobitstian@berkeley.edu>, Yubei Chen
<yubeic@{fb.com, berkeley.edu}>

Syntactic Dependency, etc. Tenney et al. (2019)
and Liu et al. (2019) show transformer models
have excellent performance in those probing tasks.
These results indicate that transformer models have
learned the language representation related to the
probing tasks. Though the probing tasks are great
tools for interpreting language models, their lim-
itation is explained in Rogers et al. (2020). We
summarize the limitation into three major points:

• Most probing tasks, like POS and NER tag-
ging, are too simple. A model that performs
well in those probing tasks does not reflect the
model’s true capacity.

• Probing tasks can only verify whether a cer-
tain prior structure is learned in a language
model. They can not reveal the structures be-
yond our prior knowledge.

• It’s hard to locate where exactly the related
linguistic representation is learned in the trans-
former.

Efforts are made to remove those limitations and
make probing tasks more diverse. For instance,
Hewitt and Manning (2019) proposes “structural
probe”, which is a much more intricate probing
task. Jiang et al. (2020) proposes to generate spe-
cific probing tasks automatically. Non-probing
methods are also explored to relieve the last two
limitations. For example, Reif et al. (2019) visu-
alizes embedding from BERT using UMAP and
shows that the embeddings of the same word un-
der different contexts are separated into different
clusters. Ethayarajh (2019) analyzes the similarity
between embeddings of the same word in different
contexts. Both of these works show transformers
provide a context-specific representation.

Faruqui et al. (2015); Arora et al. (2018); Zhang
et al. (2019) demonstrate how to use dictionary
learning to explain, improve, and visualize the un-
contextualized word embedding representations. In
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this work, we propose to use dictionary learning
to alleviate the limitations of the other transformer
interpretation techniques. Our results show that dic-
tionary learning provides a powerful visualization
tool, leading to some surprising new knowledge.

2 Method

Hypothesis: contextualized word embedding as
a sparse linear superposition of transformer
factors. It is shown that word embedding vectors
can be factorized into a sparse linear combination
of word factors (Arora et al., 2018; Zhang et al.,
2019), which correspond to elementary semantic
meanings. An example is:

apple =0.09“dessert” + 0.11“organism” + 0.16

“fruit” + 0.22“mobile&IT” + 0.42“other”.

We view the latent representation of words in a
transformer as contextualized word embedding.
Similarly, we hypothesize that a contextualized
word embedding vector can also be factorized as
a sparse linear superposition of a set of elemen-
tary elements, which we call transformer factors.
The exact definition will be presented later in this
section.

Figure 1: Building block (layer) of transformer

Due to the skip connections in each of the trans-
former blocks, we hypothesize that the representa-
tion in any layer would be a superposition of the hi-
erarchical representations in all of the lower layers.
As a result, the output of a particular transformer
block would be the sum of all of the modifications
along the way. Indeed, we verify this intuition
with the experiments. Based on the above observa-
tion, we propose to learn a single dictionary for the
contextualized word vectors from different layers’
output.

To learn a dictionary of transformer factors
with non-negative sparse coding.

Given a set of tokenized text sequences, we col-
lect the contextualized embedding of every word
using a transformer model. We define the set of
all word embedding vectors from lth layer of trans-
former model as X(l). Furthermore, we collect
the embeddings across all layers into a single set
X = X(1) ∪X(2) ∪ · · · ∪X(L).

By our hypothesis, we assume each embedding
vector x ∈ X is a sparse linear superposition of
transformer factors:

x = Φα+ ε, s.t. α � 0, (1)

where Φ ∈ IRd×m is a dictionary matrix with
columns Φ:,c , α ∈ IRm is a sparse vector of coef-
ficients to be inferred and ε is a vector containing
independent Gaussian noise samples, which are as-
sumed to be small relative to x. Typically m > d
so that the representation is overcomplete. This
inverse problem can be efficiently solved by FISTA
algorithm (Beck and Teboulle, 2009). The dictio-
nary matrix Φ can be learned in an iterative fashion
by using non-negative sparse coding, which we
leave to the appendix section C. Each column Φ:,c

of Φ is a transformer factor and its corresponding
sparse coefficient αc is its activation level.

Visualization by top activation and LIME inter-
pretation. An important empirical method to visu-
alize a feature in deep learning is to use the input
samples, which trigger the top activation of the fea-
ture (Zeiler and Fergus, 2014). We adopt this con-
vention. As a starting point, we try to visualize each
of the dimensions of a particular layer, X(l). Un-
fortunately, the hidden dimensions of transformers
are not semantically meaningful, which is similar
to the uncontextualized word embeddings (Zhang
et al., 2019).

Instead, we can try to visualize the transformer
factors. For a transformer factor Φ:,c and for a
layer-l, we denote the 1000 contextualized word
vectors with the largest sparse coefficients α(l)

c as
X

(l)
c ⊂ X(l), which correspond to 1000 differ-

ent sequences. For example, Figure 3 shows the
top 5 words that activated transformer factor-17
Φ:,17 at layer-0, layer-2, and layer-6 respectively.
Since a contextualized word vector is generally af-
fected by many tokens in the sequence, we can use
LIME (Ribeiro et al., 2016) to assign a weight to
each token in the sequence to identify their relative
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importance to αc. The detailed method is left to
Section 3.

To determine low-, mid-, and high-level trans-
former factors with importance score. As we
build a single dictionary for all of the transformer
layers, the semantic meaning of the transformer fac-
tors has different levels. While some of the factors
appear in lower layers and continue to be used in
the later stages, the rest of the factors may only be
activated in the higher layers of the transformer net-
work. A central question in representation learning
is: “where does the network learn certain informa-
tion?” To answer this question, we can compute
an “importance score” for each transformer factor
Φ:,c at layer-l as I

(l)
c . I

(l)
c is the average of the

largest 1000 sparse coefficients α(l)
c ’s, which cor-

respond to X
(l)
c . We plot the importance scores

for each transformer factor as a curve is shown in
Figure 2. We then use these importance score (IS)
curves to identify which layer a transformer factor
emerges. Figure 2a shows an IS curve peak in the
earlier layer. The corresponding transformer factor
emerges in the earlier stage, which may capture
lower-level semantic meanings. In contrast, Fig-
ure 2b shows a peak in the higher layers, which
indicates the transformer factor emerges much later
and may correspond to mid- or high-level seman-
tic structures. More subtleties are involved when
distinguishing between mid-level and high-level
factors, which will be discussed later.

An important characteristic is that the IS curve
for each transformer factor is relatively smooth.
This indicates if a vital feature is learned in the
beginning layers, it won’t disappear in later stages.
Instead, it will be carried all the way to the end
with gradually decayed weight since many more
features would join along the way. Similarly, ab-
stract information learned in higher layers is slowly
developed from the early layers. Figure 3 and 5
confirm this idea, which will be explained in the
next section.

3 Experiments and Discoveries

We use a 12-layer pre-trained BERT model (Pre;
Devlin et al., 2018) and freeze the weights. Since
we learn a single dictionary of transformer factors
for all of the layers in the transformer, we show that
these transformer factors correspond to different
levels of semantic or syntactic patterns. The pat-
terns can be roughly divided into three categories:

(a) (b)

Figure 2: Importance score (IS) across all layers for
two different transformer factors. (a) This figure shows
a typical IS curve of a transformer factor correspond-
ing to low-level information. (b) This figure shows a
typical IS curve of a transformer factor corresponds to
mid-level information.

word-level disambiguation, sentence-level pattern
formation, and long-range dependency. In the fol-
lowing, we provide detailed visualization for each
pattern category. Due to the space limit, only a
small amount of the factors are demonstrated in the
paper. To alleviate the “cherry-picking” bias, we
also build a website for the interested readers to
play with these results.

Low-level: word-level polysemy disambigua-
tion. While the input embedding of a token con-
tains polysemy, we find transformer factors with
early IS curve peaks usually correspond to a spe-
cific word-level meaning. By visualizing the top
activation sequences, we can see how word-level
disambiguation is gradually developed in a trans-
former.

We show how the disambiguation effect devel-
ops progressively through each layer in Figure 3.
In Figure 3, the top 5 activated words and their
contexts for transformer factor Φ:,30 in different
layers are listed. The top activated words in layer
0 contain the word “left” varying senses, which is
being mostly disambiguated in layer 2 albeit not
completely. In layer 4, the word “left” is fully
disambiguated since the top-activated word con-
tains only “left” with the word sense “leaving, exit-
ing.” We also show more examples of those types
of transformer factors in Table 1: for each trans-
former factor, we list out the top 3 activated words
and their contexts in layer 4. As shown in the table,
nearly all top-activated words are disambiguated
into a single sense.

Further, we can quantify the quality of the disam-
biguation ability of the transformer model. In the
example above, since the top 1000 activated words
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(a) layer 0 (b) layer 2 (c) layer 6

Figure 3: Visualization of a low-level transformer factor, Φ:,30 at different layers. (a), (b) and (c) are the top-
activated words and contexts for Φ:,30 in layer-0, 2 and 4 respectively. We can see that at layer-0, this transformer
factor corresponds to word vectors that encode the word “left” with different senses. In layer-2, a majority of the
top activated words “left” correspond to a single sense, "leaving, exiting." In layer 4, all of the top-activated words
“left” have corresponded to the same sense, "leaving, exiting." Due to space limitations, we invite the readers to
use our website to see more of those disambiguation effects.

Top 3 activated words and their contexts Explanation

Φ:,2

• that snare shot sounded like somebody’ d kicked open the door to your
mind".
• i became very frustrated with that and finally made up my mind to start
getting back into things."
• when evita asked for more time so she could make up her mind, the crowd
demanded," ¡ ahora, evita,<

• Word “mind”
• Noun
• Definition: the element of a
person that enables them to be
aware of the world and their ex-
periences.

Φ:,16

•nington joined the five members xero and the band was renamed to linkin
park.
• times about his feelings about gordon, and the price family even sat away
from park’ s supporters during the trial itself.
• on 25 january 2010, the morning of park’ s 66th birthday, he was found
hanged and unconscious in his

• Word “park”
• Noun
• Definition: a common first and
last name

Φ:,30

• saying that he has left the outsiders, kovu asks simba to let him join his
pride
• eventually, all boycott’ s employees left, forcing him to run the estate without
help.
• the story concerned the attempts of a scientist to photograph the soul as it
left the body.

• Word “left"
• Verb
• Definition: leaving, exiting

Φ:,33

• forced to visit the sarajevo television station at night and to film with as
little light as possible to avoid the attention of snipers and bombers.
• by the modest, cream@-@ colored attire in the airy, light@-@ filled clip.
• the man asked her to help him carry the case to his car, a light@-@ brown
volkswagen beetle.

• Word “light”
• Noun
• Definition: the natural agent
that stimulates sight and makes
things visible

Table 1: Several examples of low-level transformer factors. Their top-activated words in layer 4 are marked blue,
and the corresponding contexts are shown as examples for each transformer factor. As shown in the table, nearly
all of the top-activated words are disambiguated into a single sense. Please note the last example of Φ:,33 is a rare
exception, the reader may check the appendix to see a more complete list. More examples, top-activated words
and contexts are provided in Appendix.

and contexts are “left” with only the word sense
“leave, exiting”, we can assume “left” when used
as a verb, triggers higher activation in Φ:,30 than
“left” used as other sense of speech. We can verify
this hypothesis using a human-annotated corpus:
Brown corpus (Francis and Kucera, 1979). In this
corpus, each word is annotated with its correspond-
ing part-of-speech. We collect all the sentences
contains the word “left” annotated as a verb in one
set and sentences contains “left” annotated as other

part-of-speech. As shown in Figure 4a, in layer 0,
the average activation of Φ:,30 for the word “left”
marked as a verb is no different from “left” as other
senses. However, at layer 2, “left” marked as a
verb triggers a higher activation of Φ:,30. In layer
4, this difference further increases, indicating dis-
ambiguation develops progressively across layers.
In fact, we plot the activation of “left” marked as
verb and the activation of other “left” in Figure 4b.
In layer 4, they are nearly linearly separable by this
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(a) (b)

Figure 4: (a) Average activation of Φ:,30 for word vector “left” across different layers. (b) Instead of averaging, we
plot the activation of all “left” with different contexts in layer-0, 2, and 4. Random noise is added to the y-axis to
prevent overplotting. The activation of Φ:,30 for two different word senses of “left” is blended together in layer-0.
They disentangle to a great extent in layer-2 and nearly separable in layer-4 by this single dimension.

(a) layer 4 (b) layer 6 (c) layer 8

Figure 5: Visualization of a mid-level transformer factor. (a), (b), (c) are the top 5 activated words and contexts
for this transformer factor in layer-4, 6, and 8 respectively. Again, the position of the word vector is marked blue.
Please notice that sometimes only a part of a word is marked blue. This is due to that BERT uses word-piece
tokenizer instead of whole word tokenizer. This transformer factor corresponds to the pattern of “consecutive
adjective”. As shown in the figure, this feature starts to develop at layer-4 and fully develops at layer-8.

Precision
(%)

Recall
(%)

F1 score
(%)

Average perceptron POS
tagger

92.7 95.5 94.1

Finetuned BERT base
model for POS task

97.5 95.2 96.3

Logistic regression clas-
sifier with activation of
Φ:,30 at layer 4

97.2 95.8 96.5

Table 2: Evaluation of binary POS tagging task: predict
whether or not “left” in a given context is a verb.

single feature. Since each word “left” corresponds
to an activation value, we can perform a logistic
regression classification to differentiate those two
types of “left”. From the result shown in Figure 4a,
it is pretty fascinating to see that the disambigua-
tion ability of just Φ:,30 is better than the other two
classifiers trained with supervised data. This result
confirms that disambiguation is indeed done in the
early part of pre-trained transformer model and we

are able to detect it via dictionary learning.

Mid level: sentence-level pattern formation. We
find most of the transformer factors, with an IS
curve peak after layer 6, capture mid-level or high-
level semantic meanings. In particular, the mid-
level ones correspond to semantic patterns like
phrases and sentences pattern.

We first show two detailed examples of mid-level
transformer factors. Figure 5 shows a transformer
factor that detects the pattern of consecutive usage
of adjectives. This pattern starts to emerge at layer
4, develops at layer 6, and becomes quite reliable at
layer 8. Figure 6 shows a transformer factor, which
corresponds to a pretty unexpected pattern: “unit
exchange”, e.g., 56 inches (140 cm). Although this
exact pattern only starts to appear at layer 8, the
sub-structures that make this pattern, e.g., paren-
thesis and numbers, appear to trigger this factor in
layers 4 and 6. Thus this transformer factor is also

5



(a) layer 4 (b) layer 6 (c) layer 8

Figure 6: Another example of a mid-level transformer factor visualized at layer-4, 6, and 8. The pattern that cor-
responds to this transformer factor is “unit exchange”. Such a pattern is somewhat unexpected based on linguistic
prior knowledge.

2 example words and their contexts with high activation Patterns L4
(%)

L6
(%)

L8
(%)

L10
(%)

Φ:,13

• the steel pipeline was about 20 ° f(- 7 ° c) degrees.
• hand( 56 to 64 inches( 140 to 160 cm)) war horse is that
it was a

Unit exchange with paren-
theses 0 0 64.5 95.5

Φ:,42

• he died at the hospice of lancaster county from heart
• holly’ s drummer carl bunch suffered frostbite to his
toes( while aboard the ailments on 23 june 2007.

Something unfortunate
happened 94.0 100 100 100

Φ:,50

• hurricane pack 1 was a revamped version of story mode;
• in 1998, the categories were retitled best short form
music video, and best

Doing something again,
or making something new
again

74.5 100 100 100

Φ:,86

• he finished the 2005 – 06 season with 21 appearances
and seven goals.
• of an offensive game, finishing off the 2001 – 02 season
with 58 points in the 47 games

Consecutive years, used
in foodball season nam-
ing

0 100 85.0 95.5

Φ:,102

• the most prominent of which was bishop abel muzorewa’
s united african national council
• ralambo’ s father, andriamanelo, had established rules of
succession by

African names 99.0 100 100 100

Φ:,125

• music writer jeff weiss of pitchfork describes the" endur-
ing image"
• club reviewer erik adams wrote that the episode was a
perfect mix

Describing someone in a
paraphrasing style. Name,
Career

15.5 99.0 100 98.5

Φ:,184

• the world wide fund for nature( wwf) announced in 2010
that a biodiversity study from
• fm) was halted by the federal communications commis-
sion( fcc) due to a complaint that the company buying

Institution with abbrevia-
tion 0 15.5 39.0 63.0

Φ:,193

• 74, 22@,@ 500 vietnamese during 1979 – 92, over
2@,@ 500 bosnian
•, the russo@-@ turkish war of 1877 – 88 and the first
balkan war in 1913.

Time span in years 97.0 95.5 96.5 95.5

Φ:,195

•s, hares, badgers, foxes, weasels, ground squirrels, mice,
hamsters
•-@ watching, boxing, chess, cycling, drama, languages,
geography, jazz and other music

Consecutive of noun
(Enumerating) 8.0 98.5 100 100

Φ:,225

• technologist at the united states marine hospital in key
west, florida who developed a morbid obsession for
• 00°,11”, w, near smith valley, nevada.

Places in US, follow-
ings the convention “city,
state"

51.5 91.5 91.0 77.5

Table 3: A list of typical mid-level transformer factors. The top-activation words and their context sequences for
each transformer factor at layer-8 are shown in the second column. We summarize the patterns of each transformer
factor in the third column. The last 4 columns are the percentage of the top 200 activated words and sequences that
contain the summarized patterns in layer-4,6,8, and 10 respectively.

gradually developed through several layers.

While some mid-level transformer factors verify
common semantic or syntactic patterns, there are
also many surprising mid-level transformer factors.
We list a few in Table 3 with quantitative analysis.

For each listed transformer factor, we analyze the
top 200 activating words and their contexts in each
layer. We record the percentage of those words and
contexts that correspond to the factors’ semantic
pattern in Table 3. From the table, we see that large
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Adversarial Text Explaination α35

(o) album as "full of exhilarating, ecstatic, thrilling, fun and
sometimes downright silly songs"

The original top-activated word and its
context sentence for transformer factor
Φ:,35 (not an adversarial text)

9.5

(a) album as "full of delightful, lively, exciting, interesting
and sometimes downright silly songs"

Replace the adjectives in sentence (o)
with different adjectives. 9.2

(b) album as "full of unfortunate, heartbroken, annoying, bor-
ing and sometimes downright silly songs"

Replace the adjectives in sentence (o)
with negative adjectives. 8.2

(c) album as "full of [UNK], [UNK], thrilling, [UNK] and
sometimes downright silly songs"

Mask the adjectives in sentence (o)
with unknown tokens. 5.3

(d) album as "full of thrilling and sometimes downright silly
songs"

Remove the first three adjectives in sen-
tence (o). 7.8

(e) album as "full of natural, smooth, rock, electronic and
sometimes downright silly songs"

Replace the adjectives in sentence (o)
with neutral adjectives. 6.2

(f) each participant starts the battle with one balloon. these
can be re@-@ inflated up to four Use a random sentence. 0.0

(g) The book is described as "innovative, beautiful and bril-
liant". It receive the highest opinion from James Wood

We create this sentence that contain the
pattern of consecutive adjective. 7.9

Table 4: We construct adversarial texts similar but different to the pattern “Consecutive adjective”. The last column
shows the activation of Φ:,35, or α(8)

35 , w.r.t. the blue-marked word in layer 8.

percentages of top-activated words and contexts
do corresponds to the pattern we describe. It also
shows most of these mid-level patterns start to de-
velop at layer 4 or 6. More detailed examples are
provided in the appendix section F. Though it’s still
mysterious why the transformer network develops
representations for these surprising patterns, we
believe such a direct visualization can provide ad-
ditional insights, which complements the “probing
tasks”.

To further confirm a transformer factor does
correspond to a specific pattern, we can use con-
structed example words and context to probe their
activation. In Table 4, we construct several text
sequences that are similar to the patterns corre-
sponding to a particular transformer factor but with
subtle differences. The result confirms that the con-
text that strictly follows the pattern represented by
that transformer factor triggers a high activation.
On the other hand, the closer the adversarial exam-
ple to this pattern, the higher activation it receives
at this transformer factor.

High-level: long-range dependency. High-level
transformer factors correspond to those linguistic
patterns that span an extended range in the text.
Since the IS curves of mid-level and high-level
transformer factors are similar, it is difficult to dis-
tinguish those transformer factors based on their
IS cures. Thus, we have to manually examine the
top-activation words and contexts for each trans-
former factor to differentiate between mid-level
and high-level transformer factors. To ease the
process, we choose to use the black-box interpreta-

tion algorithm LIME (Ribeiro et al., 2016) to iden-
tify the contribution of each token in a sequence.
There also exist interpretation tools that specifically
leverage the transformer architecture (Chefer et al.,
2021, 2020). In the future, one could adapt those
interpretation tools, which may potentially provide
better visualization.

Given a sequence s ∈ S, we can treat α(l)
c,i , the

activation of Φ:,c in layer-l at location i, as a scalar
function of s, f (l)

c,i (s). Assume a sequence s trig-

gers a high activation α
(l)
c,i , i.e. f (l)

c,i (s) is large. We
want to know how much each token (or equivalently
each position) in s contributes to f

(l)
c,i (s). To do

so, we generated a sequence set S(s), where each
s′ ∈ S(s) is the same as s except for that several
random positions in s′ are masked by [‘UNK’] (the
unknown token). Then we learns a linear model
gw(s

′) with weights w ∈ RT to approximate f(s′),
where T is the length of sentence s. This can be
solved as a ridge regression:

min
w∈RT

L(f, w,S(s)) + σ‖w‖22.

The learned weights w can serve as a saliency
map that reflects the “contribution” of each token
in the sequence s. Like in Figure 7, the color re-
flects the weights w at each position. Red means
the given position has positive weight and green
means negative weight. The magnitude of weight
is represented by the intensity. The redder a token
is, the more it contributions to the activation of
the transformer factor. We leave more implementa-
tion and mathematical formulation details of LIME
algorithm in the appendix.
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We provide detailed visualization for two differ-
ent transformer factors that show long-range depen-
dency in Figure 7, 8. Since visualization of high-
level information requires more extended context,
we only offer the top two activated words and their
contexts for each such transformer factor. Many
more will be provided in the appendix section G.

We name the pattern for transformer factor Φ:,297

in Figure 7 as “repetitive pattern detector”. All top
activated contexts for Φ:,297 contain an obvious
repetitive structure. Specifically, the text snippet
“can’t get you out of my head" appears twice in the
first example, and the text snippet “xxx class pas-
senger, star alliance” appears three times in the sec-
ond example. Compared to the patterns we found
in the mid-level [6], the high-level patterns like
“repetitive pattern detector” are much more abstract.
In some sense, the transformer detects if there are
two (or multiple) almost identical embedding vec-
tors at layer-10 without caring what they are. Such
behavior might be highly related to the concept
proposed in the capsule networks (Sabour et al.,
2017; Hinton, 2021). To further understand this be-
havior and study how the self-attention mechanism
helps model the relationships between the features
outlines an interesting future research direction.

Figure 8 shown another high-level factor, which
detects text snippets related to “the beginning of
a biography”. The necessary components, day of
birth as month and four-digit years, first name and
last name, familial relation, and career, are all mid-
level information. In Figure 8, we see that all the
information relates to biography has a high weight
in the saliency map. Thus, they are all together
combined to detect the high-level pattern.

Figure 7: Two examples of the high activated words
and their contexts for transformer factor Φ:,297. We
also provide the saliency map of the tokens generated
using LIME. This transformer factor corresponds to the
concept: “repetitive pattern detector”. In other words,
repetitive text sequences will trigger high activation of
Φ:,297.

Figure 8: Visualization of Φ:,322. This transformer fac-
tor corresponds to the concept: “some born in some
year” in biography. All of the high-activation contexts
contain the beginning of a biography. As shown in the
figure, the attributes of someone, name, age, career, and
familial relation all have high saliency weights.

4 Discussion

Dictionary learning has been successfully used to
visualize the classical word embeddings (Arora
et al., 2018; Zhang et al., 2019). In this paper,
we propose to use this simple method to visual-
ize the representation learned in transformer net-
works to supplement the implicit “probing-tasks”
methods. Our results show that the learned trans-
former factors are relatively reliable and can even
provide many surprising insights into the linguis-
tic structures. This simple tool can open up the
transformer networks and show the hierarchical
semantic or syntactic representation learned at dif-
ferent stages. In short, we find word-level disam-
biguation, sentence-level pattern formation, and
long-range dependency. The idea of a neural net-
work learns low-level features in early layers, and
abstract concepts in the later stages are very simi-
lar to the visualization in CNN (Zeiler and Fergus,
2014). Dictionary learning can be a convenient
tool to help visualize a broad category of neural
networks with skip connections, like ResNet (He
et al., 2016), ViT models (Dosovitskiy et al., 2020),
etc. For more interested readers, we provide an
interactive website1 for the readers to gain some
further insights.
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Abstract
In this work we propose an approach for gener-
ating statements that explicate implicit knowl-
edge connecting sentences in text. We make
use of pre-trained language models which we
refine by fine-tuning them on specifically pre-
pared corpora that we enriched with implicit
information, and by constraining them with
relevant concepts and connecting common-
sense knowledge paths. Manual and automatic
evaluation of the generations shows that by re-
fining language models as proposed, we can
generate coherent and grammatically sound
sentences that explicate implicit knowledge
which connects sentence pairs in texts – on
both in-domain and out-of-domain test data.

1 Introduction

In everyday communication and in texts people
usually omit information that seems clear and
evident, such that only part of the message needs to
be expressed in words. In the following sentence:

(1-i) Students should be allowed to use com-
puters during the lectures, (1-ii) even though that
bears the risk that they are writing emails instead
of listening to the teacher.

in order to understand the connection between (i)
and (ii) we must know that Computers are used
for sending emails, or that Lectures are given by
teachers. Such implicit knowledge can easily be
inferred by humans, since it is part of their back-
ground knowledge. By contrast, for computational
systems implicitness in texts represents a challenge.

In this work we propose an approach for gen-
erating implicit knowledge sentences in-between
contiguous sentences, which explicate their logi-
cal connection, utilizing pre-trained language mod-
els (LMs) that we refine as follows: i) we inject
’explanatory’ knowledge by fine-tuning LMs on
specifically prepared corpora, and (ii) condition
text generation through constraints in form of rel-
evant concepts and knowledge paths. Our work is

inspired by the recent success of pre-trained LMs
(Devlin et al., 2018; Radford et al., 2019; Yang
et al., 2019a) in various downstream NLP tasks,
including text generation and NL inference (Wang
et al., 2018). However, for the task of reconstruct-
ing implicit knowledge, such LMs need to be care-
fully guided, not only to yield coherent statements,
but to also ensure that they convey the missing, im-
plicit information that connects given sentences in
a text. To this end we create corpora with sentence
pairs enriched with implicit information based on
on Generics-KB (Bhakthavatsalam et al., 2020) and
e-SNLI (Camburu et al., 2018), which we use for
LM fine-tuning. For improved performance we ex-
plore methods of constrained language generation,
guiding the model by way of relevant concepts and
connecting commonsense knowledge paths.

We aim to build a system that is not limited to
specific text genres or knowledge domains, and
thus evaluate our models in-domain – on testsets
from our fine-tuning corpora; and out-of-domain –
using IKAT (Becker et al., 2020), an argumentative
corpus which offers sentence pairs annotated with
implicit knowledge that connects them.

A central contribution of this work is an in-
depth evaluation of the quality of generations de-
livered by different model variants, and their ability
of expressing implicitly conveyed knowledge. We
propose a manual evaluation setup covering four
dimensions – grammaticality, coherence, content,
and comparison to gold references – , and compare
these to various automatic evaluation metrics. Our
experiments show that with our proposed approach
we can generate coherent sentences that explicate
implicit knowledge that connects given sentence
pairs; and that current text generation metrics are
not sufficient to evaluate this challenging task.

Our contributions are: (i) We empirically com-
pare different types of LMs, exploring which model
is best suited for the task of generating sentences
that express implicit information between sen-
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tences. (ii) We create datasets that include implicit
information holding between sentence pairs, which
we use for fine-tuning our LMs, and which can
be used for general commonsense reasoning tasks.
(iii) We propose a method for constrained genera-
tion by injecting concepts or commonsense knowl-
edge paths as language modeling constraints, and
show that key concepts, and even more, knowl-
edge paths improve the quality of generations. (iv)
We carefully evaluate the quality of the generated
implicit knowledge sentences, both manually and
automatically, and discuss strengths and limitations
of automatic similarity metrics.1

2 Related Work

Recent progress in pretraining LMs on large text
corpora led to improvements for various down-
stream NLP tasks. It has also been shown that
knowledge acquired during pre-training can be
leveraged by fine-tuning these models to advanced
semantic inference or NL generation tasks (Wang
et al. 2018). Recently, pre-trained LMs have been
augmented with external knowledge from com-
monsense knowledge bases such as ConceptNet,
which provides more explicit knowledge ground-
ing and improves their performance on downstream
tasks that require reasoning abilities. Wang et al.
(2020b), for example, retrieve multi-hop knowl-
edge paths from ConceptNet for fine-tuning LMs
for multiple choice question answering. Chang
et al. (2020) and Bosselut et al. (2021) incorporate
knowledge paths from ConceptNet into pre-trained
LMs for solving the SocialIQA task (Sap et al.,
2019). However, all these approaches evaluate the
effectiveness of integrating commonsense knowl-
edge indirectly on downstream tasks, and do not ex-
plicitly evaluate the impact and relevance of knowl-
edge for a specific system prediction. We address
this shortcoming by generating and carefully eval-
uating statements that connect pairs of sentences
as explanations of their underlying, implicit knowl-
edge link. Closest to this aim is the task of explana-
tion generation, which has received attention very
recently. Wang et al. (2020a) propose the SemEval-
2020 Task 4 (Subtask C), which is to generate an
explanation for why a statement does not make
sense, by way of a natural language statement. A
comparison of the participating systems (cf. Peru-

1The code for our proposed approach can be found here:
https://github.com/Heidelberg-NLP/LMs4Im
plicit-Knowledge-Generation.

mal et al./Jon et al. 2020) shows that pre-trained
LMs play a central role in the success of the top-
performing systems, demonstrating that they con-
tain commonsense information to a good extent.
The success of models enriched with knowledge
from external sources such as ConceptNet further-
more shows that additional knowledge supports the
generation of commonsense explanations. How-
ever, there is still a large gap between systems and
human performance.

Pre-trained LMs enhanced with commonsense
knowledge have also been the models of choice for
other text generation tasks, e.g. dialogue genera-
tion (Zhou et al., 2018), story ending generation
(Guan et al., 2020), or abductive NLI (Ji et al.,
2020b). While these models aim at generating ex-
planations for a single statement, or completing a
given sequence of sentences, we investigate how to
make use of LMs to generate a sentence that fills
in implicit knowledge between two sentences.

Constraining LMs. Recent work addresses
how to control content in LM text generation, while
maintaining fluency, coherence and plausibility of
the generated text. Lin et al. (2020) explore how
to generate a coherent and plausible situation de-
scription given an unordered set of concepts as in-
put, and find that even pre-trained LMs (BART, T5)
fine-tuned to this task cannot solve it: the generated
sentences are grammatical, but highly implausible,
lacking commonsense. This suggests that either
the underlying LMs, or input constraints for gener-
ation need to incorporate commonsense knowledge.
Orbach and Goldberg (2020) attempt to control the
content when generating longer stories by specify-
ing facts the story needs to include. They propose
a plan-and-cloze model that first creates a cloze
template, placing input facts at fixed positions in
the output. In the cloze step, the system expands
the fact tokens into complex sentences that com-
plete the story. While uni-directional LMs such
as GPT-2 or BART generate fluent text but do not
well adhere to the desired content, the fine-tuned
multi-directional XLNet outputs coherent text and
adheres to the facts.

While none of the above works incorporate exter-
nal knowledge to guide generation, Ji et al. (2020a)
perform explanation generation for single state-
ments, using ConceptNet background knowledge.
The model selects concepts from the statement,
retrieves connecting paths from ConceptNet, and
selects bridge concepts from a subgraph. A pre-
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trained decoder generates the explanation, using as
input the statement and top-ranked concepts from
the subgraph. In our work we also select concepts
from texts, but dynamically generate commonsense
knowledge paths as constraints. Importantly, we
aim to generate coherent explanations in-between
sentences – a challenge for uni-directional LMs.

3 Knowledge-constrained text generation

3.1 Task Definition and Approach

The task we tackle in this work is: given two con-
tiguous sentences (source sentences S1, S2), gen-
erate an explanatory sentence (target sentence T )
that explains the underlying, implicit information
that connects them. We explore different types of
LMs and their aptness for solving this task. We
fine-tune them on existing or adapted datasets to
inject relevant knowledge, and add key concepts
or connecting knowledge-paths as constraints to
achieve coherent and informative explanations.

3.2 Types of Language Models

We compare three types of LMs: GPT-2 (Radford
et al., 2019), an autoregressive model which gener-
ates the output sequence from left to right; XLNet
(Yang et al., 2019b), a bidirectional generalized au-
toregressive LM; and BART (Lewis et al., 2019),
a seq2seq model with a bidirectional masked en-
coder and a left-to-right decoder. While GPT-2 and
BART generate the next tokens seeing only the left
(previous) context, XLNet predicts the next tokens
based on the left and right context, in a random or-
der. GPT-2 is pre-trained on web pages from Com-
monCrawl, XLNet on CommonCrawl+ClueWeb
(Callan et al., 2009), and BART on the CNN/DM
summarization dataset (Hermann et al., 2015).

3.3 Fine-tuning LMs

Task-adapted Datasets for LM Fine-tuning. All
chosen LMs are pre-trained on information that is
explicit in text. To condition them to generate im-
plicit information that connects sentences, we fine-
tune them on datasets that include knowledge state-
ments connecting contiguous sentence pairs. We
create two such corpora, one based on Generics-KB
(Bhakthavatsalam et al., 2020), which offers state-
ments expressing generic knowledge; the other on
e-SNLI (Camburu et al., 2018), which comprises
explanations of inferential commonsense knowl-
edge. Each data instance contains two source sen-
tences S1, S2, a target sentence T , and two key

concepts c1, c2 which we extract from the original
data as described below. For examples see Table 1.

Generics-KB contains naturally occurring
generic sentences crawled from the web using lin-
guistic rules and BERT-based scoring. It is rich in
high-quality statements that express generic knowl-
edge. Each generic sentence occurs in its surround-
ing context (1-5 sents before/after), hence each
instance forms a triple consisting of the context
before (Cb), the generic sentence (GS) and the
context after (Ca). We collect all instances where
a phrase p1 (NP, VP, ADJP or ADVP) from GS
also occurs in Cb, and another phrase p2 from GS
occurs in Ca. For each instance we extract the
sentence containing p1 and the one containing p2
as our source sentences S1, S2; GS as our target
sentence T ; and p1 and p2 as key concepts c1, c2.

e-SNLI is an extension of the SNLI dataset
(Bowman et al., 2015), additionally annotated with
explanations: Given a premise-hypothesis pair and
the relation between them (entailment, contradic-
tion, or neutral), annotators added natural language
sentences that explain why the pair is in the rela-
tion. Annotators had to mark essential key phrases
for the relation in premise and hypothesis, and had
to formulate explanations that employ these key
phrases. For fine-tuning and testing our models,
we consider all instances labelled with entailment
and contradiction relations (but do not include the
labels in fine-tuning). We interpret premise and hy-
pothesis as our source sentences S1 and S2, the ex-
planation as our target sentence T , and the marked
key phrases as our key concepts c1 and c2.

In- and Out-Of-Domain Test Sets. We test the
resulting models in-domain – on testsets from our
fine-tuning corpora; and out-of-domain – on the
IKAT dataset (Becker et al., 2020), which is based
on the argumentative Microtexts Corpus (Peldszus
and Stede, 2015). For all sentence pairs S1 and S2

that are adjacent or argumentatively related, anno-
tators added the implicit knowledge that connects
them, using simple sentences, which we use as tar-
gets T . They also marked two key phrases in each
implicit knowledge sentence, where in most cases
one key phrase appears in the first source sentence,
and the other in the second – which we interpret as
key concepts c1 and c2 in our approach.

3.4 Constraining Explanation Generation

Our hypothesis is that unconditioned generation
may not be sufficient to produce statements carry-
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Dataset Source Sentence 1 Source Sentence 2 Target Sentence Key Concepts Paths
G-KB The patient is assessed

for pain every 4 hours.
Combination of treatments
are needed for effective
pain management.

Pain management
is provided for pa-
tients in pain.

pain manage-
ment, patients

pain manage-
ment USEDFOR
patients

eSNLI The city has a lot of peo-
ple in it.

It is busy city that looks
like New York City

A city that is busy
has a lot of people
in it.

a lot of people,
busy city

busy city HAS-
PROPERTY a lot
of people

IKAT Education and training
are fundamental rights
which the state must pro-
vide.

If a university lacks the
fundings, sponsors must
be found.

Education and train-
ing must be funded.

education and
training, fund-
ings

education and
training HAS
PREREQUISITE
fundings

Table 1: Source sentence pairs and target sentences (reference) from our three datasets, with marked key concepts and
automatically predicted knowledge paths between them.

G
en

-K
B BL Patients often report back to the clinic with a worsening pain condition within one to two hours of first assessment.

+c Patients often have few if any symptoms at first, but pain becomes less intense and less frequent in coming hours.
+p Patients are admitted to the hospital with moderate to high intensity pain.

e-
SN

L
I BL A busy city that looks like new york city has a lot of people in it, so the city has to have a lot to people in the city.

+c The city has a lot of people in it because it is a busy city.
+p A busy city implies that there are a lot of people in the city.

IK
A

T BL The state and society must be found if a university lacks the funds to provide education and training.
+c The state and the society must pay for education and training if the university lacks the funds.
+p If a university lacks the funds, it can not be providing education and training to its students.

Table 2: Example generations for pairs from Tab. 1, from BART: w/o constraints or constrained w/ concepts (c) or paths (p).

ing relevant knowledge which explains the connec-
tion between two sentences. Hence we experiment
with direct injection of constraints or triggers to
guide the generation to emit meaningful and coher-
ent implicit knowledge statements: We include (i)
key concepts as offered by each dataset, since we
expect them to direct the model towards concepts
that are relevant for explaining how the two sen-
tences are related. We also include (ii) relational
knowledge between the key concepts as constraints,
by establishing multi-hop knowledge paths be-
tween them. To this end we combine relation clas-
sification and target prediction models specifically
adapted to ConceptNet. The two respective models
are based on LMs fine-tuned on ConceptNet (Speer
et al., 2017), a large network that represents com-
monsense facts.2 We generate single- and multihop
paths between key concepts from a sentence pair,
and use these paths as constraints when generating
target sentences. We expect the generated paths to
provide useful relational information for the model.
Example paths appear in Table 1.

4 Data and Experimental Setup

Datasets. We use the data from GenericsKB and
e-SLNI for fine-tuning and testing models (in-

2Details about the models appear in the Appendix.

domain), and IKAT for testing out-of-domain.3 For
statistics see Table 3. All instances contain two
source sentences S1,2, a target sentence T , and two
key concepts c1,2, where c1∈S1, c2∈S2, and c1,2
∈ T . We experiment with c1,2, and with paths p
generated between c1 and c2 as constraints, which
we establish as explained above.

Input Sequences. We build the input sequences
by concatenating the source sentences S1 and S2,
separated by a SEP token. When including key con-
cepts c1,2 or knowledge paths p as constraints, we
append them to the input sequence right after S1

and S2, separated by a SEP token. Thus, the con-
cepts and paths we use as constraints are encoded
by the tokenizer of each language model together
with the rest of the input sequence. Accordingly,
our input sequences are structured as follows:
S1 <SEP> S2 <SEP> (c1, c2|p) <EOT> T .

Fine-tuning LMs. For LM fine-tuning, we ap-
pend the target sentence to the input sequence, sep-
arated from the rest of the input by an EOT tag.
GPT-2 and XLNet are trained to reconstruct the
target sentence T . During inference, the models
only see the source sentences, and constraints if

3In preliminary experiments we also tried to fine-tune our
LMs on GenericsKB and e-SNLI together, which did not im-
prove results compared to when using these datasets separately
for fine-tuning – most likely because the datasets are very dif-
ferent from each other in terms of linguistic characteristics
(e.g. sentence lengths and structure) and the covered topics.
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train dev test eval-1 eval-2
G-KB 21,644 6,184 3,091 10 30

e-SNLI 18,160 2,028 1,002 10 30
IKAT - - 719 10 40

Table 3: Datasets: Nb. of source sentence pairs with associ-
ated implicit knowledge sentences, used for fine-tuning and
testing; and subsets from test used in evaluations.

given, and they complete the input sequence by
generating T . In contrast, BART encodes S1 and
S2, and its decoder is trained to predict T based on
the encoded source sentences.

We use the pre-trained models from Hugging-
Face Transformers (Wolf et al., 2019) and adapt
them for fine-tuning on our customized training
data. In order to generate compact sentences cap-
turing the relevant implicit knowledge (instead of
long explanations), we set a length limitation of 20
tokens for each generation. More details about our
models are listed in the Appendix.

5 Evaluation and Results

This section presents an in-depth evaluation of
the quality of generations from different model
variants, and their ability of expressing implicitly
conveyed knowledge. We design a manual evalua-
tion setup covering various dimensions, and com-
pare the results to several automatic evaluation
metrics. We conduct evaluation in-domain on our
customized test data; and out-of-domain on IKAT.

5.1 Manual Evaluation

Questions to Annotators.4 To filter out source
sentence pairs between which no implicit infor-
mation is missing, we first ask the annotators for
each source sentence pair if they are implicitly con-
nected by some (unexpressed) piece of knowledge
(yes/no). The annotators are then guided through
follow-up questions covering four dimensions:
(1) Grammaticality – we ask if the generated sen-
tence is grammatically correct, given the choices
correct, almost correct (minor grammatical errors),
and incorrect (major grammatical errors);
(2) Coherence – we ask if the generated sentence is
logically and semantically consistent with respect
to the two source sentences, given the choices fully
coherent, partly coherent, or incoherent;
(3) Content – we ask if the generated sentence

4The annotation manual together with example annotations
can be found here: https://github.com/Heidelber
g-NLP/LMs4Implicit-Knowledge-Generation/
blob/main/manual.pdf

gives an explanation of the connection between
the two source sentences, given the choices yes,
neutral (if the generated sentence is related to the
source sentences, but not in a clear logical relation),
and no (if the sentence is misleading or contradic-
tory in the context of the source sentences);5 (4)
Comparison to the annotated reference sentence
6 – we ask if the generated sentence is similar in
meaning to the reference, given the choices similar,
partly similar, or not similar. In addition, we ask
if the reference sentence or the generated sentence
is a more meaningful explanation of the implicit
knowledge that connects the source sentences, or
if both are equally meaningful explanations.

Annotation Setup. Our goal is to investigate
which model variant is best suited for generating
grammatically sound, coherent and meaningful ex-
planations. We approach this question with two
annotation rounds: In a first round we aim to de-
termine which model is best suited for generating
implicitly conveyed knowledge, and which dataset
is best suited for fine-tuning the model for gen-
erating statements on out-of-domain test sets. In
a second annotation round we aim to determine
which types of constraints yield best results, now
restricted to the best performing model and training
setup, as determined in round one.

Annotator Agreement. Annotation was per-
formed by two annotators with a background in
computational linguistics. We measure IAA using
Cohen’s Kappa, combined over round one and two,
and achieve an agreement of 95% on dimension 1,
80% on 2, 77% on 3, and on dimension 4 82% for
the first and 78% for the second question. Remain-
ing conflicts were resolved by an expert annotator.

5.1.1 Best Model Type and Fine-Tuning Data
For the first annotation round we sample 10 source
sentence pairs from each testset, hence 30 pairs
overall, and the sentences generated by GPT-2, XL-
Net and BART for each instance, using concepts as

5The difference between dimension 2 and 3 is that with
dimension 2 (coherence), we want to explore if the generated
sentence semantically fits to the two given source sentences.
We understand coherence together with Hobbs (1979) as the
existence of specific knowledge relations that hold between
concepts in a text (or discourse), such as Cause-Effect, Con-
dition, or Temporal Sequence, cf. Wolf and Gibson (2004).
These relations make the texts interpretable and informative
and are motivated ultimately by the speaker’s or writer’s need
to be understood (Hobbs, 1979). In contrast, when evaluat-
ing the content of the generated sentence in dimension 3, we
want to discover if the sentence really explains the connection
between the two source sentences.

6The reference sentence is only provided for Question 4.
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Figure 1: Example generations for the IKAT test set, for all three models, fine-tuned on e-SNLI vs. GenericsKB, with concepts
vs. paths as constraints.

constraints. For IKAT, we consider the sentences
generated by each model fine-tuned on e-SNLI
vs. GenericsKB. This sums up to 120 annotation
samples (generated sentences).7 In Fig. 1 we give
example generations for IKAT, for all three model
types, comparing fine-tuning on e-SNLI vs. Gener-
icsKB; and constraining with concepts vs. with
paths. More examples appear in the Appendix.

Results. For all 30 sentence pairs the annota-
tors agreed that there is some implicit information
connecting them. Table 4 displays the results of
the first annotation round for the four dimensions
described above. All three models are able to gener-
ate grammatically correct sentences (col. 1), with
BART’s generations scored as correct most often.
BART also generates the most coherent sentences
(col. 2), in-domain (e-SNLI and GenericsKB) and
out-of-domain (IKAT), followed by XLNet. For
dimension 3, which evaluates whether the gener-
ations are meaningful explanations of implicit
knowledge connecting the source sentences (col.
3), only BART fine-tuned on e-SNLI gives satisfac-
tory results (in-domain, when fine-tuned and tested
on e-SNLI; and out-of domain, when fine-tuned on

730 generated sents for e-SNLI and GenericsKB, resp. (10
source sents x 3 models), and 60 generated sents for IKAT (10
source sents x 3 models x 2 different fine-tuning datasets).

e-SNLI and tested on IKAT). Many of the genera-
tions from GPT-2 are judged as neutral (orange in
Table 4) or misleading (red). The last two columns
reflect the comparison of the generated vs. anno-
tated reference sentence (dimension 4). BART’s
generations are overall rated as most similar to the
reference sentence, especially when fine-tuned on
e-SNLI (in- and out-of-domain), and are judged as
better or equally good explanations compared to the
reference sentences in 70% (e-SNLI, in-domain)
and 50% (IKAT–e-SNLI, out-of-domain).

To summarize, according to our first round of
evaluation, the BART model generates the most
grammatical and coherent statements that are found
to explain the connection between the source sen-
tences best. They are also judged to be most sim-
ilar to the reference sentence. When applied on
out-of-domain testsets, BART performs best when
fine-tuned on e-SNLI.

5.1.2 Best Constraints
While the first round of annotations used a rela-
tively small set of 120 generated target sentences
that helped us to determine BART as the best-suited
model type, we now aim to deeper investigate the
generations of BART to study the effect of differ-
ent types of constraints on the quality of expla-
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DIMENSION Grammaticality Coherence Explanation Sim. to Reference Gen. vs. Ref.
CHOICES Yes/Almost/No Yes/Partly/No Yes/Neutral/No Yes/Partly/No GS/Both/RS

GPT-2 e-SNLI 60/30/10 30/20/50 60/20/20 40/20/40 20/20/60
G-KB 100/0/0 40/50/10 30/70/0 20/40/40 0/20/80
IKAT - e-SNLI 70/10/20 20/30/50 20/80/0 20/60/20 0/40/60
IKAT - G-KB 100/0/0 40/50/10 20/60/20 20/20/60 10/10/80

XLNet e-SNLI 90/10/0 60/20/20 60/20/20 60/20/20 30/30/40
G-KB 90/10/0 40/50/10 50/50/0 0/60/40 20/10/70
IKAT - e-SNLI 80/20/0 60/20/20 50/40/10 30/60/10 0/40/60
IKAT - G-KB 90/0/10 20/80/0 50/30/20 10/20/70 0/10/90

BART e-SNLI 100/0/0 100/0/0 100/0/0 80/20/0 40/30/30
G-KB 100/0/0 40/60/0 40/60/0 20/80/0 20/10/70
IKAT - e-SNLI 90/0/0 60/40/0 70/20/10 60/30/10 20/30/50
IKAT - G-KB 100/0/0 50/50/0 50/40/10 50/40/10 40/0/60

Table 4: Results of the 1st manual evaluation (in %). For all 10 source sentence pairs, each model generates a target sentence
when fine-tuned and tested in-domain on (i) e-SNLI and (ii) GenericsKB; or out-of-domain testing on IKAT, when fine-tuned on
(iii) e-SNLI or (iv) GenericsKB; with marked best/worst scores for in- and out-of domain testing.

nations. We provide our annotators with 70 new
source sentence pairs (20 from e-SNLI, 20 from
GenericsKB, 30 from IKAT), and three different tar-
gets per pair, generated by three model variants of
BART: (i) a baseline fine-tuned without any knowl-
edge constraints; (ii) BART fine-tuned using the
key concepts as constraints; and (iii) BART fine-
tuned using an automatically generated common-
sense knowledge path between the key concepts
as constraint. Since fine-tuning on e-SNLI has
been determined as best suited for out-of-domain
testing, we consider only generations from BART
fine-tuned on e-SNLI for testing on IKAT. In our
evaluation we consider the 70 sentence pairs and
the respective sentence generations from Round
2, and the generations for the 30 source sentence
pairs from the best performing model BART from
Round 1, resulting in 100 sentence pairs, with three
generations per pair.

Results. Similar to Round 1, for 98% of the
source sentence pairs the annotators agreed that
there is some implicit information connecting them.

Fig. 2 shows the results of the second round
of evaluations, example generations appear in Ta-
ble 2. We find that using knowledge constraints
improves the quality of generations compared to
the baseline without constraints, on all four dimen-
sions: on each of our three test sets, generations
are rated as more grammatical when constrained
with concepts and paths (with GenericsKB as only
exception); they are annotated as more coherent,
and rated as better explanations of implicit knowl-
edge. Knowledge constraints also lead to a higher
similarity to the reference sentence on all three
datasets, and sentences generated with knowledge
constraints are more often rated as better explana-

tions than the reference sentences. Overall we find
that knowledge paths improve scores over the base-
line more than concepts (a plus of 2–15 pp). The
improvements are most significant for IKAT, where
adding concepts boosts evaluation scores between
18 (Grammaticality) and 53 pp (Coherence), and
adding paths by 20 (Grammaticality) and 55 pp
(Coherence). The generations of BART, fine-tuned
on e-SNLI, as shown in the first example in Fig. 1,
demonstrate how the integration of paths as con-
straints can improve text generation even more than
when only injecting key concepts. The path used
as constraint is Germany’s aging society CAUSES

increasing costs. When constraining BART with
key concepts, it generates The social security and
pension costs are being paid for by the people of
Germany, while the generation with the knowledge
path as constraint is Social security and pension
costs are rising because more pension is needed for
elderly people in Germany). This shows that the
relation CAUSES gives our model an important hint
about the causal relation that is needed to explain
the connection between the two given sentences.

To summarize, the results from our second eval-
uation round clearly show that constraints in form
of relevant concepts and knowledge paths can help
LMs for generating grammatically sound, coherent
and meaningful explanations of the missing knowl-
edge between sentences, especially when applied
on out-of-domain test sets.

5.2 Automatic Evaluation

In our automatic evaluation setup, we apply a range
of different evaluation metrics commonly applied
in text generation tasks, which either measure the
similarity to a reference sentence (in our case, the
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Figure 2: Results of 2nd manual evaluation: comparing models constrained with concepts (+c) or paths (+p) against a baseline
without constraints. We display improvements in percentage points (pp) for the best option (blue bar) per dimension.

generic sentences in GenericsKB, inference expla-
nations in e-SNLI, or implicit knowledge state-
ments in IKAT); or the linguistic quality and di-
versity of the generated sentence.

(i) BLEU (Papineni et al., 2002) and ROUGE
(Lin, 2004) measure token overlap using ngrams.
We apply BLEU-1 to measure precision and
ROUGE-1 to measure recall based on unigrams;

(ii) BERT-Score (Zhang* et al., 2020) and
Sentence-BERT (Reimers and Gurevych, 2019)
compute semantic similarity scores for text se-
quences based on word or sentence representations.
BERT-Score uses BERT’s contextualized word em-
beddings to calculate a cross similarity score for
each token in the generation with each token in the
reference, while Sentence-BERT is fine-tuned on
NLI and STS to predict the similarity of two se-
quences. For BERT-Score we report F1 scores; for
Sentence-BERT we average the similarity scores
obtained for the generated vs. reference sentences.

(iii) S2Match (Opitz et al., 2020) is an AMR
graph matching metric, which measures the overlap
of the AMR semantic graphs that we construct from
the reference and generated sentence using Cai and
Lam (2020)’s parser, and reports accuracy;

(iv) Distinct-N (Li et al., 2015) and GRUEN
(Zhu and Bhat, 2020) are reference-free metrics that
only consider properties of the generated sentence.
Distinct-N measures the diversity of a sentence
by focusing on the number of distinct unigrams
(Distinct-1) and bigrams (Distinct-2); GRUEN eval-
uates the linguistic quality of a sentence in terms
of grammaticality, non-redundancy, and structure.

In a preliminary experiment based on the com-
plete test sets of Generics-KB, e-SNLI and IKAT
(cf. Table 3) we first investigate which model gen-
erates sentences that are most similar to the refer-
ence sentence (using reference-based metrics), or
which show highest linguistic quality and diversity
(using reference-free metrics); and which dataset
is best suited for fine-tuning the models for gener-
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e-SNLI 7.27 0.4 0.34 0.89 0.56 0.72 0.58 0.63
e-SNLI+c 12.71 0.47 0.38 0.90 0.63 0.75 0.66 0.63
e-SNLI+p 9.51 0.48 0.39 0.89 0.65 0.76 0.67 0.66
G-KB 1.22 0.15 0.31 0.88 0.53 0.71 0.62 0.82
G-KB+c 1.58 0.18 0.32 0.88 0.54 0.72 0.66 0.83
G-KB+p 1.14 0.17 0.31 0.89 0.56 0.73 0.67 0.80
IKAT 4.6 0.22 0.33 0.88 0.49 0.70 0.64 0.66
IKAT+c 6.06 0.31 0.42 0.90 0.63 0.72 0.67 0.71
IKAT+p 7.23 0.33 0.46 0.91 0.64 0.74 0.70 0.76

Table 5: Automatic similarity scores for generations of
best performing model BART, w/o constraints or with con-
cepts/paths as constraints. Adding concepts and paths im-
proves scores in-domain (e-SNLI and Generics-KB), and out-
of-domain (IKAT finetuned on e-SLNI).

ating statements on out-of-domain test sets (here,
IKAT). Results and detailed analysis of this experi-
ment appear in our Appendix. We find that decid-
ing which model performs best depends a lot on the
chosen similarity metric, but overall we don’t see
the clear superiority of the BART model (nor the
inferiority of GPT-2) that we determined through
manual evaluation. While in Dimension 4 of the
manual evaluation setup (where annotators judged
whether generated and reference sentence express
the same or similar meaning), BART was clearly
rated as the best performing model, this is not re-
flected in the automatic evaluation scores. Among
all metrics only SentenceBERT, giving highest
scores to BART, followed by XLNet, aligns with
our observations from manual evaluation. How-
ever, our other observation from manual evaluation
– that e-SNLI is the most appropriate dataset for
fine-tuing LMs for out-of-domain testing — aligns
with the scores obtained by automatic evaluation
metrics (for details, cf. Appendix).

We next analyse which types of constraints im-
prove generation, focusing on the BART model,
which has shown to be best for generating im-
plicit knowledge statements in our manual eval-
uation setup. Our automatic evaluation is based
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on the same subset of source sentence pairs used
for the second round of manual annotations (cf.
Table 3), and we again compare generations with-
out constraints to conditioning on key concepts or
knowledge paths.8 Results are displayed in Table
5. We observe that for all metrics, scores increase
when constraining LMs with concepts or knowl-
edge paths, with BLEU and S2Match scores for
GenericsKB as only exceptions. As in manual eval-
uation (Fig. 1), we find that improvements are most
significant for IKAT. The observed improvements
may in part be traced back to increased word over-
lap due to key concepts being used as constraints.
Yet we also observe that automatically generated
knowledge paths between these concepts improve
scores additionally – according to reference-based
metrics (showing that generations become more
similar to references), and reference-free metrics
(showing improvement of the linguistic quality and
diversity of generations). This points to the fact
that constraining LMs with automatically generated
relational knowledge is a promising step towards
generating grammatically correct and meaningful
implicit knowledge statements.

6 Discussion

Limitations of Automatic Evaluation Metrics
for Text Generations. Concluding, we pinpoint
two important limitations of automatic text genera-
tions metrics – especially reference-based ones: Be-
sides well-known issues regarding the reliability, in-
terpretability and biases of such metrics (Callison-
Burch et al., 2006), scores are mostly obtained by
comparing generations against a single reference,
which is – here, as in other generation tasks – often
only one among several valid options. For the task
of reconstructing implicit information, Becker et al.
(2017) show that annotators often propose differ-
ent valid sentences for filling knowledge gaps in
argumentative texts. For our setting this means that
a generated sentence may be a relevant explicita-
tion of implicit information, even if not similar to
the reference. Such cases are poorly or not at all
captured by automatic similarity metrics. An ex-
ception we found is SentenceBERT, which is based
on sentence representations, and which aligned rea-
sonably well with insights from our manual evalua-
tion. Still, automatic evaluation of text generations

8The automatic evaluation scores for the complete test
sets, which confirm our findings from the subset of the second
annotation round, appear in the Appendix.

needs to be considered with caution, and should
always be accompanied by manual evaluation.

Our Implicitness Assumption. Our experi-
ments are based on the underlying assumption that
usually some information between pairs of sen-
tences stays implicit, which has been confirmed
empirically for our datasets: Our annotators stated
for 100% (first round) and 98% (second round)
of all sentence pairs that they are implicitly con-
nected by some unexpressed piece of knowledge.
However, we did not specifically address the cases
of sentence pairs between which no implicit in-
formation is missing (even though these cases are
rare), nor did we investigate how our models would
perform when provided with sentence pairs that
are not related (arbitrary pairs). For a real-world
application, both aspects would be considerable.

7 Conclusion

In this work we propose an approach for generat-
ing statements that explicate implicit knowledge
connecting sentences in text, using pre-trained
LMs. We show that despite their great success
in many NLP downstream tasks, LMs need to be
well equipped and carefully guided for the chal-
lenging task of reconstructing implicit knowledge,
to ensure that they convey the missing, implicit in-
formation that connects sentences in text. We refine
different pre-trained LMs by fine-tuning on specifi-
cally prepared corpora that we enrich with implicit
information, filled in between sentences, and ex-
plore methods of constrained language generation,
guiding the models by way of relevant concepts
and connecting commonsense knowledge paths.

While most current automatic NLG metrics are
not sufficient to evaluate this challenging task, our
in-depth evaluation of the quality of generations
from different model variants shows that the BART
model, which attends over its full input when gen-
erating text, yields most informative and relevant
explanations. We also establish that e-SNLI, being
focused on the NLI task, is best suited for condi-
tioning LMs for our task, especially for out-of do-
main settings. Finally, by providing the LMs with
relevant connecting key concepts as constraints,
and further by connecting commonsense knowl-
edge paths, we achieve generation of coherent and
grammatically sound sentences that – according
to manual evaluation – can explicate the implicit
knowledge that connects sentence pairs in texts –
for in-domain and out-of-domain test data.
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A Training Details

Finetuning Language Models. Details about the
models and fine-tuning procedure as well as the
running time for one batch are listed in Table 6.
We fine-tuned all models with 2 GPUs on 3 epochs.
Our training batch size is 8 as suggested by the Hug-
gingFace’s Transformers framework (Wolf et al.,
2019). GPT-2 is the lightest one of our three models
and takes 4 hours for fine-tuning on our e-SNLI and
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GenericsKB datasets, respectively, while BART re-
quires 8 hours, and XLNet around 20 hours (due to
its permutation procedure) for the same data.

Limiting Length of Generations. In order to
generate compact sentences capturing the relevant
implicit knowledge (instead of long explanations),
we set a length limitation of 20 tokens for each
generation. In the left-to-right decoding procedure
of GPT-2 and BART, the generation can be stopped
earlier than 20 tokens, when the model predicts an
EOT token. Thus, both GPT-2 and BART models
can predict complete sentences of up to 20 tokens
due to the autoregressive decoder. In contrast, XL-
Net has a permutation language modeling mech-
anism and predicts the next tokens based on the
previous and next tokens. Its generations usually
don’t contain a significant EOT token. predicted
target sequence of tokens in a post-processing step
by cutting it after a generated comma (,).

Maximum Sequence Lengths. Our customized
train sets have different maximum sequence
lengths: e-SNLI has a maximum sequence length
of 80 tokens including the target sentence, while
GenericsKB has up to 140 tokens per sequence.

B Establishing Knowledge Paths for
Constraining Text Generation

For dynamically establishing connections between
the key concepts from two source sentences, we
combine two model types: COREC-LM (Becker
et al., 2019), an open-world multi-label relation
classifier enhanced with a pretrained language
model, that predicts relation types between two
given concepts – for establishing direct connections
between concepts; and COMET (Bosselut et al.,
2019), a pretrained transformer model that learns
to generate target concepts given a source concept
and a relation, for generating multihop paths. By
combining the generations of these models, we
generate single- and multihop paths between key
concepts c1, c2 from a sentence pair, and use these
paths as constraints when generating target sen-
tences. We are able to retrieve paths for 86.2%
of all key concept pairs from GenericsKB, respec-
tively, for 30.2% from e-SNLI and for 44.2% from
IKAT. The differences can be explained by the fact
that while the key concepts in GenericsKB are ex-
tracted phrases (NPs, VPs, ADJPs and ADVPs),
the key concepts in e-SNLI and IKAT are manu-
ally labelled, and thus are often very specific and
contain nested phrases (e.g. leans over a pickup

truck (e-SNLI)). Therefore, it is more difficult to
predict a relation or path between them. When
we experiment with paths as constraints; for all in-
stances where no path could be established between
the key concepts, we only use the key concepts as
constraints.

C Automatic Evaluation of the Complete
Test Sets

As mentioned in Section 5.2 of our main paper,
in a preliminary study based on the complete test
sets of Generics-KB, e-SNLI and IKAT, we inves-
tigate which model generated sentences that are
most similar to the reference sentence, or which
show highest linguistic quality and diversity; and
which dataset is best suited for finetuning the mod-
els for generating statements on out-of-domain test
sets (here, IKAT). Results for this first analysis ap-
pear in Table 7. For metrics that measure token
overlap (BLEU and ROUGE), highest scores are
obtained when finetuning and testing on e-SNLI,
which can be traced back to frequently used linguis-
tic patterns (e.g., x implies y, or x is the same as
y) that occur in train and test sets of e-SNLI. The
reference-free metrics Distinct and GRUEN that
measure diversity and non-redundancy, therefore
yield higher scores when models are finetuned on
the more diverse GenericsKB data, for both in- and
out-of-domain testing. The AMR metric S2Match
gives higher scores on e-SNLI than GenericsKB
in in-domain testing, and finetuning on e-SNLI
yields higher S2Match scores for out-of-domain
testing on IKAT. This also aligns with the sen-
tence representation based metric SentenceBERT.
BertScore, finally, is not at all discriminative – it
yields uniformly high scores for each model and
configuration, ranging only between .88 and .9.

We also find that the scores differ considerably
for in-domain vs. out-of-domain testing: results
on IKAT are lower compared to testing on e-SNLI
or GenericsKB according to all reference-based
metrics, while we observe the opposite for the
reference-free metrics.

We next analyse on the complete test set which
types of constraints improve generation, focusing
on the BART model, which has shown to be best
for generating implicit knowledge statements in our
manual evaluation setup. The automatic evaluation
scores for the complete test sets are displayed in
Table 8 and confirm our findings from the subset
of the second annotation round, as presented in
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Pretrained model ID Model details Parameters Time in s (seq
length = 80)

Time in s (seq
length = 140)

gpt2 12-layer, 768-hidden, 12-heads 117M 0.039 0.056
xlnet-large-case 24-layer, 1024-hidden, 16-heads 340M 0.166 0.297
facebook/bart-large-cnn 24-layer, 1024-hidden, 16-heads 406M 0.075 0.116

Table 6: Benchmarks of the used pre-trained models.

Section 5.2 of our main paper.

D Example Generations

In addition to the examples shown in our main
paper, in Fig. 1 we give some more example gen-
erations for the IKAT test set, for all three model
types, comparing finetuning on e-SNLI vs. Gener-
icsKB; and constraining with concepts vs. with
paths.
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GPT-2
G-KB G-KB 5.3 .2 .33 .88 .5 .95 .89 .79
e-SNLI e-SNLI 14.9 .46 .44 .89 .58 .91 .86 .52
IKAT G-KB 2.9 .19 .3 .88 .45 .96 .85 .78
IKAT e-SNLI 4.7 .26 .37 .89 .51 .88 .86 .64

XLNet
G-KB G-KB 6.6 .27 .36 .89 .53 .92 .87 .74
e-SNLI e-SNLI 10.7 .43 .38 .89 .59 .88 .85 .58
IKAT G-KB 4.2 .22 .34 .9 .48 .97 .88 .79
IKAT e-SNLI 10.5 .33 .42 .9 .56 .9 .85 .69

BART
G-KB G-KB 5.2 .27 .35 .89 .57 .86 .93 .75
e-SNLI e-SNLI 10.7 .44 .42 .89 .61 .81 .91 .59
IKAT G-KB 2.37 .22 .3 .88 .53 .88 .93 .80
IKAT e-SNLI 3.92 .29 .38 .9 .58 .87 .93 .71

Table 7: Automatic Similarity scores computed for the gen-
erations of all models, on the complete test sets. We compare
the impact of (i) model types and (ii) data used for finetun-
ing (train), in-domain (GenericsKB and e-SNLI) and out-of-
domain (IKAT).
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e-SNLI 7.36 0.37 0.36 0.88 0.54 0.77 0.89 0.59
e-SNLI+c 10.73 0.44 0.42 0.89 0.61 0.81 0.91 0.59
e-SNLI+p 11.71 0.44 0.43 0.89 0.62 0.84 0.92 0.59
G-KB 5.21 0.23 0.32 0.88 0.55 0.86 0.93 0.75
G-KB+c 5.2 0.27 0.35 0.89 0.57 0.86 0.93 0.75
G-KB+p 5.4 0.28 0.35 0.89 0.58 0.87 0.93 0.75
IKAT 2,74 0.19 0.29 0.87 0.43 0.86 0.92 0.67
IKAT+c 3.92 0.28 0.38 0.89 0.56 0.87 0.92 0.7
IKAT+p 4.84 0.3 0.4 0.9 0.57 0.9 0.93 0.72

Table 8: Automatic similarity scores for generations of best
performing model BART on the complete test sets, w/o con-
straints or with concepts/paths as constraints. Adding concepts
and paths improves scores in-domain (e-SNLI and Generics-
KB), and out-of-domain (IKAT finetuned on e-SLNI).
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Figure 3: Example generations for IKAT, for all three models, finetuned on e-SNLI vs. GenericsKB, with concepts vs. paths as
constraints.
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Abstract

Existing work shows the benefits of integrat-
ing KBs with textual evidence for QA only on
questions that are answerable by KBs alone
(Sun et al., 2019). In contrast, real world
QA systems often have to deal with questions
that might not be directly answerable by KBs.
Here, we investigate the effect of integrating
background knowledge from KBs for the Nat-
ural Questions (NQ) task. We create a subset
of the NQ data, Factual Questions (FQ), where
the questions have evidence in the KB in the
form of paths that link question entities to an-
swer entities but still must be answered using
text, to facilitate further research into KB in-
tegration methods. We propose and analyze a
simple, model-agnostic approach for incorpo-
rating KB paths into text-based QA systems
and establish a strong upper bound on FQ for
our method using an oracle retriever. We show
that several variants of Personalized PageRank
based fact retrievers lead to a low recall of an-
swer entities and consequently fail to improve
QA performance. Our results suggest that fact
retrieval is a bottleneck for integrating KBs
into real world QA datasets1.

1 Introduction

Prior work has shown the benefit of retrieving paths
of related entities (Sun et al., 2018; Wang and Jiang,
2019; Sun et al., 2019) and learning relevant knowl-
edge graph embeddings (Sawant et al., 2018; Bor-
des et al., 2014; Luo et al., 2018) for answering
questions on KBQA datasets such as WebQues-
tions (Berant et al., 2013) and MetaQA (Zhang
et al., 2018). But such datasets are often curated to
questions with KB paths that contain the right path
to the answer and hence are directly answerable
via KB. An open question remains whether such
approaches are useful for questions not specifically

1Data and Code available at: https://github.com/
vidhishanair/fact_augmented_text
∗Work done at Google Research

designed to be answerable by KBs. In this paper,
we aim to evaluate KB integration for real-world
QA settings in the context of the Natural Questions
(NQ) dataset (Kwiatkowski et al., 2019) which con-
sists of questions naturally posed by users of a
search engine. NQ is one of the common bench-
marks that is used to test the real-world QA appli-
cability of models, hence motivating our choice.

To study the effect of augmenting KB knowl-
edge, we construct a subset of NQ - Factual Ques-
tions (FQ). In FQ, answer entities are connected to
question entities via short paths (up to 3 steps) in
the Wikidata KB (Vrandečić and Krötzsch, 2014).
Using FQ, we analyze a simple but effective ap-
proach to incorporating KB knowledge into a tex-
tual QA system. We convert KB paths to text (using
surface forms of entities and relation) and append
it to the textual passage as additional context for a
BERT-based (Devlin et al., 2019) QA system.

We first establish an upper bound oracle setting
by building a retriever that provides the shortest
path to an answer. We show that, in the presence
of such knowledge, our approach leads to signifi-
cant gains (up to 6 F1 for short-answers, 8-9 F1 for
multi-hop questions). We experiment with several
variants of KB path-retrieval methods and show
that retrieving good paths is difficult: previously-
used Personalized PageRank (Haveliwala, 2003)
(PPR)-based methods find answer entities less than
30% of the time, and even our weakly-supervised
improvements recall answer entities no more than
40% of the time. As a consequence injecting re-
trieved KB paths in a realistic QA setting like NQ
yields only small, inconsistent improvements.

To summarize our contributions, we (1) iden-
tify a new experimental subset of NQ that supports
(2) the study of effectiveness of KB path-retrieval
approaches. We also (3) describe a simple, model-
agnostic method to using oracle KB paths that can
significantly improve QA performance and eval-
uate PPR based path-retrieval methods. To our
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knowledge this is the first study of such approaches
on a QA dataset not curated for KBQA.

2 Dataset

The Natural Questions (NQ) dataset (Kwiatkowski
et al., 2019) is a large scale QA dataset contain-
ing 307,373 training, 7,830 dev, and 7,842 test
examples. Each example is a user query paired
with Wikipedia documents annotated with a pas-
sage (long answer) answering the question and one
or more short spans (short answer) containing the
answer. The questions in NQ are not artificially
constructed, making the NQ task more difficult
(Lee et al., 2019). We use Sling (Ringgaard et al.,
2017) (which uses an NP chunker and phrase table
for linking entities to Wikidata) to entity link the
questions and documents.

To focus on knowledge-driven factoid question
answering, we create a subset of NQ having rele-
vant knowledge in the KB. Shortest paths between
entities in KB is very often used as a proxy for gold
knowledge linking questions to answer (Sun et al.,
2019) and we use the same proxy in our setting.
Specifically, we select questions whose short an-
swers are entities in the KB and have a short path
(up to 3 steps) from a question entity to an answer
entity. These paths contain knowledge relevant to
the question but are not necessarily the right path
to answer the question. We call this subset Factual
Questions (FQ) containing 6977 training, 775 dev
and 264 (83 1-hop, 97 2-hop and 84 3-hop) test
samples. FQ being an entity centric subset of NQ,
provides a setting to investigate augmenting KB
paths for real-world factoid question for which rel-
evant knowledge exists in the KB. Examples of the
dataset are provided in Table 4.

3 Model

Given a question Q, our knowledge retriever ex-
tracts top facts from a KB. We represent them in
natural language form and augment it to a stan-
dard BERT model for reading comprehension as
additional context along with the passage P .

3.1 Knowledge Retriever

The Knowledge Retriever (KR) uses the input ques-
tion Q to retrieve relevant facts for augmentation.
We use the entities in the question as the set of
seed entities denoted as E and use the Personalized
PageRank (PPR) algorithm to perform a random

walk over the KB to assign relevance scores to
other entities around the seed entities.

The Traditional PPR algorithm takes the seed
entities and iteratively jumps from and expands the
seed entities until convergence. At each iteration, a
transition with probability γ is made to a new entity
in the KB (with all outgoing edges having equal
weight) and a transition with probability 1 − γ is
made to the start seed entities. The stationary dis-
tribution of this walk gives the relevance scores
(PPR weights) of entities (nodes) w.r.t seed enti-
ties. Sun et al. (2018) present an improved PPR
version, Question Informed (QI) PPR, to weigh
relations which are semantically closer to the ques-
tion higher. Specifically, they average the GLOVE
(Pennington et al., 2014) embeddings to compute a
relation vector v(R) from the relation surface form,
and a question vector v(Q) from the question text,
and use cosine similarity between them as edge-
weights for PPR. For every node, the γ probability
is multiplied by the edge-score to weigh entities
along relevant paths higher.

We improve on this setting by introducing
Weakly Supervised (WS) PPR, which uses weak
supervision from the QA pairs to train a classifier
to discriminate relevant relations from irrelevant
ones. We create a classification dataset of questions
aligned with relations along the shortest KB path
connecting question entities and answer entities as
positive relevant examples. Other random relations
connected to the question entities form negative
examples. We train a simple BERT based classi-
fier to classify relations as relevant or irrelevant
conditioned on the question. The trained classifier
is used to score relations for every question and
used as edge-weights for PPR similar to QI PPR.
Examples of the facts retrieved from WS PPR are
provided in Table 4.

After running PPR we retain the top-K entities
e1, . . . , eK by PPR score, along with any edges
between them. To further rank the facts, we com-
pute entity scores as the sum of the PPR score and
frequency of the entity in the text and aggregate
the subject and object entity scores by taking the
maximum score between them.

Oracle Setting: In this upper bound setting for
the Knowledge Retriever, the answer entities are
known. The facts along the shortest path connect-
ing the question entities and the answer entities are
considered as gold or relevant facts to the question
and are shuffled and augmented to the input of the
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Factual NQ Hop 1 Hop 2 Hop 3
Short F1 Long F1 Short F1 Long F1 Short F1 Long F1 Short F1 Long F1

Text Only 68.2 77.3 77.3 82.2 60.0 74.3 60.2 73.4
Text + PPR(Q) facts 68.1 77.8 78.3 83.7 57.9 72.8 61.9 75.7

Text + QI PPR(Q) facts 68.2 77.5 79.2 83.9 55.2 72.0 58.9 74.4
Text + WS PPR(Q) facts 67.8 76.3 76.9 81.7 58.1 72.5 60.2 72.1

Text + Clean Oracle 74.9 80.8 79.5 83.0 69.1 80.2 72.4 77.2
Text + Noisy Oracle 75.3 81.3 80.7 84.4 69.7 80.2 71.9 77.2

Table 1: Results on FQ data compared to Alberti et al. (2019). Both Clean and Noisy Oracle setting improve over
only text baseline setting. Variants of PPR do not improve over the text only baseline.

Shortest Path Fact R Ans R

BM25 19.1 29.8
PPR(Q) 33.0 28.8

QI PPR(Q) 31.2 25.2
WS PPR(Q) 51.0 40.0

Table 2: Answer Recall and Shortest Path Fact Recall
metrics for the different Retrieval Methods. Traditional
and QI PPR methods have very low recall and WS PPR
method improves the recall significantly.

QA model in place of the KB retrieved facts. As
the oracle setting uses gold KB links, this setting is
tested on the FQ subset where such links exist and
is called the Clean Oracle. To establish a harder up-
per bound setting, random facts about the question
are added in addition to the oracle shortest path
facts using PPR, forming a Noisy Oracle setting.

3.2 Knowledge Augmented Text for QA

Given a ranked set of triples from the retriever,
a natural language statement is constructed from
each fact using the surface form of the entities es
and eo and the natural language description of R
(e.g. “Washington D.C capital of United States”)
similar to Lauscher et al. (2020). These form the
background knowledge to be injected F . We then
tokenize them using the standard BERT tokenizers
and augment them to the input of QA model as X
= “[CLS] Question tokens [SEP] Passage tokens
[SEP] Fact tokens”.

Following Alberti et al. (2019), we use a simple
BERT architecture by training two linear classifiers
independently on top of the output representations
ofX for predicting the answer span boundary (start
and end). We assume that the answer, if present,
is contained only in the given passage, P , and do
not consider potential mentions of the answer in
the background F . For instances which do not

Long F1 Short F1

DecAtt + DocReader 54.8 31.4
BERTjoint 64.7 52.7

BERTjoint * 68.1 54.0
Traditional PPR 66.7 54.3

QI PPR 65.8 53.6
WS PPR 67.5 54.4

Table 3: Results on Full NQ. Baselines: DecAtt (Parikh
et al., 2016), DocReader (Chen et al., 2017), and
BertJoint (Alberti et al., 2019). *- our reimplementation.
WS PPR improves over previous baseline on Short F1
and has comparable performance to BertJoint on Long
F1.

contain the answer, we simply set the answer span
to be the special token [CLS]. We use a fixed
Transformer input window size of 512, and use
a sliding window with a stride of 128 tokens to
handle longer documents. We use 256 tokens each
for document passage input and KB facts.

4 Experiments and Results

Setup: As every passage that doesn’t contain the
answer is a potential negative, we sample a subset
of negatives to balance the dataset. For the Factual
NQ subset, we sample 2% of the negatives as in Al-
berti et al. (2019) to enable faster training. We find
that increasing the negatives to 10% improves re-
sults by ∼2 points and hence for a fair comparison,
we sample 10% of the negatives for our models and
the reimplemented baseline on the Full NQ dataset.
We use the same preprocessing steps and all other
hyperparameter settings as in Alberti et al. (2019).

4.1 Retriever Results

While the KB retriever’s effect can be measured
in the downstream QA model, it is beneficial to
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Question Hops Clean Oracle Facts WS PPR Facts

Who is the existing
prime minister of pakistan ?

1
Prime Minister of Pakistan
officeholder Imran Khan .

Pakistan office held by head of government
Prime Minister of Pakistan .
Imran Khan position held Prime Minister of Pakistan .
Pakistan head of government Imran Khan .
Prime Minister of Pakistan officeholder Imran Khan .
Imran Khan instance of human .
Pakistan instance of country .

What emperor took over france
after the reign of terror

3

Reign of Terror part of French Revolution .
French Revolution significant event
18 Brumaire .
18 Brumaire participant Napoleon .

Napoleon participant of French Revolution .
Absolute Monarchy subclass of Monarchy .
First French Empire head of state Napoleon .
Seven years ’ war instance of war .

Who plays the bad guy in
looney tunes back in action ?

1
Looney Tunes: Back in Action
cast member Steve Martin .

Heather Locklear instance of human .
Heather Locklear occupation actor .
Looney Tunes: Back in Action cast member Heather Locklear .
Stan Freberg occupation actor .
Looney Tunes: Back in Action cast member Stan Freberg .
Looney Tunes: Back in Action cast member Steve Martin .
Steve Martin instance of human .
Steve Martin sex or gender male .

Where does the book of daniel
take place

2

The Burning Fiery Furnace
narrative location Babylon.
Book of Daniel derivative work
The Burning Fiery Furnace .

The Burning Fiery Furnace based on Book of Daniel .
Book of Daniel derivative work The Burning Fiery Furnace .
Belshazzar’s Feast based on Book of Daniel .
Book of Daniel derivative work Belshazzar’s Feast .
Suzanne bathing based on Book of Daniel .
Belshazzar’s Feast based on Book of Daniel .
Book of Daniel derivative work Suzanne bathing .

Table 4: Examples of Clean Oracle facts and WS PPR retrieved facts. Relations are highlighted in Italics.

directly measure the quality of the top retrieved
facts. As we consider the shortest path between the
question and answer entities as gold facts, we eval-
uate our retriever using recall of answer entities and
shortest path facts in a set of 200 questions from
FQ. We compare our retriever with BM25 (Robert-
son and Zaragoza, 2009), traditional PPR and QI
PPR (Sun et al., 2018) as baselines. Table 2 shows
the retriever recall results. BM25, traditional PPR
and the QI PPR have very poor recall of answers
and facts. The low recall of QI PPR shows that
questions in NQ do not have similar predicates to
relations in the KB, and hence do not benefit from
pretrained word vectors. In WS PPR answer entity
recall improves by 15 points and Shortest Path fact
recall improves by 20 points showing significant
improvement. This shows that retrieval methods
need question supervision to work in real-world
settings and that heuristic methods do not adapt
well to it. We show qualitative examples of oracle
and retrieved facts in the Appendix.

Additionally, Table 5 (Top) shows that the ques-
tion independent knowledge (passage entities as
seeds PPR(P)) version is slightly worse than ques-
tion dependent knowledge (question entities as
seeds PPR(Q)), showing the benefit of a question
dependent factual knowledge retriever.

Text Only PPR(Q) PPR(P)

Short F1 68.2 68.1 67.6
Long F1 77.3 77.8 76.8

Text Only Aug Facts Sep Facts

Short F1 52.7 54.4 52.3
Long F1 64.7 67.5 62.5

Table 5: Top: Comparing different seeds for PPR on
FQ. Using question entities as starting seeds is bet-
ter than passage specific entities. Bottom: Comparing
Facts as Augmented Input (Aug Facts) v/s as Separate
Input (Sep Facts) on NQ. Augmenting Facts as addi-
tional context is significantly better than embedding
them via an independent module.

4.2 QA Performance
Factual Questions: Table 1 shows the results of
our Knowledge Augmented QA system on the FQ
subset2. The clean oracle setting improves over
the text only baseline and when segregated along
the number of hops in the gold shortest path, it has
significantly large gains for 2 and 3 hop questions.
These questions are generally more complex involv-
ing multiple steps of reasoning and augmenting
gold facts linking the question to the answer enti-
ties significantly helps in the model’s performance.

2As NQ and FQ rely on span based evaluation, we do not
consider KB only baselines for fair comparison.
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The noisy oracle setting which has additional facts
with oracle facts maintains the QA performance
showing that random facts with oracle are still use-
ful to the QA model. This shows that the presence
of relevant knowledge from the KB helps QA per-
formance and establishes a strong upper bound for
our KB integration. The performance drops when
the QA model is given only the PPR facts, without
the oracle facts. Both Short and Long answer F1
are similar to the text only setting showing that
the retrieved facts are not providing any relevant
knowledge to the QA model. Though the weakly
supervised setting improves recall of answer en-
tities and shortest path facts, it doesn’t improve
on the downstream QA task showing that this im-
proved recall is still insufficient for the model to
leverage. Comparing the oracle and no-oracle set-
tings, we believe that better KB retrieval methods
that have bery high recall of answer entities and
relevant facts could lead to improved QA perfor-
mance, even in real-world complex questions.

We also validate that our performance gains in
oracle settings were not due to trivial entity overlap
between the text and retrieved facts. We measure
the entity overlap in the entire dev set and found
that on average, correct predictions had 3.67 en-
tities in common while incorrect predictions had
3.28, and the overall dev set had about 3.54. The
small difference in overlap indicates that the oracle
setting doesn’t leverage any hidden bias.

Natural Questions: Table 3 show the performance
of incorporating KB facts in the Full NQ task.
Though we see improvements to previously pub-
lished results, careful ablations reveal that the base-
line achieves similar results with more (10%) nega-
tive examples. This confirms that even in the full
dataset PPR methods fail to retrieve relevant knowl-
edge for the model to leverage for QA.

Facts as Augmented Input: To understand the
benefit of augmenting facts as input, we compare
against a baseline where the retrieved facts are sep-
arately represented by a Transformer. We use a
stacked Transformer with the same architecture as
BERT as a fact encoder. We feed top retrieved
facts in natural language form to it, use a multi-
head attention layer between the text only BERT
representation and the fact representation and use
the new fact-attended text representation for pre-
diction similar to Section 3.2. Results on NQ in
Table 5 shows that the separate fact representation
has lower performance than our approach showing

the benefit of our augmented input approach.

4.3 Qualitative Examples:

Table 4 shows examples of facts from clean oracle
and retrieved facts from WS PPR for questions of
varying difficulty. The first two examples shows a
question where the oracle KB path (shortest path
connecting question entities to answer entities) is
the correct reasoning path for answering the ques-
tion. The third and fourth examples shows a case
where the oracle KB path contains relevant knowl-
edge for the question but is not the right path for
answering the question. WS PPR in all cases re-
trieves relevant facts about the question entity, and
some oracle KB facts. For the first and the third
examples, WS PPR retrieves the entire KB path.
In the second and last example, WS PPR retrieves
part of the oracle KB path but not the entire path.

5 Conclusion

We investigate incorporating KB facts into a real-
world QA - Natural Questions. We create a subset
of NQ, Factual Questions, to facilitate evaluation of
KB integration. We present an oracle setting, where
the gold KB path is provided and establish a strong
upper-bound. We experimentally show that PPR
based retrievers have low recall of answer entities
and do not improve downstream QA showing that
path-retrieval is a bottleneck for KB integration.
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Abstract

Dialog topic management and background
knowledge selection are essential factors for
the success of knowledge-grounded open-
domain conversations. However, existing mod-
els are primarily performed with symmetric
knowledge bases or stylized with pre-defined
roles between conversational partners, while
people usually have their own knowledge be-
fore a real chit-chat. To address this problem,
we propose a dynamic knowledge graph-based
topical conversation model (DKGT). Given a
dialog history context, our model first builds
knowledge graphs from the context as an imi-
tation of human’s ability to form logical rela-
tionships between known and unknown topics
during a conversation. This logical informa-
tion will be fed into a topic predictor to pro-
mote topic management, then facilitate back-
ground knowledge selection and response gen-
eration. To the best of our knowledge, this is
the first attempt to dynamically form knowl-
edge graphs between chatting topics to assist
dialog topic management during a conversa-
tion. Experimental results manifest that our
model can properly schedule conversational
topics and pick suitable knowledge to gener-
ate informative responses comparing to several
strong baselines.

1 Introduction

Conversational AI, especially the open-domain dia-
log system, is an essential and challenging problem
that leads to a variety of applications (Vinyals and
Le, 2015; Serban et al., 2017). Previous works
introduce external background knowledge to help
their systems generate more informative responses
(Li et al., 2016b; Dinan et al., 2018; Ghazvininejad
et al., 2018; Young et al., 2018). However, these
systems are facing a main issue that they tend to
only utilize dialog utterances as queries to match
appropriate knowledge sentences. Table 1 shows
two responses corresponding to the same post. As
can be seen, response1 changes the chatting topic

Chatting topics: William Shakespeare; Sun; Jane Austen
Knowledge: ...... Shakespeare invented the names Miranda,
Jessica, and Olivia. ......
Dialog
......
A: Do you like shakespeare?
B: Yes a little bit. He is often called england’ s national
poet and the "bard of avon".
A: He is a great dramatist that influenced a lot of people,
like Joenesbo.
Response 1: Did you know that Ronald Reagan was
rejected for a movie role because an entertainment executive
didn’ t look presidential enough?
Response 2: I love shakespeare’ s works. Did you know
that he invented the names Miranda, Jessica, and Olivia ?

Table 1: Example responses generated by two models.

abruptly and thus becomes incoherent. By con-
trast, response2 first manages to deepen the current
topic "William Shakespeare", then picks a suitable
knowledge candidate to generate an engaging re-
sponse. Therefore, a good topic managing strategy
is also very crucial to dialog generation.

To solve this problem, some papers propose
to plan a set of conversational topics as chatting
goals in advance to boost knowledge matching and
response generation (Wu et al., 2019; Xu et al.,
2020). However, it is difficult to schedule an ap-
propriate topic transition route beforehand since
topics are switching dynamically during a chit-chat
based on many real-time factors, especially when
two partners have different personal knowledge.
Hence, these methods could not pre-schedule a
topic at each turn properly and thus becoming non-
attractive.

Another problem these knowledge-grounded or
topic-enhanced models might encounter is that they
are typically tested under symmetric knowledge set-
tings (Young et al., 2018), or asymmetric settings
with pre-defined roles (Dinan et al., 2018). Yet peo-
ple usually have unequal personal knowledge prior
to real-world conversations. Hence, such models
cannot reflect the effect of information transferring

31



and learning between two strangers, which is cru-
cial to an engaging conversation. This issue will
matter more when there are no pre-defined roles
between two conversation partners.

To solve these problems, in this paper, we study
the problem of topic transitions in open-domain
conversations under both symmetric and asymmet-
ric settings. To this end, we propose a dynamic
knowledge graph-based topical conversation model
(DKGT). Given a dialogue context and a corre-
sponding knowledge base, we first extract knowl-
edge triples from each utterance and then jointly
combine those triples through a static graph atten-
tion mechanism. Such logical information will
then be fed into a topic predictor to predict the next
chatting topic, which assists background knowl-
edge selection and dialog generation. We further
demonstrate the effectiveness of our method on
Topical-Chat (Gopalakrishnan et al., 2019), com-
paring to several baselines. The main contributions
of this paper can be wrapped as follows:

• To the best of our knowledge, this is the first
attempt to dynamically mine logical relation-
ships between chatting topics during a conver-
sation to assist topic management, in the form
of knowledge graphs.

• The proposed model has two benefits: 1. The
dynamic built KG can automatically form log-
ical information between chatting topics dur-
ing a conversation, which helps our system
to learn from its conversational partner espe-
cially when they have different prior knowl-
edge. 2. Such logical information can be used
to facilitate topic transition and background
knowledge selection, then prompts coherent
dialog generation.

• Experimental results demonstrate that our
method is capable of scheduling appropriate
topics and picking suitable background knowl-
edge to generate informative and diverse re-
sponses.

2 Related Work

Knowledge-Grounded Open-Domain Dialog
Systems Since traditional end-to-end architectures
(Li et al., 2015; Serban et al., 2017) often generate
generic and dull responses, several works introduce
external background knowledge to produce diverse
context (Ghazvininejad et al., 2018; Dinan et al.,

2018; Li et al., 2019). Although these methods
have obtained promising results, they are facing
two main issues. First, such models are agnostic
to internal topic coherence, which usually leads
to less logical conversations. Second, their con-
versation partners often have pre-defined roles or
the external knowledge provided for these partners
is usually symmetric, which could not reflect real-
world chit-chats.
Topic-aware Conversational models A variety of
approaches proposed to leverage topic information
by recognizing topic words inside or outside the
previous utterances (Xing et al., 2017; Wang et al.,
2018; Dziri et al., 2019). However, simply fusing
topic words into text representations makes these
models ignore logical relationships between topics
and thus fail to perform smooth topic transitions.
Except for applying attention mechanism on topic
words, researchers have also investigated proactive
conversation, whose topic transition and conversa-
tion development are conditioned on pre-scheduled
chatting goals (Li et al., 2018; Wu et al., 2019; Xu
et al., 2020). Nevertheless, these models are lim-
ited by pre-defined topic and goal sequences, hence
not applicable to open-domain and open-topic con-
versations.
Graph-enhanced Conversational Models Struc-
tured knowledge has been studied to improve dia-
log generation for a long time (Hixon et al., 2015;
Zhou et al., 2018; Moon et al., 2019; Tuan et al.,
2019). However, these models are mainly based
on pre-defined knowledge graphs, which restrict
their ability under symmetric knowledge settings.
By contrast, our dynamic knowledge graphs enable
our system to learn logical information through the
conversation like humans, which facilitates both
topic management and dialog generation.

3 Model

3.1 Task Definition and Overview

Formally, let D = [x1, x2, ..., xk] be a conversa-
tion history including k utterances, where xi(1 ≤
i ≤ k) stands for the ith utterance. Each xi is as-
sociated with its speaker’s background knowledge
set K, which has been segmented into several sen-
tences [k1, k2, ..., kj ]. Given such information, our
goal is to predict the chatting topic at each turn and
make good use of knowledge set K to generate a
coherent response xi+1.

Figure 1 shows the overview architecture of our
proposed DKGT. Given a conversation history D,
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Figure 2: Structure of the Dynamic Graph Builder.

the dynamic graph builder first extracts knowledge
triples across specified entities to construct a knowl-
edge graph G = [γ1, γ2, ..., γm], where each triple
is denoted as γ = (h, r, t) (head entity, relation,
tail entity). We then adopt TransE (Bordes et al.,
2013) to obtain vector representationG of knowl-
edge graph G. Next, the topic predictor takes en-
coded representation D and G as input and ap-
plies a MLP-based module to predict the topic label
T . The assigned T enables our model to decrease
knowledge set K to a smaller one K and thus fa-
cilitates further knowledge acquisition. Afterward,
the knowledge retriever adopts another attention
mechanism to obtain a cumulative knowledge rep-
resentation K of the decreased knowledge set K.
Finally, dialog contextD, accumulated knowledge
K, topic vector T and graph vectorG are concate-
nated orderly and fed into a transformer decoder.
Our transformer decoder will then attentively read
the concatenated vector and generates an informa-
tive response.

3.2 Dynamic Graph Builder

As shown in Figure 2, at each turn, the model
first extracts knowledge triples from all individual
sentences that are longer than three words using
an open-source relation extraction tool OpenNRE
(Han et al., 2019) 1. With preassigned entities,
OpenNRE can provide a relation between the head
and tail entity along with a confidential probability
score. In this work, the scope of graph entities is
limited to two categories: topic entities provided by
the Topical-Chat dataset and named entities (except
numerical entities like date and time). To confirm
the quality of generated triples, we manually set
0.7 as a threshold probability score to perform fil-
tering. When a new utterance xi+1 comes in, the
knowledge graph G will be updated dynamically
following the above procedure. This strategy en-
ables our system to learn knowledge and form new
logical relationships in real-time.

For each triple γ = (h, r, t) in graph G, we
adopt TransE (Bordes et al., 2013) to obtain its
low-dimension representation. Moreover, to fill in
the representation gap between raw utterances and
triples, we employ an MLP layer on those triple
embeddings. Therefore, a triple vector γ can be
further denoted as γ = (h, r, t), where h, r, t
are the transformed TransE embeddings of h, r, t
respectively.

The static graph attention mechanism (Zhou
et al., 2018) is then applied to capture semantic
information from entities and their relations. All
the knowledge triple vectors [γ1, γ2, ..., γm] are
jointly computed to generate a graph vectorG:

1https://github.com/thunlp/OpenNRE
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µi = (Wrri)
>tanh(Whhi + Wtti), (1)

ηi =
exp(µi)∑m
j=1 exp(µj)

, (2)

G =

m∑

i=1

ηi[hi; ti], (3)

whereWh,Wr,Wt are weight matrices for h,
r, t, and [hi; ti] denotes the concatenated vector
of hi and ti.

3.3 Encoder
A shared transformer-based (Vaswani et al., 2017)
encoder is employed to encode dialog utterances,
knowledge sentences and topic labels. In this task,
the topic label Ti of each utterance xi is a word
or phrase that refers to an entity in the pre-defined
topic entity set 2. To better capture the structural
information between utterances, the dialog history
input at turn i is defined as the concatenation of
previous utterances Di = [x1;x2; ...;xi]. We use
Di,ki,Ti,Ts to symbol the encoded counterparts,
where Ts is the encoded representation for all topic
entities in the pre-defined set.

3.4 Topic Predictor
At each turn i, upon obtaining knowledge graph
vectorG, dialog history vectorDi ,topic vector Ti
and Ts, a three-layer MLP-based module is applied
to predict the topic label of the next utterance. We
concatenate the first token’s (the [CLS] token) hid-
den state from both dialog context vectorDi , topic
vectors Ti and Ts as input to attain a probability
distribution of the next topic label Ti+1:

Ti+1 =Softmax(MLP ([Difirst ;Tsfirst ;Tifirst ;G])),
(4)

where Difirst
, Tsfirst and Tifirst

are the first
token’s hidden states forDi ,Ti and Ts.

3.5 Knowledge Retriever
During the whole chat, each speaker has access to
a specific knowledge set K that includes dozens of
candidates ki. However, it is challenging for exist-
ing models to handle large knowledge bases at once.
Hence, we operate a general attention mechanism
between dialog context and knowledge candidates
to get an informative knowledge representation. A

2Topical-chat provides three topic entities for each conver-
sation, which consists of our topic set.

sentence embedding layer (Cer et al., 2018) will
first obtain sentence-level representations of Di

and knowledge representation ki as Ds
i and ksi .

Next, given the predicted topic Ti+1, we can pick
Ti+1 related knowledge from the original knowl-
edge set to form Ksmall. Our model then orderly
attends on each knowledge candidate in Ksmall to
generate a knowledge representation for the next
turn as below:

αm = ks>
m WDs

i
Ds

i , (5)

βm =
exp(αm)

∑NKsmall
j=1 exp(αj)

, (6)

Ki+1 =

NKsmall∑

m=1

βmks
m, (7)

where WDs
i

is the weight matrix for Ds
i and

NKsmall
is the number of candidates in Ksmall.

Ki+1 is the final knowledge representation to be
used in the decoding part.

3.6 Decoder and Loss Function

As illustrated in Figure 1, we adopt another trans-
former as a decoder to generate coherent responses,
whose structure is the same as the encoder. Our
decoder generates responses with the following
procedure:

Formally, let the gold token distribution be Γk

and the predicted token distribution be ∆k, we
optimize our model’s parameters by minimizing
the cross entropy error between these two distribu-
tions. Besides, we employ supervised signals on
the topic predictor to teacher-force the model to
predict a suitable topic. Finally, the loss function
between generated sequence Y and ground truth
X (X = (x1, x2, ..., xn), Y = (y1, y2, ..., ym))
at turn i is formulated as:

L(θ) = −λ1

m∑

k=1

Γklog(∆k) − λ2

Nset∑

j=1

T g
i+1j

log(T p
i+1j

),

(8)

where T g
i+1j

and T p
i+1j

are the ground truth la-
bel and predicted probability distribution at turn
i+ 1 respectively. λ1 and λ2 stand for the weights
of our two loss terms, and Nset is the number of
topic labels in the pre-defined topic set. In our
experiments, λ1 and λ2 are set to 1 and 20.
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Config Train Valid Freq Valid Rare Test Freq Test Rare

Dialogs

A 1181 62 73 44 70
B 1144 54 75 34 78
C 1298 58 78 31 72
D 1205 54 80 122 85

Total 4828 228 306 231 305

Utterances

A 24,609 1,272 1,531 934 1,466
B 23,888 1,118 1,548 699 1,632
C 27,151 1,225 1,624 647 1,488
D 25,199 1,137 1,654 2,579 1,816

Total 100,847 4,752 6,357 4,859 6,402

Table 2: Statistics of the dataset.

Set Total Number Averaged per Dialog
Train 52829 10.9
Valid Freq 2210 9.7
Valid Rare 3070 10.0
Test Freq 2139 9.3
Test Rare 3115 10.2

Table 3: Statistics of extracted triples on different sets.

4 Experiments

4.1 Dataset

In this work, we use a public released dataset
Topical-Chat 3 , which contains thousands of
knowledge-grounded conversations spanning 300
specific topics. 4 To enhance the effect of knowl-
edge graphs on this dataset, we firstly used Open-
NRE to extract triples for every utterance, then
filtered out conversations with less than 5 triples.
The statistics of our downsampled dataset and ex-
tracted triples are shown in Table 2 and Table 3
respectively.

4.2 Obtaining Topic Labels

Although Topical-Chat does not provide topic an-
notation for each utterance directly, workers have
attached their choice of knowledge scope at each
turn during crowd-sourcing, which can then be con-
verted into topic labels automatically. Hence, we
first obtained ground truth topic labels in the fol-
lowing steps:

1. If a given knowledge source is solely related
to a fun fact under one of the topic entities,
this topic entity will become the topic label.

3https://github.com/alexa/alexa-prize-topical-chat-dataset
4We recommend readers to read (Gopalakrishnan et al.,

2019)

2. If a given knowledge source is solely related
to an article sentence, the topic which appears
most frequently will become the topic label.

3. While an utterance equips multiple knowledge
sources, we take its closest utterance(e.g. i+1
and i− 1 given i) ’s topic as the topic label.

4. If “Personal Knowledge" appears in the
knowledge source, we ignore it for simplic-
ity. When “Personal Knowledge" is the only
knowledge source, the strategy in step3 will
be performed to generate a topic label.

Although step3 acts as an estimate of the current
chatting topic and might bring some biases, our
topic annotation is still effective in two ways: First,
the accurate annotation step1 and step2 have cov-
ered most of the utterances in the dataset (e.g. 82.3
% in the training corpus); Second, topic transi-
tion in a dialog usually happens after several turns,
which means the topic label at turn i is often the
same as turn i−1 and turn i+1. More importantly,
the above strategy highly reduces human efforts
when annotating data.

4.3 Baselines

To make an empirical comparison, we choose the
following baseline models:
Seq2Seq-TF: A simple sequence to sequence ar-
chitecture (Vinyals and Le, 2015) that applies
transformer-based encoder and decoder. We also
add a topic classifier at the top of each utterance
representation to perform topic prediction for fur-
ther comparison.
Wizard-TF is a transformer-based memory net-
work for document-grounded open-domain dialog
generation (Dinan et al., 2018). It takes context
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vectors as queries to match a single knowledge can-
didate to generate responses. A topic predictor is
also added for our evaluation.

For our proposed DKGT model, we further
devise two variants for comparison and ablation
study:
DKGT w/ all Know is used to evaluate the effect
of the topic predictor. After predicting a topic for
the next turn, the size of the knowledge set will not
be decreased by the predicted topic and the model
needs to match background knowledge from the
raw knowledge base.
DKGT w/o Graph: A variant without the dynamic
graph module. This setup aims to check the effec-
tiveness of our proposed dynamic graph builder.

4.4 Implementation Details

We apply PyTorch 5 to perform all the experi-
ments. During data preprocessing, the max se-
quence length is 128 for dialog history utterances,
50 for responses, 64 for knowledge candidates, and
10 for topic entities respectively. For Wizard Tran-
former, we follow their original hyperparameter
settings. For other transformer-based models, their
hidden size is 512. The number of layers of en-
coder and decoder is set to 3 while the number of
attention heads in multi-head attention is 4. All
the transformer modules are based on Hugging
Face’s framework 6. In the dynamic graph builder,
we adopt TransE (Bordes et al., 2013) to generate
entity and relation representations, and the embed-
ding size of both entities and relations is set to 100.
For decoding, we apply the Top-p sampling strat-
egy proposed by (Holtzman et al., 2019) with a
temperature of 0.7, and the threshold of the cumu-
lative probability is 0.9. During training, we use
the AdamW optimizer with a batch size of 64. The
gradient clip is limited to 0.1. We take the first
two training epochs as a warm-up process and the
learning rate is set to 0.0001(except Wizard-TF).
All the models are trained for at most 30 epochs
and the training stops when the perplexity on the
validation freq set starts to increase. The training
stage of each model took about two and a half days
on a Titan X GPU machine.

4.5 Automatic Evaluation

Metrics: In our experiments, we use perplexity
(PPL) and BLEU 1-gram to evaluate our system at

5https://pytorch.org/
6https://huggingface.co/

Model PPL BLEU-1% Dist-1% Acc
Seq2Seq-TF 36.82 23.03 1.37 0.395
Wizard-TF 37.67 22.41 1.41 0.307
DKGT w/all Know 36.54 23.44 1.49 0.782
DKGT w/o Graph 35.97 23.41 1.42 0.765
DKGT 36.08 23.58 1.46 0.780

Table 4: Automatic evaluation results.

the content level. We also adopt distinct 1-gram (Li
et al., 2016a) to assess the diversity of generated
responses. To evaluate our models at the topic level,
we calculate the accuracy between the predicted
topic label and the ground truth topic label.
Results: Table 3 shows the automatic evaluation
results for all the models. As can be seen, DKGT
outperforms Wizard-TF and Seq2Seq-TF on all the
metrics, demonstrating that our model can generate
more fluent and informative responses with the
help of all the proposed strategies. Moreover, the
topic accuracy scores of Seq2Seq-TF and Wizard-
TF are extremely low. This is due to their lack
of additional supervision signals on topic labels
during training.

To examine the influence of different modules,
we also perform an ablation study using two vari-
ant models. As we can see, after removing the
dynamic kg module, topic accuracy drops a lot,
proving that the dynamic kg module augments our
system’s ability to manage dialog topics since it
stores logical information between topic entities.
Although DKGT w/o Graph attains the lowest per-
plexity score, our model not only achieves a similar
perplexity score but also obtains the highest BLEU-
1 value, showing that it can perform proper topic
management without sacrificing content fluency. In
practice, topic accuracy is more important than per-
plexity in consideration of the generated responses
are already fluent with the perplexity of 36.82. Be-
sides, comparing to DKGT w/all Know, our model
performs better on both perplexity and BLEU-1.
This is because proper topic prediction highly re-
duces the difficulty of picking suitable knowledge,
thus facilitate response generation. Note that it is
reasonable for DKGT w/all Know to get the highest
Dist-1 score since it encounters the whole knowl-
edge base.

4.6 Manual Evaluation
To better evaluate the generated responses, we fur-
ther perform a manual evaluation. We randomly
sampled 200 posts from the test frequent and rare
set (50 posts for each knowledge setting) respec-
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Opponent Win Loss Tie
DKGT vs. Seq2Seq-TF*** 39.0% 22.5% 38.5%
DKGT vs. Wizard-TF* 36.0% 30.0% 34.0%
DKGT vs. DKGT w/all Know*** 35.5% 21.0% 43.5%
DKGT vs. DKGT w/o Graph*** 42.0% 17.0% 41.0%

Table 5: Manual evaluation results. We conducted two-
tailed binomial test to obtain the p-value. * refers to p
< 0.05, ** refers to p< 0.01 and ** refers to p< 0.001
respectively.

tively to conduct a pair-wise comparison between
DKGT and one of the other four baselines.
Annotation settings: Three annotators are asked
to evaluate these 800 pairs independently with the
following rules: (1) Given a post and relevant top-
ics, annotators are required to rate among ’win’,
’lose’ and ’tie’ (response1 versus response2) on
two generated responses. (2) Model identifiers
are masked during annotation. (3) If three anno-
tators give three distinct answers, the result will
be counted as ’tie’. Before the annotation starts,
annotators were trained with a few examples to
understand three criteria comprehensively:

• Topic appropriateness: whether a generated
response appropriately deepens or widens the
current conversation topic smoothly.

• Content coherency: whether a response is
relevant and fluent to the given dialog history
and the knowledge base.

• Response informativeness: whether a re-
sponse is diverse and informative like pro-
duced by humans.

Annotators attained a Krippendorff’s α of 0.469
on 200 mutually-labeled pairs, indicating moderate
agreement.
Results: The results are shown in Table 4. It can
be seen that our proposed model outperforms all
the other baselines significantly. Besides, both the
knowledge retriever and the dynamic graph builder
boost the generated responses to become more ac-
ceptable to humans with a percentage of 14.5% and
25%, indicating that our model can better perform
topic management and response generation with
these proposed strategies.

It is worth noting that when comparing to DKGT
w/o Graph, DKGT got the highest "Win" rate
(42.0%) and the lowest "Lose" rate (17%), yet auto-
matic evaluation results show that they have similar
perplexity scores. By checking the annotation ex-
amples, we found that in most cases, though DKGT

Model Config PPL Acc

Wizard-TF

A 36.37 0.290
B 37.81 0.312
C 33.24 0.344
D 40.63 0.295

DKGT w/o Graph

A 34.91 0.778
B 36.36 0.770
C 31.92 0.759
D 38.47 0.758

DKGT

A 34.94 0.786
B 36.37 0.776
C 32.18 0.768
D 38.60 0.781

Table 6: Automatic evaluation results under different
knowledge settings. Config A and B are asymmetric
settings while C and D are symmetric settings.

Opponent Config Win Loss Tie

DKGT vs. Wizard-TF

A 42% 28% 30%
B 44% 20% 36%
C 30% 26% 44%
D 32% 42% 26%

DKGT vs. DKGT w/o Graph

A 40% 20% 40%
B 52% 12% 36%
C 38% 14% 48%
D 38% 22% 40%

Table 7: Manual evaluation results under different
knowledge settings.

w/o Graph could predict the correct topic label for
the next turn, it fails to pick a suitable knowledge
candidate from the decreased knowledge base since
it does not store relationships between topic enti-
ties. Moreover, DKGT w/o Graph tends to explore
topics abruptly, while coherent transitions usually
appear in DKGT’s responses, which further proves
the effectiveness of the dynamic graph module.

4.7 Analysis of results under different
knowledge settings

To examine our model’s ability to conduct conver-
sations under asymmetric knowledge settings, we
further perform experiments under different configs
between three representative models. Topical-Chat
equips four types of prior knowledge settings be-
tween two conversational partners naming config A,
B, C and D, where config A and config B represent
asymmetric in entity-level fun facts and entity-level
Wikipedia descriptions respectively. For automatic
evaluation, we split the test set based on different
configs and calculate corresponding perplexity and
topic accuracy scores. For manual evaluation, we
directly obtain the "win", "lose" and "tie" rates
from our annotation results.
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As shown in Table 5, DKGT and DKGT w/o
Graph beats Wizard-TF on perplexity steadily un-
der the four different knowledge settings, indicat-
ing that the topic predictor, as well as knowledge
retriever can help with picking suitable knowledge
to generate responses regardless of the symmetry of
knowledge between two partners. Although DKGT
has higher perplexity scores than DKGT w/o Graph
with all the configs due to its consideration on topic
accuracy, the gaps under config A and config B are
much smaller, demonstrating that our system can
use dynamic graphs to capture semantic informa-
tion from the dialog history, then facilitates context
generation. Moreover, our model still keeps the
highest topic accuracy under all knowledge settings
with a relatively high score on the two asymmetric
datasets, which further proves that logical informa-
tion stored in dynamic graphs can assist our model
to manage chatting topics more appropriately.

Manual evaluation results in Table 6 also clarify
the importance of the dynamic graph module when
handling asymmetric knowledge bases. Compar-
ing to DKGT w/o Graph, DKGT has an average
"win" rate of 46% on asymmetric sets, while the
value drops to 38% on the other two sets. Also,
the average "loss" and "tie" rates on asymmetric
sets decrease correspondingly (16% versus 18%
and 38% versus 44%). These results further il-
lustrate that our proposed dynamic graph module
could facilitate the model to perform topic tran-
sition smoothly then generates more human-like
responses, especially when the prior knowledge
between two partners is not equal.

5 Conclusion and Future Work

In this paper, we propose a dynamic knowledge
graph-based topical conversation model (DKGT) to
perform coherent topic transitions under both sym-
metric and asymmetric knowledge settings. Specif-
ically, a dynamic graph builder that constructs
knowledge graphs from the context to form log-
ical relationships between known and unknown
topics is introduced to assist topic management.
Automatic and manual evaluation results show that
DKGT can not only schedule dialog topics properly
but also generate informative responses preferred
by humans.

In the future, we will further explore the usage
of our proposed dynamic knowledge graph strategy
to improve chatbot’s interpretability, which may
depend on some inferential methods like multi-

hop reasoning. We release our codes at https:
//github.com/wujunjie1998/DKGT.
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Abstract

This paper presents an investigation aimed
at studying how the linguistic structure of
a sentence affects the perplexity of two of
the most popular Neural Language Models
(NLMs), BERT and GPT-2. We first com-
pare the sentence–level likelihood computed
with BERT and the GPT-2’s perplexity show-
ing that the two metrics are correlated. In ad-
dition, we exploit linguistic features capturing
a wide set of morpho-syntactic and syntactic
phenomena showing how they contribute to
predict the perplexity of the two NLMs.

1 Introduction and Motivation

Perplexity is one of the most standard metrics to as-
sess the quality of a language model. It is also used
in different scenarios, such as to classify formal
and colloquial tweets (González, 2015), to detect
the boundaries between varieties belonging to the
same language family (Gamallo et al., 2017), to
identify speech samples produced by subjects with
cognitive and/or language diseases e.g. dementia,
(Cohen and Pakhomov, 2020) or to assess whether
it matches various human behavioural measures,
such as gaze duration during reading (Demberg
and Keller, 2008; Goodkind and Bicknell, 2018).
With the recent success gained by Neural Language
Models (NLMs) across a variety of NLP tasks, the
notion of perplexity has started being investigated
also to dig into issues related to the interpretability
of contextual word representations, with the aim of
understanding whether there is a relationship be-
tween this metric and the grammatical abilities im-
plicitly encoded by a NLM (Gulordava et al., 2018;
Marvin and Linzen, 2018; Kuncoro et al., 2019).
In this context, Hu et al. (2020) and Warstadt et al.
(2020) observed a dissociation between the per-
plexity of a NLM and its performance on targeted
syntactic assessments probing the model’s ability
to encode a range of subtle syntactic phenomena.

These findings seem to be valid for models tested
across languages (Mueller et al., 2020).

In this paper, we address this scenario but from a
different perspective. Rather than studying the rela-
tion between the NLM’s perplexity and its linguis-
tic competences assessed on sentences undergoing
controlled syntactic modifications, we focus on sen-
tences representative of real usage. Our purpose
indeed is to understand which linguistic phenom-
ena of the input sentence may make perplexed a
NLM and whether they can effectively predict the
assigned perplexity score. To have a in-depth under-
standing of the relation between linguistic structure
and perplexity, we rely on a wide spectrum of lin-
guistic features modeling a variety of phenomena,
specifically morpho-syntactic and syntactic ones.
As we also intend to evaluate the possible influence
of the NLM architecture on this relation, in all our
experiments we consider two of the most popular
NLMs, a traditional unidirectional one, i.e. GPT-2
(Radford et al., 2019), and a bidirectional model
such as BERT (Devlin et al., 2019).
Contributions In this paper: (i) we showed that
a sentence-level likelihood computed by masking
each word sequentially for the BERT model has a
robust correlation with GPT-2’s perplexity scores;
(ii) we verified whether it is possible to predict
NLMs’ perplexities using a wide set of linguistic
features extracted by a sentence; (iii) we identified
the linguistic properties of a sentence that mostly
cause perplexity, reporting differences and similar-
ities between the two models.

2 Our Approach

We defined two sets of experiments. The first
consists in investigating the relationship between
BERT and GPT-2 sentence-level perplexity (PPL)
scores. To do so, we first computed BERT and
GPT-2 PPL scores for sentences contained in the
English Universal Dependencies (UD) treebank
(Nivre et al., 2016) and we assessed their corre-
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lation. In the second set of experiments, we studied
whether a simple regression model that takes as
input a wide range of linguistic features automat-
ically extracted from each UD sentence is able to
predict the two NLMs sentence-level perplexities.

To understand which linguistic phenomena con-
tribute to the prediction of BERT and GPT-2 PPLs,
and how these features differ between them, we
performed an in-depth investigation training the
regression model with one feature at a time.

2.1 Linguistic Features
The set of considered linguistic features is based on
the ones described in Brunato et al. (2020) which
are acquired from raw, morpho-syntactic and syn-
tactic levels of annotation for a total of 78 features
that can be categorised in 9 groups corresponding
to different linguistic phenomena. A summary of
the linguistic features is reported in Table 1, while
the whole list is provided in Appendix A.

As shown in Table, these features model lin-
guistic phenomena ranging from raw text one,
to morpho–syntactic information and inflectional
properties of verbs, to more complex aspects of
sentence structure modeling global and local prop-
erties of the whole parsed tree and of specific sub-
trees, such as the order of subjects and objects with
respect to the verb, the distribution of UD syntactic
relations, also including features referring to the
use of subordination and to the structure of verbal
predicates.

All these features have been shown to play a
highly predictive role when leveraged by traditional
learning models on a variety of classification prob-
lems, also including the development of probes as
reported by Miaschi et al. (2020), who showed that
these features can be effectively used to profile the
knowledge encoded in the language representations
of a pretrained NLM.

2.2 Models and Data
For our experiments, we rely on the pre-trained ver-
sion of the two NLMs previously defined. BERT
(Devlin et al., 2019) is a Transformer-based masked
language model, pretrained on BookCorpus (Zhu
et al., 2015) and English Wikipedia. GPT-2 (Rad-
ford et al., 2018) is a large transformer-based lan-
guage model trained using the language modeling
task (LM) on 8 million documents for a total of 40
GB of text.

We first computed GPT-2’s sentence-level per-
plexities by dividing the sum of all sub-word con-

Linguistic Feature
Raw Text Properties
Sentence Length
Word Length
Vocabulary Richness
Type/Token Ratio for words and lemmas
Morphosyntactic information
Distibution of UD and language–specific POS
Lexical density
Inflectional morphology
Inflectional morphology of auxiliary verbs
Verbal Predicate Structure
Distribution of verbal heads and verbal roots
Verb arity and distribution of verbs by arity
Global and Local Syntactic Tree Structures
Depth of the whole syntactic tree
Average length of dependency links and of the longest link
Average length of prepositional chains and distribution by depth
Clause length
Relative order of elements
Order of subject and object
Syntactic Relations
Distribution of dependency relations
Use of Subordination
Distribution of subordinate and principal clauses
Average length of subordination chains and distribution by depth
Relative order of subordinate clauses

Table 1: Linguistic Features used in the experiments.

ditional log-probabilities by the total number of
words for each sentence in the UD dataset. On the
other hand, since BERT masked language model-
ing task does not allow to compute well-formed
probability distributions over sentences, we mea-
sure BERT sentence-level likelihood by masking
each word sequentially and computing the proba-
bility as follows:

p(S) ≈
k∏

i=1

p(wi|context)

where context, given the deep bidirec-
tionality of the model, corresponds to
w1, ..., wi−1, wi+1, ..., wk. The perplexity is
then computed as follows:

PPLS = e(
p(S)
N

)

where N correspond to the length of sentence
S. In order to uniform the terminology, in what
follows we will refer to the BERT sentence-level
likelihood as perplexity.

In order to evaluate our approach on gold an-
notated sentences, we relied on the three English
Universal Dependencies (UD) treebanks: the En-
glish version of ParTUT (Sanguinetti and Bosco,
2015), the UD version of the GUM corpus (Zeldes,
2017) and of the English Web Treebank (EWT)
(Silveira et al., 2014). Overall, the final dataset
consists of 22,505 sentences.
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Lengths ρ score # samples
All 0.63 22,505
n=10 0.66 847
n=15 0.60 793
n=20 0.64 643
n=25 0.53 422
n=30 0.54 277

Table 2: Spearman correlations between BERT and
GPT-2 perplexities computed for all UD sentences (All)
and sentences with fixed-length n.

3 A Linguistic Investigation on
Perplexity

As a first step, we assessed whether there is a re-
lationship between the perplexity of a traditional
NLM and of a masked NLM. We thus calculated
BERT and GPT-2 perplexity scores for each UD
sentence and measured the correlation between
them. Since PPL scores are highly affected by
the length of the input sequence, we computed ρ
correlation coefficients also considering groups of
sentences with fixed length. Specifically, we relied
on Spearman correlation because we were inter-
ested in measuring how the variations in perplexity
scores relate each other, rather than focusing on the
actual PPL values. Results are reported in Table
2. As we can notice, even considering samples
with fixed length, the two NLMs’ perplexities ex-
hibit moderate to substantial correlation (with p <
0.001), thus showing that BERT an GPT-2 do not
diverge excessively in their ability of predicting
the likelihood of the input sentences. Moreover,
this allows us to confirm that, although the deep
bidirectional structure of BERT does not permit
to compute a well-formed probability distribution
over a sentence (see Section 2.2), this metric could
be considered as a valid approximation of the per-
plexity computed with a unidirectional NLM.

Once established the correlation between the per-
plexities of the two NLMs, we performed a second
experiment to investigate (i) if the considered set
of linguistic features plays a role in predicting their
perplexity and (ii) which are the features that con-
tribute more to the prediction task. To do so, we
trained a LinearSVR model that predicts perplex-
ity’s scores using our set of linguistic properties as
input features. Since most of them refer to syntac-
tic properties of sentence that are strongly corre-
lated with its length, we considered as a baseline a
SVR model that takes sentence length as input and
outputs BERT/GPT-2 sentence’s perplexity. Re-
gression results deriving by considering both the

Figure 1: BERT and GPT-2 ρ scores (multiplied by
100) obtained with the LinearSVR model using linguis-
tic features, for the whole UD dataset and groups of
sentences with fixed length.

whole set (All) and each of the 9 groups of linguis-
tic features separately are reported in Figure 1. As
a general remark, for the whole UD dataset, we can
observe that the results considering both all and the
9 groups of linguistic features outperform the re-
sults obtained by the baseline, i.e. ρ=0.38 for BERT
and 0.22 for GPT-2 respectively. This demonstrates
that the considered features are able to model as-
pects involved in NLM’s perplexity that go beyond
the simple length of sentence. This is particularly
the case of GPT-2, suggesting that the probabil-
ity assigned to a sentence by a traditional NLM
is more explainable in terms of linguistic phenom-
ena mainly affecting morpho-syntactic and syntac-
tic structure. Consequently, the baseline score is
higher for BERT. If we consider the scores obtained
for each group of sentences with fixed length, we
can see that higher scores are obtained for groups
containing shorter sentences, for both NLMs. This
is quite expected since in these sentences the possi-
ble output space is smaller for almost all features,
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Figure 2: BERT and GPT-2 ρ scores obtained with the
LinearSVR model, for the whole UD dataset and 16
token-long sentences. Scores are reported for the 20
top-ranked features for BERT. Numbers in brackets cor-
respond to the relative in the GPT-2 ranking.

thus making them more predictive. Also in this
case, the impact of the linguistic features is always
higher for the prediction of GPT-2’s perplexity.

A more in-depth analysis of these results shows
that the distribution of the morpho-syntactic char-
acteristics of a sentence (POS) and of the syntactic
dependency relations (SyntacticDep) are the two
most predictive sources of linguistic information.
As Figure 1 reports, this holds for the two NLM
models and it remains constant throughout all the
groups of sentences with fixed lengths. Interest-
ingly, if we consider the whole set of sentences,
the effect of the morpho-syntactic information on
the prediction of GPT-2’s perplexity is exactly the
same of that of the whole set of linguistic features.
For some sentence lengths (15, 20, 30) the scores
obtained using only this type of information out-
perform even those obtained considering the whole
set of features. Note that this last remark is true
also in the prediction of BERT’s perplexity. As
expected the other most predictive group is the one
(RawText) that includes the length of sentence.

3.1 Focus on the contribution of individual
features

To investigate more in depth which linguistic phe-
nomena are more involved in the perplexity of the
two models, we trained the LinearSVR model using
each individual feature at a time. This was done for
both the whole dataset and the subset of sentences
(i.e. 758 sentences) having a length of 16 tokens,

which corresponds to the mean sentence length of
the UD dataset. A subset of results is reported in
Figure 2, while the whole results are provided in
Appendix B. As we can see in the left-side of the
heatmap, the two models share many features in the
first ten positions, thus showing that the two NLM
architectures are made perplexed by similar linguis-
tic characteristics of a sentence. In particular, for
both of them, the two most predictive features cor-
respond to the lexical density and the presence of
pronouns confirming the highly predictive power of
morpho-syntactic information. They are followed
by features related to the presence of verbs and
to their internal structure (i.e. verbal_heads and
avg_verb_edges), and, as it was expected, by the
length of the sentence. Despite these similarities,
we can see that the scores obtained by the regres-
sion model to predict BERT’s perplexity are on
average higher than GPT-2’s scores. Considering
that we obtained higher scores using all (or groups
of) features in the prediction of GPT-2’ perplexity
(see Figure 1), this latter result may suggest that
the interaction among features is less relevant in
the prediction of BERT’s perplexity. Differences
among the two models concern features that are
highly sensitive to sentence length, which result to
be more predictive of BERT’s perplexity. This is
the case of syntactic features capturing global and
local aspects of sentence structure, i.e. the depth of
the whole syntactic tree (parse_depth), the maxi-
mum length of dependency links (max_links_len)
and the length of verbal clauses (clause_length).
Also, the canonical order of nuclear sentence ele-
ments such as pre-verbal subjects contribute more
to predict BERT’s than GPT-2’s perplexity. Instead,
the distribution of proper nouns (%_upos_PROPN),
in particular in their singular form (%_xpos_NNP),
the length of token (char_per_tok) and vocabulary
richness are more predictive of GPT-2’s perplex-
ity. Although we cannot say from ranking results
whether features highly ranked are positively or
negatively correlated with perplexity, we can hy-
pothesize that knowing the distribution of tokens
belonging to open lexical categories (e.g. proper
nouns vs determiners) make the perplexity easier
to identify.

The right-side heatmap shows the top-ranked
features used to predict the two models perplexity
for sentences 16-token long. As expected, when
sentence length is controlled, the role of other fea-
tures less related to length becomes predominant.
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In particular, morpho-syntactic information is still
highly predictive for the two models, with lexical
parts-of-speech showing to be relevant not only for
GPT-2’s but also of BERT’s perplexity.

4 Conclusion

In this paper we proposed an investigation of the
linguistic phenomena characterizing the perplexity
of a undirectional and a bidirectional Neural Lan-
guage Model, GPT-2 and BERT. We first reported
robust correlations between GPT-2’s perplexity and
the sentence-level likelihood computed with BERT.
This is a quite prominent result, especially consider-
ing that these two metrics are differently computed
as a consequence of the two NLMs architectures.

Interestingly, we found the effectiveness of lin-
guistic features modelling a wide set of morpho-
syntactic and syntactic phenomena in predicting the
perplexity of the two NLMs, especially for shorter
sentences. Despite similar trends, we observed
some differences between the two NLMs both at
the level of regression accuracy and in the rankings
of the features exploited in the prediction of per-
plexity. GPT-2’s perplexity is better captured by
the considered features and it resulted to be more
affected by lexical parts-of-speech and features cap-
turing the vocabulary richness of a sentence. On
the contrary, BERT’s perplexity seems to be best
predicted by syntactic features highly sensitive to
sentence length.
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A Appendix A

fRaw Text Properties
[sent_length]: average length of sentences in a document, calculated in terms of the number of words per sentence
[char_per_tok]: average number of characters per word (excluded punctuation)
Vocabulary Richness
[ttr_lemma]: Type/Token Ratio (TTR) calculated with respect to the lemmata in a sentence. It ranges between 1 (high lexical variety) and 0
(low vocabulary richness)
[ttr_form]: Type/Token Ratio (TTR) calculated with respect to the word forms in a sentence. It ranges between 1 (high lexical variety) and 0
(low vocabulary richness)
Morphosyntactic information
[%_upos_*]: distribution of the part-of-speech categories defined in the Universal POS tags, as detailed at the following link: https://
universaldependencies.org/u/pos/index.html
[%_xpos_*]: distribution of the part-of-speech categories defined in the Penn Treebank POS tags, as detailed at the following link: https:
//www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
[lexical_density]: the value corresponds to the ratio between content words (nouns, proper nouns, verbs, adjectives, adverbs) over the total
number of words in a sentence
Inflectional morphology
[%_aux_tense_*]: distribution of auxiliary verbs according to their tense: https://universaldependencies.org/u/feat/
Tense.html
[%_aux_mood_dist_*]: distribution of auxiliary verbs according to their moods: https://universaldependencies.org/u/feat/
Mood.html
[%_aux_form_*]: distribution of auxiliary verbs according to their forms: https://universaldependencies.org/u/feat/
VerbForm.html
[verbs_gender_dist_*]: distribution of verbs according to the gender of participle forms, for the languages that have this features: https:
//universaldependencies.org/u/feat/Gender.html
[%_aux_num_pers_*]: distribution of auxiliary verbs according to their number and person: https://universaldependencies.org/
u/feat/Person.html
Verbal Predicate Structure
[verbal_head]: average distribution of verbal heads in the document, out ot the total of heads.
[%_verbal_roo]: average distribution of roots headed by a lemma tagged as verb, out of the total of sentence roots;
[avg_verb_edges]: verbal arity, calculated as the average number of instantiated dependency links (covering both arguments and modifiers)
sharing the same verbal head, excluding punctuation and auxiliaries bearing the syntactic role of copula according to the UD scheme
[verbal_arity*]: distribution of verbs for arity class (e.g. verbs with arity 1, 2, ...)
Global and Local Syntactic Tree Structures
[parse_depth]: mean of the maximum tree depths of the sentence. The maximum depth is calculated as the longest path (in terms of occurring
dependency links) from the root of the dependency tree to some leaf
[clause_length]: average clause length, calculated in terms of the average number of tokens per clause, where a clause is defined as the ratio
between the number of tokens in a sentence and the number of either verbal or copular head
[avg_links_len]: average number of words occurring linearly between each syntactic head and its dependent (excluding punctuation dependen-
cies)
[max_links_len]: the value of the longest dependency link in the document, calculated in number of tokens
[prep_1]: distribution of prepositional chains 1-complement long. A prepositional chain is calculated as the number of embedded prepositional
complements dependent on a noun
Relative order of elements
[%_obj_post]: distribution of objects following the verb
[%_subj_pre]: distribution of subjects preceding the verb
Syntactic Relations
[%_dep_*]: average distribution of the 37 universal syntactic relations used in UD (https://universaldependencies.org/u/dep/
index.html)
Use of Subordination
[principal_prop_dist]: distribution of principal clauses
[%_subord_prop]: distribution of subordinate clauses, as defined in the UD scheme: https://universaldependencies.org/u/
overview/complex-syntax.html#subordination
[subord_post]: distribution of subordinate clauses following the main clause
[avg_subord_chain]: average length of subordinate chains, where a subordinate ’chain’ is calculated as the number of subordinate clauses
embedded on a first subordinate clause
[subord_1]: distribution of subordinate chains 1-clause long

Table 3: Linguistic features used in the experiments.
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B Appendix B

Figure 3: BERT and GPT-2 ρ scores obtained with the LinearSVR model using one feature at a time, for the whole
UD dataset and sentences with lengths = 16.
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Abstract
Several studies investigated the linguistic in-
formation implicitly encoded in Neural Lan-
guage Models. Most of these works focused
on quantifying the amount and type of in-
formation available within their internal rep-
resentations and across their layers. In line
with this scenario, we proposed a different
study, based on Lasso regression, aimed at
understanding how the information encoded
by BERT sentence-level representations is ar-
ranged within its hidden units. Using a suite of
several probing tasks, we showed the existence
of a relationship between the implicit knowl-
edge learned by the model and the number of
individual units involved in the encodings of
this competence. Moreover, we found that it
is possible to identify groups of hidden units
more relevant for specific linguistic properties.

1 Introduction

The rise of contextualized word representations
(Peters et al., 2018; Devlin et al., 2019) has led
to significant improvement in several (if not ev-
ery) NLP tasks. The main drawback of these ap-
proaches, despite the outstanding performances, is
the lack of interpretability. In fact, high dimen-
sional representations do not allow for any insight
of the type of linguistic properties encoded in these
models. Therefore this implicit knowledge can
only be determined a posteriori, by designing tasks
that require a specific linguistic skill to be tackled
(Linzen and Baroni, 2020) or by investigating to
what extent certain information is encoded within
contextualized internal representations, e.g. defin-
ing probing classifier trained to predict a variety
of language phenomena (Conneau et al., 2018a;
Hewitt and Manning, 2019; Tenney et al., 2019a).

In line with this latter approach and with re-
cent works aimed at investigating how the informa-
tion is arranged within neural models representa-
tions (Baan et al., 2019; Dalvi et al., 2019; Lakretz

et al., 2019), we proposed an in-depth investigation
aimed at understanding how the information en-
coded by BERT is arranged within its internal rep-
resentation. In particular, we defined two research
questions, aimed at: (i) investigating the relation-
ship between the sentence-level linguistic knowl-
edge encoded in a pre-trained version of BERT and
the number of individual units involved in the en-
coding of such knowledge; (ii) understanding how
these sentence-level properties are organized within
the internal representations of BERT, identifying
groups of units more relevant for specific linguistic
tasks. We defined a suite of probing tasks based on
a variable selection approach, in order to identify
which units in the internal representations of BERT
are involved in the encoding of similar linguistic
properties. Specifically, we relied on a wide range
of linguistic tasks, which resulted to successfully
model different typology of sentence complexity
(Brunato et al., 2020), from very simple features
(such as sentence length) to more complex prop-
erties related to the morphosyntactic and syntactic
structure of a sentence (such as the distribution of
specific dependency relations).

The paper is organized as follows. In Sec. 2
we present related work, then we describe our ap-
proach (Sec. 3), with a focus on the model and the
data used for the experiments (Sec. 3.1) and the
set of probing tasks (Sec. 3.2). Experiments and
results are discussed in Sec. 4 and 5. To conclude,
we summarize the main findings of our work in
Sec. 6.

2 Related work

In the last few years, a number of recent works
have explored the inner mechanism and the lin-
guistic knowledge implicitly encoded in Neural
Language Models (NLMs) (Belinkov and Glass,
2019). The most common approach is based on
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the development of probes, i.e. supervised mod-
els trained to predict simple linguistic properties
using the contextual word/sentence embeddings of
a pre-trained model as training features (Conneau
et al., 2018b; Zhang and Bowman, 2018; Miaschi
et al., 2020). These latter studies demonstrated that
NLMs are able to encode a wide range of linguistic
information in a hierarchical manner (Blevins et al.,
2018; Jawahar et al., 2019; Tenney et al., 2019b)
and even to support the extraction of dependency
parse trees (Hewitt and Manning, 2019). For in-
stance, Liu et al. (2019) quantified differences in
the transferability of individual layers between dif-
ferent models, showing that higher layers of RNNs
(ELMo) are more task-specific (less general), while
transformer layers (BERT) do not exhibit this in-
crease in task-specificity.

Other works also investigated the importance of
individual neurons within models representations
(Qian et al., 2016; Bau et al., 2019; Baan et al.,
2019). Dalvi et al. (2019) proposed two methods,
Linguistic Correlations Analysis and Cross-model
correlation analysis, to study whether specific di-
mensions learned by end-to-end neural models are
responsible for specific properties. For instance,
they showed that open class categories such as
verbs and location are much more distributed across
the network compared to closed class categories
(e.g. coordinating conjunction) and also that the
model recognizes a hierarchy of linguistic propri-
eties and distributes neurons based on it. Lakretz
et al. (2019), instead, proposed a detailed study of
the inner mechanism of number tracking in LSTMs
at single neuron level, showing that long distance
number information (from the subject to the verb)
is largely managed by two specific units.

Differently from those latter work, our aim was
to combine previous approaches based on probes
and on the study on individual units in order to pro-
pose an in-depth investigation on the organization
of linguistic competence within NLM contextual-
ized representations.

3 Approach

To study how the information used by BERT to
implicitly encode linguistic properties is arranged
within its internal representations, we relied on a
variable selection approach based on Lasso regres-
sion (Tibshirani, 1996), which aims at keeping as
few non-zero coefficients as possible when solving
specific regression tasks. Our aim was to identify

which weights within sentence-level BERT inter-
nal representations can be set to zero, in order to
understand the relationship between hidden units
and linguistic competence and whether the infor-
mation needed to perform similar linguistic tasks is
encoded in similar positions. We relied on a suite
of 68 sentence-level probing tasks, each of which
corresponds to a specific linguistic feature captur-
ing characteristics of a sentence at different levels
of granularity. In particular, we defined a Lasso re-
gression model that takes as input layer-wise BERT
representations for each sentence of a gold standard
Universal Dependencies (UD) (Nivre et al., 2016)
English dataset and predicts the actual value of
a given sentence-level feature. Lasso regression
consists in adding an L1 penalization to the usual
ordinary least square loss. To do so, one of the most
relevant parameters is λ, which tunes how relevant
the L1 penalization is for the loss function. We
performed a grid search with cross validation for
each feature-layer pair, in order to identify the best
suited value for λ according to each task. Specifi-
cally, our goal was to find the most suited value for
seeking the best performance when having as few
non-zero coefficients as possible.

3.1 Model and data
We used a pre-trained version of BERT (BERT-
base uncased, 12 layers). In order to obtain the
representations for our sentence-level tasks we ex-
perimented with the activation of the first input
token ([CLS]) and the mean of all the word embed-
dings for each sentence (Mean-pooling).

With regard to the data used for the regression
experiments, we relied on the Universal Dependen-
cies (UD) English dataset. The dataset includes
three UD English treebanks: UD English-ParTUT,
a conversion of a multilingual parallel treebank con-
sisting of a variety of text genres, including talks,
legal texts and Wikipedia articles (Sanguinetti and
Bosco, 2015); the Universal Dependencies version
annotation from the GUM corpus (Zeldes, 2017);
the English Web Treebank (EWT), a gold standard
universal dependencies corpus for English (Silveira
et al., 2014). Overall, the final dataset consists of
23,943 sentences.

3.2 Linguistic features
As already mentioned, we defined a suite of prob-
ing tasks relying on a wide set of sentence-level
linguistic features automatically extracted from the
parsed sentences in the UD dataset. The set of
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Level of Annotation Linguistic Feature Label

Raw Text
Raw Text Properties

Sentence Length sent length
Word Length char per tok

Vocabulary Vocabulary Richness
Type/Token Ratio for words and lemmas ttr form, ttr lemma

POS tagging

Morphosyntactic information
Distibution of UD and language–specific POS upos dist *, xpos dist *
Lexical density lexical density

Inflectional morphology
Inflectional morphology of lexical verbs and auxiliaries xpos VB-VBD-VBP-VBZ, aux *

Dependency Parsing

Verbal Predicate Structure
Distribution of verbal heads and verbal roots verbal head dist, verbal root perc
Verb arity and distribution of verbs by arity avg verb edges, verbal arity *

Global and Local Parsed Tree Structures
Depth of the whole syntactic tree parse depth
Average length of dependency links and of the longest link avg links len, max links len
Average length of prepositional chains and distribution by depth avg prep chain len, prep dist *
Clause length avg token per clause

Order of elements
Order of subject and object subj pre, obj post

Syntactic Relations
Distribution of dependency relations dep dist *

Use of Subordination
Distribution of subordinate and principal clauses principal prop dist, subordinate prop dist
Average length of subordination chains and distribution by depth avg subord chain len, subordinate dist 1
Relative order of subordinate clauses subordinate post

Table 1: Linguistic Features used in the experiments.

features is based on the ones described in Brunato
et al. (2020) which are acquired from raw, morpho-
syntactic and syntactic levels of annotation and
can be categorised in 9 groups corresponding to
different linguistic phenomena. As shown in Ta-
ble 1, these features model linguistic phenomena
ranging from raw text one, to morpho–syntactic
information and inflectional properties of verbs, to
more complex aspects of sentence structure model-
ing global and local properties of the whole parsed
tree and of specific subtrees, such as the order of
subjects and objects with respect to the verb, the
distribution of UD syntactic relations, also includ-
ing features referring to the use of subordination
and to the structure of verbal predicates.

4 Linguistic competence and BERT units

As a first analysis, we investigated the relationship
between the implicit linguistic properties encoded
in the internal representations of BERT and the
number of individual units involved in the encod-
ing of these properties. Figure 1 and 2 report lay-
erwise R2 results for all the probing tasks along
with the number of non-zero coefficients obtained
with the sentence representations computed with
the [CLS] token and the Mean-pooling strategy re-
spectively. As a first remark, we can notice that
the Mean-pooling method proved to be the best
one for almost all the probing features across the
12 layers. Moreover, in line with Hewitt and Man-
ning (2019), we noticed that there is high variabil-
ity among different tasks, whereas less variation

occurs among the model layers. In general, we
observe that best scores are related to features be-
longing to raw text and vocabulary proprieties, such
as sentence length and Type/Token Ratio. Never-
theless, BERT representations implicitly encode
information also related to more complex syntactic
features, such as the order of the subject (subj pre)
or the distribution of several dependency relations
(e.g. dep dist det, dep dist punct). Interestingly,
the knowledge about POS differs when we consider
more granular distinctions. For instance, within the
broad categories of verbs and nouns, worse predic-
tions were obtained by sub-specific classes of verbs
based on tense, person and mood features (see es-
pecially past participle, xpos dist VBN). Similarly,
within the verb predicate structure properties, we
observe that lower R2 scores were obtained by
features related to sub-categorization information
about verbal predicates, such as the distribution of
verbs by arity (verbal arity *).

Focusing instead on the relationship between R2

scores and number of non-zero coefficients, we
can notice that although best scores are achieved
at lower layers (between layers 12 and 8 for both
configurations), the highest number of non-zero
coefficients occurs instead at layers closer to the
output. This is particularly evident for the results
achieved using the [CLS] token, for which we ob-
serve a continuous increase across the 12 layers in
the number of units used by the the probing models.

For both configurations, features more related
to the structure of the whole syntactic tree are
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Figure 1: Layerwise R2 results for all the probing tasks (left heatmap) along with the number of non-zero coeffi-
cients (right heatmap) obtained with the sentence representations computed using the [CLS] token.

those for which less units were set to zero dur-
ing regression (e.g. max links len, parse depth,
n prepositional chains), while properties belong-
ing to word–based properties (i.e. features related
to POS and dependency labels) were predicted re-
lying on less units. Moreover, we can clearly no-
tice that features related to specific POS and de-
pendency relationships are also those that gained
less units through the 12 layers (e. g. xpos dist .,
xpos dist AUX). On the contrary, features belong-
ing to the structure of the syntactic tree tend to
acquire more non-zero units as the output layer is
approached. This is particularly evident for the
linguistic features predicted using sentence repre-
sentations computed using the [CLS] token (e.g.
subj pre, parse depth, n prepositional chains). We
believe this is due to the fact that the interdepen-
dence between different units in each representa-
tion tend to increase across layers, thus making
the information less localized especially for those

features that belong to the whole structure of the
syntactic tree. This is coherent with the fact that
using the Mean-pooling strategy a higher number
of non-zero coefficients was preserved also in the
very first input layers, suggesting that this strategy
increases the interdependence between each unit
and makes the extraction of localized information
more complex.

In order to focus more closely on the relationship
between R2 scores and non-zero units, we reported
in Figures 3a and 3b average R2 scores versus av-
erage number of non-zero coefficients, along with
the line of best fit, for each layer and according
to the [CLS] token and to the Mean-pooling strat-
egy respectively. Interestingly, for both [CLS] and
Mean-pooling representations, R2 scores tend to
improve as the number of non-zero coefficients in-
creases. Moreover, when considering sentence rep-
resentations computed with the [CLS] token, this
behaviour becomes more pronounced as the output
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Figure 2: Layerwise R2 results for all the probing tasks (left heatmap) along with the number of non-zero coeffi-
cients (right heatmap) obtained with the sentence representations computed with the Mean-pooling strategy.

layer is reached. This is in line with what we al-
ready noticed, namely that the interdependence be-
tween different units tend to increase across layers,
especially when taking into account representations
extracted without using a mean-pooling strategy.

In order to investigate more in depth the be-
haviour of BERT hidden units when solving the
probing tasks, we focused more closely at how the
different units in the internal representations are
kept and lost across subsequent layers. Figure 4
reports the average number of non-zero coefficients
in a layer that are set to zero in the following one
(4a), the average number of zero coefficients in a
layer that are set to non-zero in the following one
(4b) and the average value of the difference be-
tween the number of non-zero coefficients at pairs
of consecutive layers (4c). As it can be observed,
there is high coherence between each layer and its
subsequent one, meaning that the variation in the
number of selected coefficient is stable (4c). How-
ever, the first two plots also show that there is a
higher variation when considering non-zero coeffi-

cients in the same positions between pairs of layers.
This underlines the fact that the information is not
localized within BERT’s internal representations,
since the algorithm shows a degree of freedom in
which units can be zeroed and which cannot.

In Figure 5 we report instead how many times
each individual unit in the [CLS] (5a) and Mean-
pooling (5b) internal representations has been kept
non-zero when solving the 68 probing tasks for
all the 12 BERT layers (816 regression task). In
general, we can observe that the regression tasks
performed using sentence-level representations ob-
tained with the Mean-pooling strategy tend to use
more hidden units with respect to the [CLS] ones.
It is also interesting to notice that there is a highly
irregular unit (number 308) that has been kept dif-
ferent from zero in a number of tasks and layers
much higher than the average. This could suggest
that this unit is particularly relevant for encoding
almost all the linguistic properties devised in our
probing tasks.
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(a) (b)

Figure 3: Average R2 scores versus average number of non-zero coefficients, along with the line of best fit, for
each layer and according to [CLS] (a) and Mean-pooling (b) strategy.

(a) (b)

(c)

Figure 4: In (a) the average number of non-zero coefficients in a layer that are set to zero in the following one
(average number of dropped coefficients), in (b) the average number of zero coefficients in a layer that are set to
non-zero in the following one (average number of gained coefficients) and in (c) the value of the difference between
the number of non-zero coefficients at pairs of consecutive layers (average number of changed coefficients).

5 Is information linguistically arranged
within BERT representations?

Once we have investigated the relationship between
the linguistic knowledge implicitly encoded by

BERT and the number of individual units involved
in it, we verified whether we can identify groups of
units particularly relevant for specific probing tasks.
To this end, we clustered the 68 probing features
according to the weights assigned by the regression
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(a)

(b)

Figure 5: Number of times in which each BERT indi-
vidual unit (computed with [CLS] token in (a) and with
Mean-pooing aggregation strategy in (b)) has been kept
as non-zero when solving all the probing tasks for all
the 12 layers.

models to each BERT hidden unit. Specifically, we
perform hierarchical clustering using correlation
distance as distance metric. Figure 6 and 7 report
the hierarchical clustering obtained with the [CLS]
and Mean-pooling internal representations at lay-
ers 12, 8 and 1. We chose layers 12 and 1 in order
to study differences of the clustering of linguistic
features taking into account the representations that
were more distant and more closer to the language
modeling task respectively, while layer 8 was cho-
sen since it was the layer after which BERT’s repre-
sentations tend to lose their precision in encoding
our set of linguistic properties.

As a general remark, we can notice that, despite
some variations, the linguistic features are orga-
nized in a similar manner across the tree layers
and for both the configuration. This is to say that,
despite the number of non-zero coefficients varies

significantly between layers and according to the
strategy for extracting the internal representations,
the way in which linguistic properties are arranged
within BERT embeddings is quite consistent. This
suggests that there is a coherent organization of lin-
guistic features according to non-zero coefficients
that is independent from the layer and the aggrega-
tion techniques taken into account.

Focusing on specific groups of features, we ob-
serve that, even if the traditional division with
respect to the linguistic annotation levels (see
Table 1) has not been completely maintained,
it is possible to identify different clusters of
features referable to the same linguistic phe-
nomena for all the 3 layers taken into account
and for both configurations. In particular, we
can clearly observe groups of features related
to the length of dependency links and preposi-
tional chains (e.g. max links len, avg links len,
n prepositional chains), to vocabulary richness
(ttr form, ttr lemma), to properties related to ver-
bal predicate structure and inflectional morphology
of auxiliaries (e.g. xpos dist VBD, xpos dist VBN
aux form dist Fin, aux tense dist pres) and to
the use of punctuation (xpos dist ., xpos dist ,,
dep dist punct) and subordination (e.g. subor-
dinate dist 1, subordinate post). Interestingly
enough, BERT representations also tend to put to-
gether features related to each other but not nec-
essarily belonging to the same linguistic macro-
category. This is the case, for instance, of charac-
teristics corresponding to functional properties (e.g.
upos dist ADP, dep dist det).

6 Conclusions

In this paper we proposed an in-depth investigation
aimed at understanding how BERT embeddings
encode and organize linguistic competence. Re-
lying on a variable selection approach applied on
a suite of 68 probing tasks, we showed the exis-
tence of a relationship between the implicit lin-
guistic knowledge encoded by the NLM and the
number of individual units involved in the encod-
ing of this knowledge. We found that, according to
the strategy for obtaining sentence-level represen-
tations, the amount of hidden units devised to en-
code linguistic properties varies differently across
BERT layers: while the number of non-zero units
used in the Mean-pooling strategy remains more or
less constant across layers, the [CLS] representa-
tions show a continuous increase in the number of
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Figure 6: From top to bottom, the hierarchical clustering for the [CLS] setting of all the tasks respectively at layers
12, 8 and 1.

used coefficients. Moreover, we noticed that this
behaviour is particularly significant for linguistic
properties related to the whole structure of the syn-
tactic tree, while features belonging to POS and
dependency tags tend to acquire less non-zero units
across layers.

Finally, we found that it is possible to identify
groups of units more relevant for specific linguis-
tic tasks. In particular, we showed that clustering
our set of sentence-level properties according to
the weights assigned by the regression models to
each BERT unit we can identify clusters of fea-
tures referable to the same linguistic phenomena
and this, despite some variations, is true for both
the configurations and for all the BERT layers.
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Abstract

We examine the effect of domain-specific ex-
ternal knowledge variations on deep large
scale language model performance. Recent
work in enhancing BERT with external knowl-
edge has been very popular, resulting in mod-
els such as ERNIE (Zhang et al., 2019a). Us-
ing the ERNIE architecture, we provide a de-
tailed analysis on the types of knowledge that
result in a performance increase on the Nat-
ural Language Inference (NLI) task, specifi-
cally on the Multi-Genre Natural Language In-
ference Corpus (MNLI). While ERNIE uses
general TransE embeddings, we instead train
domain-specific knowledge embeddings and
insert this knowledge via an information fu-
sion layer in the ERNIE architecture, allow-
ing us to directly control and analyze knowl-
edge input. Using several different knowledge
training objectives, sources of knowledge, and
knowledge ablations, we find a strong corre-
lation between knowledge and classification
labels within the same polarity, illustrating
that knowledge polarity is an important fea-
ture in predicting entailment. We also perform
classification change analysis across different
knowledge variations to illustrate the impor-
tance of selecting appropriate knowledge input
regarding content and polarity, and show repre-
sentative examples of these changes.

1 Introduction

Recently, the selection and integration of external
knowledge into large-scale language models has
shown impressive improvements in several Natu-
ral Language Understanding (NLU) tasks (Zhang
et al., 2019a). Understanding the relation between
external knowledge and model performance is fun-
damental to understanding how best to select and
integrate knowledge into NLU tasks. We focus
specifically on Natural Language Inference (NLI),
which requires understanding sentence semantics
with respect to both the content and polarity. NLI
is motivated by recognizing textual entailment, or

understanding whether a hypothesis entails, contra-
dicts, or is neutral with respect to a premise. For
example, given the premise: “Some boys are play-
ing soccer”, the hypothesis “Young men are playing
a sport” is an entailment whereas the hypothesis
“Old men are playing a sport” is a contradiction.
Language modeling is a very common and impor-
tant approach when considering the NLI task.

The NLI state-of-the-art utilizes different lan-
guage modeling techniques to learn the relations
between the hypothesis and the premise. Yoon
et al. (2018) used Dynamic Self-Attention (DSA)
to learn sentence embeddings, Liu et al. (2019) pro-
posed multi-task deep neural network (MT-DNN)
for learning language representations in multiple
NLU tasks, and Zhang et al. (2019b) combined se-
mantic role labeling and BERT (Devlin et al., 2019)
to explicitly absorb contextual semantics over a
BERT framework. However, these approaches
limit the source of information available for repre-
senting both the premise and hypothesis. Consider
the following premise and hypothesis:

People cut their expenses for the Golden years.
People decrease their expenses for retirement.
It is challenging to know that “Golden years”

entails “retirement” if we rely only on the context
within the two sentences. To illustrate how com-
mon this problem is, we conduct a manual analy-
sis of BERT classification errors on the NLI task
(specifically on the MNLI corpus (Williams et al.,
2018), more details in Section 6), and find that
at least 50% of misclassifications require external
knowledge, specifically requiring domain-specific
knowledge, world knowledge, jargon-based para-
phrases, or commonsense knowledge to resolve the
entailment. In the above example, a model that
learns the relation between “Golden years” and “re-
tirement” from external knowledge can be used to
enhance NLI inference.

On the basis of this idea, Chen et al. (2018) and
Zhang et al. (2019a) used external knowledge from
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WordNet and TransE (Bordes et al., 2013) and ap-
plied it to NLI models. In their work, pre-trained
representations of external knowledge from knowl-
edge bases (e.g., TransE) were directly applied;
they did not tailor knowledge content or structure
specifically to the NLI task and did not improve
NLI performance (Zhang et al., 2019a). This find-
ing motivates our investigation on how external
knowledge can be efficiently used to improve NLI
models. The intention of our work is not to propose
a new model that outperforms the state-of-the-art,
but instead to focus on building a framework for
investigating how different types and representa-
tions of external knowledge impact an NLI model’s
decisions.

Consider our previous examples. We want to rep-
resent that the relation between “young men" and
“boys" is positive for entailment, and that the rela-
tion between “old men" and “boys" is negative for
entailment. Similarly, we want to represent that the
relation between “Golden years" and “retirement"
is positive for entailment. The interplay of exter-
nal knowledge and entailment gives insight into
the power of selecting relevant knowledge with re-
spect to both content and polarity of the knowledge.
Here, content indicates the semantic meaning of
external knowledge and polarity indicates whether
the knowledge relation is positive or negative for
entailment. The representation of external knowl-
edge is required to be correct in both aspects for
the NLI task. The models learns (1) content via our
knowledge extraction phase, by extracting concept
edges from knowledge graphs, and (2) polarity via
our knowledge training phase, by learning the po-
larity of the relationships between concepts. We
define concepts as words or phrases througout this
paper. In this work, we aim to show what type of
external knowledge is useful for certain classes of
NLI. We examine how different types of knowl-
edge impact neural language model decisions with
respect to content and polarity.

To this end, we propose ERNIE-NLI, an NLI
model that integrates external knowledge to en-
hance and probe NLI inference decisions. First, we
adapt knowledge content in various sources to our
setup: external knowledge relations are mapped to
NLI knowledge relations (Section 4.2). In this step,
we not only represent external knowledge from dif-
ferent sources in a unified way, but also convert ex-
ternal knowledge content to the NLI task. Second,
the polarity is learned (Section 4.3): NLI knowl-

edge embeddings are learned to predict whether
they are positive or negative for entailment. In
this step, we extend BERT with a knowledge em-
bedding layer and a classification layer. Third,
the content and polarity are applied to NLI clas-
sification (Section 4.4). All three phases listed
above are depicted in Fig. 1. ERNIE-NLI is devel-
oped on the basis of ERNIE (Zhang et al., 2019a),
which did not improve performance on the NLI
task, although it was infused with TransE embed-
dings. Results show that our model ERNIE-NLI
enhanced with adapted knowledge achieves bet-
ter performance than ERNIE for specific classes
depending on knowledge input.

We perform an in-depth analysis to examine how
different types of knowledge impact NLI model’s
decisions with respect to content and polarity. We
conduct a series of experiments to investigate why
and how the adapted knowledge enhances NLI pre-
dictions. From the experiments, we find that:

• Integrating knowledge improves performance for
NLI classes that correspond to integrated knowl-
edge with regards to the polarity (e.g., positive
knowledge improves entailment classification,
etc.).

• Increased amount of knowledge during training
improves performance for NLI labels that corre-
spond to increased knowledge with regards to the
polarity.

• Presence of knowledge at inference improves
performance for NLI labels that correspond to
present knowledge with regards to polarity (e.g.,
a correct entailment prediction with the presence
of positive knowledge is observed to occur more
often than with the presence of negative knowl-
edge, etc.).

• ERNIE-NLI performance is robust to new knowl-
edge content.

In summary, the proposed NLI model enhanced
with adapted external knowledge from various
sources achieves better performance for respective
classes, allows us to analyze the impact of knowl-
edge type, and is robust when the knowledge at
inference time has shifted. We examine this perfor-
mance with detailed analysis throughout the paper.
Overall our contributions are as follows:

• We propose a knowledge analysis framework,
ERNIE-NLI, that allow us to directly control and
analyze adapted knowledge input, to investigate
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the characteristics of knowledge that result in a
performance increase on the NLI task.

• We present findings that show strong correlations
between knowledge polarity and downstream per-
formance, illustrating the knowledge features that
are important for increased performance.

• We perform extensive analysis and experimenta-
tion to support our findings (e.g., classification
change analysis, adding knowledge incremen-
tally, adding unseen knowledge, etc).

2 Related Work

2.1 Natural Language Inference

Early work in Natural Language Inference, also
known as Textual Entailment (Dagan et al., 2005),
exploited different features including logical rules
(Bos and Markert, 2005), dependency parsers
(Iftene and Balahur, 2007), and semantics (Mac-
Cartney and Manning, 2009), etc. With the devel-
opment of large human annotated corpus such as
the Stanford Natural Language Inference Corpus
(Bowman et al., 2015) and the Multi-Genre NLI
Corpus (Williams et al., 2018), most recent work
has explored various neural models.

Different encoders have been studied to repre-
sent sentences, including LSTM (Bowman et al.,
2016), tree-based CNN (Mou et al., 2015), TreeL-
STM (Choi et al., 2018), etc. Previous work has
explored using dynamic self-attention (Yoon et al.,
2018), distance-based self-attention (Im and Cho,
2017) and reinforced self-attention (Shen et al.,
2018) to enhance sentence encoders. Ensemble
methods that combine multiple models have also
shown improvements (Wang et al., 2017; Peters
et al., 2018; Kim et al., 2019). Sun et al. (2019) im-
proved masked language modeling with knowledge
masking strategies, via entity-level and phrase-level
masking, which showed improvement on NLI. Sun
et al. (2020) then expanded this work to contin-
ual pre-training, which incrementally learns pre-
training tasks through constant multi-task learning.
Peters et al. (2019) investigated embedding knowl-
edge bases into large-scale models in a multitask
setup, seeing improvements on relationship extrac-
tion, entity typing, and word sense disambiguation.

Using external knowledge to enhance NLI mod-
els specifically, Chen et al. (2018) obtained the
semantic relations between words from WordNet
and calculated the relation embeddings using pre-
trained TransE embeddings. Additionally, previ-

ous work has explored injecting lexical knowledge
into pre-trained models for MNLI (Williams et al.,
2018), among other tasks (Lauscher et al., 2020;
Levine et al., 2020). Zhang et al. (2019a) adopted
a knowledgeable encoder to inject the knowledge
information into language representation. However,
in contrast to our work, their external knowledge
was not trained specifically for the NLI task.

2.2 Knowledge Embeddings
Using knowledge embeddings that represent the
relations between entities has been useful in vari-
ous downstream NLP tasks. Bordes et al. (2013)
proposed TransE, a method which modeled rela-
tionships by interpreting them as translations op-
erating on the low-dimensional embeddings of the
entities. To address the issue of complex relation
embeddings, Lin et al. (2015b) proposed CTransR
in which the entity pairs are clustered into dif-
ferent groups and where the pairs in the same
group share the same relation vector. Xiao et al.
(2016) developed TransG, a generative Bayesian
non-parametric infinite mixture embedding model,
to handle multiple relation semantics of an entity
pair. Further, Wang et al. (2019) integrated logic
rules into a translation based knowledge graph em-
bedding model. Their method automatically mined
logic rules from triples in a knowledge graph.

Previous work has also introduced external
knowledge to learn better knowledge embeddings.
Lin et al. (2015a) and Luo et al. (2015) utilized
relation paths and Guo et al. (2015) integrated ad-
ditional semantic information and enforced the em-
bedding space to be semantically smooth so that
entities in the same semantic category were close
to each other in the embedding space. Wang et al.
(2014) used entity names and Wikipedia anchors
to align the embeddings of entities and words in
the same space. In our work, we focus on convert-
ing knowledge relations from different knowledge
sources to relations that are tailored to the NLI task.
We then use this knowledge to illustrate the impact
that both knowledge content and representation
have on model performance.

2.3 Language Model Challenges
Pre-trained language models face several chal-
lenges and previous work has analyzed and il-
lustrated their strenghts and weaknesses. Et-
tinger (2020) constructed a series of tests for lan-
guage models and applied these to BERT to study
strengths and weakness. Kassner and Schütze
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Figure 1: Components of the setup: (1) Knowledge Extraction Phase: Extracts knowledge content from external
knowledge sources; (2) Knowledge Training Phase: Learns knowledge embeddings adapted to the NLI task; and
(3) ERNIE-NLI: Trains NLI model with the integration of our learned knowledge embeddings.

(2020) added a component that focused on negation
to the LAMA (LAnguage Model Analysis) eval-
uation framework (Petroni et al., 2019), showing
that BERT failed on most negated statements. Tal-
mor et al. (2019) designed eight reasoning tasks
and illustrated that reasoning abilities are strongly
context-dependent. Specific to NLI, Richardson
et al. (2019) constructed challenging NLI datasets
with new semantic fragments and showed that lan-
guage models, though trained on NLI benchmark
datasets, did not perform well on the new fragments.
This previous work has shown that when applying
pre-trained language models to a new task, a new
domain, or new data variations, these models do
not always perform well and additional knowledge
may be needed to guide them. We examine how dif-
ferent types of knowledge impact language model
decisions with respect to both content and polarity.

3 NLI corpus and External Knowledge

In this section, we introduce the particular NLI cor-
pus and external knowledge sources used through-
out this work.

3.1 NLI Corpus

MNLI, the Multi-Genre Natural Language Infer-
ence Corpus (Williams et al., 2018), consists of
433k sentence pairs annotated with entailment, con-
tradiction, and neutral labels. The corpus covers
various genres of both spoken and written text, and
offers a wide range of style, various degrees of for-
mality, and a diverse variety of topics and domains.
This dataset is evaluated using standard accuracy.

3.2 External Knowledge Sources
We use several external knowledge sources to learn
the relationships between concepts in our task.
ConceptNet (Speer et al., 2017) is a large semantic
graph consisting of general knowledge. Concepts
are related through predicates such as IsA(jazz,
genre of music) and AtLocation(jazz, new orleans).
PPDB, Paraphrase Database (Ganitkevitch et al.,
2013), contains over 220 million paraphrase pairs
extracted from bilingual parallel corpora. Each
paraphrase pair consists of two concepts that have
a similar meaning.
WordNet (Miller, 1995) groups nouns, verbs, ad-
jectives and adverbs into sets of cognitive syn-
onyms (synsets), each expressing a distinct concept.
Synsets are linked by different relations including
synonym, antonymy, hypernymy, hyponymy, etc.

4 Methods

We introduce our terminology in Section 4.1.
Then, we introduce the three steps of ERNIE-
NLI: (1) knowledge extraction phase (content): ex-
tracting knowledge content from external knowl-
edge sources (Section 4.2), (2) knowledge training
phase (polarity): learning knowledge embeddings
adapted to the NLI task (Section 4.3), and (3) NLI
training phase: training our NLI model with the
integration of learned knowledge embeddings (Sec-
tion 4.4). The three phases are shown in Fig. 1.

4.1 Terminology
We use the following terms throughout the paper.
For clarity, we will demonstrate each term given
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(A) Premise: I had an additional reason for that belief in the fact that all the cups found contained
sugar, which Mademoiselle Cynthia never took in her coffee.
Hypothesis: Mademoiselle Cynthia often took milk or cream in her coffee.
Label: neutral
External Knowledge Pair: RelatedTo(sugar, cream), AtLocation(sugar, coffee)
NLI Knowledge Pair: pos(sugar, cream), pos(sugar, coffee)

(B) Premise: Lalley also is enthused about other bar efforts on behalf of the poor, most notably the
Legal Assistance Center will operate out of the new courthouse.
Hypothesis: Lalley is enthusiastic about the bar’s initiative to help the poor.
Label: entailment
External Knowledge Pair: ReverseEntailment(efforts, initiative)
NLI Knowledge Pair: pos(efforts, initiative)

Table 1: NLI & Knowledge Pair Example.

the example in Table 1, Example (A).
External knowledge pair refers to a pair of two
concepts from external knowledge sources, con-
nected by an external knowledge relation, for ex-
ample RelatedTo(sugar, cream). Each concept may
be either a single word or a phrase.
External knowledge relation is the relation of the
external knowledge pair. Each external knowledge
source has a unique set of external knowledge rela-
tions. RelatedTo is an example of such a relation.
NLI knowledge pair refers to a pair of two con-
cepts from NLI corpus, connected by an NLI
knowledge relation, e.g., pos(sugar, cream).
NLI knowledge relation is the relation of the NLI
knowledge pair. We define two NLI knowledge
relations in Section 4.2: pos() and neg().
NLI pair refers to a pair of sentences, in which
one sentence is the premise and the other is the
hypothesis, as depicted in Table 1.
NLI label is entailment/neutral/contradiction.

4.2 NLI Knowledge Extraction

To represent external knowledge relations from dif-
ferent sources in a unified way, we define two NLI
knowledge relations: pos() and neg(). A rule-
based heuristic is developed to map the external
knowledge relations to NLI knowledge relations.
For example, in Table 1, we see that RelatedTo is
mapped to pos(). Additionally, an external knowl-
edge relation such as Antonym would be mapped
to neg(). Each external knowledge relation is
mapped to one NLI knowledge relation, where dif-
ferent external knowledge relations may be mapped
to the same NLI knowledge relation. The specific
mappings are listed in the appendix.

NLI knowledge pairs are extracted from each

NLI pair. For the i-th NLI pair, with premise P
and hypothesis H , we first identify all the con-
cepts (single word or key phrase) in P and H us-
ing Python Keyphrase Extraction (PKE) (Boudin,
2016). We then extract each NLI knowledge pair
y(c1i , c

2
i ) where c1i ⊆ P (a concept in the premise),

c2i ⊆ H (a concept in the hypothesis) and where
there exists an NLI knowledge relation y between
c1i and c2i . Considering Example (A) in Table 1,
we see that c1i = ‘sugar’, c2i = ‘cream’, and y =
pos().

There may be multiple NLI knowledge pairs in
the i-th NLI pair of premise and hypothesis.

4.3 NLI Knowledge Learning
To learn the NLI knowledge embeddings, we add
two additional components to BERT (Devlin et al.,
2019). Thus, we learn the embedding of y{c1i , c2i }
in the following way. First, the sequence of knowl-
edge tokens {[CLS] c1i [SEP] c2i [SEP]} is passed
as input to BERT. Then, we take the subsequent
contextual representations from BERT and pass
them through a knowledge embedding layer (a lin-
ear layer) which casts our BERT representations
into a knowledge embedding.

o = BERT(c1i , c
2
i ) (1)

ki = Wk(o) + bk (2)

where o is the contextual representation from
BERT, Wk and bk are weights and bias of the
knowledge embedding layer, and ki is the knowl-
edge embedding. Next, the knowledge embedding
ki is fed into the NLI knowledge relation classifi-
cation layer for knowledge fine-tuning:

lc = Wc(ki) + bc (3)

y = softmax(lc) (4)
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where Wc and bc are weights and bias of the
classification layer, and y is the NLI knowledge re-
lation prediction. We use cross-entropy loss during
training. In this way, we get the knowledge embed-
ding associated with the NLI knowledge relation.

We learn the embeddings for all the NLI knowl-
edge pairs in the i-th NLI pair in the training
set such that we have a set of knowledge Ki =
{k1i , . . . , kmi } where m is the length of the knowl-
edge sequence for the i-th NLI pair. We use these
embeddings to enhance NLI training described in
the next section. The knowledge embeddings are
fixed during NLI training. Note that at inference
time, we calculate the knowledge embedding of the
relation between any two concepts in the premise
and hypothesis via Equations 1 and 2, even if the
two concepts are not included in the training set.
This enables the model to handle unseen concepts
and NLI knowledge relations in the inference data.

4.4 NLI Knowledge Enhanced NLI

We propose ERNIE-NLI, built on the ERNIE ar-
chitecture (Zhang et al., 2019a), to integrate the
knowledge embeddings learned in Section 4.3 into
the NLI model.

4.4.1 ERNIE

ERNIE (Zhang et al., 2019a) was developed mainly
for integrating knowledge graph information into
the entity typing and relation extraction tasks. It
has two stacked modules: (a) a textual encoder to
capture token embeddings and (b) a knowledge en-
coder to inject the token-oriented knowledge into
the textual encoder output. The textual encoder is a
multi-layer bidirectional Transformer encoder, sim-
ilar to BERT. The knowledge encoder concatenates
the token embeddings (output from the textual en-
coder) and entity embeddings (pre-trained TransE
embedding).

ERNIE defines two inputs to the model, a token
sequence T = {w1, . . . , wn} where n is the length
of the token sequence, and a entity sequence that
aligns to the given tokens as E = {e1, . . . , em}
where m is the length of the entity sequence.
ERNIE is then defined as:

u = ERNIE(T,E) (5)

For example, consider the following sentence:

Bob Dylan wrote Blowin’ in the Wind.

To recognize the relation between Bob Dylan and
Blowin’ in the Wind, ERNIE concatenates the en-
tity embeddings of Bob Dylan and Blowin’ in the
Wind with the corresponding token embeddings.
For more details, please refer to the original paper
(Zhang et al., 2019a).

4.4.2 ERNIE-NLI
Though ERNIE is mainly designed for the entity
typing and relation extraction tasks, it also reports
performance on the MNLI dataset. ERNIE does
not show an improvement over BERT, even though
it uses the information from the knowledge graph.
We speculate that this is because the knowledge
type (named entities) is neither the type of knowl-
edge required for the NLI task nor domain-specific
to the NLI task. In contrast to ERNIE, which
directly uses TransE embeddings (which are not
adapted to the NLI task), we propose ERNIE-NLI
which uses knowledge embeddings trained on the
NLI dataset and tailored for the NLI task.

Similar to ERNIE, two inputs are fed into
ERNIE-NLI: a token sequence T = {w1, . . . , wn}
and a knowledge sequence, aligned to the given to-
kens, as K = {k1, . . . , km} where m is the length
of the knowledge sequence. In contrast to ERNIE,
knowledge relations are tailored to the NLI task
and knowledge embeddings are trained on the NLI
training data. Thus, our model definition becomes:

u = ERNIE(T,K) (6)

where our knowledge embeddings for K are fixed
during NLI training, similar to the original setup.
However, unlike the original setup, our knowledge
embeddings are now adapted to the NLI task.

5 Experiment Setup

As introduced in Section 3, we examine various ex-
ternal knowledge sources. We describe the setups
used in this work, all of which are combinations
of these sources. The performance of each setup is
reported in Section 6.
PC is the basic setup and includes Paraphrase
Database (PPDB) and ConceptNet. In this setup,
we find that the number of positive NLI knowledge
relations is greater than the number of negative NLI
knowledge relations. Thus, we design additional
setups to balance the ratio of positive and negative
relations.
PC&Bal balances the positive and negative NLI
knowledge relations to 50%-50% by downsam-
pling positive relations.
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PCW adds negative NLI knowledge relations from
WordNet to PC.
PCW&Bal balances the positive and negative NLI
knowledge relations to 50%-50% on PCW by
downsampling positive relations.

6 Results and Analysis

6.1 BERT Error Analysis

Before designing our experiments, we manually
analyzed BERT misclassifiations on MNLI, which
inspired the decisions regarding content and po-
larity of knowledge required for improved reason-
ing and performance. We achieved 83.90% on the
MNLI dev set with BERT. We analyzed 40 mis-
classifications per MNLI domain, and found that
across all domains, at least 50% of misclassifica-
tions required external knowledge to be resolved.
We also found that the combination of ConceptNet
and PPDB covered at least 70% of the required
concepts for these misclassifications across all do-
mains. Thus, we decided to investigate the impact
of external knowledge on NLI models.

6.2 ERNIE-NLI Performance

We run both ERNIE and ERNIE-NLI on the MNLI
corpus using our experimental setups. With respect
to ERNIE as the baseline, the accuracy changes of
ERNIE-NLI are shown in Table 2. As introduced in
Section 5, PC&Bal has less positive relations than
PC. We can see that in Table 2, PC has better per-
formance on the entailment class than PC&Bal, but
has worse performance on neutral and contradic-
tion. Similarly, PCW achieves better performance
on entailment than PCW&Bal and worse perfor-
mance on neutral and contradiction.

PCW has more negative NLI knowledge rela-
tions than PC since PCW has additional negative
relations from WordNet. As shown in Table 2, PC
achieves better performance on the entailment class
than PCW and worse performance on the neutral
class. Similarly, PC&Bal has better performance
on the entailment class than PCW&Bal and worse
performance on neutral and contradiction classes.

These results demonstrate a correlation between
knowledge polarity and NLI performance, specifi-
cally that adding positive knowledge can train an
NLI model that is better at making entailment pre-
dictions, and that adding negative knowledge can
train an NLI model that is better at making neutral
and contradiction predictions. As shown in Table 2,
the best setup for the entailment class is PC and the

Setup Contra Neutral Entail

PC -0.62 0.13 2.59
PC&Bal 0.22 0.96 -1.06
PCW -1.00 0.66 1.41
PCW&Bal 0.59 1.47 -0.84

Table 2: ERNIE-NLI improvement over ERNIE in %
Accuracy per Contradiction/Neutral/Entailment label.

Model Contr. Neut. Ent. Total

ERNIE 85.91 83.74 80.84 83.42
ERNIE-NLI E 85.29 83.87 83.43 84.18
ERNIE-NLI C&N 86.50 85.21 80.00 83.74

Table 3: % Accuracy per label for ERNIE and ERNIE-
NLI using best setup for each label.

best setup for the contradiction and neutral classes
is PCW&Bal. The accuracy of the two setups per
label and on all labels are included in Table 3 be-
low. Note that in both setups, ERNIE-NLI not only
achieves better performance on the particular NLI
class, but also achieves better total performance.
While ERNIE-NLI achieves better performance in
this knowledge-integration setup, for comparison
we would like to point out that the state-of-the-art
is achieved by T5-11B (Raffel et al., 2020), which
achieves 92.2% on the MNLI test set.

6.3 Classification Change Analysis

We further analyze the new errors per label made by
ERNIE-NLI compared to ERNIE. Table 4 shows
the number of error changes grouped by NLI la-
bels, and demonstrates that all the increased er-
ror changes from ERNIE to ERNIE-NLI enhanced
with PC (i.e., positive numbers in the row of PC)
are false entailment classifications. This obser-
vation is consistent with the findings in Table 2:
with the introduction of more positive than neg-
ative knowledge, our model becomes biased to-
wards entailment. Similarly, all of the increased
errors changes from ERNIE to ERNIE-NLI en-
hanced with PCW&Bal (i.e., positive numbers in
the row of PCW&Bal) are false neutral predictions.
More interestingly, in this PCW&Bal setup where
the positive and negative knowledge is balanced,
the new errors only occur when the gold label is
entailment and all other errors decrease. These
results indicate that the model is able to utilize
knowledge in a way that reflects an understanding
of the NLI label. When the knowledge is balanced,
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Gold Contra Neutral Entail
Prediction N E C E C N

PC -2 22 -26 24 -9 -81
PCW&Bal 0 -16 -20 -20 -5 117

Table 4: ERNIE-NLI error changes with respect to
ERNIE. A positive value indicates that ERNIE-NLI
makes more errors than ERNIE on that label and vice
versa.

Contra Neutral Entail Total

0% 86.35 83.93 80.12 83.37
25% 86.25 83.80 80.52 83.44
50% 86.50 85.21 80.00 83.74
78% 84.91 84.40 82.25 83.80
100% 85.29 83.87 83.43 84.18

Table 5: ERNIE-NLI performance with respect to the
portion of positive knowledge used during knowledge
training.

the model better understands the boundary between
entailment and contradiction.

To better understand knowledge effect on
ERNIE-NLI, we conduct a series of experiments to
answer the following questions:

• Is more knowledge better?

• How does knowledge polarity affect NLI classifi-
cation?

• How is performance affected if there is new
knowledge at inference time?

6.4 Knowledge Portion during Training
To investigate performance gains with respect to
the addition of NLI knowledge, we report the NLI
performance depending on the portion of positive
knowledge used during NLI knowledge learning
under the PC setup in Table 5, which shows how the
incremental addition of positive knowledge during
knowledge embedding training increases the NLI
performance for the entailment label. Note that
the total accuracy is increased as more positive
knowledge is added.

6.5 Knowledge Type during Inference
An NLI contradiction pair may extract positive NLI
knowledge relations and an entailment pair may
extract negative NLI knowledge relations. We ana-
lyze the correlation between the presence of NLI
knowledge relations and the prediction results on

Label Pos Rels Neg Rels None Rels

C/N→E 160 (101) 22 (11) 138 (88)

C/E→N 156 (96) 24 (16) 140 (57)

N/E→C 129 (60) 22 (9) 82 (35)

Table 6: ERNIE-NLI classification changes with re-
spect to ERNIE depending on presence of knowledge
at inference time. Numbers without parenthesis are the
total changes and numbers in the parenthesis are the
correct changes.

the dev set. Specifically, we compare the predic-
tion changes from ERNIE to ERNIE-NLI using the
PC setup. Table 6 shows these prediction changes.
X → Y represents the NLI pairs where baseline
ERNIE predicts X while ERNIE-NLI predicts Y.
We also include the number of correct prediction
changes (i.e., where Y is gold).

Since we show results on the PC setup, we fo-
cus on the first row and first column in the table.
The results in the first row indicate that a correct
entailment classification with the presence of pos-
itive knowledge is observed to occur more often
than with the presence of negative knowledge. The
results in the first column indicate that a correct en-
tailment classification with the presence of positive
knowledge is observed to occur more often than a
correct neutral or contradiction classification with
positive knowledge. Thus, we see a strong correla-
tion between the presence of positive knowledge
and a correct entailment classification. This is a
result of using the PC setup in this analysis, which
is tailored for positive relations. Thus, while the
correct entailment classification has the strongest
correlation, we also see the strong effect of positive
relations across all categories.

We would like to note that these findings are not
discovered solely by looking at the label accuracies,
as other classification shifts in this setting occur.
We believe carrying out careful analyses, such as
these, enable us to gain a deeper understanding of
how knowledge affects the neural model, as we see
clear trends in the effect of knowledge presence by
polarity via this analysis.

6.6 Unseen Knowledge during Inference

To investigate our model’s robustness in a common
scenario where there are unseen knowledge rela-
tions in the evaluation data, we experiment with us-
ing only four external knowledge relations as NLI
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Mapping Contra Neutral Entail

Constrained 0.09 0.48 -0.17
Unconstrained -0.31 0.57 0.63

Table 7: ERNIE-NLI % Accuracy changes for handling
unseen relations with respect to ERNIE.

knowledge relations during training. The four rela-
tions are: RelatedTo, IsA, Independent, Antonym.
During inference, we design two scenarios.

First, we design a constrained scenario in which
new relations during inference time are dropped.
For example, if an “Entails" relation exists between
two concepts according to the knowledge sources,
the knowledge is discarded, since it is not included
in one of the four relations.

Second, we design an unconstrained scenario
that computes the knowledge embedding at in-
ference time. The sequence of the two concepts
linked by the “Entails" relation, {[CLS] c1i [SEP]
c2i [SEP]}, are fed into the BERT layer in Equation
(1) and knowledge embedding layer in Equation
(2) to get the knowledge embedding.

We compare the performance of the two sce-
narios in Table 7. The unconstrained scenario
performs better than the constrained scenario, es-
pecially on the entailment label, given that there
is more positive knowledge. The result shows
ERNIE-NLI’s capability of utilizing unseen knowl-
edge relations to improve NLI, indicating the ro-
bustness of ERNIE-NLI in providing good predic-
tions even if the inference data has shifted.

7 Examples

In this section, we discuss the two examples de-
picted in Table 1, to show how external knowledge
can assist models on the NLI task.

7.1 Introducing World Knowledge

Integrating external knowledge can equip the
model with world knowledge it did not have access
to before. In Table 1, Example (A), the baseline
model without external knowledge predicts contra-
diction, which is incorrect. Our ERNIE-NLI model
with external knowledge predicts neutral, which
is correct. The external knowledge used in this
example is RelatedTo(sugar, cream) and AtLoca-
tion(sugar, coffee). The baseline model seems to
predict this as contradiction mainly because the
premise states never ... in her coffee while the

hypothesis states in her coffee. The external knowl-
edge helps correctly align the components: sugar
and cream. Note that although the external knowl-
edge indicates that sugar is related to cream, it does
not necessarily yield an entailment prediction as
the context is still being taking into consideration
by the model, which understands that sugar is the
main condition for entailment and that cream and
sugar are not synonymous in this context.

7.2 Emphasizing Phrase Similarity

The model looks for similar words or phrases
when it judges whether the hypothesis can be en-
tailed from the premise. In the baseline model,
the contextual embeddings alone are not strong
enough to drive the prediction. In Table 1, Example
(B), the baseline prediction is contradiction, which
is wrong. Our ERNIE-NLI model with external
knowledge predicts entailment, which is correct.
The key knowledge required for this example is
Paraphrase(efforts, initiative). By adding this para-
phrase knowledge, the enhanced model recognizes
the entailment relation of the pair.

8 Conclusion

We propose ERNIE-NLI, an NLI model that inte-
grates external knowledge to enhance NLI perfor-
mance. Our external knowledge representations
are tailored to the NLI task and trained to adapt to
NLI data requirements. We show that our model
enhanced with external knowledge achieves better
performance than the previous ERNIE model with
non-adapted knowledge depending on the knowl-
edge utilized. We examine these results with sev-
eral analysis experiments to enable strong conclu-
sions about the correlation between knowledge and
NLI classification. Results also demonstrate that
the model is able to handle unseen knowledge when
the inference data shifts from training data.
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A Appendix

A.1 Knowledge Mapping
Table 8 shows the external knowledge relations that
are mapped to positive and negative NLI knowl-
edge relations.

A.2 Hyperparameter Settings
For our experiments, we did not tune hyperparame-
ters but rather selected our settings to be consistent
with Zhang et al. (2019a). We used batch size 12,
learning rate 2e-5, and random seed 42. We did
1 epoch of relation training and 4 epochs of NLI
training. We hold these settings constant across all
experiments.We built on the framework released by
Zhang et al. (2019a), which included a pytorch im-
plementation of ERNIE, and used all versions and
infrastructures included in their implementation.
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Course Grained Fine-Grained

Negative Antonym
DistinctFrom

Exclusion
Unrelated

Positive IsA
Synonym
RelatedTo

HasFirstSubevent
MannerOf

NotCapableOf
CausesDesire

MotivatedByGoal
HasProperty

Entails
ForwardEntailment

CreatedBy
Equivalence
DerivedFrom

dbpedia
OtherRelated

Unrelated
MadeOf
Desires

ReceivesAction
SimilarTo

EtymologicallyRelatedTo
HasLastSubevent
NotHasProperty

HasSubevent
DefinedAs

CausesDesire
AtLocation

HasA
Independent

ReverseEntailment
FormOf

HasContext
InstanceOf

PartOf
NotDesires

HasPrerequisite
UsedFor

CapableOf

Table 8: Fine-grained to course-grained mapping for
External Knowledge Relations to NLI Knowledge Re-
lations.
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Abstract

The task of causal question answering aims
to reason about causes and effects over a pro-
vided real or hypothetical premise. Recent ap-
proaches have converged on using transformer-
based language models to solve question an-
swering tasks. However, pretrained language
models often struggle when external knowl-
edge is not present in the premise or when ad-
ditional context is required to answer the ques-
tion. To the best of our knowledge, no prior
work has explored the efficacy of augment-
ing pretrained language models with external
causal knowledge for multiple-choice causal
question answering. In this paper, we present
novel strategies for the representation of causal
knowledge. Our empirical results demonstrate
the efficacy of augmenting pretrained models
with external causal knowledge. We show im-
proved performance on the COPA (Choice of
Plausible Alternatives) and WIQA (What If
Reasoning Over Procedural Text) benchmark
tasks. On the WIQA benchmark, our approach
is competitive with the state-of-the-art and ex-
ceeds it within the evaluation subcategories of
In-Paragraph and Out-of-Paragraph perturba-
tions.

1 Introduction

Recent model-based approaches for question an-
swering tasks have primarily focused on finetun-
ing pretrained transformer-based language models,
such as BERT (Devlin et al.) and RoBERTa (Liu
et al., 2019c), on task-specific datasets. These lan-
guage models have been found to contain transfer-
able linguistic knowledge (Liu et al., 2019a) and
general knowledge (Petroni et al., 2019) that are
effective for most downstream natural language
processing (NLP) tasks. For more complex tasks,
such as causal reasoning, pretrained language mod-
els are often limited as they lack the specific exter-
nal background knowledge required to effectively
reason about causality.

Events

1. Pressure pushes up from inside the volcano.

2. Lava comes out of the volcano.

3. Ash clouds and rocks also come out of some
volcanos.

4. The eruption lasts for a long time for some
eruptions.

5. The things that come out of the volcano cause
disturbances in the environment.

6. The volcano loses the built up pressure.

7. The lava and other debris stop coming out of
the volcano.

Question: Suppose MORE ash clouds forming
happens, how will it affect disturbances in the envi-
ronment.
A. More B. Less C. No Effect

Figure 1: Example question from WIQA. The question
poses an perturbation for Event 3 and asks what the
implication is on Event 5.

The term causal knowledge has a long history
rooted in philosophy, psychology, and many other
academic disciplines (Goldman, 1967). In this pa-
per, we will refer to causal facts and causal knowl-
edge interchangeably. Broadly, causal knowledge
captures relational knowledge between concepts,
which can be useful for reasoning about causality.
Causal facts are generally extracted from natural
language descriptions. For example, the statement
Global warming is caused primarily by human ac-
tivities such as coal-burning power plants would
yield the causal fact factories cause global warm-
ing. These causal facts can also be described explic-
itly in a knowledge base or expressed formally as
triples with an explicit cause-effect relation. For ex-
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ample, the causal fact factories cause global warm-
ing would be expressed as the triple (factory,
cause-effect, global warming). As
causal facts are generated from descriptions, the
veracity of these facts can be questionable. Ascer-
taining the verisimilitude of causal knowledge is an
open problem and out-of-scope for our experiments.
In this paper, we explore if causal knowledge is use-
ful for question answering and present strategies
on how to enhance a pretrained language model
with causal knowledge.

There is limited work on incorporating external
causal knowledge to improve question answering
and no prior work on using causal knowledge to
improve multiple-choice question answering. The
task of causal question answering aims to reason
about cause and effects over a provided real or hy-
pothetical premise. Specifically, we explore the
multiple-choice formulation of this task in the con-
text of the COPA (Choice of Plausible Alternatives)
(Gordon et al., 2012b) and WIQA (What If Rea-
soning over Procedural Text) (Tandon et al., 2019)
benchmark tasks. COPA and WIQA are both chal-
lenging causal reasoning tasks.

WIQA requires reasoning on hypothetical pertur-
bations to procedural descriptions of events. Con-
sider the example in Figure 1. To answer the hy-
pothetical question about the downstream effect of
an increase of ash and cloud on the environment,
the model must be able to causally link Event 3
(about ash clouds) to Event 5 (erupted materials
disturb the environment). If provided a causal fact
such as (ash clouds, cause-effect, environmental
disturbances), the model could make the causal as-
sociation and logical leap that the magnitude of the
effect is more.

COPA is another multiple-choice causal reason-
ing task. COPA requires external commonsense
causal knowledge to answer questions about the
causes and effects for a provided premise. Con-
sider the following example from COPA:

• Premise: Air pollution in the city worsened.
What was the CAUSE of this?

• Alternative 1: Factories increased their pro-
duction.

• Alternative 2: Factories shut down.

Lexically, there is limited information in the
premise and alternatives that the model can exploit
to answer the question. To successfully answer
this question, the model requires both background

knowledge about factories and the ability to make
causal leaps about the impact of factories on the
environment. Causal facts can succinctly capture
that knowledge. Consider the following claimed
causal fact triples from CauseNet (Heindorf et al.,
2020):

• (factory, cause-effect, pollution)

• (factory, cause-effect, air pollution)

• (production, cause-effect, pollution)

If the model was provided these facts apriori, it
could reason that factories cause air pollution and
the increase of production would worsen the air
quality.

This paper presents empirical findings on the ef-
ficacy of augmenting pretrained models with causal
facts extracted to improve multiple-choice causal
question answering. Our contributions can be sum-
marized as follows:

• We present a general method for selecting
relevant causal facts from CauseNet for a pro-
vided multiple-choice question.

• We present two novel strategies for represent-
ing external causal knowledge as embeddings
for downstream question answering.

• We present a novel end-to-end neural archi-
tecture that augments RoBERTa with external
causal knowledge for multiple-choice ques-
tion answering.

Our experiments demonstrate that augmenting pre-
trained models with external causal knowledge im-
proves results over the baseline on the COPA and
WIQA benchmark tasks. For the WIQA bench-
mark, we present findings that show causal knowl-
edge improves RoBERTa’s performance to nearly
match the current state-of-the-art (SOTA) and im-
prove upon the SOTA in specific sub-categories
such as in-paragraph and out-of-paragraph reason-
ing.

2 Related Work

Enhancing language models with external knowl-
edge (in the form of a knowledge graph or knowl-
edge base) remains an open problem. Several
promising strategies have emerged for injecting
knowledge into large language models as part of
the pretraining process. Peters et al. (2019) present
the Knowledge Attention and Recontextualization
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(KAR) layer which can be inserted into a neural lan-
guage model architecture and used to train knowl-
edge enhanced contextual embeddings. Liu et al.
(2019b) introduce the K-BERT model which learns
knowledge enabled representations from sentence
trees that consist of inputs augmented with knowl-
edge triples. Sun et al. (2020) introduce the Co-
LAKE model which jointly learns language and
knowledge representations through pretraining on
word-knowledge (WK) graphs. To the best of our
knowledge, there is no prior work on enhancing
language models specifically with causal knowl-
edge.

Next we provide a summary of the question
answering tasks which require causal reasoning.
The task of binary causal question answering poses
questions of cause and effect as yes/no questions
(i.e. Could X cause Y?). Hassanzadeh et al. evalu-
ate the application of cause-effect pairs extracted
from Gigawords corpus for binary question an-
swering. Kayesh et al. (2020) extends this work
to automatically learn the yes/no threshold using
word embeddings from BERT, RoBERTa, and other
transformer-based models. Sharp et al. and Xie
and Mu (2019) consider the task of answer rerank-
ing for open-ended causal questions. Both papers
are evaluated on a set of causal question extracted
from the Yahoo! Answers corpus which follows
the patterns What causes ... and What is the re-
sult of .... Sharp et al. present three distributional
similarity models to model the contextual relation-
ship between cause and effect phrases. Xie and
Mu (2019) extend Sharp et al. by proposing meth-
ods for building causal embeddings from cause-
effect phrase pairs by transferring causal relation-
ships from the phrase-pair level to word-pair level.
Our CausalSkipgram model for representing
causal knowledge expands upon the adapted Skip-
gram model presented by Sharp et al..

Finally, we summarize the current approaches to
causal knowledge extraction and knowledge graph
population. Causal relation extraction aims to iden-
tify cause and effect phrases in various texts. The
extracted cause/effect phrases can be used to pop-
ulate causal knowledge bases. Recent approaches
frame causal relation extraction as a structured se-
quence classification problem. Dasgupta et al. pro-
pose a LSTM architecture that uses word-level em-
beddings to predict cause and effect tags within
a sentence. Li et al. (2021) present SCITE, a
BiLSTM-CRF model which uses pretrained Flair

embeddings and multi-headed self-attention to ex-
tract causal phrases. To date, there are few publicly
available causal knowledge bases. CauseNet (Hein-
dorf et al., 2020) is currently the largest publicly
available knowledge graph of claimed causal facts.
CauseNet consists of about 12 million concepts and
11.5 million relations extracted from Wikipedia and
ClueWeb12 1. ConceptNet (Speer et al., 2017), a
public knowledge graph, consists of 36 relations
and includes a causes relation. The ATOMIC (Sap
et al., 2019) knowledge base consists of 877k tex-
tual descriptions of inferential knowledge orga-
nized around event prompts and agent-centric activ-
ities. ATOMIC describes the social and common-
sense knowledge of these events along nine if-then
relations which describe the event’s causes and ef-
fects on other agents/participants. COMET (Bosse-
lut et al., 2019) is a language model adaptation
framework that is trained on ATOMIC and Con-
ceptNet to generate novel commonsense facts and
construct robust commonsense knowledge bases.
This paper uses CauseNet as its primary source
for causal knowledge as it contains a broad and
deep set of causal facts (including descriptions of
physical processes relevant to WIQA).

3 Data

In this section, we describe the datasets used for
causal knowledge extraction and our benchmark
evaluation. We use CauseNet as the primary source
of causal knowledge for our experiments. COPA
and WIQA are the benchmark datasets used to eval-
uate causal knowledge on downstream multiple-
choice question answering problems that require
causal reasoning.

3.1 CauseNet

CauseNet consists of millions of concepts
and causal relations extracted from ClueWeb12
and Wikipedia. ClueWeb12 is comprised of
733,019,372 English web pages crawled between
February and March 2012 (Heindorf et al., 2020).
Linguistic rules are used to generate candidate sen-
tences that contain causal relations and a BiLSTM-
CRF model is used to extract cause and effect
concepts from the candidate sentences. Due
to the unsupervised methodology used to pop-
ulate CauseNet, the relations are presented as
claimed causal relations. There are two versions of
CauseNet, CauseNet-Full and CauseNet-Precision.

1https://lemurproject.org/clueweb12/
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CauseNet-Precision is a subset of CauseNet-Full
where all concepts are manually evaluated and se-
lected to ensure high precision. CauseNet-Full
consists of 11,609,890 relations and 12,186,195
concepts.

3.2 COPA (The Choice of Plausible
Alternatives)

COPA was first introduced as a SemEval 2012
shared task (Gordon et al., 2012a). COPA consists
of a premise and two alternatives. The task is to
identify which alternative is most likely the cause
or effect of the provided premise. Background com-
monsense causal knowledge is required to success-
fully answer questions as there is limited lexical
overlap between the premise and alternatives. The
COPA dataset consists of 1,000 questions, broken
into 500 development and 500 test questions.

Recent pretrained models such as BERT and
RoBERTa have seen improved performance on the
COPA dataset. However, Kavumba et al. (2019)
found that these models exploited superficial cues
such as the token frequency in the correct answers.
To mitigate this effect, Kavumba et al. expanded
the development set to include mirror instances to
balance the lexical distribution between correct and
incorrect answers. For each set of alternatives, the
mirror instance introduces a new premise, where
the previous correct alternative is now incorrect.
This new dataset, called COPA-Balanced, also cat-
egorized the test set into easy and hard groups.
The easy group consists of 190 questions where
RoBERTa-Large and BERT-Large could answer
correctly without the provided premise and the
hard group is the remaining 310 questions. We
use the COPA-Balanced development set for train-
ing and the hard category (which we will refer to
as COPA-Balanced Hard) for evaluation.

4 Methodology

In this section, we present our methodologies for
causal fact selection and causal representation.
Causal facts are extracted from CauseNet using
token-based retrieval heuristics. We also present
three strategies for representing causal knowledge.
The first strategy is input augmentation, where ex-
tracted causal facts are converted to causal state-
ments and appended to the plain text input. The sec-
ond and third strategies involve generating causal
embeddings using distributed similarity and knowl-
edge graph embedding approaches.

4.1 Causal Fact Selection

Selecting relevant causal facts for a provided input
is an unresolved challenge. We extracted causal
facts from CauseNet using a set of retrieval heuris-
tics. Given the large number of concepts and causal
relations (∼11.5 million relations and ∼12 million
concepts), it is computationally expensive to con-
sider all facts during model training. To narrow
down the scope of relevant facts, we consider only
the question text in WIQA and the premise descrip-
tion in COPA.

First, we extract a list of tokens T from the input
question/premise. T consists of unique words as
well as unique noun phrases. Each word in the noun
phrase is lower-cased and lemmatized. The normal-
ized noun phrase is then converted to a single token
by replacing spaces with underscores. Next, we
generate a list of potential causal fact candidates.
Since we do not know a priori which tokens corre-
spond to causes and effects, we apply a strict filter
to ensure that selected causal effects have lexical
overlap with the input text. The causal fact table
is queried to return all candidate facts where both
c and e exist as tokens in T . The causal facts are
ranked by frequency and the top five ranked candi-
dates are selected as the final set of relevant causal
facts for the input question.

4.2 Causal Knowledge Representation

4.2.1 Distributed Causal Embeddings
In this section, we present our method for mod-
elling causality using a distributional similarity
model. CausalSkipgram is similar to cEmbed
presented by Sharp et al.. As mentioned in Section
2, Sharp et al. first proposed adapting the skip-
gram word embedding approach (Mikolov et al.,
2013) to model causal pairs. Two embeddings are
learned for cause and effect concepts respectively.
The effect embeddings serve as a context for the
cause concepts and the cause embeddings in turn
are used as a context for the effect concepts. Sharp
et al. consider the cause and effect vectors sepa-
rately.
CausalSkipgram differs from cEmbed in

three ways. To learn word-level embeddings,
cEmbed decomposes multi-word phrases and gen-
erates word pairs such that each word in the
causal phrase is matched with each word in the
effect phrase. In contrast, multi-word concepts
are converted to a single token during the nor-
malization process for CausalSkipgram. Thus,
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CausalSkipgram learns embeddings for each
single token representation of cause and effect con-
cepts. Second, we use Negative Sampling loss
(Mikolov et al., 2013) to train CausalSkipgram.
Finally, Sharp et al. consider the cause and effect
vectors as separate features for their question an-
swering application. Instead, we generate a single
representation for each causal tuple by mean pool-
ing the cause and effect vectors.

4.2.2 Causal Knowledge Graph Embeddings
In this section, we present CausalKGE, which
represents causal knowledge as a knowledge graph
embedding. We adapt the TransE model presented
by Bordes et al. (Bordes et al., 2013). Given a
relational triple (consisting of head h, relation r,
and tail t), TransE represents entities and relations
in a lower-dimensional space such that h+ r ≈ t.
TransE treats knowledge graph embeddings as a
link prediction problem where the goal is identify
what the relation is given two nodes in the graph.
TransE treats relations as translations in the embed-
dings space where adding a the relation vector to
the head to should results in a vector that close to
the tail vector representation. To model our causal
tuples as a knowledge graph, we add the explicit
relation "cause-effect" to each tuple. The model-
ing goal of TransE is thus to predict an effect E,
given a cause C and "cause-effect" CR such that
C + CR ≈ E. A causal triple is represented by a
single vector which is generated by mean pooling
the head, tail, and relation vectors.

5 Experimental Settings

In this section, we describe how we trained our
causal representations and the experimental set-
tings for augmenting RoBERTa with causal knowl-
edge for downstream question answering.

5.1 Causal Representation

5.1.1 CausalSkipgram
CausalSkipgram generates 256 dimensional
embeddings. It takes as input a cause/effect tu-
ple and predicts if the pair is a valid causal fact. We
generate five negative examples per causal tuple by
randomly matching cause and effect tokens. The
samples are filtered to ensure that the generated
negative sample does not exist as a valid causal
fact. A dataset is generated by first combining
the known causal tuples with the negative samples.
The dataset is then randomly split into a train, vali-

dation, and test set following a standard 70-10-20
split ratio.

The CausalSkipgram model is trained for
100 epochs using a batch size of 256 and negative
sampling loss (Mikolov et al., 2013). We use the
sparse Adam optimizer (Kingma and Ba, 2015)
with a learning rate of 0.001 and cosine annealing
to learn the learning rate. To extract an embed-
ding for a causal tuple, we extract the hidden cause
and effect concept embeddings that comprise the
CausalSkipgram model. The causal tuple is
then represented by a 256-dimensional vector that
is generated by mean pooling the cause and effect
vectors that comprise the tuple.

5.1.2 CausalKGE
CausalKGE produces 100 dimensional TransE
embeddings. To train our knowledge graph em-
bedding, we generate a dataset with negative sam-
ples following the same process as Section 5.1.1.
The key difference is that our dataset consists of
causal triples instead of causal tuples. We use the
MKB (Sourty et al., 2020) library to train the 100-
dimensional TransE embeddings for 25 epochs us-
ing the following hyperparameters: gamma value
of 6, batch size of 32, negative sample of 5 exam-
ples per input. The model is trained to minimize
the adversarial loss using the Adam optimizer with
a learning rate of 0.001.

5.2 Causality Enhanced RoBERTa for
Multiple-Choice Question Answering

In this section, we describe the model architec-
tures and experimental settings for finetuning on
the COPA and WIQA tasks.

5.2.1 Baseline
Our baseline multiple-choice question answering
model is RoBERTa with a linear head for sequence
classification. We use the base RoBERTa imple-
mentation and pretrained weights provided by the
Huggingface library (Wolf et al.). Two separate
baseline models are trained with respect to the
COPA and WIQA task definitions.

The input for COPA consists of a premise p, two
alternatives a1, a2 and a question q, which are all a
sequence of tokens. The expected output is a binary
value corresponding to either alternative 1 or 2. We
format the text input to the RoBERTa models using
the convention below, where the separator token is
denoted as <sep>:

<sep > premise <sep > q u e s t i o n <sep >
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Model COPA Test COPA-Balanced Hard
RoBERTa baseline 53.00 58.39
+ CausalSkipgram 57.80 58.38
+ CausalKGE 59.20 (+6.2%/+11.69%) 62.25
+ InputAugmentation 59.00 62.29 (+3.9%/+6%)
Deberta Ensemble - SOTA (He et al., 2020) 98.40 N/A

Table 1: Accuracy on the COPA test set and COPA-BALANCED Hard set. CausalKGE improves accuracy over
the RoBERTa baseline by 6.2% (absolute) and 11.69% (relative). On the COPA-BALANCED Hard, InputAgu-
mentation improves accuracy by 3.9% (absolute) and 6% (relative) over the baseline.

a l t e r n a t i v e 1< sep >
a l t e r n a t i v e 2< sep >

WIQA entries are similarly formatted and con-
sist of a procedural text P , which comprises of a list
of events e1...en, question q, and answer options
[a1, a2, a3]. The expected output is the softmax
distribution over [a1, a2, a3]. The procedural text
is flattened into a single string which denote as
below context. The WIQA input is formatted as
follows:

<sep > c o n t e x t <sep > q u e s t i o n <sep >
more <sep > l e s s <sep >no e f f e c t <sep >

The inputs are then encoded using the default
byte-pair encoder and passed to the base RoBERTa
model. Next the pooled input representation H1,
which consists of the 768 last layer hidden-state
representation of the first token of the sequence,
is passed to a linear projection classification head.
To encourage generalization, dropout with a proba-
bility of 0.5 is applied to the classification head as
well.

This model is trained to minimize the
cross-entropy loss using the AdamW optimizer
(Loshchilov and Hutter, 2017) and a learning rate
scheduler. We use a learning rate of 0.001 and
500 warmup steps with a weight decay of 0.01 for
the scheduler. For both WIQA and COPA we use
a batch size of 24 and enable 16-bit floating pre-
cision for training. The model is trained for 10
epochs on the WIQA dataset and 50 epochs on the
COPA dataset (we use a higher number of epochs
as COPA has fewer than 1,000 training examples).
We select the checkpoint with the highest valida-
tion accuracy and use those weights for evaluation
on the provided test sets.

5.2.2 Input Augmentation
The most direct way to incorporate causal infor-
mation is to append them to the end of text in-
put which we term as InputAugmentation

Figure 2: Architecture of Causality Enhanced
RoBERTa. The architecture takes as input the multiple-
choice question input and relevant causal facts selected
from CauseNet.

method. Relevant causal tuples are converted
into causal statements which follow the pattern C
causes E. Multi-word concepts in the tuples which
represented as single tokens are separated back
out. For example, the tuple (human_activity,
climate_change) would be converted into the
statement Human activity causes climate change.

Inputs for both COPA and WIQA follow the
input formatting described in section 5.2.1 with
the additional causal facts appended to the input.
For example inputs for COPA are formatted using
the following convention and RoBERTa specific
separator token denoted as <sep> below.

<sep > premise <sep > a l t e r n a t i v e 1< sep >
a l t e r n a t i v e 2< sep >
c a u s a l s t a t e m e n t s 1 . . . 5 < sep > .

The augmented inputs are passed into the base
RoBERTa model as presented in section 5.2.1 and
trained using the same experimental settings.

5.2.3 Causality Enhanced RoBERTa
To incorporate causal embeddings with RoBERTa,
we propose a modified neural architecture (Fig-
ure 2). This architecture is used for both
CausalSkipgram and CausalKGE, with the
primary difference being the size of the causal em-
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Figure 3: Performance over difficult questions that
RoBERTa baseline answered incorrectly.

beddings. The first layer is the causal enhanced
input layer which combines the pooled embedding
output of RoBERTa with the external causal em-
beddings. For inputs that have extracted causal
facts, a causal embedding vector is generated by
concatenating and flattening all the causal embed-
dings. We extracted up to five causal facts per input.
As a result, the combined CausalSkipgram
embedding input is 1,280 and 500 dimensions
for CausalKGE. Zero-valued vectors are used if
causal facts are missing. The RoBERTa pooled out-
put is then concatenated with causal embeddings.
This input is further passed into a FeedForward
Network (FFN) with a hidden layer and classifier.
The first layer of the FFN has a hidden dimension
of 512 and we apply dropout with a probability
of 0.5 and ReLU (Agarap, 2018) activation to it.
The second layer is the output layer with a softmax
activation.

WIQA provides data that has already been split
into train, validation, and test sets. We use COPA-
Balanced instead of COPA. The balanced set in-
cludes mirror instances that make it more difficult
for RoBERTa to exploit superficial lexical cues
present in the correct answers. We randomly split
the COPA-Balanced train set into a train and vali-
dation set using an 85 - 15 split.

This model is trained to minimize the cross-
entropy loss using the AdamW optimizer and a
learning rate scheduler. We use a learning rate of
0.001 and 500 warmup steps with a weight decay of
0.01 for the scheduler. For both WIQA and COPA,
we use a batch size of 24 and enable 16-bit floating
precision for training. The model is trained for 10
epochs on the WIQA dataset and 50 epochs on the
COPA dataset (we use a higher number of epochs
as COPA has fewer than 1,000 training examples).
We select the checkpoint with the highest valida-
tion accuracy and use those weights for evaluation
on the provided test sets.

6 Results

In this section, we present the results of our ex-
periments. We find that the inclusion of causal
facts improves the performance on both the COPA
and WIQA datasets. Additionally, on the WIQA
dataset, we observed the Augmented Input method
nearly matches the SOTA in overall accuracy and
exceeds the SOTA in two of the three subcategories
of perturbations.

6.1 COPA Results

We present results on the COPA test set and the
COPA-Balanced Hard subset in Table 1. The cur-
rent state-of-the-art on COPA is DeBERTa-Large,
which consists of 3.5 billion parameters. DeBERTa
(He et al., 2020) modifies the BERT architecture
using the disentangled attention mechanism and
an enhanced mask decoder used to predict masked
tokens during pretraining. While we are unable
to match the performance of DeBERTa, we pro-
vide the SOTA as a fair reference for the current
benchmark leader. Additionally, our augmentation
methodology is not unique to RoBERTa and could
be used to augment any language model with exter-
nal causal information.

We were able to extract causal information from
CauseNet for 32% of the questions in the test set,
with an average of one causal tuple per question.
About 36% of the questions with causal informa-
tion had two or more extracted causal tuples.

Through the inclusion of external causal in-
formation, all three methods outperform the
RoBERTa baseline. The CausalKGE and Input
Augmentation have similar performance, im-
proving accuracy by 11.69% and 6% relatively over
the RoBERTa baseline on the COPA test set and
COPA-Balanced Hard set. In Figure 3, we further
evaluate all three methods on the subset of ques-
tions that the baseline model was unable to answer.
On average, all three methods can answer 36% of
questions correctly that the baseline missed, with
the Input Augmentation method performing the
best.

6.2 WIQA Results

Table 2 provides the results for our experiments on
the WIQA dataset. The current SOTA for WIQA
is the QUARTET model presented by Rajagopal et
al. (Rajagopal et al., 2020). QUARTET modifies
the WIQA task to include an explanation struc-
ture which identifies the supporting events from
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Model Overall In-Para. Out-of-Para. No Effect
Bert-Baseline (Tandon et al., 2019) 73.80 79.68 56.10 89.38
QUARTET - SOTA (Tandon et al., 2019) 82.07 73.49 65.65 95.30
RoBERTa baseline 67.00 64.0 42.10 92.50
+ CausalSkipgram 65.00 53.96 41.38 92.29
+ CausalKGE 74.00 71.70 55.17 93.78
+ InputAugmentation 80.00 76.79 67.65 92.43

Table 2: Accuracy of causal augmentation methods on the WIQA dataset. InputAugmentation has the best overall
accuracy amongst the augmentation methods. Additionally, it achieves higher accuracy in the In-Paragrah (+3.3%)
and Out-of-Paragraph (+2%) sub-categories over the current state-of-the-art QUARTET.

the procedural description that best explain the pro-
posed perturbation. The supporting events come
from the explanations influence graph which were
selected by human annotators for each question
in the WIQA dataset. QUARTET models the ex-
planation task as a multi-task learning problem
where the model must predict both the gold relevant
supporting sentences and the associated impact of
the perturbation for each supporting event. Our
approach nearly matches the overall accuracy of
QUARTET while outperforming QUARTET in the
In-Paragraph and Out-of-Paragraph subcategories.

We were able to select causal information
for 55% (1,661) of the questions in the test
set, with an average of one causal tuple ex-
tracted per question. 37% of questions had
two or more extracted causal tuples. The
CausalSkipgram method was the least success-
ful, performing worse than the RoBERTa base-
line across all categories. The CausalKGE and
InputAugmentation methods both improved
accuracy upon the RoBERTa baseline in all cat-
egories. The InputAugmentation method
was competitive with the QUARTET method
and outperformed it in both the In-Paragraph
(+3.3%/+4.5%) and Out-of-Paragraph (+2%/+3%)
categories. We do, however, see a -3% decrease in
accuracy in the No Effect category. This is likely
due to extraneous or irrelevant causal tuples being
selected. Future work can explore improving the
precision of the causal extraction process.

In Figure 3, we also present the results of the aug-
mentation methods on the questions the baseline
RoBERTa model was unable to answer. We find
the InputAugmentation method can answer
52.73% of the difficult questions that the baseline
failed to answer.

7 Conclusion

This paper considers the challenge of enhancing
pretrained language with causal knowledge to solve
multiple-choice causal question answering prob-
lems which require causal reasoning. Specifi-
cally, we evaluate our methods on the COPA and
WIQA benchmark datasets. We present meth-
ods of selecting knowledge from CauseNet and
three strategies for representing causal knowledge
(InputAugmentation, CausalSkipgram,
and CausalKGE). We evaluated the efficacy of en-
hancing RoBERTa with causal knowledge multiple-
choice question answering tasks. We provide re-
sults that show improved performance over the
RoBERTa baseline on both the COPA and WIQA
benchmark tasks. RoBERTa with CausalKGE
provides a 6.2%/11.69% improvement in accu-
racy over the baseline. RoBERTa with Input
Augmentation posts a 3.9%/6% improvement
on the COPA-Balanced Hard dataset. We also
observed that on average the inclusion of causal
knowledge allows RoBERTa to answer 36% of
the questions the baseline was unable to an-
swer. On WIQA, our approach is competitive
with the SOTA and exceeds SOTA within spe-
cific evaluation subcategories. RoBERTa with
InputAugmentation improves accuracy on
the in-paragraph and out-of-paragraph perturba-
tions by (+3.3%/+4.5%) and (+2%/+3%) respec-
tively. On average, the inclusion of causal knowl-
edge allows RoBERTa to answer 40% of the ques-
tions that the baseline was unable to answer on the
WIQA test set.

Our work demonstrates that causal knowledge is
valuable for causal reasoning tasks and that there
are many opportunities for future work. Further
work can explore improving recall on causal fact
selection from CauseNet and more sophisticated
techniques to reduce the selection of irrelevant
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facts. On the language modeling side, future work
can explore generalizing the entity-based methods
which inject knowledge into the pretraining process
to consider explicit causal knowledge. Addition-
ally, further work can evaluate causal knowledge
in other reasoning benchmarks such as ROPES and
COSMOSQA as well as other causal reasoning
tasks.

8 Broader Impact

This paper focused narrowly on the efficacy of
causal knowledge for multiple-choice question an-
swering. To the best of our knowledge there
are limited societal implications of this research.
Broadly improvements to question answering sys-
tems have commercial value for information re-
trieval and other knowledge management commer-
cial use cases. Causal reasoning is one of the out-
standing challenges of AI research. We imagine
that improvements to causal reasoning can have
broader impacts on real-world applications. Mod-
els with causal reasoning capacities have the poten-
tial to impact applications ranging from medical
drug discovery and stock market trading to scien-
tific knowledge mining. There is also a growing
interest in the regulatory space for causal systems
that can conduct counterfactual reasoning around
the allocation of resources to protected groups and
audit policy decisions made by automated systems.
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A Appendix

A.1 CauseNet Processing Details
Our approach for fact selection is identical for COPA and WIQA. spaCy 2, a python based NLP library, is
used for tokenization, lemmatization, and noun-phrase extraction.

CauseNet is formatted as a JSON file where each cause-effect entry consists of relevant concepts,
source sentences, and associated linguistic pattern used for causal extraction. Causal facts need to be
programmatically extracted and normalized. For simplicity, we define a causal fact as a tuple consisting of
cause c and effect e, where c, e ∈ Concepts. Concepts in CauseNet range from single word entities to
multi-word expressions (e.g. rising sea levels). We normalize multi-word concepts by first lemmatizing all
its constituent words and then joining them into a single token by replacing white spaces with underscores.
So the causal concept "rising sea levels" would be normalized to token "rise_sea_level". After iterating
through all the entries in CauseNet and normalizing the extracted facts, we store the cause and effect
tokens in a two-column causal fact table.

2https://spacy.io/
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Abstract

Contextual word representation models have
shown massive improvements on a multitude
of NLP tasks, yet their word sense disam-
biguation capabilities remain poorly explained.
To address this gap, we assess whether con-
textual word representations extracted from
deep pretrained language models create distin-
guishable representations for different senses
of a given word. We analyze the represen-
tation geometry and find that most layers of
deep pretrained language models create highly
anisotropic representations, pointing towards
the existence of representation degeneration
problem in contextual word representations.
After accounting for anisotropy, our study fur-
ther reveals that there is variability in sense
learning capabilities across different language
models. Finally, we propose LASeR, a ‘Low
Anisotropy Sense Retrofitting’ approach that
renders off-the-shelf representations isotropic
and semantically more meaningful, resolving
the representation degeneration problem as a
post-processing step, and conducting sense-
enrichment of contextualized representations
extracted from deep neural language models.

1 Introduction

Distributional word representations, developed us-
ing large-scale training corpora, form an integral
part of the modern NLP methodological paradigm.
The advent of deep pre-trained neural language
models such as BERT (Devlin et al., 2018) and
GPT-2 (Radford et al., 2019) has led the shift to-
wards the development of contextualized word rep-
resentations. Unlike static word representation
models, such as word2vec (Mikolov et al., 2013)
and fastText (Bojanowski et al., 2017), which con-
flate multiple senses of a word within a single rep-
resentation, contextual word representation mod-
els assign as many representations to a word as
the number of contexts it appears in. The pref-
erence for contextual word representations can be

attributed to the significant improvements they have
achieved in a wide variety of NLP tasks including
question answering, textual entailment, sentiment
analysis (Peters et al., 2018; Devlin et al., 2018)
and commonsense reasoning (Da and Kasai, 2019;
Sap et al., 2020), to name a few.

To utilize contextual word representations as
knowledge resources, it is necessary to deter-
mine their ability to mirror the linguistic rela-
tions employed in language (Schnabel et al., 2015).
There is a growing body of literature that assesses
whether contextual representations encode infor-
mation about word-senses, where each word-sense
portrays an aspect of the meaning of a given word
in a given context (Jurafsky and Martin, 2019). A
recent analysis by Nair et al. (2020) reported that
contextual word representations can learn human-
like word sense knowledge, where they compared
cosine relatedness between homonyms and poly-
semous word senses against human sense-related
judgements. When calculating cosine relatedness,
such studies assume the encoded vector space to
be isotropic in nature. Geometrically, isotropy in a
vector space is defined as vectors being uniformly
distributed across all directions, instead of occu-
pying a narrow cone (Ethayarajh, 2019; Mu and
Viswanath, 2018). Recent studies point towards
anisotropy (lack of isotropy) in contextual word
representations (Ethayarajh, 2019; Zhang et al.,
2020), which affects prior conclusions regarding
word-sense information encoded in vector spaces.
For example, in an isotropic vector space, if cosine
relatedness between word representations A and B
is 0.9, we conclude them to be highly similar. But,
if the vector space is anisotropic, where cosine re-
latedness between randomly sampled words is 0.95,
then the representations A and B are deemed less
similar than randomly sampled words. This shows
that the existence and the extent of anisotropy in the
vector space affects conclusions regarding whether
representations are actually similar or merely a
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product of representation degeneration. Hence,
when evaluating the sense learning capabilities of
deep pretrained language models through vector
relatedness measures, accounting and adjusting for
vector space anisotropy becomes necessary.

In this regard, our work presents three key contri-
butions. First, we analyze and adjust for anisotropy
across contextual representations extracted from
all layers of four language models (BERT, GPT-
2, XLNet and ELECTRA). The representation
space for each model encodes anisotropy, vary-
ing in terms of number and strength of common
directions in model representations. We find that
models learning unidirectional context create more
anisotropic representations than models learning
bidirectional context. Second, we observe that
sense information is not equally encoded in all mod-
els, where (pseudo) bidirectional models learn to
disambiguate word senses better than others. More-
over, sense information is better retained in the
lower layers and significantly reduces in the up-
per model layers due to the representations getting
more contextualized. Third, to address these pre-
liminary findings and to contribute towards the cre-
ation of sense-coherent representations, we propose
LASeR, a ‘Low Anisotropy Sense Retrofitting’ ap-
proach, bringing word representations closer to
the goal of mirroring lexical semantic relations
present in natural language while removing arti-
facts of representation degeneration from learned
representations. Thus, we combine vector space
transformation and knowledge-based vector spe-
cialization methods to create more isotropic and
sense enriched representations, ensuring that we
retain the distributional properties learnt during
pretraining, while aligning and grounding the rep-
resentation geometry towards better sense learning.

2 Related Work

Prior works which modify off-the-shelf embed-
dings to improve their lexical-semantic representa-
tion can be divided into two primary categories: (1)
Anisotropy treatment methods and (2) Retrofitting
methods. Anisotropy treatment methods focus on
improving the isotropy of word vectors, promoting
uniform distribution of information across all di-
rections (Mu and Viswanath, 2018; Raunak et al.,
2019; Wang et al., 2019). Isotropy in contextual
vector spaces is regarded valuable, especially when
utilizing vector geometry and relatedness measures
in downstream analyses (Ethayarajh, 2019). Prior

methods that focus on creating more isotropic vec-
tor spaces have suggested principle component ma-
nipulation (removal, extension) of vector spaces
(Mu and Viswanath, 2018; Jo and Choi, 2018). To
our knowledge, these methods have been proposed
for static word representations, but are yet to be ex-
tended to contextual word representations extracted
from a wide variety of language models.

On the other hand, retrofitting methods are fo-
cused on enhancing the representation geometry, by
encoding lexical semantic relations through seman-
tic specialization, a post-processing approach that
enforces linguistic constraints on vector spaces by
relying on external linguistic knowledge databases
(Vulić and Mrkšić, 2018; Faruqui et al., 2015; Jo
and Choi, 2018; Vulić, 2018). Semantic specializa-
tion as a post processing step (retrofitting) is cur-
rently limited to static word representations (Mu
and Viswanath, 2018; Vulić and Mrkšić, 2018)
where they have yielded impressive performance
improvements over raw embeddings (Lauscher
et al., 2020a). Existing methods towards seman-
tic specialization of contextual representations pri-
marily focus on retraining the model from scratch
(Lauscher et al., 2020b) or post-hoc fine-tuning
the model (Zhang et al., 2019; Peters et al., 2019;
Wang et al., 2020). These methods are (1) resource-
intensive (retraining or fine-tuning) and (2) do not
address the representation degeneration problem in
vector representations (Gao et al., 2018).

3 Methodology

3.1 Contextual Word Representation Models

In this work, we focus on contextual word repre-
sentations generated from four transformer-based
model architectures, i.e., BERT (Devlin et al.,
2018), GPT-2 (Radford et al., 2019), XLNet (Yang
et al., 2019) and ELECTRA (Clark et al., 2019).
These models have been selected to assess the
impact of variation in context learning and pre-
training over the quality of generated representa-
tions, while keeping the number of hidden layers
and dimensionality identical (layers = 13 (0 + 12);
dimensions = 768). BERT and ELECTRA are both
bidirectional learners, but they differ in terms of
the pre-training objectives used to train the models:
BERT uses a masked language modeling objective,
limiting its learning to a small subset of word to-
kens; ELECTRA uses replaced token detection and
is able to learn across a wider range of words to-
kens. On the other hand, GPT-2 and XLNet are
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both unidirectional learners, where GPT-2 learns
only left-to-right context, while XLNet learns over
all possible permutations of the given input. A
comparison over these models in a uniform setting
allows us to relate the behavior of representations
to the context learning and pre-training choices of
the respective models.

3.2 Data
Contextual word representations for individual
words are generated by feeding sentences into
the language model. In order to generate repre-
sentations, we use sense annotated corpora from
various SemEval and SenseEval tasks, including
SensEval 3 task 1 (S3-T1) (Snyder and Palmer,
2004), SensEval 2 all-words task (S2-TA) (Ed-
monds and Cotton, 2001), SemEval 2013 task 12
(S13-T12) (Navigli et al., 2013), SemEval 2007
task 7 (S7-T7) (Navigli et al., 2007) and Se-
mEval 2015 task 13 (S15-T13) (Moro and Nav-
igli, 2015). To ensure that the Wordnet sense keys
are unified across corpora, we utilize the Wordnet
3.0 sense annotated data (Vial et al., 2018) and
summarized in Table 1. Since we want to evaluate
sense-learning, we limit our analyses to multi-sense
words, retaining nouns, adjectives and verbs that
appear within the corpora as more than one sense.

3.3 Sense Learning Measures
In order to compute how sense information is en-
coded with the word representations, we define two
word-sense specific cosine relatedness measures.

Definition 1 (Sense Similarity). Let ws be a sense
of the word w, appearing in m different contexts.
Let vl be the vector that maps the each word sense
occurrence wsi to the vector space. Then, the aver-
age sense similarity between all m instances of the
word sense ws for layer ` is

SenSim`(ws)= 1
m

∑
j

∑
k 6=j cos(v`(wsj ),v`(wsk

)) (1)

This metric calculates the average cosine similar-
ity between contextual representations of the same
sense of a word.

Corpus Nouns Verbs Adjectives
S3-T1 428 635 166
S2-TA 292 307 344

S13-T12 338 164 46
S7-T7 512 814 380

S15-T13 110 156 127
Total 1680 2076 1063

Table 1: Data Summary.
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Figure 1: Representations of different senses of the
word ‘document’ (BERT Layer 11).

Definition 2 (Inter Sense Similarity). Let the word
w have S different word senses, where wa and wb
are a pair of different senses of w, appearing in m
and n different contexts respectively and a, b ∈ S.
Let vl be the vector that maps each word sense oc-
currence wsi to the vector space. Then, the average
inter sense similarity between the representations
of all instances of the word w for layer ` is

InterSim`(w)=Ea,b∈S
[

1
mn

∑m
j=1

∑n
i=1 cos(v`(wai ),v`(wbj

))
]

(2)

This metric calculates the average cosine similar-
ity between contextual representations of different
senses of a word.

Thus, if a word w has SenSiml(ws) >
InterSiml(w), it suggests that the representations
for the same sense of a given word lie much closer
together within the vector space, as compared to
the representations of different senses of the same
word. For example, a given word ‘document’ can
refer to multiple senses. According to WordNet
3.0, two senses of the word ‘document’ are: (1)
document.n.01 - writing that provides information
and (2) document.v.02 - to record in detail.

As an example, we have visualized the represen-
tations of these two senses as encoded within the
vector space of BERT (Layer 11), shown in Figure
1. The ‘original’ representations, shown in Figure
1(a), of the word sense document.n.01 lie slightly
close to each other, and farther away from the doc-
ument.v.02 representation. Thus, if a model is able
to encode similar representations for same sense
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of a word, and distinguishable representations for
different senses of a word, we claim that the model
encodes sense information.

3.4 Anisotropy Adjusted Sense Similarity
In order to assess whether contextual word rep-
resentations encode sense information, we mea-
sure the sense similarity and inter sense similarity
for multi-sense words (polysemes and homonyms)
in our datasets, across model layers. Given that
contextual word representations encode anisotropy,
we calculate anisotropy adjusted sense relatedness
measures as follows.

B(v`)=Ea,b∼U [cos(v`(a),v`(b))] (3)

SenSim`(ws)∗=SenSim`(ws)−B(v`) (4)

InterSim`(w)∗=InterSim`(w)−B(v`) (5)

This baseline calculation utilizes the theory from
prior works examining contextualization in word
representations (Ethayarajh, 2019). Here, B(v`) is
the average cosine similarlity between n randomly
sampled words, U is the set of all word occurrences,
and v`(.) maps a word occurrence to the respective
word representation in layer `.

3.5 Low Anisotropy Sense Retrofitting
In this subsection, we describe LASeR, a post-
processing approach to render off-the-shelf repre-
sentations more isotropic and sense-enriched. Our
approach builds upon the work on anisotropy re-
duction Mu and Viswanath (2018) and retrofitting
Faruqui et al. (2015). Mu and Viswanath (2018)
suggests that anisotropy can be reduced by remov-
ing primary components to make the representa-
tions more distinct and uniformly distributed within
the vector space. We extend this to contextual
word representations, evaluating the efficacy of re-
moving primary components on anisotropy reduc-
tion in contextual representations. Turning towards
retrofitting methods, we extend the retrofitting ap-
proach proposed by Faruqui et al. (2015), which
targets static word representations and brings syn-
onyms closer together in the vector space. Our
work extends this retrofitting goal to contextual
representations, where we aim to bring represen-
tations of same word-senses closer in the vector
space, ensuring better sense disambiguation capa-
bilities for representations.

Let v(wi) be the original contextual represen-
tation, v′(wi) be the low anisotropy contextual
representation and v̂(wi) be the sense enriched

Algorithm 1: LASeR (Low Anisotropy
Sense Retrofitting).
Input: Raw word representation

{v(wi), wi ∈ V }
1 Perform mean centering of vector:

µ← 1
|v|Σwi∈V v(wi); ṽ (wi)← v (wi)−µ

2 Compute the PCA components:
ui1, . . . , uiD ← PCA ({ṽ(wi), wi ∈ V})

3 Remove top d principal components:

v′ (wi)← ṽ (wi)− Σd
j=1

(
u>ijv (wi)

)
uij

4 Apply retrofitting update:

v̂(wi) =
∑

j:(i,j)∈E βijv(wj)+αiv(wi)∑
j:(i,j)∈E βij+αi

Output: Processed word representation
v̂ (wi)

contextual representation of ith occurrence of a
word sense w. We simulate an undirected knowl-
edge graph Ω(V,E), where V represents the vo-
cabulary of word tokens, each word token repre-
senting a vertex, and E represents all the edges
connecting respective vertices. Finally, Q repre-
sent the matrix of post-processed representations
[v̂(w1), v̂(w2), . . . , v̂(wn)]. The approach works
on achieving dual objectives, described as follows:
Objective 1 (Lower Anisotropy) : Remove top
d common directions across all v(wi), to create
v′(wi), creating more uniformly distributed word
vectors and lowering anisotropy in representations.
Objective 2 (Sense Retrofitting) : Learn v̂(wi)
such that same sense representations lie closer to-
gether in vector space as well as close to the origi-
nal embedding

The algorithm takes the original representations
as input. These representations undergo mean cen-
tering and removal of dominant primary compo-
nents (1,2,3 ) to reduce the anisotropy in the vector
space. This is followed by a sense-retrofitting up-
date (4) . Here, for each word token representation
v(wi), we define its neighbours as v(wj),∀j where
sense(wi) = sense(wj), and hyper-parameters
βij and αi = 1 represent the reciprocal of the node
degree of the word token wi and edge weights re-
spectively.

4 Results

We first show anisotropy analysis results (§4.1),
further evaluating sense learning in contextual rep-
resentations (§4.2). Finally, we present improve-
ments in isotropy and lexical-semantic capabilities
of the post-processed representations (§4.3).
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4.1 Anisotropy Analysis

4.1.1 Similarity between Random Words
We first assess the amount of anisotropy encoded
within contextual word vector spaces. We plot the
average cosine similarity between 1K randomly
sampled words, across different layers of language
models, as seen in Figure 2. If a vector space is
isotropic, the average cosine similarity between
uniformly randomly sampled words would be 0
(Ethayarajh, 2019). Thus, the closer this measure
is to 1, the more anisotropic the vector space. It
can be seen that anisotropy evolves very differ-
ently across different models. Unidirectional lan-
guage models (XLNet, GPT-2) portray far more
anisotropy in word representations as compared to
bidirectional language models (BERT, ELECTRA).
Thus, language models learning one-directional
context (L-to-R or R-to-L) encode more common
directions in the representations as compared to
those learnt from bidirectional context. Moreover,
anisotropy monotonically increases across layers
for BERT and XLNet, where both models have
been trained on masked language modeling tasks.
This shows that anisotropy accumulates in the up-
per layers of masked language models. The rate
of increase in anisotropy in XLNet is higher than
BERT representations, showing that permutation
language modeling propagates higher amounts of
anisotropy than traditional MLM. These results are
consistent with the results obtained for all multi-
sense words in the corpora (Appendix A).

4.1.2 Analysis of Principal Components
High anisotropy leads to word vectors being dis-
tributed within a very narrow cone in the vector
space (Mimno and Thompson, 2017), further sig-
nifying that the word representations encode com-
mon directions (Mu and Viswanath, 2018). We plot
the top two dominating directions for word repre-

Figure 2: Average similarity between representations
of randomly sampled words (1K) across model layers.

Figure 3: PCA plots of original word representations
across top 2 primary components; Blue:Low frequency
word tokens, Red:High frequency word tokens.

sentations, across each model’s layers, as shown in
Figure 3. These plots reveal that contextual word
representations extracted from different language
models are encoded extremely differently within
the vector space. It can be seen that BERT and
XLNet embeddings are more spread across the vec-
tor space, as compared to GPT-2 and ELECTRA
embeddings. Moreover, ELECTRA embeddings
form highly concentrated, yet separated regions of
anisotropy, thus leading to an overall low score on
the average similarity between randomly sampled
words. Moreover, GPT-2 embeddings reveal ex-
treme anisotropy, where most of the embeddings
encode a singular common direction. The plots in
Figure 3 also reveal that word frequency is signifi-
cantly encoded in the top two principal components
of BERT and XLNet embeddings. We cannot claim
the same for GPT-2 and ELECTRA embeddings,
where all embeddings cluster within highly dense
regions of anisotropy.

We also evaluate anisotropy across model layers
by assessing the explained variance across common
directions encoded across all word representations.
We plot the proportion of variance encoded within
the top d = 10 dominant principal components
of the original contextual representations across
model layers, shown in Figure 4(a). While bidi-
rectional models such as BERT and ELECTRA
encode multiple common directions, unidirectional
models like GPT-2 and XLNet embeddings primar-
ily encode a singular common direction. For BERT
embeddings, the top 10 primary components only
contribute to 17-24% of the explained variance,
showing that the embeddings are more uniformly
distributed across the vector space, as compared
to other models. GPT-2 provides a stark contrast,
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(a) Vanilla Representations. (b) Retrofitted Representations.

Figure 4: Plots of proportion of variance encoded within the top d = 10 dominant principal components of the
contextual representations across model layers. The horizontal labels (P1-P10) represent each of the ten principal
components, and the vertical labels (layer_0 - layer_12) represent each of the 12 model layers.

where the top 10 principal components contribute
to up to 97% of the explained variance, highly
concentrated within the first principal component,
especially for the middle layers (Layer 3-8). XLNet
embeddings capture comparatively lower common
directions across model layers, apart from the fi-
nal model layer (Layer 12), where 66.1% of the
explained variance is concentrated within the first
principal component. Thus, representations learnt
through the goal of predicting the next word yields
all representations extremely similar.

4.2 Sense Learning in Original
Representations

A model differentiates between different word
senses if it encodes representations of the same
sense of a word to be more similar than the repre-
sentations of other senses of the same word. We uti-
lize the sense learning measures, defined in (§3.3)
to assess whether original representations encode
word-sense information. To examine overall learn-
ing across model layers, we calculate average sense
similarity (SenSim`(w)) and mean difference be-
tween average sense similarity and inter sense sim-
ilarity for a word token w (∆).

∆=SenSim`(w)−InterSim`(w); ∆∈[−1,1] (6)

Ideally, a language model being able to capture
distinction between all word senses should have
SenSim`(w) = 1 and ∆ >> 0. Here, higher
sense similarities correspond to similar senses be-
ing encoded closer in the vector space and ∆ > 0

shows that on an average, same sense representa-
tions are more cohesive and well separated from
the representations of other senses.

The evolution of sense learning over different
models and their layers is portrayed using sense
similarity measures, aggregated in Table 2. The
reported vanilla sense similarity scores have been
adjusted for anisotropy. Prior to retrofitting, BERT
and XLNet embeddings for the same word senses
show increasing dissimilarity across model layers,
signifying a loss of sense information as the model
gets more contextualized. The similarity between
same sense word representations from the GPT-2
model is close to 0, showing that GPT-2 captures
almost no sense information within the embedding

Figure 5: PCA plots of post-processed word represen-
tations across top two primary components, for each
model.
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space. ELECTRA embeddings remain consistent
in terms of sense learning, not varying significantly
across model layers. Furthermore, ∆ ∼ 0 across
all models shows that the original representations
do not significantly distinguish between different
senses of a given word. We visualize an example
in Figure 1(a), where representations of the word
document lie close together, regardless of the differ-
ent senses associated with each occurrence. This
finding signifies that the sole reliance on word form
to learn representations does not suffice in helping
the model distinguish between multiple senses of a
given word.

4.3 Low Anisotropy Sense Retrofitting

We evaluate the efficacy of the proposed LASeR
approach by comparing improvements in vector
space isotropy and improved disambiguation of
different word senses, as captured by retrofitted
word representations.

4.3.1 Improvements in Isotropy
We conduct experiments by removing the most
dominant common direction (d = 1) across gen-
erated embeddings across each model layer. This
step yields significantly better isotropy in the re-
sulting representations, where average similarity
between randomly sampled words (k = 1000) is 0,
across all models and model layers. Improvements
can also be observed from the reduced proportions
of explained variance in Figure 4(b). Overall, most
of the anisotropy in the vector space is treated by
removing one dominating direction. The retrofitted
GPT-2 embeddings still show high anisotropy in
the 12th layer, showing that more common direc-
tions remain to be addressed and possibly removed.
These results show that high anisotropy effects can
be reduced by removing the primary common di-
rections across representations. The effect of this
step is also visualized in Figure 5, where the rep-
resentations are significantly less anisotropic and
more uniformly spread across the vector space, en-
coding fewer artifacts of word frequency in the
vector space, as compared to the original represen-
tations. For visualizations across all model layers,
refer to Appendix B. In most cases, removal of the
most dominant common direction can yield signifi-
cant improvements in isotropy, as seen for BERT,
XLNet and ELECTRA. In other cases, where repre-
sentations share more than one significant common
directions, such as for GPT-2, we can remove d > 1
common directions to treat anisotropy.

4.3.2 Improvements in Sense Representation
The retrofitting update applied to model representa-
tions enforces lexical-semantic constraints, bring-
ing same sense representations closer together (in-
crease same-sense cohesion) and pushing different
sense representations farther apart (increase inter-
sense separation).

Results from Table 2 show the efficacy of our
retrofitting update (αi = 1), where average sense
similarity between word vectors increases signif-
icantly, and similarity between same sense repre-
sentations is significantly higher than similarity
between representations of different senses. This
portrays that the retrofitted representations encode
same sense representations closer together and dif-
ferent sense representations farther apart. An exam-
ple of how retrofitting changes the distribution of
representations in the vector space is given in Fig-
ure 1(b), where inter-sense separation between two
different senses of the word document increases
and same-sense cohesion between representations
of the same word sense increases.

Across the model layers, the retrofitting signif-
icantly increases sense similarity and ∆. The im-
proved similarity scores can be seen in Figure 6,
which show that retrofitting moves same sense rep-
resentations to be more similar than different sense
representations. For BERT embeddings, the im-
provements are more visible in the upper model
layers, as they create more separated different
sense representations, and more cohesive same
sense representations. The slight drop in cohesion
(SenseSim) is due to the model’s upper layers
being more contextualized than the lower layers,
also suggested in prior works on contextualization
(Ethayarajh, 2019). Retrofitting is extremely effec-
tive for GPT-2 embeddings. This can been from
the drastic increase in sense similarity (SenseSim)
and ∆, showing that same sense representations lie
closer and different sense representations lie farther
apart in the retrofitted vector space.

Figure 6: Effect of retrofitting on sense relatedness in
contextual embeddings. Here, retrofitted embeddings
portray higher same-sense similarity and lower inter-
sense similarity.
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Layer BERT GPT-2 XLNet ELECTRA
vanilla (∆) retro (∆) vanilla(∆) retro (∆) vanilla (∆) retro (∆) vanilla (∆) retro (∆)

0 0.82 (0.00) 0.93 (0.04) 0.08 (0.05) 0.49 (0.38) 0.08 (-0.27) 0.85 (-0.02) 0.49 (0.11) 0.64 (0.25)
1 0.74 (0.02) 0.90 (0.08) 0.06 (0.03) 0.51 (0.38) 0.80 (0.02) 0.90 (0.08) 0.50 (0.11) 0.65 (0.26)
2 0.66 (0.05) 0.88 (0.13) 0.06 (0.02) 0.51 (0.38) 0.65 (0.07) 0.83 (0.18) 0.50 (0.12) 0.65 (0.26)
3 0.62 (0.07) 0.85 (0.18) 0.08 (0.04) 0.52 (0.39) 0.58 (0.10) 0.80 (0.23) 0.50 (0.12) 0.65 (0.26)
4 0.54 (0.09) 0.82 (0.23) 0.09 (0.05) 0.53 (0.39) 0.46 (0.09) 0.76 (0.27) 0.51 (0.12) 0.65 (0.26)
5 0.43 (0.10) 0.77 (0.28) 0.09 (0.05) 0.53 (0.39) 0.40 (0.09) 0.72 (0.30) 0.52 (0.13) 0.65 (0.27)
6 0.36 (0.12) 0.72 (0.33) 0.11 (0.06) 0.54 (0.40) 0.23 (0.06) 0.68 (0.31) 0.51 (0.12) 0.65 (0.27)
7 0.31 (0.11) 0.68 (0.35) 0.12 (0.06) 0.55 (0.41) 0.20 (0.06) 0.66 (0.33) 0.52 (0.13) 0.65 (0.27)
8 0.25 (0.10) 0.65 (0.37) 0.11 (0.07) 0.55 (0.41) 0.08 (0.03) 0.64 (0.33) 0.53 (0.13) 0.64 (0.26)
9 0.22 (0.09) 0.63 (0.39) 0.11 (0.07) 0.56 (0.42) 0.07 (0.02) 0.63 (0.34) 0.53 (0.13) 0.64 (0.26)

10 0.22 (0.09) 0.63 (0.38) 0.09 (0.06) 0.56 (0.43) 0.05 (0.01) 0.65 (0.34) 0.53 (0.13) 0.64 (0.27)
11 0.20 (0.07) 0.63 (0.36) 0.08 (0.04) 0.55 (0.43) 0.01 (0.00) 0.65 (0.32) 0.53 (0.13) 0.64 (0.27)
12 0.24 (0.09) 0.62 (0.37) 0.00 (0.01) 0.51 (0.40) 0.02 (0.00) 0.63 (0.32) 0.53 (0.13) 0.64 (0.27)

Table 2: Average sense similarity scores across model layers; ∆ = SenSim`(w)− InterSim`(w).

While originally, the representations were highly
anisotropic and held no sense learning, the
retrofitted embeddings capture better sense distinc-
tion. XLNet embeddings, much like BERT, encode
representations of the same word form closer to-
gether, especially in lower model layers, regard-
less of the respective word-sense distinction. Post-
retrofitting, XLNet embeddings show higher simi-
larity between same word senses and lower similar-
ity between different word senses, revealing better
sense disambiguation. Compared to the other three
models, original ELECTRA embeddings are able
to capture more distinction between different sense
representations and more similarity between same
sense representations. Our retrofitting update fur-
ther improves these lexical-semantic relations in
the representation space.

5 Discussion

Recent works have discussed whether contextual-
ized word representations extracted from deep pre-
trained language models encode word sense knowl-
edge within the representation space. Studies sug-
gest that while lower layer BERT embeddings en-
code more semantic information (Reif et al., 2019),
the upper layer embeddings become increasingly
contextual (Ethayarajh, 2019). Works exploring
semantic capabilities of representations have also
used nearest neighbour classifier probes to assess
whether same-sense representations are classified
together (Reif et al., 2019; Nair et al., 2020). Since
these classifiers show slightly better accuracy than
classifying as the most frequent sense, they claim
that the representation space encodes sense infor-
mation. Although our work supports this conclu-
sion, we additionally argue that after accounting
for anisotropy, the cohesion between same sense

representations and separation between different
sense representations is not significant. Here, the
principal premise of the removal of anisotropy prior
to injecting sense information is based on creating
an embedding space geometry where the effects of
representation degeneration are reduced. The repre-
sentation degeneration of embeddings reduces their
representational power (Gao et al., 2018). Thus,
to improve the representation ability of embed-
dings, we deem it important to create methods that
promote representations that are not only lexico-
semantic relation enriched but also isotropic. Our
method reveals that the additional step of lowering
anisotropy renders improved representation geome-
try, where word vectors are not constricted within a
narrow cone, and are uniformly distributed within
the vector space. Further, sense-retrofitting on con-
textualized word representations render same sense
representations more similar and different sense
representations more different, increasing the word
sense disambiguation capabilities of the encoded
representations.

Our work presents a novel intrinsic evaluation of
sense information in word embeddings, required to
understand the sense geometry encoded by various
models. In the future, we will focus on integrating
sense information in contextual word representa-
tions by extending this approach to words that are
unseen to the LASeR model, and further perform
extrinsic analyses of the embeddings.

6 Conclusion

In this work, we investigated the geometry of con-
textual word representations for isotropy and sense
disambiguation capabilities. We further proposed
a post-processing approach for anisotropy treat-
ment and semantic enrichment of contextual word
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representations, by transforming the vector space
using principal component manipulation and lex-
ical semantic knowledge-based sense-retrofitting.
Our method significantly reduced the impact of
representation degeneration problem, improving
isotropy within the vector space and rendered
off-the-shelf contextual word vectors semantically
more meaningful. In the future work, we will study
the impact of changes in retrofitting hyperparame-
ters and variable removal of primary components
on representation quality. Further, we will focus
on extrinsic evaluation of the impact of anisotropy
removal and sense retrofitting on downstream word-
sense disambiguation tasks.
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Ivan Vulić and Nikola Mrkšić. 2018. Specialising word
vectors for lexical entailment. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 1134–1145.

Bin Wang, Angela Wang, Fenxiao Chen, Yuncheng
Wang, and C-C Jay Kuo. 2019. Evaluating word em-
bedding models: Methods and experimental results.
APSIPA transactions on signal and information pro-
cessing, 8.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei,
Xuanjing Huang, Cuihong Cao, Daxin Jiang, Ming
Zhou, et al. 2020. K-adapter: Infusing knowl-
edge into pre-trained models with adapters. arXiv
preprint arXiv:2002.01808.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in neural in-
formation processing systems, pages 5753–5763.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. ERNIE: En-
hanced language representation with informative en-
tities. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 1441–1451, Florence, Italy. Association
for Computational Linguistics.

Zhong Zhang, Chongming Gao, Cong Xu, Rui Miao,
Qinli Yang, and Junming Shao. 2020. Revisit-
ing representation degeneration problem in language
modeling. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing: Findings, pages 518–527.

90



A Anisotropy Across All Words

We plot the average similarity between all words
(multi-sense nouns, verbs and adjectives) extracted
from the annotated corpora, across model layers,
as shown in Figure 7.
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Figure 7: Average similarity between representations
of randomly sampled words across model layers.

B PCA Plots of Word Representations

We plot distribution of word representations across
the vector space, for all models across their lay-
ers. To assess whether word frequency is encoded
within vector dimensions, we color code represen-
tations ranging from low frequency words (Blue)
to high frequency words (Red). The plots are given
in Figure 8 (BERT), Figure 9 (GPT-2), Figure 10
(XLNet) and Figure 11 (ELECTRA). We see that
using LASeR post-processing (d = 1 and hyper-
parameters mentioned in the main text), anisotropy
in vector space is significantly treated. For ex-
tremely anisotropic models such as GPT2 and
ELECTRA, remove of the first primary component
yields more uniformly spread word representations.
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Figure 8: PCA Plots of BERT Word Representations.
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Figure 9: PCA Plots of GPT2 Word Representations.
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Figure 10: PCA Plots of XLNet Word Representations.
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Figure 11: PCA Plots of ELECTRA Word Representations.
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Abstract

Text classification has wide-ranging applica-
tions in various domains. While neural net-
work approaches have drastically advanced
performance in text classification, they tend
to be powered by a large amount of training
data, and interpretability is often an issue. As a
step towards better accuracy and interpretabil-
ity especially on small data, in this paper
we present a new knowledge-infused attention
mechanism, called KW-ATTN (KnoWledge-
infused ATTentioN) to incorporate high-level
concepts from external knowledge bases into
Neural Network models. We show that KW-
ATTN outperforms baseline models using only
words as well as other approaches using con-
cepts by classification accuracy, which indi-
cates that high-level concepts help model pre-
diction. Furthermore, crowdsourced human
evaluation suggests that additional concept in-
formation helps interpretability of the model.

1 Introduction

Text classification is a fundamental Natural Lan-
guage Processing (NLP) task which has wide-
ranging applications such as topic classification
(Lee et al., 2011), fake news detection (Shu et al.,
2017), and medical text classification (Botsis et al.,
2011). The current state-of-the-art approaches for
text classification use Neural Network (NN) mod-
els. When these techniques are applied to real
data in various domains, there are two problems.
First, neural approaches tend to require large train-
ing data, but it is often the case that large training
data or pretrained embeddings are not available in
domain-specific applications. Second, when text
classification is applied in real life, not only the ac-
curacy, but also the interpretability or explainability
of the model is important.

As a way to improve interpretability as well as
accuracy, incorporating high-level concept infor-
mation can be useful. High-level concepts could

help interpretation of model results because con-
cepts summarize individual words. The concept
“medication” would be not only easier to interpret
than the words “ibuprofen” or “topiramate” but
also contributes to understanding the words better.
In addition, higher-level concepts can make raw
words with low frequency more predictive. For
instance, the words “hockey” and “archery” might
not occur in a corpus frequently enough to be con-
sidered important by a model, but knowing that
they belong to the concept “athletics” could give
more predictive power to the less frequent individ-
ual words depending on the task, because the fre-
quency of the concept “athletics” would be higher
than individual words.

In this paper we present a new approach that
incorporates high-level concept information from
external knowledge sources into NN models. We
devise a novel attention mechanism, KW-ATTN,
that allows the network to separately and flexibly
attend to the words and/or concepts occurring in a
text, so that attended concepts can offer informa-
tion for predictions in addition to the information
a model learns from texts or a pretrained model.
We test KW-ATTN on two different tasks: patient
need detection in the healthcare domain and topic
classification in general domains. Data is anno-
tated with high level concepts from external knowl-
edge bases: BabelNet (Navigli and Ponzetto, 2012)
and UMLS (Unified Medical Language System)
(Lindberg, 1990). We also conduct experiments
and analyses to evaluate how high-level concept
information helps with interpretability of resultant
classifications as well as accuracy. Our results indi-
cate that KW-ATTN improves both classification
accuracy and interpretability.

Our contribution is threefold: (1) We propose
a novel attention mechanism that exploits high-
level concept information from external knowledge
bases, designed for providing an additional layer
of interpretation using attention. This attention
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mechanism can be plugged in different architec-
tures and applied in any domain for which we have
a knowledge resource and a corresponding tagger.
(2) Experiments show KW-ATTN makes statisti-
cally significant gains over a widely used atten-
tion mechanism plugged in RNN models and other
approaches using concepts. We also show that
the attention mechanism can help prediction accu-
racy when added on top of the pretrained BERT
model. Additionally, our attention analysis on pa-
tient need data annotated with BabelNet and UMLS
indicates that choice of external knowledge impacts
the model’s performance. (3) Lastly, our human
evaluation using crowdsourcing suggests our model
improves interpretability.

Section 2 relates prior work to ours. Section 3
explains our method. Section 4 evaluates our model
on two different tasks in terms of classification
accuracy. Section 5 describes our human evaluation
on interpretability. Section 6 concludes.

2 Related Work

2.1 Knowledge-infused Neural Networks

There has been a growing interest in incorpora-
tion of external semantic knowledge into neural
models for text classification. Wang et al. (2017)
proposed a framework based on convolutional neu-
ral networks that combines explicit and implicit
representations of short text for classification by
conceptualizing a short text as a set of relevant
concepts using a large taxonomy knowledge base.
Yang and Mitchell (2017) proposed KBLSTM, a
RNN model that uses continuous representations
of knowledge bases for machine reading. Xu et al.
(2017) incorporated background knowledge with
the format of entity-attribute for conversation mod-
eling. Stanovsky et al. (2017) overrided word em-
beddings with DBpedia concept embeddings, and
used RNNs for recognizing mentions of adverse
drug reaction in social media.

More advanced neural architectures such as
transformers has been also benefited by external
knowledge. (Zhong et al., 2019) proposed a Knowl-
edge Enriched Transformer (KET), where contex-
tual utterances are interpreted using hierarchical
self-attention and external commonsense knowl-
edge is dynamically leveraged using a context-
aware affective graph attention mechanism. ERNIE
(Zhang et al., 2019) integrated entity embeddings
pretrained on a knowledge graph with correspond-
ing entity mentions in the text to augment the text

representation. KnowBERT (Peters et al., 2019)
trained BERT for entity linkers and language mod-
eling in a multitask setting to incorporate entity
representation. K-BERT (Liu et al., 2020) injected
triples from knowledge graphs into a sentence to
obtain an extended tree-form input for BERT.

Although all these prior models incorporated
external knowledge into advanced neural architec-
tures to improve model performance, they didn’t
pay much attention to interpretability benefits.
There have been a few knowledge-infused mod-
els that considered interpretability. Kumar et al.
(2018) proposed a two-level attention network for
sentiment analysis using knowledge graph embed-
ding generated using WordNet (Fellbaum, 2012)
and top-k similar words. Although this work men-
tions interpretability, it did not show whether/how
the model can help interpretability. Margatina et al.
(2019) incorporated existing psycho-linguistic and
affective knowledge from human experts for senti-
ment related tasks. This work only showed atten-
tion heatmap for an example.

Our work is distinguished from others in that
KW-ATTN is designed in consideration of not only
accuracy but also interpretability of the model. For
this reason, KW-ATTN allows separately and flexi-
bly attending to the words and/or concepts so that
important concepts for prediction can be included
in prediction explanations, adding an extra layer
of interpretation. We also perform human evalu-
ation to see the effect of incorporating high-level
concepts on interpretation rather than just showing
a few visualization examples.

2.2 Interpretability

Interpretability is the ability to explain or present a
model in an understandable way to humans (Doshi-
Velez and Kim, 2017). This interpretability is bene-
ficial for developers to understand the model, help
identify and possibly fix issues with the model, or
to enhance the model. It is crucial for application
end users because knowing explanations or justi-
fications behind a model’s prediction can further
assist in decision making or the task at hand.

To provide interpretability, researchers have used
inherently interpretable models such as sparse lin-
ear regression models, decision trees, or rule sets.
These models are generally useful for simple pre-
diction tasks, yet it is difficult to apply them to com-
plicated tasks. To interpret complex models used
for complex tasks, one can examine how prediction
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changes between two different inputs (Shrikumar
et al., 2017; Lundberg and Lee, 2017) or by locally
perturbing an input (Ribeiro et al., 2016). However,
a recent and popular method in NLP has been the
use of an attention mechanism, which was found
to be effective in helping interpret complex mod-
els by highlighting which inputs are informative
to prediction (Wang et al., 2016; Lin et al., 2017;
Ghaeini et al., 2018; Seo et al., 2016).

Along the lines of work using attention for in-
terpretation, our model improves attention-based
interpretability by using high-level concept infor-
mation. To our knowledge, no prior work used
external high-level concept information for better
interpretability.

3 Our Approach

3.1 External Knowledge Bases

We automatically annotate data with high-level con-
cepts from two knowledge bases: BabelNet and
UMLS.

3.1.1 BabelNet
BabelNet (Navigli and Ponzetto, 2012) is a con-
stantly growing semantic network which connects
concepts and named entities in a large network
of semantic relations, currently made up of about
16 million entries, called Babel synsets. In our
study, we use the hypernyms of Babel synsets as
additional higher-level concept information for the
raw words or phrases in text. We first map texts
with concepts in Babel synsets using an entity link-
ing toolkit, Babelfy (Moro et al., 2014), and then
retrieve hypernyms, high-level concepts, of the con-
cepts using BabelNet APIs. Table 1 shows example
annotations for the sentence “My mom was diag-
nosed with stage 3 ovarian cancer.”

Expression BabelNet Concepts
“Mom” mother

“diagnosed” analyze
“state” state

“ovarian cancer” disease

Table 1: Babelfy annotations for BabelNet concepts

3.1.2 Unified Medical Language System
(UMLS)

We also exploit an external medical ontology, the
UMLS (Lindberg, 1990), for a comparison with
BabelNet for the patient need task. The UMLS is a

high-level ontology for organizing a great number
of concepts in the biomedical domain, which pro-
vides unified access to many different biomedical
resources. On top of the UMLS, the UMLS seman-
tic network (McCray, 2003) implements an upper-
level conceptual layer for all UMLS concepts. This
semantic network categorizes all concepts in the
UMLS into 134 semantic types and provides 54
links between the semantic types to represent rela-
tionships in the biomedical domain.

We use the semantic types of the UMLS seman-
tic network as additional higher-level concepts be-
cause it can abstract more fine clinical concepts that
exist across much larger medical ontologies such
as UMLS, SNOMED (Benson, 2010), and ICT-
10(Organization et al., 2017). To obtain the seman-
tic types, we annotate raw text by using MetaMap.
Table 2 shows an example from MetaMap. Note
that the automatic annotation can be noisy (e.g., in-
correct semantic types for “mom” in the example).

Expression UMLS Semantic Type
“Mom” Quantitative Concept

“Diagnosed” Diagnostic Procedure
“Stage 3 ovarian cancer” Neoplastic Process

Table 2: MetaMap annotations for UMLS concepts

3.2 Incorporating High-Level Concepts
To incorporate high-level concept information into
a NN model, we design a new attention mecha-
nism, KW-ATTN, which allows giving separate
but complementary attentions to a word and its
corresponding concept. To test KW-ATTN, we
choose a one-level RNN architecture with an at-
tention mechanism (1L), a hierarchical RNN ar-
chitecture with an attention mechanism (2L) as
in Hierarchical Attention Network (HAN) (Yang
et al., 2016), and a pretrained BERT (Devlin et al.,
2018). Our 2L model architecture is shown in Fig-
ure 1. The whole architecture begins with words in
each sentence as input. They are embedded and en-
coded using a word encoder, and then the resulting
hidden representations move forward to a word-
concept attention layer after being concatenated
with the corresponding concept embeddings. This
part is different from common RNN architectures
for text classification, where only the hidden rep-
resentations from the word encoder are used for a
word-level attention layer. Then, the output of this
attention layer is used in the next phase, a sentence
encoder in case of 2L, and a final layer in case of
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Figure 1: Overview of KW-ATTN (in red) when plugged in HAN (2L). KW-ATTN 1L does not have the sentence
embeddings, sentence encoder, and sentence level attention layers. KW-BERT replaces the word encoder with a
pretrained BERT model.

1L. When KW-ATTN is applied to BERT (KW-
BERT), the word encoder using RNN is replaced
with BERT and then the output of KW-ATTN is
feed to the final layer as in 1L.

Word and Concept Embeddings: Each word
wit (a one-hot vector, where t ∈ {1, · · · , T} and
Ti is the number of words in the i-th sentence)
is mapped to a real-valued vector xit through an
embedding matrix We by xit = Wewit. To use
high-level concepts, each concept cit (a one-hot
vector) corresponding to word wit is also mapped
to xcit through an embedding matrix Wec by xcit =
Weccit. When a word is not mapped into a concept,
we map the concept vector to a no-concept vector.

Word and Concept Encoders: We encode T
words in each sentence i using a word encoder.
The corresponding T concepts are also encoded
using a concept encoder. We use a bi-directional
GRU (Cho et al., 2014) to build a representation for
the t-th word and concept in the sentence i, denoted
as hit and hcit as follows:

−→
h it =

−−−→
GRU(xit),

←−
h it =

←−−−
GRU(xit),

hit = [
−→
h it,
←−
h it],

−→
h cit =

−−−→
GRU(xcit),

←−
h cit =

←−−−
GRU(xcit),

hcit = [
−→
h cit,
←−
h cit].

where t ∈ {1, · · · , T}, and Ti is the number of

words in the i-th sentence. Note that we obtain
a representation that summarizes the information
of the whole sentence around the t-th word wit by
concatenating the forward hidden state

−→
h it and the

backward hidden state
←−
h it.

Word-Concept Attention: In this stage, the
output from the word encoder hit and the corre-
sponding concept output hcit are combined by going
through a word-concept level attention layer. This
layer consists of two attention levels. One is an
attention vector αit that tracks the importance of a
combined word-concept, which we call “combined”
attention. The other attention vector we call “bal-
ancing” attention pit is for flexibly incorporating
concept information into the model. The balancing
attention is introduced to give attention comple-
mentarily to both word and concept because the
importance of a word or concept can differ at times.
For example, when “football” is attended, we don’t
know if “football” itself is important for the predic-
tion, or “football”, “tennis”, and all others together
are important. Additionally, this balancing atten-
tion helps the model to be more robust to noisy
concepts that may be caused by automatic annota-
tion.

In detail, each position in a sentence includes
a word and its corresponding concept. For each
position, combined attention α is assigned, which
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represents attention to the position (both word and
concept). Within each position, balancing attention
p is assigned to a concept and its complement 1−p
is assigned to the corresponding word. As seen in
Figure 1, αit represents the contribution of the po-
sition t (both the t-th word and its concept) to the
meaning of the sentence i in the sentence, while
1 − pit represents a weight on the word and pit
represents a weight on the word’s concept. Hence,
αit(1−pit) and αitpit represent the contribution of
the t-th word and concept to the sentence i, respec-
tively. This attention mechanism using combined
and balancing attentions enables us to give separate
but complementary attentions to the word and con-
cept. In addition, we set pit as 0 when a word does
not have a corresponding concept because in this
case the model should attend only the word. The
new attention mechanism is as follows:

uit = tanh(Wα[hit, h
c
it] + bα)

pit = sigmoid(wp[hit, h
c
it] + bp)

αit =
exp

(
uTituα

)
∑

t exp
(
uTituα

)

si =
∑

t

αit ((1− pit)hit + pith
c
it)

where Wα, bα, wp, bp and uα are the model
parameters. si is a representation for the i-th sen-
tence.
si is used as an input to the next layer, the sen-

tence encoder in case of 2L (HAN). Then, the sen-
tence representations hi go through the sentence
level attention layer, and build a document vector
v, as shown in Figure 1. In case of a 1L model
or a BERT model, all the words in the document
are treated as one single sentence. Then, there is a
single representation s1, which is equivalent to the
document vector v in the 2L case.

Finally, based on this vector v, classification
probability for each class is computed in the final
layer.

4 Experiments

KW-ATTN is evaluated on two different datasets
for patient need detection (need dataset) (Jang
et al., 2019) and topic classification (Yahoo an-
swers) (Zhang et al., 2015). We use different tasks
to more broadly demonstrate the benefits of our
approach.

4.1 Data

Patient need detection: This dataset is for detect-
ing patient need in posts from an online cancer
discussion forum. We use the health information
need data for binary classification (450 positive
samples out of 853). Although this dataset is quite
small, we choose to use it because RNN approaches
showed effectiveness (Jang et al., 2019) and it is a
dataset we can compare the effect of general knowl-
edge graph and domain-specific medical ontology.
We build two different concept annotations with
BabelNet and UMLS.

Yahoo answers: This dataset is for topic clas-
sification. It incluldes 10 different topics such as
Society & Culture and Sports. To generate a dataset
that is still small but one order of magnitude bigger
than the need dataset, we randomly select 10,000 in-
stances of the dataset enforcing a balanced dataset
(1,000 instances per topic), and annotate them with
BabelNet concepts.

The data statistics of our concept annotated
datasets are summarized in Table 3. The ratios
of words that match concepts are 6.6%(the need
dataset with BabelNet), 36.3%(the need dataset
with UMLS), and 8.9%(Yahoo answers). In all our
experiments, we perform 10-fold cross-validation
ten times. For each run, we use 80% of data for
training, 10% for development, and 10% for test.

4.2 Experiment Settings

We compare our KW-ATTN 1L and 2L with a
widely used attention mechanism leveraging only
words (Yang et al., 2016; Ying et al., 2018). We
call it ATTN. In addition, we use other proven
approaches that leverage concept information:
Concept-replace uses input documents where raw
words are replaced with the corresponding Ba-
belNet/UMLS high-level concepts when the map-
pings are available, as in (Stanovsky et al., 2017;
Magumba et al., 2018). Concept-concat uses con-
catenation to combine word and concept embed-
dings, as in (Wang et al., 2017; Zhou et al., 2018).
Attn-concat uses concatenation to combine a con-
cept embedding and a hidden representation of
word and use ATTN. Attn-gating uses a gate mech-
anism to select salient features of a hidden word
representation, conditioned on the concept infor-
mation. Both Attn-concat and Attn-gating are state-
of-the-art presented by Margatina et al. (2019). All
these methods are tested in 1L and 2L settings.

The parameters for RNN models are tuned on
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Data Classes #D #S #W #C(D) #C(S) Voca(W) Voca(C)
Need-BN 2 853 19.2 11.0 13.9 0.7 12,484 629

Need-UMLS 2 853 19.2 11.0 75.6 6.15 12,484 118
Yahoo answers 10 10,000 7.9 12.9 10.1 1.3 65,003 3,816

Table 3: Data summary statistics. Need-BN: need dataset with BabelNet concepts, Need-UMLS: need dataset
with UMLS concepts, #D: # of documents, #S: average # of sentences per document, #W: # of words per sen-
tence, #C(D): # of annotated concepts per document, #C(S): # of annotated concepts per sentence, Voca(W): word
vocabulary size, Voca(C): concept vocabulary size.

Yahoo answers Need BN Need UMLS
Model 1L 2L 1L 2L 1L 2L
ATTN .557 .574 .706 .684 .706 .684

Concept-replace .560 .563 .698 .671 .699 .676
Concept-concat .569 .571 .664 .602 .702 .661

Attn-concat (Margatina et al., 2019) .585 .577 .669 .669 .709 .681
Attn-gating (Margatina et al., 2019) .593 .577 .712 .587 .679 .631

KW-ATTN .605* .597* .721* .692* .727* .703*

Table 4: Comparison of KW-ATTN against baselines for 1-level (1L) and 2-level (2L) networks, in terms of F1
macro scores. *: indicates statistically significant improvement over the next best model via t-test (p < 0.05).

development data in the following ranges: word
embedding dimension: 25, 50, 100, 200, GRU
size: 10, 25, 50, learning rate: 0.1, 0.05, 0.01,
0.005, 0.001, 0.0005, and 0.0001. The word em-
beddings are initialized randomly, and concept em-
beddings are initialized using pretrained concept
embeddings trained on English web data and Ba-
belNet semantic network, SW2V (Mancini et al.,
2016).1 We randomly initialize word embeddings
rather than using pretrained embeddings because
our model often uses phrases recognized by knowl-
edge resources, and they are usually not part of
pretrained embeddings. We optimize parameters
using Adam (Kingma and Ba, 2014) with epsilon
1e-08, decay 0.0, a mini-batch size of 32, and the
loss function of negative log-likelihood loss. We
use early-stopping.

In addition, we also conduct experiments with
pre-trained BERT Word Encoder (KW-BERT) to
see if injecting concept also helps the model trained
on large-scale corpora. We use the ‘bert-base-
uncased’ model, and the dimension of Concept
bi-GRU is 384, making the concept representation
the same dimension of BERT word representations.
We show both the results from frozen models and
fine-tuned models.The frozen models do not up-
date parameters of pretrained models, i.e., they

1We also tried SW2V Wiki, SensEmbed (Iacobacci et al.,
2015) and SENSEMBERT (Scarlini et al., 2020) pretrained
embeddings, but SW2V WEB slightly outperformed others
(no statistical significance).

use pre-trained contextualized embeddings without
fine-tuning. In contrast, fine-tuned BERT or KW-
BERT are adapted to the target task. The learning
rates for learning frozen models and fined-tuned
models are 2e-3 and 1e-6, respectively.

4.3 Experiment Results

The results are shown in Table 4. First, we observe
that 2L models do not perform better than 1L mod-
els. This could be because 2L models are too large
for the data sizes, especially for the need data. It
could indicate that the document itself is not too
long to put in one RNN, and the sentence bound-
ary might not be necessary for the classification.
Second, using concept information alone does not
perform well in general, which indicates that con-
cept information alone is not sufficient. Using word
and concept information together (concept-concat)
also do not always result in a gain of performance.
Third, Attn- models generally perform better than
simpler Concept- models. However, KW-ATTN
significantly improves over all other models for
both tasks, indicating the effeteness of our mecha-
nism.

In addition, Table 4 shows that for the need task,
while both types of concepts help the prediction,
UMLS concepts help slightly more. This suggests
that choosing the right knowledge resource, espe-
cially for domain specific tasks, is critical for pre-
diction performance.

To see the effect of data size on the model, we
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compare KW-ATTN and ATTN across different
data sizes of Yahoo reviews (Table 5). KW-ATTN
models significantly outperform ATTN models con-
sistently. However, as the data size becomes larger,
performance gains, while still significant, diminish,
showing that, in this domain, our method is more
effective when the data is smaller.

1L 2L
Data size ATTN KW-ATTN ATTN KW-ATTN

2,500 .460 .523* (+.063) .479 .516* (+.037)
5,000 .527 .561* (+.034) .539 .555* (+.016)

10,000 .557 .605* (+.048) .574 .585* (+.011)
20,000 .611 .634* (+.023) .618 .621* (+.003)
30,000 .624 .645* (+.021) .631 .635* (+.004)

Table 5: F1 macro scores by data size in Yahoo an-
swers. * indicates statistically significant improvement
over corresponding ATTN model via t-test (p < 0.05).

Table 6 shows the comparison between BERT
and KW-BERT. We can see that additional con-
cept information substantially improves the perfor-
mances on both datasets in case of frozen models
whereas it only improves the performance on the
need dataset when fine-tuned. The results from
the frozen models indicate that the encoded con-
cepts provide complementary information to BERT.
However, when fine-tuned, KW-BERT outperforms
BERT only on the Need dataset. This could be be-
cause a BERT model itself is learnt on Wikipedia,
which may lack knowledge on medicine. Although
BERT learns task-specific knowledge during fine-
tuning, but the data is small and additional high-
level concept information still helps. This may sug-
gest that KW-BERT could be more beneficial for
small data problems in domains that require more
expert knowledge than Wikipedia can provide.

We can also notice that the frozen models poorly
perform on the Need dataset compared with RNN
models (Table 4) whereas they drastically outper-
form on the Yahoo dataset. This could be because
the documents in the Need dataset are conversa-
tional coming from an online forum, which are
markedly different from the Wikipedia dataset on
which BERT is trained. We can see that when fine-
tuned, both BERT and KW-BERT beat RNN mod-
els, which suggests that finetuning allows learning
task/domain specific information.

Attention Analysis: To better understand why
UMLS concepts help more on the need dataset,
we draw the distributions of concept attentions in
models with both annotations in Figure 2. Inter-
estingly, for the average attention of each concept,

Yahoo answers Need UMLS
Model Frozen Finetuned Frozen Finetuned
BERT .652 .698 .585 .735

KW-BERT .701* .695 .652* .744*

Table 6: Comparison of BERT baseline and BERT with
KW-ATTN (KW-BERT), in terms of F1 macro scores.
*: indicates statistically significant improvement over
the corresponding BERT baseline via t-test (p < 0.05).

the attention for the model using BabelNet annota-
tions is greater than the model using UMLS annota-
tions. However, the max attention of each concept
is greater for UMLS annotations than for BabelNet
annotations, which indicates that UMLS concepts
are more actively used. Additionally, attentions
from the model using UMLS concepts show lower
variance. This result indicates that the model us-
ing UMLS concepts assigns a similar attention to
each concept whereas the model using BabelNet
concepts sometimes assigns small or large atten-
tions to concept. In other words, the model using
UMLS concepts consistently select a concept to
attend whereas the model using BabelNet concepts
is less consistent. Intuitively, this makes sense as
the UMLS concepts are domain specific to the task
of health information need detection.

5 Human Evaluation on Interpretability

We use human evaluation to see whether addi-
tional high-level concept information given by KW-
ATTN can be beneficial for interpretation. We com-
pare top-ranked attended words/concepts by KW-
ATTN with top-ranked attended words by ATTN.
We use Amazon Mechanical Turk (MTurk). Since
we use crowdsourcing, we conduct evaluation only
on the Yahoo reviews dataset for topic classifica-
tion, which covers general domains.

5.1 Experiment Design

For each Human Intelligence Task (HIT) in MTurk,
we provide a prediction and its explanation for a
text, generated from either KW-ATTN 1L or ATTN
1L.2 We use 1L because one attention layer is sim-
pler to interpret. Then, we ask whether MTurkers
would assign the given topic to the text based on
the given explanation. Only one explanation is ran-
domly given, and which model the explanations is
from is not shown to MTurkers. Additionally, we
ask them to rate their confidence in their answer.

2The screenshot of the MTurk user interface can be found
in the Appendix.
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Figure 2: Distributions of concept attentions for the two annotations for patient need detection: UMLS and Ba-
belNet (BN). For each concept, average (left), maximum (middle), variance (right) of attention values from all
occurrences are used.

Explanation Type Example
No concept “java, yields, best, language, results, built”
KW same number “java as a(n) object-oriented_programming_language, ide as a(n) application,

php as a(n) free_software, swing, best, looking”
KW same length “java as a(n) object-oriented_programming_language, ide as a(n) application,

php as a(n) free_software”
KW replacement “object-oriented_programming_language, application, free_software, swing,

best, looking”

Table 7: Examples of different types of explanations used for human evaluation.

We assume that attention can be used for predic-
tion explanations based on (Wiegreffe and Pinter,
2019; Serrano and Smith, 2019). We choose to
ask about the validity of a given prediction unlike
prior work that asked to guess a model’s predic-
tion based on an explanation (Nguyen, 2018; Chen
et al., 2020). Although we acknowledge that the
model’s prediction may bias the annotators, we
choose this approach since humans have high-level
concepts as background knowledge. Humans do
not require external additional concept information
for guessing a correct topic label among multiple
topic options especially when the given topic op-
tions are distinct from each other. For example,
although the high-level concept “athletics” is not
given for the word “baseball” in an explanation,
humans would not have a problem with classifying
it into the sports category when given topic options
are sports and music. However, high-level concepts
may help users to have more confidence when inter-
preting the explanation for a given topic. Therefore,
we evaluate users’ trusts about the system indirectly
by requesting them to assess a given topic based on
an explanation and rate their confidence.

The top 6 ranked features (words and concepts)
with the highest attention weights are selected as an
explanation. The high-level concept of a word is in-
cluded in the explanation as the format of “[word]
as a(n) [concept]” only when the balancing weight,
p, for the concept is non-zero (See Section 3.2).

We remove stopwords and punctuations from ex-
planations.

Four different types of explanations are given to
MTurkers and compared in our analysis as shown
in Table 7. A no-concept explanation consists of
6 words. A KW-same-number explanation also
contains 6 words and their corresponding concepts
if they exist. A KW-same-length is composed of
3 words and their corresponding concepts if they
exist. A KW-replacement consists of 6 words or
concept. When a word has a lower attention value
than its corresponding concept according to the
p attention value, it is replaced by its concept in
the explanation. Note that KW- explanations are
all from the same model using KW-ATTN, and
no-concept explanations are from a model using
ATTN.

We randomly pick 200 samples that have cor-
rect predicted labels made by both systems. To
make the 200 samples, we draw 100 samples with
the prediction probability higher than .90 for their
predicted labels, and 100 samples with the predic-
tion probability between .80 and .90. To balance
topics, we pick equal number of samples for each
topic. We do not perform the same MTurk task
for incorrectly predicted samples because when a
system makes an incorrect prediction, assessing
interpretability is not straightfoward. There can be
multiple different reasons about the wrong predic-
tion.
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For MTurk, each HIT asks questions about an
explanation generated by a system for one sample,
as shown in Figure 3. For each HIT, 5 MTurk-
ers participate. We hire North American Master
MTurkers with HIT acceptance rates above 98% in
order to ensure high quality of the evaluation. We
pay $0.03–$0.05 for each HIT.

5.2 Human Evaluation Results

As shown in Table 8, KW-same-number and KW-
same-length explanations resulted in a significantly
higher confidence in assigning given topics to ex-
planations compared to no-concept explanations.
This indicates that the additional high-level concept
information from KW-ATTN is beneficial for im-
proving interpretability. We can also observe that
KW-replacement explanations improve confidence
although the gain is not significant.

Explanation Type Pred Conf Time
No-concept 4.70 4.15 11.31

KW-same-number 4.82 4.40* 11.64
KW-same-length 4.77 4.31* 11.37
KW-replacement 4.74 4.22 12.34

Table 8: Human evaluation results on interpretation.
Pred: average # of "yes" on predicted topics, Conf: av-
erage confidence score, Time: average time taken for
each HIT, *: indicates statistically significant differ-
ence over no-concept via t-test (p < 0.05).

It is important to note that KW-same-length and
KW-replacement explanations both improve inter-
pretability over no-concept explanations as well as
KW-same-number. While KW-same-number expla-
nations provide more information (12 at maximum
in total including both words and concepts), KW-
same-length and KW-replacement give the same or
less amount of information compare to no-concept
(6 at maximum in total). This indicates that the
high-level concept information really helps.

6 Conclusion

We presented a new attention mechanism, KW-
ATTN, which extends a NN model by incorporat-
ing high-level concepts. Our experiments showed
that using high-level concept information improves
predictive power by helping the data sparseness
problem in small data. Furthermore, in our crowd-
sourcing experiments, we found significant im-
provement on the confidence of human evaluators
on predictions, suggesting that our new attention

mechanism provides benefits in explaining the pre-
dictions. High-level concepts provide an additional
layer of information above raw words that can as-
sist in understanding predictions. Additionally, our
attention mechanism can distinguish between the
importance of words vs. concepts, providing fur-
ther information. We are optimistic that KW-ATTN
can be applied widely.
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A Appendices

Figure 3 shows a screenshot of the Amazon Mechanical Turk user interface in our human evaluation.

Figure 3: Our MTurk interface for human evaluation about interpretability.
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Abstract
This paper presents a way to inject and lever-
age existing knowledge from external sources
in a Deep Learning environment, extending
the recently proposed Recurrent Independent
Mechnisms (RIMs) architecture, which com-
prises a set of interacting yet independent mod-
ules. We show that this extension of the
RIMs architecture is an effective framework
with lower parameter implications compared
to purely fine-tuned systems.

1 Introduction

Deep neural networks have been successfully ap-
plied to a variety of natural language processing
tasks such as text classification, sequence label-
ing, sequence generation, etc. Deep architectures
are often non-modular, homogeneous systems and
trained end-to-end. End-to-end training is per-
formed with the hope that the structure of a net-
works is sufficient to direct gradient descent from a
random initial state to a highly non-trivial solution
(Glasmachers, 2017).

An important issue with the end-to-end training
is that throughout the training of a system com-
posed of several layers, valuable information con-
tained in a problem decomposition that resulted in
a specific network design is ignored (Glasmachers,
2017). In non-modular systems, explicit decompo-
sition of high level tasks into distinct subprocesses
is not possible and necessary complexity has to be
induced through the complexity of the input stimu-
lus. This results in large systems whith the required
number of training samples becoming intractable.
Interpretation of these black box systems is difficult
(Miikkulainen and Dyer, 1991).

In compositional systems, in contrast, smaller
modules encode specialized expertise which is
known to impact one aspect of the task at hand.
The aggregation of the modules acts synergisti-
cally to address the overall task. In a modular
system, the components act largely independently

but communicate occasionally. Module autonomy
is crucial because in the case of distributional shifts
(significant changes in some modules), other mod-
ules should remain robust (Schölkopf et al., 2012),
(Goyal et al., 2019). Modules also need to inter-
act occasionally to achieve compositional behavior
(Bengio, 2017).

Many current neural modular systems, such as
EntNet (Henaff et al., 2017) and IndRNN (Li et al.,
2018), offer only module independence, but no
module communication. The recently proposed Re-
current Independent Mechanisms (RIMs) (Goyal
et al., 2019), however, suggest to model a com-
plex system by dividing the overall model into M
communicative recurrent modules.

Deep architectures often rely solely on raw data
in large quantities with a requirement of represen-
tativeness regarding task requirements. This be-
comes problematic for tasks with a specialized,
low-frequency terminology, where high quality
knowledge sources for NLP and AI are often avail-
able and have proven their effectiveness. Embed-
ding expert knowledge in extended pre-trained
word embeddings is costly. We present untied
inedpendent modules to embed knowledge from
different sources onto systems input. Knowledge
sources, as independent experts, provide different
annotations (abstractions) for the input, combining
various classifications for solving the task.

For instance, providing sentiment lexica for sen-
timent analysis reduces the demand for training
data by expanding the limited training vocabulary
with an extended set of annotated terms. Precom-
piled word embeddings are to be considered knowl-
edge sources in the same spirit and we demonstrate
that they inter-operate with a variety of other knowl-
edge sources such as gazetteers and POS encoding.

Consider Example 1 from the Stanford Senti-
ment Treebank (SST-2) (Socher et al., 2013).

(1) This is an absurd comedy about
alienation, separation and loss.
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Figure 1 shows annotations from different knowl-
edge sources for Example 1, such as tokeniza-
tion (from the ANNIE tokenizer), POS tags (from
the Stanford POS tagger), and sentiment annota-
tions from three sentiment lexica (AFINN (Nielsen,
2011), MPQA (Wilson et al., 2005), and NRC (Mo-
hammad et al., 2013)).

x1t x2t x3t x4t x5t
t Token POS AFINN MPQA NRC

1 This DT 0 Neutral -0.19
2 is VBZ 0 Neutral 0.00
3 an DT 0 Neutral 0.08
4 absurd JJ 0 Neg. -1.56
5 comedy NN +1 Neg. 0.27
6 about IN 0 Neutral -0.34
7 alienation NN -2 Neg. 0.00
8 , , 0 Neutral 0.27
9 separation NN 0 Neutral -0.29

10 and CC 0 Neutral 0.41
11 loss NN -3 Neg. -0.51
12 . . 0 Neutral -0.06

Figure 1: Various annotations for Example 1

The annotations of the different sentiment lexica
in Figure 1 vary substantially: comedy is classified
as positive (+1) in AFINN, as negative in MPQA,
and almost neutral in NRC. (Özdemir and Bergler,
2015a) showed that this variance in judgements
is not prohibitive, in fact (Özdemir and Bergler,
2015b) showed that combining 5 sentiment lexica
outperformed all other combinations. These dif-
ferences are in fact advantageous in an ensemble
setting and reflect diversity among experts. The
differences cannot be exploited, when a single em-
bedding is used for tokens, but may be retained,
when different lexica are embedded independently
in different modules.

We add input independence to the RIMs archi-
tecture, providing different language annotations as
inputs to a set of independent, but interacting mod-
ules. The resulting system is a flexible modular
architecture for leveraging token-level knowledge
in form of different annotation embeddings, which
will be given different weights for the task at hand
dependeing on their usefulness during training (see
Figure 11). The system is evaluated on tasks such
as sentiment analysis and analysis of health-related
tweets for different health concerns.

Our experiments demonstrate that leveraging
knowledge sources under a modular framework
consistently improves performance with little in-
crease in parameter space. Additionally, when
frozen language models are supplemented with

knowledge sources, the drop in performance is min-
imal, making this technique particularly beneficial
for users that do not have access to powerful com-
putational resources. Lastly, the modular nature of
the system allows to visualize the models function-
ality.

2 Methods

2.1 RIMs
Recurrent independent mechanisms (RIMs) is a
modular architecture that models a dynamic system
by dividing it into M recurrent modules (Goyal
et al., 2019). At time-step t, each module Rm

(m = 1, . . . ,M ) has a hidden state hmt ∈ Rdh .

Input selection Each module Rm gets the aug-
mented input Xt = xt ⊕ 0, where 0 is an all-zero
vector and ⊕ is the row-level concatenation. Then,
using an attention mechanism, module Rm selects
input:

Am
t = softmax(

hm
t−1W

query
m (XtW

key)T√
d

)XtW
val (1)

where hmt−1W
query
m is the query, XtW

key is the
key, and XtW

val is the value in the attention
mechanism (Vaswani et al., 2017). The matrices
W query

m ∈ Rdh×dqueryin , W key ∈ Rdin×dkeyin , and
W val ∈ Rdin×dvalin are linear transformations for
constructing query, key, and value for the input
selection attention.1

If the input xt is considered relevant to module
Rm, the attention mechanism in Equation 1 as-
signs more weight to it (selects it), otherwise more
weight will be assigned to the null input (Goyal
et al., 2019).

The softmax values of Equation 1 determine a
set St of top mActive modules.2 Among M mod-
ules, those with the least attention on the null input
are the active modules. The selected input Am

t de-
termines a temporary hidden state h̃mt for the active
modules:

h̃mt = Rm(hmt−1, A
m
t ) m ∈ St (2)

where Rm(hmt−1, A
m
t ) denotes one iteration of up-

dating the recurrent module Rm based on previous
state hmt−1 and current input Am

t . The hidden states

1dqueryin , dkeyin , and dvalin are dimensionalities of query, key,
and value respectively (for the input selection attention)

2The cardinality |St| = mActive is currently a fixed hyper-
parameter, that can ultimately be determined based on the
target task.
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of the inactive modules Rm (m /∈ St) remain un-
changed:

hmt = hmt−1 m /∈ St (3)

Module communication To obtain the actual
hidden states hmt , the active modules communicate
using an attention mechanism:

hm
t = softmax(

Qt,m(Kt,:)
T

√
dh

)Vt,: + h̃m
t m ∈ St (4)

where
Qt,m = h̃m

t W̃
query
m

Kt,: is the row-level concatenation of all Kt,m

(m = 1, . . . ,M ) defined as:

Kt,m = h̃m
t W̃

key
m

and Vt,: is the row-level concatenation of all Vt,m
(m = 1, . . . ,M ) defined as:

Vt,m = h̃m
t W̃

val
m

The matrices W̃ query
m ∈ Rdh×dquerycom , W̃ key

m ∈
Rdh×dkeycom and W̃ val

m ∈ Rdh×dvalcom are used for con-
structing query, key, and value for the communica-
tion attention.3

Note that both the key Kt,: and the value Vt,:
depend on the temporary hidden states of all mod-
ules, therefore hmt in Equation 4 is determined by
attending to all modules. The overall hidden state
of the RIMs model at time-step t can be defined as
ht = [h1t , . . . , h

M
t ] which is the concatenation of

the hidden states of all modules.

Classification We choose a simple attention
layer together with a classifier to obtain the ap-
propriate vector representation of a given sample.
Attention (Bahdanau et al., 2015) determines im-
portance scores et = wT

attht using a latent context
vector watt. The score is then normalized using
αt =

exp(et)∑
j ej

for a weighted sum H =
∑

t αt ∗ ht,
which is the input for a classifier.

2.2 Multi-input RIMs
We extend this architecture to so-called multi-input
RIMs, which consist of a set of M modules, similar
to the standard RIMs. The standard RIMs model as-
sumes the same input sequence for all modules (Xt

in Equation 1), which share the same linear transfor-
mation matrices W key and W val for constructing
the keys and values for the attention mechanism.

3dquerycom , dkeycom, and dvalcom are dimensions of query, key,
and value respectively (for the communication attention)

an

DT

Neutral

absurd

JJ

Neg

comedy

NN

Neg

R1

R2

R3

input selection communicationinactive module active module

t = 3 t = 4 t = 5

Figure 2: A 3 module multi-input RIMs for Example 1
at t = 3, ..., 5. The dynamics of each module is inde-
pendent of the others and active modules communicate
at each time-step

In contrast, we untie the input attention mecha-
nism and consider dedicated linear transformations
W key

m andW val
m for moduleRm. Untying the atten-

tion mechanism allows modules to have different
inputs Xm

t (m = 1, . . . ,M ) each potentially with
a different dimensionality. This supports our use
of each module to encode a different knowledge
source, one being word embeddings, one being a
gazetteer list, etc. The input selection mechanism
of Equation 1 then expands to Equation 5:

Am
t = softmax(

hm
t−1W

query
m (Xm

t W
key
m )T√

dh
)Xm

t W
val
m

(5)

where Xm
t = xmt ⊕ 0.

In Equation 5, the softmax produces two at-
tention scores, i.e. how much the module Rm at-
tends to the input xmt and the null input 0. The top
mactive modules with least attention scores to the
null input form a set St. The temporary hidden state
for active modules is determined by Equation 2 and
modules communicate according to Equation 4,
identical to standard RIMs. An illustration of the
multi-input RIMs model is provided in Figure 2.

3 Tasks

We explore the potential of multi-input RIMs by ab-
lation on different tasks that are each very specific
in their description and do not have large training
datasets, namely three sentiment analysis tasks and
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two health-related tweet classification tasks.

3.1 Sentiment analysis

Here we consider three sentiment benchmark
datasets with their respective tasks:

SST-2 Stanford sentiment tree-bank for the task
of binary sentiment classification of movie
reviews (Socher et al., 2013). The models are
trained on the data provided by the GLUE
benchmark4 (Wang et al., 2018).

SE17-4A SemEval 2017 task 4 subtask A is a 3-
class problem for sentiment classification of
tweets (Rosenthal et al., 2017). The tweets are
classified as Negative, Neutral, and Positive.
The performance for this task is measured by
the macro-average of recall scores for positive,
negative, and neutral classes and evaluated
by the TweetEval benchmark (Barbieri et al.,
2020)5.

SE15-11 SemEval 2015 task 11 is a pilot task
of sentiment analysis for figurative language
tweets. The training set comprises a collec-
tion of sarcastic, ironic, and metaphoric tweets
(4490 tweets) annotated on an 11 point scale
(−5, . . . ,+5) (Ghosh et al., 2015). The per-
formance is measured by Cosine similarity
between the gold standard labels and predic-
tions.

We use the following sentiment lexica as knowl-
edge sources:

1. AFINN: A manually compiled lexicon of 2500
words, rated for valence scores with an integer
between -5 and 5 together with their prior
polarities (Nielsen, 2011).

2. MPQA: A manually compiled lexicon of 8000
words, distinguishing positive, negative, and
neutral sentiment scores (Wilson et al., 2005).

3. NRC HashTag sentiment: An automatically
compiled resource, that uses seed hashtags
(Mohammad et al., 2013). The polarity of the
seed hashtag is used to calculate PMI-based6

scores (Church and Hanks, 1990).

4http://gluebenchmark.com
5https://github.com/cardiffnlp/

tweeteval
6point-wise mutual information

The training set SE15-11 has been released as
tweet IDs and part of the training set is not available
anymore7, therefore we randomly select 20% of the
available tweets as test set and use the remaining
for training.

3.2 Health experience classification of tweets

Personal experiences gleaned from social media
can enhance awareness of the state of public health.
Here we focus on two tasks:

SM18-2 The task of medication intake report
detection was introduced as SMM4H 2018
Task 2 (Weissenbacher et al., 2018) as a 3-
way classification task. Tweets in which the
user clearly expresses a personal medication
intake/consumption are considered Class 1.
Tweets where the user may have taken some
medication are labeled as Class 2. Class 3
tweets mention medication names but do not
indicate personal intake. The total number of
samples in the training set is 17700.

SM20-5 Birth defect mention detection concern-
ing a child is a 3-class problem, where Class
1 tweets indicate that the user’s child has a
birth defect. Class 2 tweets are unclear as
to whether the poster speaks of birth defects
of their child. Class 3 tweets merely men-
tion birth defects but not with respect to the
poster’s child (Klein et al., 2020). The training
set includes 18382 samples.

Both, SM18-2 and SM20-5 benefit from special-
ized gazetters of relevant medical terms, in particu-
lar:

1. Drugs: A gazetteer list of drug names com-
piled from Drug Bank (Wishart et al., 2018).

2. Diseases: A list of terms for infections,
wounds, injuries, pain, etc., compiled from
subtree C in MeSH8 (Lipscomb, 2000). Dis-
ease mentions are important evidence for med-
ication intake classification, since drugs are
usually consumed to treat a disease.

3. Birth Defect: Congenital, hereditary, and
neonatal diseases and abnormalities (from
MeSH C16).

7about 33% of the tweets are not available
8https://meshb.nlm.nih.gov/treeView
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4. Pregnancy: Pregnancy complication terms
(from MeSH C13.703)

For SM18-2, the gold labels of the competition
set have not been disclosed, therefore we randomly
hold out a test set (20% of the original training
data). For SM18-2 and SM20-5 the performances
are measured in terms of micro-F1 scores for 0 and
1 class.

4 Implementation

Preprocessing We preprocess the data using a
GATE pipeline (Cunningham et al., 2002) with the
ANNIE English Tokenizer (for SST-2 task) and
ANNIE tweet tokenizer as well as the hashtag tok-
enizer (for the tweet tasks).

Embeddings Each annotation type provides a se-
quence (see Figure 1) which is used as input for a
dedicated module in multi-input RIMs. Therefore,
each sequence has to be properly embedded. The
annotation types can be embedded either using pre-
trained embeddings or using randomly initialized
embeddings that are learned during the training.

Tokens are embedded using ELMo (Peters et al.,
2018) or RoBERTa (Liu et al., 2019) pre-
trained models. For ELMo, we use the pre-
trained model provided by AllenNLP9 and for
RoBERTa, the model provided by Hugging
Face10.

POS tags following (Bagherzadeh and Bergler,
2021), we apply Word2Vec on POS tag se-
quences instead of token sequences. The
POS embeddings are trained using the Gen-
sim package (Rehurek and Sojka, 2010) with a
window size of 5 and dimensionality 20. The
pretraining is performed on combined training
data of all tasks introduced in Section 3.

AFINN and NRC matches do not require an em-
bedding, since the lexica quantify the senti-
ment scores numerically.

MPQA matches for Negative, Neutral, and Posi-
tive polarities are encoded numerically by −1,
0, and 1 respectively.

Medical Gazetteer matches are embedded using
a learnable embedding matrix B ∈ R5×20.

9https://allennlp.org/
10https://huggingface.co/

The 5 rows in B correspond to 4 medical re-
sources11 plus one row to indicate no annota-
tion.

The multi-input RIMs model is a flexible archi-
tecture and the modules can be of any recurrent
type. Here, we use LSTMs for complex inputs,
such as Token or POS, and RNNs for annotations
with simpler encodings, such as gazetteers.

Module din dh dquerin dkeyin dvalin dquercom dkeycom dvalcom

Token 1024 256 512 512 1024 64 64 256
POS 50 256 100 100 50 64 64 256
Senti1 1 256 16 16 1 64 64 256
Medic2 20 256 100 100 20 64 64 256

1: AFIIN, MPQA, NRC
2: Drug, Preg, BirthDef, Disease

Figure 3: Hyper-parameters used in the experiments.

Figure 3 summarizes the hyper-parameters used
for multi-input RIMs. We use the learning rates of
lr = 0.5e − 2 and lr = 0.5e − 4 for ELMo- and
RoBERTa-based models respectively. The hyper-
parameters are tuned based on a grid-search ap-
proach. The multi-input RIMs model itself (ex-
cluding the language models) has 4M learnable
parameters.

To calculate classification loss we use cross-
entropy loss and we optimize the models using
the Adam optimizer (Kingma and Ba, 2015). The
models are implemented using PyTorch (Paszke
et al., 2017).

5 Numerical results

We present a set of ablation studies to evaluate the
effectiveness and contribution of different knowl-
edge sources.

All modules active Figures 4–6 report results for
the multi-input RIMs model when the modules are
provided with different annotation types and all
modules are kept active (M = mActive). For the
runs where the Token annotation is the only input
(M = 1), the model is reduced to a simple LSTM
with ELMo or RoBERTa embeddings, which we
consider to form baselines.

Figure 4 shows that all sentiment tasks benefit
from the sentiment lexica. For SST-2, AFINN and
MPQA add more to the task than NRC. On the
other hand, NRC yields considerable performance
improvements for the tweet sentiment data sets of

11Drug, Disease, Birth defect, and Pregnancy

112



SST-2 (Acc %) SE17-4A (mac-Rec %) SE15-11 (Cosine)

M Annotations ELMo RoBERTa ELMo RoBERTa ELMo RoBERTa

1 Token 88.5 96.4 64.1 70.2 78.1 82.2

2 Token + AFINN 91.2 96.7 66.8 71.6 80.1 83.0
2 Token + MPQA 90.3 96.5 65.9 71.2 80.0 83.2
2 Token + NRC 89.7 96.4 67.1 71.5 82.1 83.9
2 Token + POS 89.2 96.4 65.2 70.8 78.9 82.2

3 Token + POS + AFINN 91.8 97.1 68.3 72.0 81.4 83.3
3 Token + POS + MPQA 90.7 96.9 67.2 71.8 81.1 83.3
3 Token + POS + NRC 90.5 96.5 68.9 72.4 82.6 84.4

5 Token + POS + AFINN + MPQA + NRC 92.3 97.3 70.4 73.3 83.2 85.0

1 TokenF 83.2 94.1 61.1 68.2 75.3 80.3
5 TokenF + POS + AFINN + MPQA + NRC 89.1 95.4 68.2 71.6 81.4 84.1

F : Frozen language model

Figure 4: Multi-input RIMs on sentiment tasks with knowledge sources. Each annotation is the input of a dedicated
module. In each run, all modules are kept active (mActive =M )

SE17-4a and SE15-11. We surmise the greater
effectiveness of the NRC lexicon for the tweet sen-
timent tasks is due to the fact that it is constructed
from tweet corpora.

POS constitutes general linguistic knowledge
and demonstrates consistent yet small improve-
ments for the sentiment tasks. However, POS im-
proves performance for the health concerns data of
SM18-2 (Figure 5) and SM20-5 (Figure 6). Note
that both tasks concern detection of personal ex-
perience mentions, for which categories such as
pronouns (both personal and possessive) and verbs
in past tense are important, which carry distinctive
POS tags.

M Annotations ELMo RoBERTa
1 Token 68.2 72.0

2 Token + Drug 71.3 73.9
2 Token + Disease 70.5 73.0
2 Token + POS 71.5 74.1

3 Token + POS + Drug 73.6 74.8
3 Token + POS + Disease 72.7 74.5

4 Token + POS + Drug + Disease 74.8 76.4

1 TokenF 64.2 70.0
4 TokenF + POS + Drug + Disease 71.6 73.8

Figure 5: Multi-input RIMs for SM18-2, personal drug
intake. All modules are active

POS constitutes general linguistic knowledge
and demonstrates consistent yet small improve-
ments for the sentiment tasks. However, POS im-
proves performance for the health concerns data of
SM18-2 (Figure 5) and SM20-5 (Figure 6). Note
that both tasks concern detection of personal ex-
perience mentions, for which categories such as
pronouns (both personal and possessive) and verbs
in past tense are important, which carry distinctive
POS tags.

Improvements from medical knowledge
gazetteers are also compelling. Figure 5 shows that
the Disease gazetteer enhances the performance
for the medication intake task, corroborating the
hypothesis that disease mentions are strong evi-

M Annotations ELMo RoBERTa
1 Token 62.6 68.2

2 Token + BirthDef 65.3 70.4
2 Token + Preg 63.8 69.1
2 Token + POS 65.0 69.9

3 Token + POS + BirthDef 67.5 72.2
3 Token + POS + Preg 67.0 71.0

4 Token + POS + BirthDef + Preg 69.3 73.6

1 TokenF 60.3 65.4
4 TokenF + POS + BirthDef + Preg 66.5 69.6

Figure 6: Multi-input RIMs for SM20-5, birth defect in
a child. All modules are active
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dence for medication intake. Similarly, Figure 6
shows that the Pregnancy gazetteer, as a comple-
mentary knowledge source, provides effective sup-
port for birth defect mention detection.

Some modules active We next evaluate perfor-
mance when limiting the number of active modules
(mActive < M ). Figures 7-9 show experiments
for multi-input RIMs with each annotation as in-
put to different modules. Interestingly, for most
tasks, limiting the number of modules yields better
performance, corroborating observations made by
(Goyal et al., 2019).

This confirms the importance of forcing the an-
notations into competition mode for the moder-
ate to small datasets: if mActive < M , the mod-
ules compete for activation. As argued by (Goyal
et al., 2019) and (Parascandolo et al., 2018) the
competition between modules for representational
resources (here the annotations) potentially leads to
independence among learned mechanisms, making
each module specialize on a simpler sub-problem,
which prevents individual RIMs from dominating
(Bengio et al., 2020).

Freezing language model vs fine-tuning We
are interested in the behaviour of multi-RIMs when
the language models are frozen. Freezing models
such as BERT has recently demonstrated improve-
ments (including speed-up) in the Adapters frame-
work (Houlsby et al., 2019) and (Pfeiffer et al.,
2020). The Adapters rely on injecting new train-
able layers (modules) as intermediate layers within
a frozen language model. The trainable layers are
then expected to learn task specific representations.

Here, we investigate task adaptation using
multi-input RIMs, combining trainable mod-
ules with complementary task specific re-
sources/representations to compensate for possible
losses in learning capacity of the model.

The last two rows in Figures 4-6 report perfor-
mance when the language model is frozen (no fine-
tuning). The fully-featured versions of all frozen
systems still outperform the token-only baseline
for all tasks for ELMo and almost all tasks for
RoBERTa.

All of runs were executed on an Intel® Core i7
2.20GHz CPU. When we fine tune our RoBERTa-
based models, the average time for a forward pass
and back-propagation for one sample is 1.71sec
compared to 0.63sec when the language model is
frozen.

This significant reduction in training overhead
when freezing language models is helpful for users
whose access to computational resources is limited.
The reported experiments suggest that appropriate
knowledge sources can compensate for losses when
freezing heavy language models such as ELMo or
RoBERTa.

Comparison with SOTA The SST-2, SE17-4A,
SM20-5 tasks have been deployed on GLUE,
TweetEval, and Codalab benchmarks respectively,
therefore, the state of the art (SOTA) results are
available. Current SOTA performances on SST-
2 are obtained by (Sun et al., 2019) and (Raffel
et al., 2020) (tied), SOTA for SE17-4A is reported
by (Barbieri et al., 2020), and SOTA for SM20-5
is reported by (Bai and Zhou, 2020) as shown in
Figure 10.

For other tasks however, we replicated the re-
ported SOTA system for each task. For SM18-2 the
SOTA performance is reported for (Xherija, 2018),
which is a two-layer stacked bi-LSTM with atten-
tion. The SOTA results for SE15-11 are reported
by CRNN-RoBERTa (Potamias et al., 2020) for a
RoBERTa-based model in which a bi-LSTM layer
is stacked on top of the RoBERTa model, together
with a pooling operation for its last layer. The
model is replicated here based on hyper-paramters
provided in (Potamias et al., 2020).

Figure 10 shows that multi-input RIMs perform
at or above SOTA for all benchmarks with greater
performance gains for tasks with comparatively
smaller datasets and more complex linguistic re-
quirements (SM18-2, SM20-5, SE15-11).

6 Module activation patterns

An advantage of a modular system is the possibility
of module inspection. The functionality of each
module during the course of processing has to be
transparent for assessment.

Figure 11 provides the activation patterns of two
multi-input RIMs when applied to two inputs from
SST-2 (Figure 11a) and SM20-5 (Figure 11b) to as-
sess whether they give insight into the functionality
of the modules.

In Figure 11a, the modules that operate on sen-
timent knowledge sources (AFINN, MPQA, and
NRC) are active only when an annotation is avail-
able and are idle (inactive) otherwise. The senti-
ment modules also compete with one another. Con-
sider Beautifully at t = 1. For this token, both
AFINN and MPQA provide annotations (AFINN:
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SST-2 (Acc %) SE17-4A (mac-Rec %) SE15-11 (Cosine)

M mActive ELMo RoBERTa ELMo RoBERTa ELMo RoBERTa

5

1 89.6 95.5 65.4 71.0 80.4 82.8
2 91.7 96.7 67.2 71.9 82.6 84.0
3 92.8 96.9 69.7 74.5 84.0 84.8
4 91.9 97.5 71.3 73.9 82.9 85.6
5 92.3 97.3 70.4 74.3 83.2 85.0

Figure 7: Multi-input RIMs with 5 modules for the sentiment tasks. The number of active modules varies.

M mActive ELMo RoBERTa

4

1 73.1 74.5
2 75.0 77.2
3 75.3 77.0
4 74.8 76.4

Figure 8: (µF1) of multi-input RIMs with 4 modules
(Token + POS + Drug + Disease) on SM18-2. The num-
ber of active modules varies.

M mActive ELMo RoBERTa

4

1 68.0 70.4
2 70.0 73.2
3 70.6 73.3
4 69.3 73.6

Figure 9: (µF1) of multi-input RIMs with 4 modules
(Token + POS + BirthDef + Preg) on SM20-5. The
number of active modules varies.

+3, MPQA: Pos.), but the AFINN module wins the
competition and is active while the MPQA mod-
ule is inactive. The larger NRC lexicon provides
more annotations for the input leading to more ac-
tivity for the NRC module compared to the other
sentiment modules for this sentence.

Inactivity of token modules at certain time steps
is particularly interesting, indicating that the model
has chosen to attend to a external knowledge source.
We find that 63% of the time, when the sentiment
lexia provide consistent sentiment polarities, the
token module is inactive.

The activation patterns in Figure 11b show the
Birth Defect and Pregnancy gazetteer modules are

Task SOTA RIMs
SST-2 (Acc) 97.5 (1,2) 97.5
SE17-4A (mac-Rec) 72.6 (3) 74.5
SE15-11 (Cosine) 82.2 (4) 85.6
SM18-2 (µF1) 69.2 (5) 77.2
SM20-5 (µF1) 69.0 (6) 73.6

Figure 10: Comparison of the state of the art systems
with multi-input RIMs. 1: Ernie (Sun et al., 2019),
2: T5 (Raffel et al., 2020), 3: RoBERTa-RT (Barbi-
eri et al., 2020) 4: CRNN-RoBERTa (Potamias et al.,
2020), 5: (Xherija, 2018), 6: (Bai and Zhou, 2020)

active only, when an annotation is available. The
tokens CHD (t = 9) and T18 (t = 15) are matched
by the Birth Defect gazetteer and the token stillbirth
(t = 20) is matched by the Pregnancy gazetteer.

The activity patterns are the result of the input
selection mechanism (attention). Multi-input RIMs
modules are free to select an input signal or ignore
it, which allows each module to potentially focus
on a specific part of the input. The input selection
mechanism prevents the modules from getting up-
dated with spurious inputs (here the input at steps,
where no annotation is available). Additionally,
this allows the system to develop different modules
to select complementary input signals, biasing the
behavior away from combining redundant encod-
ings.

We believe that the activation patterns can be
useful for model explanation. Nevertheless, the
activation patterns have to be studied under a vari-
ety of NLP tasks and different, richer annotations,
which demands a dedicated study and is beyond
the scope of this paper.

7 Conclusion

This paper presents proof of concept for a modular
system for leveraging different knowledge sources.
Under the proposed model, various annotations
with different encodings are used as inputs for a set
of independent, decoupled, but interacting modules,
a novel extension of the RIMs architecture.

Deploying several readily available knowledge
sources (gazetteer lists and part-of-speech informa-
tion), our experiments report on different sentiment
tasks and data sets, as well as two health-related
tasks and datasets. The results suggest that the
modules successfully interoperate for addressing
different target tasks and multiple datasets with
drastically reduced parameter space (and process-
ing resources).

In addition to the transfer potential of RIMs, we
probed their transparency. The activation patterns
of the modules in multi-input RIMs showed inter-
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a – Input: “Beautifully shot, delicately scored and powered by a set of heartfelt performances, it’s a
lyrical endeavour"
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b – Input: “Our baby had a very serious form of CHD. It was caused by T18 and we had a stillbirth."

Figure 11: Activation patterns of the modules of RIMs (ELMo as token embedding) for two samples: (a) SST-2
with M = 5 and mActive = 2, (b) SM20-5 with M = 4 and mActive = 2. The gray squares indicate active
modules and the white regions indicate inactivity.

estingly differentiated motifs. In particular, the
activation patterns show that modules are active
only when their input annotation is relevant for the
target task. To interpret the functionality of differ-
ent modules in multi-input RIMs architectures, we
plan a detailed analysis of the module activation
patterns under different NLP tasks in the future.
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Abstract

Investigating brand perception is fundamen-
tal to marketing strategies. In this regard,
brand image, defined by a set of attributes
(Aaker, 1997), is recognized as a key ele-
ment in indicating how a brand is perceived
by various stakeholders such as consumers
and competitors. Traditional approaches (e.g.,
surveys) to monitor brand perceptions are
time-consuming and inefficient. In the era
of digital marketing, both brand managers
and consumers engage with a vast amount
of digital marketing content. The exponen-
tial growth of digital content has propelled
the emergence of pre-trained language mod-
els such as BERT and GPT as essential tools
in solving myriads of challenges with textual
data. This paper seeks to investigate the ex-
tent of brand perceptions (i.e., brand and im-
age attribute associations) these language mod-
els encode. We believe that any kind of
bias for a brand and attribute pair may influ-
ence customer-centric downstream tasks such
as recommender systems, sentiment analysis,
and question-answering, e.g., suggesting a spe-
cific brand consistently when queried for ‘in-
novative’ products. We use synthetic data and
real-life data and report comparison results for
five contextual LMs, viz. BERT, RoBERTa,
DistilBERT, ALBERT and BART.

1 Introduction

Brands play a vital role in marketing strategies.
They are essential to company positioning, market-
ing campaigns, customer relationships, and profits
(Lovett et al., 2014). A brand persona is broadly
defined by a set of attributes or dimensions; for
instance, ‘Mountain Dew’ may be recognized by at-
tributes such as ‘adventurous’ and ‘rugged’. While
Aaker’s dimensions (Aaker, 1997) are widely used
to define a brand persona, more fine-grained at-
tributes are documented in Lovett et al. (2014).

∗ equal contribution
† corresponding author

Furthermore, evaluating a brand persona, i.e., how
a brand is perceived by various stakeholders such
as consumers, competitors, and market analysts
has been an active area of research (Culotta and
Cutler, 2016; Davies et al., 2018). Following the
widespread success of pre-trained word representa-
tions, alternatively called Language Models (LMs),
consumer-specific downstream tasks such as rec-
ommender systems, dialogues systems, and infor-
mation retrieval engines look to make use of brand
persona along with these representations to better
fulfill consumer requirements.

Accordingly, we formulate our first research
question (RQ1) as Do LMs store implicit associa-
tions between brands and brand image attributes?.
To answer this, we look specifically at brands and
brand image defined as affect attributes. Since
LMs are trained on real-world data; we believe that
these representations may be useful in understand-
ing correlations between a brand and its persona
attributes. While numerous studies have investi-
gated unintended biases in Natural Language Pro-
cessing systems (Dev et al., 2020; Dixon et al.,
2018; Bolukbasi et al., 2016; Kiritchenko and Mo-
hammad, 2018; Hutchinson et al., 2020), this is
probably the first work that explores brand and
affect attributes associations in pre-trained LMs.

These LMs are trained in an unsupervised man-
ner on large-scale corpora. The training corpora
generally comprise a variety of textual data such
as common web crawl, Wikipedia dump, and book
corpora. They are optimized to statistical properties
of the training data from which they pick up and
amplify real-world trends and associations along
with biases such as gender and race (Kurita et al.,
2019). Some of these biases may be beneficial
for downstream applications (e.g., filtering out ma-
ture content for non-adult viewers) while some can
be inappropriate (e.g., resume sorting system be-
lieving men are more qualified programmers than
women (Bolukbasi et al., 2016; Kiritchenko and
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Mohammad, 2018). Marketing applications such as
recommender systems and sentiment analysis can
also perpetuate and highlight unfair biases, such
as consistently showing popular brands as recom-
mendations and not considering uncommon brands
with less positive sentiment. With this in mind, we
formulate our second research question (RQ2) as
Do the associations embedded in LMs signify any
bias? We also investigate whether these associa-
tions are consistent across all LMs as RQ3.

Brand personas are alternatively characterized
as brand archetypes in Bechter’s work (Bechter
et al., 2016). Brand archetypes are widely used as
effective branding and marketing strategy. Accord-
ing to Jung (Jung, 1954), archetypes are defined
as inherent images within the collective human
unconsciousness having universal meaning across
cultures and generations. When successfully used,
archetypal branding provides a narrative to connect
with consumers. We formulate the following re-
search questions: RQ4 as Do LMs capture brand
personality intended by a brand? and RQ5 as Do
LMs capture brand personality as perceived by con-
sumers? We propose to use brand-attribute associ-
ations to understand brand archetypes perceived by
LMs.

In this work, we probe five different LMs ( BERT
(Devlin et al., 2018), ALBERT (Lan et al., 2019),
RoBERTa (Liu et al., 2019), DistilBERT (Sanh
et al., 2019) and BART (Lewis et al., 2019)) on af-
fect associations by using Masked Language Model
(MLM) head. The choice of LMs was guided by
three factors: 1) availability of MLM head, 2) vari-
ety in model architectures and 3) type and size of
training data used while pre-training. Table 1 sum-
marizes all the five LMs based on the pre-training
data and the architecture. We believe that diver-
sity in architectures and training data can influ-
ence the affective associations stored in represen-
tations. We propose to evaluate word representa-
tions based on following dimensions: 1) contextual
similarity (Ethayarajh, 2019), 2) statistical implicit
association tests (Kurita et al., 2019; Ethayarajh
et al., 2019), 3) controlled probing tasks (Talmor
et al., 2019) and 4) brand archetypes (Bechter et al.,
2016). We observe that LMs do encode affective
associations between brands and image attributes
(RQ1). Some of these associations are consis-
tently observed across multiple LMs (RQ3) and
are shown to be further enhanced by finetuning
thus implying certain bias (RQ2). We find that

brand images or personality captured by LMs do
not concur with either intended or consumer per-
ceived brand personality. We believe that appro-
priate dataset and more rigor is needed to address
RQ4 and RQ5.

LM Pre-training Data Architecture

BERT
BookCorpus (800M words),

English Wikipedia (2,500M words)
L=24, H=1024,
A=16, T=340M

RoBERTa

BookCorpus (800M words),
CC-NEWS (63M articles),

OpenWebText (8M documents),
Stories

L=24, H=1024,
A=16, T=355M

DistilBERT
BookCorpus (800M words),

English Wikipedia (2,500M words)
L=6, H=768,

A=12, T=66M

ALBERT
BookCorpus (800M words),

English Wikipedia (2,500M words)
L=24, H=1024,
A=12, T=66M

BART

BookCorpus (800M words),
CC-NEWS (63M articles),

OpenWebText (8M documents),
Stories

L=12, H=1024,
A=16

Table 1: Variants of LMs. L–total layers, H–hidden
size, A–self-attention heads, T–total parameters. We
mention the architecture of the large version of all the
LMs.

2 Related Work

The success of pre-trained word embeddings
in achieving state-of-the-art results has sparked
widespread interest in investigating information
captured in these representations. Typically de-
fined as ‘probing task’, a wide variety of analyses
have been proposed. For instance, (Hewitt and
Manning, 2019) proposes a structural probe to test
whether syntax trees are embedded in word rep-
resentation space. Experiments in (Wallace et al.,
2019) are aimed to investigate the numerical reason-
ing capabilities of an LM. Similarly, (Petroni et al.,
2019) presents an in-depth analysis of relational
knowledge present in pre-trained LMs. Penha and
Hauff (2020) probe the contextual LMs (BERT
and RoBERTa) for the conversational recommen-
dation of books, movies, and music. Our work
seeks to apply the idea of probing to a relatively
unexplored area of affect analysis. To the best of
our knowledge, this is the first work that presents
a multi-pronged investigation of brands and sub-
jective knowledge like affect attributes represented
in contextual representation. Field and Tsvetkov
(2019) is the most relevant prior work in terms
of affect analysis. They present an entity-centric
affective analysis with the use of contextual repre-
sentations, where they find that meaningful affect
information is captured in contextualize word rep-
resentations but these representations are heavily
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biased towards their training data.
A significant effort has been seen in investigat-

ing the intrinsic bias in word embeddings. These
representations are trained in an unsupervised man-
ner using a large amount of training data typically
consisting of common web crawls. As a result,
all kinds of biases like gender, race, demography
along with trends and preferences get encoded in
LMs. Works in (Kurita et al., 2019; Dev et al.,
2020; Ethayarajh et al., 2019) propose methodolo-
gies to measure and mitigate bias in word repre-
sentations. Our work is targeted at finding trends
and preferences that certain entities have by using
a combination of old and new such measures.

3 Dataset

In this work, we evaluate affect information cap-
tured in the LMs for different brands. Accordingly,
the selected brands should have large volumes of
online data to get significant representation in the
LMs. We choose 697 major US national brands
reported in (Lovett et al., 2014). These brands are
categorized into 16 different product categories.
To analyze affect associations, we refer to surveys
conducted by Young and Rubicam (Y&R) (Lovett
et al., 2014) to measure a broad array of percep-
tions and attributes for a large number of brands.
We choose 40 affect attributes listed as a part of
‘Brand Image’ in (Lovett et al., 2014). We also
manually map (see Table 8 in supplementary ma-
terial and Bechter et al. (2016)) these attributes to
one of the five Aaker’s dimensions of brand per-
sonality. We restrict our analysis only to positive
affect attributes since ‘Arrogant’ and ‘Unapproach-
able’ were the only two negative affect attributes
observed in Y&R surveys. We understand the anal-
ysis with negative attributes is essential to explore
the complete brand perception and we intend to pur-
sue this in future. We consider three different data
sources for our experiments as tabulated in Table
2. We choose appropriate datasets based on experi-
ments’ requirements. We describe the datasets in
detail in supplementary material.

4 Experimental Setup

We outline our approach for exploring answers to
the research questions stated above.
• RQ1, RQ3: Understanding brand and attribute

word association at different layers of the LMs
(see contextual geometry in Section 4.1).

• RQ1, RQ2, RQ3, RQ4, RQ5: Analyzing close-
ness between the brand and attribute words using
statistical tests (see implicit association test in
Section 4.2).

• RQ1: Probing for the association as well as the
influence of brand name and the surrounding con-
text on the attribute word (see probing task in
Section 4.3).

• RQ4: Examining brand perceptions in terms
of archetypes and affect attributes (see brand
archetype in Section 4.4).

4.1 Contextual Geometry

Taking inspiration from (Ethayarajh, 2019), we use
geometrical analysis to understand associations be-
tween brands and brand image attributes. Etha-
yarajh (2019) analyzes geometry of contextual rep-
resentations across different layers. We follow the
same approach to specifically analyze represen-
tations for brands and affect attributes. We use
two metrics introduced in (Ethayarajh, 2019): self-
similarity and intra-sentence similarity. Addition-
ally, we use a similar methodology to define asso-
ciations among brand words and affect words. We
consider Ads. Dataset data for these experiments.

Let bw be a brand word and aw be an attribute or
affect word appearing in sentences {s1, s2, ..., sn}
at positions {i1, i2, .., in} and {j1, j2, .., jn} re-
spectively. Accordingly, bw = s1[i1] = s2[i2] =
.. = sn[in] and aw = s1[j1] = s2[j2] = .. =
sn[jn] with ik and jk representing positions in sen-
tence sk. In other words, a brand word bw is the ith1
word in sentence s1 and attribute word aw is the jth1
word in sentence s1. Let fl(s, i) be a function that
maps s[i] to its representation in layer l of language
model f (Ethayarajh, 2019). Then,

4.1.1 affect-similarity

The affect-similarity between bw and aw in
layer l is defined as the average cosine similarity
between contextualized representations of brand
and attribute across n unique contexts.

AffSiml(bw, aw) =

1

n

∑

k

cos(fl(sk, ik), fl(sk, jk))
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Dataset Data Example Brand Attribute
Ads. Dataset

(Hussain et al., 2017) 35k Action Reason pairs
“I should buy Converse shoes

because they are stylish." Converse stylish

BCD
(Roy et al., 2019)

1962 sentences from webpages
containing both brand
and affect attributes

“Verizon is a global leader
delivering innovative

communications solutions."
Verizon innovative

Synthetic
(Table 16 in Supplementary Material) 40 hand crafted sentences “Apple is a trendy brand." Apple trendy

Table 2: Representative examples from three different datasets.

4.1.2 intra-brand similarity
The intra-brand similarity between a pair of brand
words in layer l is

IntraBrandSiml(bwi, bwj) =

1

n(n− 1)

∑

k

∑

p 6=k

cos(fl(sk, ik), fl(sp, jp))

In other words, the intra-brand similarity provides
average cosine similarity between representations
of two brands across n different contexts. This
measure captures how close the two brands are in
the vector space.

4.1.3 intra-attribute similarity
Similarly, we define the intra-attribute similarity
between a pair of attributes in layer l as the average
cosine similarity between two attributes across n
different contexts. This measure helps us under-
stand the association between different affect words
in the vector space and can be used while defining
and analyzing brand persona.

4.2 Implicit Association Tests

The Implicit Association Test (IAT) (Greenwald
et al., 1998) in its purest form measures association
between two target concepts with respect to an
attribute. This test has enabled the examination of
unconscious thought processes and implicit biases
among people in different contexts (Sleek, 2018).
We believe that a variety of implicit biases and
associations may be encoded in LMs. We use two
interpretations of IAT (viz. WEAT and RIPA) to
investigate brand and attribute associations in LMs.

The Word Embedding Association Test (WEAT)
(Caliskan et al., 2017) for non-contextual word
embeddings shows implicit biases captured in these
representations. May et al. (2019) extend this test
to sentence embeddings for contextual LMs. Since
our focus is on words; we follow the approach used
in (Kurita et al., 2019) to adapt WEAT for words.
We also consider the new measure, log-probability
bias score, introduced in (Kurita et al., 2019). This

test follows a similar approach to WEAT except for
the cosine similarity computation between target
word and attributes is replaced by log-probability.

The work in (Ethayarajh et al., 2019) proves
that any embedding model that implicitly does ma-
trix factorization, subspace projection under certain
conditions, can be considered as debiasing the em-
bedding vectors. Accordingly, they propose a new
method of the association called relational inner
product association (RIPA) that uses the subspace
projection method. We adapt RIPA measure for
brands and attribute words.

Both log-probability and RIPA have been pro-
posed as an alternative to the basic WEAT associa-
tion test. We detail the experimental structure for
these tests below.

4.2.1 WEAT
The WEAT test simulates the human implicit as-
sociation test for word embeddings, measuring the
association between two equal-sized sets of tar-
get concepts and two sets of attributes (May et al.,
2019). Specifically, in our case, we consider high-
level brand categories as target concept sets and
Aaker’s dimensions as attribute sets. Specific de-
tails about test statistics along with permutation
test and effect size can be found in (Caliskan et al.,
2017; May et al., 2019; Kurita et al., 2019).

4.2.2 Log-probability score
We consider the same set of broad categories for
brands and Aaker’s dimensions for attributes as
target and attribute sets respectively for finding log-
probability score. Similar to (Kurita et al., 2019),
we compute the mean log probability bias score for
each attribute and permute the attributes to measure
statistical significance with the permutation test.

For both WEAT and log-probability test, we use
synthetic data generated by appropriate handcrafted
templates. We apply these tests to all combinations
of brand categories and Aaker’s dimensions. We
apply these tests on combinations of all brand cat-
egories except ’Food and Dining’ and 5 Aaker’s

122



LM Brand pair Attribute pair Brand-attribute pair
MS LS MS LS MS LS

BERT Chrysler-Jeep ESPN-Wilson Safe-Secure Innovative-Reasonable Disney-Magical Toyota-Reasonable
RoBERTa Dodge-Jeep BBC-Sonic Bright-Vibrant Tough-Responsible Disney-Magical Target-Kind

DistilBERT Chrysler-Volkswagen Fox-Honda Nice-Wonderful Fun-Robust IBM-Innovate Microsoft-Popular
ALBERT Honda-Toyota Sprint-IBM Lovely-Charming Funny-Bright Volkswagen-Excellent Samsung-Best

BART Dodge-Lincoln Intel-Nokia Strong-Efficient Friendly-Lovely Jeep-Simple Intel-Efficient

Table 3: Affect associations across different LMs for least similar (LS) and most similar (MS) brands and attributes.

affect dimensions. We use the pairwise ranking to
rank these combinations.

4.2.3 RIPA
For our affect analysis formulation, we define RIPA
as the projection of the affect word vector i.e. at-
tribute onto the bias subspace defined by a pair of
brands. We use handcrafted templates to generate
sentences corresponding to 40 attributes combined
with brand words. Thus, we get 40 representations
for every brand and 697 representations for every
attribute. Final brand and attribute vectors are com-
puted by taking an average of corresponding vector
sets. RIPA score between each attribute word and
a pair of brand words is then calculated by taking
the inner product of the first principal component
of the subspace defined by the pair of brand words
and attribute word. For a brand pair (x,y) and an
attribute word w, a positive RIPA score suggests
the relatively more association of w with the brand
x and vice-versa.

4.3 Probing Tasks
A large body of research comprising of probing
tasks is dedicated to exploring what is captured
by contextual LMs. We define two probing tasks
that are essentially cloze tasks to analyze brand
and affect attributes associations. In the simplest
form, we consider MLM setup: given a sentence
with brand and masked attribute word, we use pre-
trained LM with MLM head to predict words at
the masked position. If a model predicts the cor-
rect attribute in the top-5 position, then we infer
that the model representations have captured the
corresponding affect association. Additionally, to
understand the behavior after fine-tuning, we in-
troduce MLP with a 1-hidden layer to the MLM
setup to train the LMs as discussed in (Talmor et al.,
2019); we call this setup MLP-MLM.

To further analyze sensitivity to context, we de-
fine perturbed language control, where we intro-
duce nonsensical words into the sentences. We ob-
serve if there is any effect of nonsense words to af-
fect associations. MLM setup is used to experiment

on all LMs using Ads. Dataset and BCD datasets,
whereas MLP-MLM uses only Ads. Dataset and is
experimented on all the LMs except BART.

4.4 Brand Archetypes

Brand archetypes provide a relatable connection
between brands and consumers. We consider im-
plicit and explicit perceptions of archetypes. We
use Lovett’s data (Lovett et al., 2014) to understand
people’s tacit perceptions about brand archetypes in
terms of affect attributes. We believe that training
data used for pre-training LMs may record impres-
sions about the brand in the wild. Accordingly,
we consider pre-trained LMs to investigate the ex-
plicit perceptions for archetypes. We consider 12
archetypes (Jung, 1954) for this analysis. We manu-
ally map every archetype to a set of affect attributes
from Lovett’s attributes (Lovett et al., 2014) with
the help from (Bechter et al., 2016) (see Table 8
and 10 in Supplementary Material).

To understand the brand archetype information
captured in the LMs, we take the intersection of the
top attributes obtained using the brand-attribute
affect similarity and the attributes for a given
archetype (obtained after manual mapping). First,
we identify the top-5 attributes for a given brand us-
ing the affect similarity score and then we take the
percentage overlap with the list of attributes corre-
sponding to each of the archetypes. The percentage
overlap suggests the degree of brand archetype-
related knowledge instilled in the LMs. To better
evaluate our results qualitatively we choose five
brands (Adidas, Apple, GAP, Pepsi, and Porsche)
from different brand categories.

5 Discussion

We present a battery of analyses aimed at finding
how much knowledge do the off-the-shelf LMs
capture about brands and affect attributes.

5.1 Affect Association

We believe that brand persona can be succinctly
defined by a set of affect words, namely attributes.
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We make use of intra-attribute similarity to under-
stand which of the attributes are closer to each other
in embedding space. Using intra-brand similarity,
we also examine how the brands of a category are
positioned in the vector space. Additionally, the af-
fect similarity helps us find the correlation between
brand and affect words. We argue that a brand per-
sona can be identified by combining results from
these three measures. It should be noted that some
of these associations of brands and attributes are in-
deed consistent across all LMs (RQ1, RQ3). Table
3 reports some of the most similar and least simi-
lar associations. By far, brands of category ‘Cars’
are seen to have high similarity among themselves
consistently across all LMs. In some instances,
brands of categories ‘Technology’ and ‘Telecom-
munication’ are found to have a close association.
Similarly, cliques of attributes are observed such
as elegant, lovely, fashionable, popular in BERT
and reliable, efficient, helpful, convenient in Dis-
tilBERT. These clusters of attributes can further
be beneficial in defining a brand persona. Using
the affect-similarity, we found interesting associa-
tions between brands and attributes. For instance,
brand ‘Disney’ is associated most with attributes ,
‘magical’ and ‘fun’ across all LMs whereas brand
‘IBM’ is highly associated with ‘innovative’ and
‘intelligent’. These positive associations help un-
derstand the brand persona. We also observe the
least similar relations across all LMs. There are
some surprising results, such as brands ‘Intel’ and
‘Samsung’ not being ‘efficient’ and ‘Best’ respec-
tively. Such associations may not be what brand
marketing teams would want to portray for their
brands. We believe that these negative associations
are also important in identifying the perception of
a brand.

5.2 Contextual Representation

The self-similarity metric provides a measure to
evaluate the contextualization of a word. Follow-
ing (Ethayarajh, 2019), lower self-similarity is ob-
served when the representations are more contextu-
alized. We compare the average self-similarity of a
representative brand and attribute words for each
layer of selected LMs. For all five models, self-
similarity is lower in upper layers or final layers i.e.
the word representations are more context-specific.
Out of five LMs, RoBERTa representations have
the lowest self-similarity. Furthermore, it should
be noted that different words have different levels

of context specificity in different LMs.

Figure 1: Self-Similarity for brand and attribute words
‘Google’ (+), ‘Gymboree’ (4), ‘good’ (∗) , ‘excep-
tional’ (x) and ‘bad’ (3).

Ethayarajh (2019) observes that the variety of
context is important for having variations in repre-
sentation and common words or popular words like
‘the’, ‘of ’ and ‘to’ generally have larger variation
in their representations. We believe that popular
brands have the diverse contexts in the training data
used for pre-training the LMs and hence are more
contextualized. As can be seen in Figure 1, rep-
resentations for Google are more context-specific
as compared to those for Gymboree. Affect words
‘good’,‘bad’ and ‘exceptional also have different
context specificity implying a certain kind of in-
equality in the encoded knowledge corresponding
to different words. This pattern is observed across
all LMs implying that variation in representations
is consistent irrespective of the amount of training
data used while pre-training.

5.3 Implicit Association Tests

In WEAT as well as in Log Probability, the null
hypothesis is that there is no significant difference
between the two sets of brand categories in terms
of their relative similarity to the two sets of Aaker’s
dimensions. The polarity of the effect size indi-

LM Brand
Category

Aaker’s
Dimensions WEAT LOG

PROB

BERT Sports/Health
sincerity/

ruggedness
-0.5244 -1.1856

RoBERTa Media/Finance
excitement/

sincerity
0.63615 0.6602

DistilBERT
Childrens/

Dept. Stores
competence/
excitement

-0.9681 -1.1161

ALBERT Tech./Beauty
sophistication/

competence
0.3396 -0.6067

Table 4: Effect-size of WEAT and Log Probability (at
p-value < 0.01)

.
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LM Media & entertainment Technology product & stores Cars
Fun Original Original Reasonable Traditional Worthy

BERT Disney HBO Sony Microsoft Volvo Volvo
RoBERTa YouTube CNBC IBM Apple GM GM

DistilBERT YouTube MTV Apple Samsung GM Jaguar
ALBERT YouTube MTV Pioneer Sharp Buick Buick

Table 5: Top brand and attribute associations for three different brand categories using RIPA association test.

cates that the categories and dimensions are di-
rectly or inversely related. For example, consider,
the Sports/Health in brand category and sincer-
ity/ruggedness in Aaker’s Dimensions from Table
4 the polarity of effect size indicates that they are
inversely related, which means ‘Sports’ is more
associated with ‘ruggedness’ similarly ‘Health’ is
to the ‘sincerity’ (RQ2). Since we are consider-
ing the permutation test, the p-value indicates the
significance of their association. Most of these
associations are consistently observed across all
LMs (RQ1, RQ3). This has intrigued us to further
examine which LM is better at capturing brand per-
sonality as perceived by consumers. The pairwise
ranking is applied to all the combinations of brand
categories and Aaker’s dimensions (Aaker, 1997).
The resultant ranked dimensions of all the cate-
gories are assessed against the ground truth values/
consumers perception (please refer Table 9 in Sup-
plementary Material) in Lovett’s data (Lovett et al.,
2014). Using the same procedure, all the LMs are
ranked independently for each brand category (re-
fer to Table 15 in Supplementary Material). We
observe that BERT has better agreement with con-
sumers’ perceptions of brand personality amongst
all the language models in both WEAT and Log
Probability (RQ5). Though RoBERTa did follow,
other LMs agree equally likely in Log Probability.
Furthermore, DistilBERT has a consistently poor
agreement in Log Probability. One interesting ob-
servation is that WEAT and Log Probability give
the same ranking for all LMs in the ‘Cars’ brand
category.

RIPA test measures the word embedding associ-
ation using the subspace projection method (Etha-
yarajh et al., 2019). A positive score suggests that
brand x is more associated with attribute word w
than brand y for a given brand pair (x,y) and at-
tribute word w. We combine this score for a brand
with all attributes to compute a preference score
for a brand. Based on this preference score, we
found the most associated brands for every attribute
word. Representative results are presented in Table
5. We observe that the predictions across different

LMs for a given category are occasionally con-
sistent (e.g., YouTube being associated as a fun
brand in RoBERTa, DistilBERT, and ALBERT)
(RQ3). This could be attributed to the perception
of brands being captured by the various LMs. Also,
we see the diversity in the predictions for different
attribute words (e.g., BERT and RoBERTa has dif-
ferent brand association across different categories)
which also signifies that the brand associations be-
ing captured by the LMs vary with the context
(RQ1).

5.4 Impact of fine-tuning

Comparing the LMs off-the-shelf gives us an idea
of how affect-related attributes are represented
in LMs. From Table 6, we find that BART and
RoBERTa have the better brand and attribute asso-
ciations amongst the LMs on the Ads. Dataset and
the BCD datasets (RQ1). Further, to understand the
impact of fine-tuning, we employ techniques pro-
posed by (Talmor et al., 2019) to measure the lan-
guage mismatch. In this exercise, we fine-tune the
LM with examples from Ads. Dataset; high perfor-
mance indicates that the LM was able to overcome
the language mismatch with a very small number
of samples. Trends in the Figure 2 conveys that
BERT and RoBERTa achieve high performance
with a limited number of samples, in turn indi-
cating that their internal representations are well
suited for any downstream tasks related to brand
personality. On the other hand, ALBERT has the
least performance improvement of 8.08%, mean-
ing ALBERT has poor internal representation and
needs more samples to overcome the language mis-
match. BERT outperforms all LMs with 22.28%
improvement followed by RoBERTa with 20.06%.

5.5 Sensitivity to context

To understand the context-dependency of the at-
tributes related to affect, we employ perturbed lan-
guage control as discussed by (Talmor et al., 2019).
This control task gives us an idea of how well the
pre-trained representation of the words in context
can influence the affect association. For exam-
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Figure 2: MLP-MLM with (- -) and without perturba-
tion (–) for different LMs- BERT (•), ALBERT (+),
DistilBERT (x), RoBERTa (*)

ple, consider the statement “I should play Nin-
tendo because it is [MASK] .” and its perturbed
version “I snap play Nintendo ya it is [MASK] .”.
If ‘fun’ from the set of attributes is persistently
perceived to be in top-5 predictions irrespective
of perturbation, we say that context doesn’t influ-
ence attributes. In either of the setups discussed
in Controlled probing task, the drop in accuracy
after perturbation indicates that the affect attributes
are context-dependent. Our observations on MLM
setup (Table 6) and MLP-MLM setup (Figure 2) in-
dicate that the attributes are moderately influenced
by the context. We need more samples to comment
on ALBERT.

LM Zero-shot Perturbed
Ads. Dataset BCD Ads. Dataset BCD

BERT 0.51 0.66 0.47 0.64
RoBERTa 0.58 0.77 0.51 0.77

DistilBERT 0.46 0.55 0.45 0.54
ALBERT 0.42 0.55 0.41 0.53

BART 0.65 0.61 0.59 0.61

Table 6: MLM setup with and without perturbation on
the Ads. Dataset and BCD datasets.

LM Top archetype(s) based
on the attribute overlap

BERT
Creator, Jester, Outlaw, Magician, Hero,

Sage, Explorer, Innocent

RoBERTa
Creator, Jester, Outlaw, Magician, Hero,

Sage, Explorer, Innocent
DistilBERT Ruler, Everyman, Magician, Sage, Innocent

ALBERT
Creator, Jester, Outlaw, Magician, Hero,

Sage, Explorer, Innocent
BART Ruler, Everyman, Magician, Sage, Innocent

Table 7: Archetype information extracted from the
LMs for the brand Adidas.

5.6 Archetypes

We investigate implicit perceptions about brands
using data collected in a survey (Lovett et al., 2014).
Table 7 shows the result of the top archetype(s) ex-
tracted from the various LMs for the brand Adidas.
The actual archetype of Adidas is Creator1. We
make three major observations about the brand
archetype extracted from different LMs (RQ4).
First, we observe the same prediction of the top
archetype across various LMs. For instance, we
get the same set of top archetype(s) prediction with
BERT, RoBERTa, and ALBERT for the brand Adi-
das. This behavior could be attributed to the ab-
sence of explicit brand archetype-related informa-
tion in the LMs. Next, we observe multiple top
archetypes with the same degree of attribute over-
lap which suggests that LMs does not capture the
brand archetype information distinctly. Lastly, we
observe that the degree of attribute overlap for the
top archetypes is consistently very low (i.e., an
overlap of only one out of five attributes) for all
the five brands across all the five LMs. This low
degree of attribute overlap is also suggestive of
the absence of archetype-related information in the
LMs. The actual archetype of a brand can not be
distinguished in any of the LMs. We make similar
observations for other brands as well (see Table 11
to 14 in Supplementary Material). The current ob-
servation that the LMs do not reflect the expected
perception of the brand’s archetype needs to be in-
vestigated further with archetype-specific datasets.

6 Conclusion

In this paper, we presented a series of exploration
setups to address research questions pertaining to
associations between brands and brand image at-
tributes.

Our analyses were able to tease out varied re-
sponses even from the models having identical
training data and pre-training learning objectives.
We observed that there exists a definite association
between brands and attribute affect words across
all LMs (RQ1). This impression is observed across
a range of abstraction i.e. from individual brands
and broader categories to attributes and Aaker’s
dimensions.

In all our experiments, some categories such

1https://report.adidas-group.com/2019/
en/group-management-report-our-company/
corporate-strategy/
adidas-brand-strategy.html
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as ‘Cars’ and ‘Technology product & stores’ and
brands such as ‘Disney’ and ‘Intel’ are found to
have consistent associations across all LMs (RQ3).
However, it is interesting to note that these biases
do not concur with both consumer perceptions and
intended perceptions of the brand (RQ4 and RQ5).

Lastly, it is seen that perturbations in sentence
moderately influences the association between
brands and affect words. Improved performance
in fine-tuning implies that affect associations are
enhanced (RQ2). Since we do not have enough
data, it remains to be seen how additional training
data changes the landscape.

This work documents an initial investigation of
brand and attribute associations in different LMs.
With enough task-specific data, we plan to evaluate
how the affect associations are enhanced. We also
intend to use these observations in further defin-
ing brand-persona and brand-archetype definitions.
These impressions can help understand perceptions
about a brand. Furthermore, this can be extended
in investigating impressions about iconic entities
such as sports teams, celebrities, and politicians.
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Abstract

The field of explainable AI has recently seen
an explosion in the number of explanation
methods for highly non-linear deep neural net-
works. The extent to which such methods
– that are often proposed and tested in the
domain of computer vision – are appropri-
ate to address the explainability challenges
in NLP is yet relatively unexplored. In this
work, we consider Contextual Decomposition
(CD) – a Shapley-based input feature attribu-
tion method that has been shown to work well
for recurrent NLP models – and we test the ex-
tent to which it is useful for models that con-
tain attention operations. To this end, we ex-
tend CD to cover the operations necessary for
attention-based models. We then compare how
long distance subject-verb relationships are
processed by models with and without atten-
tion, considering a number of different syntac-
tic structures in two different languages: En-
glish and Dutch. Our experiments confirm that
CD can successfully be applied for attention-
based models as well, providing an alterna-
tive Shapley-based attribution method for mod-
ern neural networks. In particular, using CD,
we show that the English and Dutch models
demonstrate similar processing behaviour, but
that under the hood there are consistent differ-
ences between our attention and non-attention
models.

1 Introduction

Machine learning models using deep neural archi-
tectures have seen tremendous performance im-
provements over the last few years. The advent of
models such as LSTMs (Hochreiter and Schmid-
huber, 1997) and, more recently, attention-based
models such as Transformers (Vaswani et al., 2017)
have allowed some language technologies to reach
near human levels of performance. However, this
performance has come at the cost of the inter-
pretability of these models: high levels of non-
linearity make it a near impossible task for a human

to comprehend how these models operate.
Understanding how non-interpretable black box

models make their predictions has become an ac-
tive area of research in recent years (Hupkes et al.,
2018; Jumelet and Hupkes, 2018; Samek et al.,
2019; Linzen et al., 2019; Tenney et al., 2019; Et-
tinger, 2020, i.a.). One popular interpretability
approach makes use of feature attribution meth-
ods, that explain a model prediction in terms of the
contributions of the input features. For instance, a
feature attribution method for a sentiment analysis
task can tell the modeller how much each of the in-
put words contributed to the decision of a particular
sentence.

Multiple methods of assigning contributions to
the input feature approaches exist. Some are based
on local model approximations (Ribeiro et al.,
2016), others on gradient-based information (Si-
monyan et al., 2014; Sundararajan et al., 2017)
and yet others consider perturbation-based methods
(Lundberg and Lee, 2017) that leverage concepts
from game theory such as Shapley values (Shapley,
1953). Out of these approaches the Shapley-based
attribution methods are computationally the most
expensive, but they are better able at explaining
more complex model dynamics involving feature
interactions. This makes these methods well-suited
for explaining the behaviour of current NLP models
on a more linguistic level.

In this work, we therefore focus our efforts on
that last category of attribution methods, focusing
in particular on a method known as Contextual De-
composition (CD, Murdoch et al., 2018), which
provides a polynomial approach towards approx-
imating Shapley values. This method has been
shown to work well on recurrent models without
attention (Jumelet et al., 2019; Saphra and Lopez,
2020), but has not yet been used to provide in-
sights into the linguistic capacities of attention-
based models. Here, to investigate the extent to
which this method is also applicable for attention
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based models, we extend the method to include
the operations required to deal with attention-based
models and we compare two different recurrent
models: a multi-layered LSTM model (similar to
Jumelet et al., 2019), and a Single Headed Atten-
tion RNN (SHA-RNN, Merity, 2019). We focus
on the task of language modelling and aim to dis-
cover simultaneously whether attribution methods
like CD are applicable when attention is used, as
well as how the attention mechanism influence the
resulting feature attributions, focusing in particular
on whether these attributions are in line with hu-
man intuitions. Following, i.a. Jumelet et al. (2019),
Lakretz et al. (2019) and Giulianelli et al. (2018),
we focus on how the models process long-distance
subject verb relationships across a number of differ-
ent syntactic constructions. To broaden our scope,
we include two different languages: English and
Dutch.

Through our experiments we find that, while
both English and Dutch language models produce
similar results, our attention and non-attention mod-
els behave differently. These differences manifest
in incorrect attributions for the subjects in sen-
tences with a plural subject-verb pair, where we
find that a higher attribution is given to a plural
subject when a singular verb is used compared to a
singular subject.

Our main contributions to the field thus lie in two
dimensions: on the one hand, we compare atten-
tion and non-attention models with regards to their
explainability. On the other hand, we perform our
analysis in two languages, namely Dutch and En-
glish, to see if patterns hold in different languages.

2 Background

In this section we first discuss the model architec-
tures that we consider. Following this, we explain
the attribution method that we use to explain the dif-
ferent models. Finally, we consider the task which
we use to extract explanations.

2.1 Model architectures

To examine the differences between attention and
non-attention models, we look at one instance of
each kind of model. For the attention model, we
consider the Single Headed Attention RNN (SHA-
RNN, Merity, 2019), and for our non-attention
model a multi-layered LSTM (Gulordava et al.,
2018). Since both models use an LSTM at their
core, we hope to capture and isolate the influence

of the attention mechanism on the behaviour of the
model. Using a Transformer architecture instead
would have made this comparison far more chal-
lenging, given that these kinds of models differ in
multiple significant aspects from LSTMs with re-
gards to their processing mechanism. Below, we
give a brief overview of the SHA-RNN architec-
ture.

SHA-RNN The attention model we consider is
the Single Headed Attention RNN, or SHA-RNN,
proposed by Merity (2019). The SHA-RNN was
designed to be a reasonable alternative to the com-
paratively much larger Transformer models. Merity
argues that while larger models can bring better per-
formance, this often comes at the cost of training
and inference time. As such, the author proposed
this smaller model, which achieves results compa-
rable to earlier Transformer models, without hyper-
parameter tuning.

The SHA-RNN consists of a block structure with
three modules: an LSTM, a pointer-based attention
layer and a feed-forward Boom layer (we provide
a graphical overview in Figure 1). These blocks
can be stacked to create a similar setup to that of
an encoder Transformer. Layer normalisation is
applied at several points in the model.

The attention layer in the SHA-RNN uses only
a single attention head, creating a similar mecha-
nism to Grave et al. (2017) and Merity et al. (2017).
This is in contrast to most other Transformer (and
thus attention) models, which utilise multiple at-
tention heads. However, recent work, like Michel
et al. (2019), has shown that using only a single
attention head may in some cases provide simi-
lar performance to a multi-headed approach, while
significantly reducing the computational cost. Im-
portantly, when using multiple blocks of the SHA-
RNN, the attention layer is only applied in the sec-
ond to last block.

The Boom layer represents the feed-forward
layers commonly found in Transformer models
(Vaswani et al., 2017). In his work, Merity uses
a single feed-forward layer with a GELU activa-
tion (Hendrycks and Gimpel, 2016), followed by
summation over the output to reduce the dimension
of the resulting vector to that before applying the
feed-forward layer.

2.2 Contextual Decomposition

The interpretability method that we use and extend
in this paper is Contextual Decomposition (CD
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Figure 1: A schematic overview of a block in the SHA-
RNN. A block in the SHA-RNN is composed of an
LSTM, a single headed attention layer and a Boom
feed-forward layer. Throughout the model, layer nor-
malisation is used. Hidden states are passed between
subsequent steps in the model. The memory state is
concatenated with previous memory states, and passed
on as well.

Murdoch et al., 2018), a feature attribution method
for explaining individual predictions made by an
LSTM. CD decomposes the output into a sum of
two contribution types β + γ: one part resulting
from a specific “relevant” token or phrase (β), and
one part resulting from all other input to the model
(γ), which is said to be “irrelevant”. The token
or phrase of interest is provided as an additional
parameter to the model.

CD performs a modified forward pass through
the model for each individual token in the input
sentence. The β + γ decomposition is achieved by
splitting up the hidden and cell state of the LSTM
into two parts as well:

ht = βt + γt (1)

ct = βct + γct (2)

This decomposition is constructed such that β
corresponds to contributions made solely by ele-
ments in the relevant phrase, while γ represents
all other contributions. Fundamental to CD is the
role of interactions between β and γ terms that
arrive from operations such as (point-wise) multi-
plications. CD resolves this by “factorizing” the
outcome of a non-linear activation function into a

sum of components, based on an approximation of
the Shapley value of the activation function (Shap-
ley, 1953).

For example, the forget gate update of the cell
state in an LSTM is defined as

c′t = ct−1 � σ(Wfxt + Vfht−1 + bf ) (3)

where Wf ∈ Rdx×dh , Vf ∈ Rdh×dh and bf ∈ Rdh .
CD decomposes both ct−1 and ht−1 into a sum of
β and γ terms:

c′t = (βct−1 + γct−1)

� σ(Wfxt + Vf (βt−1 + γt−1) + bf ) (4)

The forget gate is then decomposed into a sum
of four components (x, β, γ & bf ), based on their
Shapley values, which leads to a cross product be-
tween the terms in the decomposed cell state, and
the decomposed forget gate. The β+ γ decomposi-
tion of the new cell state ct is formed by determin-
ing which specific interactions between β and γ
components should be assigned to the new βct and
γct terms.

In this work, we consider the generalisation of
the CD method proposed by Jumelet et al. (2019),
namely Generalized Contextual Decomposition
(GCD). They alter the way that β and γ interac-
tions are divided over these terms. As such, this
method provides a more complete picture of the
interactions within the model. For a more detailed
explanation of the procedure we refer to the origi-
nal papers.

2.3 Number Agreement Task

To test our models, we consider the Number Agree-
ment (NA) task, a linguistic task that has stood
central in various works in the interpretability liter-
ature (Lakretz et al., 2019; Linzen et al., 2016; Gu-
lordava et al., 2018; Wolf, 2019; Goldberg, 2019).
In this task, a model is evaluated by how well it is
able to track the subject-verb relations over long
distances, as assessed by the percentage of cases in
which the model is able to match the form of the
verb to the number of the subject. The challenge
in the NA task lies in the presence of one or more
attractor nouns between the subject and the verb
that competes with the subject. For instance in the
sentence "The boys at the car greet", "car" forms
the attractor noun, and is a different number than
the boys, thereby possibly confusing the model to
predict a singular verb, "greets".
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Several earlier studies preceded us in consid-
ering number agreement as a means to investigate
language models. Linzen et al. laid the groundwork
for this task, using it to assess the ability of LSTMs
to learn syntax-sensitive dependencies. In their
work, they only considered the English language.
Gulordava et al. (2018) extended the task to the
Italian, Hebrew and Russian languages. Moreover,
they provided a more in-depth study of the Italian
model, comparing it to human subjects. Lakretz
et al. (2019) provided a detailed look at the underly-
ing mechanisms of LSTMs by which they are able
to model grammatical structure. To this end, they
performed an ablation study and discovered which
units were mainly responsible for this mechanism.
Finally, further research into the Italian version of
the NA task in Lakretz et al. (2020) investigated
how emergent mechanisms in language models re-
late to linguistic processing in humans.

Number agreement has also been explored be-
fore in the context of attribution methods. Due to
the clear dependency between a subject and a verb,
it is a useful task to evaluate whether a model based
its prediction of the verb on the number information
of the subject. Poerner et al. (2018) provide a large
suite of evaluation tasks for attribution methods
including number agreement, and show that attri-
bution methods can sometimes yield unexpected
contribution patterns. Jumelet et al. (2019) employ
Contextual Decomposition to investigate the be-
haviour of an LSTM LM on a number agreement
task, and demonstrate that their model employs a
default reasoning heuristic when resolving the task,
with a strong bias for singular verbs. Hao (2020)
investigates an attribution method on a range of
number agreement constructions containing rela-
tive clauses, showing that LMs possess a robust
notion of number information.

3 Method

In this section, we first look at extending Contex-
tual Decomposition for the SHA-RNN. Following
this, we outline the models which we will use for
our experiments. Finally, we explain how we ex-
tended the Number Agreement task and how we
applied Contextual Decomposition to the NA task,
forming the Subject Attribution task.

3.1 Contextual Decomposition for the
SHA-RNN

The original Contextual Decomposition paper
(Murdoch et al., 2018) only defines the decom-
position for an LSTM model. The SHA-RNN
also contains several operations that have not previ-
ously been covered by these two papers. As such,
we have defined the decompositions for the fol-
lowing two operations: Layer Normalization (Ba
et al., 2016) and the Softmax operation in the Sin-
gle Headed Attention layer (Merity, 2019). Based
on these new decompositions, we leverage the
implementation of Contextual Decomposition in
the diagNNose library of Jumelet (2020) to also
cover our SHA-RNN.

Layer Normalization Layer Normalization esti-
mates the normalization statistics over the summed
inputs to the neurons in a hidden layer. A definition
of the Layer Normalization operation can be found
in Eq. (5).

µ =
1

n

n∑

i=1

ai,

σ =

√√√√ 1

n

n∑

i=1

(ai − µ)2,

LN(a) = α
a− µ
σ

+ δ,

(5)

where a represents the inputs to the hidden layer, n
the number of hidden units and α and δ are learn-
able parameters.

Because it looks at all inputs in a layer, both β
and γ might interact within this layer. As such, we
must define how we handle the decomposition of
this operation, which we show in Eq. (6).

βl+1 = LN(βl)− δ,
γl+1 = LN(βl + γl)− LN(βl) + δ

LN(a) = LN(βl + γl) = βl+1 + γl+1

(6)

Our decomposition strictly separates the γ contri-
butions from the β contributions, which means that
no information from γ may be captured in β.

Softmax Similar to our treatment of the Layer
Normalization operation, we strictly separate γ
from the β components, as can be observed in
Eq. (7).

βl+1 = Softmax(βl),

γl+1 = Softmax(βl + γl)− βl+1
(7)
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3.2 Models

For our experiments we consider two types of mod-
els: the attention SHA-RNN model and the non-
attention LSTM model. Below, we will outline the
specific architectures used and training hyperpa-
rameters chosen to build and train these models.

3.2.1 Architectures
LSTM model The LSTM model we use is simi-
lar to the one used by Gulordava et al. (2018). The
model is a stacked two layer LSTM, each with
650 hidden units. Word embeddings are trained
alongside the model and the weights of the embed-
ding layer are tied to the decoder layer (Inan et al.,
2017).

SHA-RNN model For our SHA-RNN we use
two blocks (see Fig. 1), each with an LSTM with
650 hidden units. Furthermore, our model also
utilises a trained word embedding layer with tied
weights, similar to our non-attention model. Fi-
nally, our Boom layer does not increase our dimen-
sion size, but keeps it at 650. This means our Boom
layer reduces to a feed-forward layer with GELU
activations.

3.2.2 Training
We trained four models to conduct our experiments
on. For both the attention (SHA-RNN) and non-
attention (LSTM) model architectures, a model
was trained on a Dutch and English corpus. Both
corpora are based on wikipedia text. Following Gu-
lordava et al. (2018), only the 50.000 most common
words were retained in the vocabulary for both cor-
pora, replacing all other words with <unk> tokens.
The corpora were split into a training, validation
and test set.

The training of the models is split up in two
phases: first, the model is trained for thirty epochs
with a learning rate of 0.02 and a batch size of 64.
Then, we fine-tune the model for an additional five
epochs with the learning rate halved to 0.01 and a
batch size of 16. During training, we set dropout
to 0.1. We use the LAMB optimizer (You et al.,
2019) following Merity (2019).

3.3 Extending Number Agreement

In this work, we extend the Number Agreement
(NA) task to the Dutch language. We do so by ap-
plying the same procedure that was used in Lakretz
et al. (2019), namely by creating a synthetic dataset.
This is different from the works of Linzen et al.

(2016) and Gulordava et al. (2018), which derived
their sentences directly from corpora.

Our version of the NA task contains a total of
five different templates. First of all, we use a sim-
ple template called Simple in which the verb im-
mediately follows the subject. We then extend
this by adding a prepositional phrase which mod-
ifies the subject between the subject and the verb,
either by having a prepositional phrase contain-
ing a noun (NounPP) or containing a proper noun
(NamePP). We then have the sentence conjunction
(SConj) task, which consists of two Simple tem-
plates separated by a conjunction. The challenge of
the SConj task is correctly predicting the number
of the verb in the second sentence. Finally, we have
the ThatNounPP template, which contains a declar-
ative content clause which incorporates a second
subject-verb dependency with a noun modifying
prepositional phrase in its that-clause. An overview
of the templates including example sentences can
be found in Table 1.

We create our final NA-task by obtaining fre-
quent words from our corpus to populate these
sentence templates. This process is done for both
the Dutch and the English corpora, such that we
can more easily compare the results.

3.4 Subject Attribution Task

We propose a new task for input feature attribution
methods based on the Number Agreement task:
Subject Attribution. The goal of the task to produce
explanations in such a way that congruent subject-
verb relations gain higher attributions than non-
congruent ones.

In context of the NA task this means that we
compare the attribution scores of the subject of the
sentence in the case where it is and is not congruent
with the number of the verb. In our evaluation we
consider a higher attribution for the congruent noun
compared to the non-congruent noun to be correct,
as this would be in line with human intuition. A
schematic overview of this task can be found in
Fig. 2.

In this work, we use the task in the following
way: we apply our attribution method on each sen-
tence within our dataset, generating input feature
attributions. We then compare the subject attribu-
tions of these sentences to find in which percent-
age of the sentences the attributions for the subject
were higher for the congruent verb than the non
congruent one.
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NA-task Template Example
Simple DET N V De jongen groet

The boy greets
NounPP DET N PREP DET N V De jongens bij de auto groeten

The boys at the car greet
NamePP DET N PREP NAME V De jongens bij Pat groeten

The boys at Pat greet
SConj DET N V en/and DET N V De jongen groet en de moeders missen

The boy greets and the mothers miss
ThatNounPP DET N V dat/that DET N PREP DET N V De jongen denkt dat de moeders bij de auto missen

The boy thinks that the mothers at the car miss

Table 1: Overview of the templates for the NA-tasks. DET is a determiner, N a noun, NAME a name of a person, V
a verb and PREP a preposition. The underlined noun in the template signifies the subject belonging to the relevant
verb.

P(approve) = 0.16

0.02𝜙

The at Patboys

0.25𝜙 0.01𝜙 -0.12𝜙

P(approves) = 0.04

0.01𝜙

The at Patboys

0.02𝜙 0.14𝜙

>

>

-0.13𝜙

NUMBER AGREEMENT TASK

SUBJECT ATTRIBUTION TASK

LM LM

Figure 2: Schematic overview of the default number agreement task that compares the output probabilities of the
LM, and the subject attribution task that compares the attribution scores of the subject to the correct and incorrect
form of the verb. We hypothesise that for a model with a sophisticated understanding of number agreement, the
subject’s contribution to the correct verb form is greater than to the incorrect form.

4 Results and analysis

In our work, we have considered several experi-
ments. Firstly, we evaluate the ability of our mod-
els to handle the data itself by comparing the model
perplexities. Following this, we look at the Num-
ber Agreement and Subject Attribution tasks to
evaluate the differences between our models.

4.1 Model Perplexities

To establish the adequacy of our models on the data,
we calculate the perplexity for each model over the
held-out test set (Table 2). Due to the different data
sets used for the two languages, direct comparisons
between the perplexity scores for the English and
Dutch models are not feasible. We do observe
that for both languages, the SHA-RNN yields a
perplexity score that is 5% lower than the score of
the LSTM counterpart.

Model Perplexity
LSTM (English) 56.24
LSTM (Dutch) 34.24

SHA-RNN (English) 53.25
SHA-RNN (Dutch) 32.54

Table 2: Model perplexities

4.2 Number Agreement

To assess the performance of the different lan-
guage models, we consider the different sentence
structures presented in Table 1. For each sen-
tence structure, we evaluate the predictive perfor-
mance of the model on matching the form of the
verb to the number of the relevant subject. For
example, given a singular subject, we evaluate
p(VERBS|SUBJS) > p(VERBP|SUBJS). The same
sentence templates have been used for the Subject
Attribution task. We apply Contextual Decomposi-
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tion to the sentences to investigate the behavioural
differences between the models.

We examine the results of our experiments along
two axes: language and attention. First, we com-
pare the Dutch and English language models. Fol-
lowing this, we analyse the differences between the
attention and non-attention models.

4.2.1 Language axis
Across the board, the Dutch models perform
slightly better on the NA tasks than the English
models. This could be due to the data sets used,
as the Dutch data set was larger than the English
one, giving the Dutch model more opportunities
to learn. We do find similar patterns between the
Dutch models (Table 3a) and the English models
(Table 3b): between the two languages, the models
generally share the tasks and conditions that they
perform well on. There are exceptions to this, as in
the case of the Simple NA task for the LSTM, with
Dutch models performing better on the singular
condition while their English counterparts achieve
higher scores on the plural condition.

When we compare the results of the models on
the Subject Attribution task in Tables 3a and 3b,
we find more substantial differences between the
models across the languages. In case of the English
models, the SHA-RNN performed rather poorly
on the plural conditions of the Subject Attribution
task. This is remarkable, given that the Dutch SHA-
RNN yields significantly higher scores on these
conditions.

We observe that for the English SHA-RNN, con-
textual decomposition consistently yields attribu-
tion scores that are lower for the plural conditions
than those for the singular conditions (see Fig. 3
for an example). In the Dutch SHA-RNN, this be-
haviour is only apparent for the Simple, NounPP
and NamePP tasks.

Jumelet et al. (2019) encountered similar be-
haviours when applying CD to an LSTM language
model. They attributed the lower attributions to a
bias towards singular verbs in the model, which re-
sulted in a form of default reasoning. However, our
accuracy results do not indicate a similar bias, as
we found all our models performing well on both
plural and singular subjects. This raises the ques-
tion as to what is causing this behaviour, which we
leave for future work.

Overall, these results do not demonstrate any sig-
nificant differences between the Dutch and English
models. While we have shown that differences

occur across conditions, we find that for most con-
ditions, both models behave similarly, with the two
LSTM models displaying more similarities than
the SHA-RNN models.

4.2.2 Attention axis
To compare the attention models (SHA-RNNs) to
the non-attention model (the LSTMs), we again
first consider the accuracy scores in Tables 3a
and 3b. A comparison between the SHA-RNN
and the LSTM shows that the SHA-RNN performs
slightly worse than the LSTM by a small margin.
There are some cases where this difference is more
pronounced, such as for the English ThatNounPP
task (see Table 3b), where we observe large dif-
ferences for the singular subject conditions. This
behaviour goes against the perplexity results in Ta-
ble 2, which indicate a better performing SHA-
RNN. This is in line with the results found by
Nikoulina et al. (2021), who demonstrate that per-
plexity is not always directly correlated to perfor-
mance on downstream tasks, as appears to be the
case for our Number Agreement task.

Looking at the model explanations in Tables 3a
and 3b we see that across the board the LSTM per-
forms better on the Subject Attribution task. We
find that both SHA-RNN models generally do not
produce the expected attributions for the plural sub-
ject conditions, while there are very few instances
of the LSTM performing under 50%, only failing
by a large margin for the English LSTM on the
Simple P and NamePP P conditions (see Table 3a).

From our observations, the attention and non-
attention models behave differently both in terms
of accuracy scores on the NA task and the expla-
nations from the Subject Attribution task. We find
that the difference between the architectures of the
SHA-RNN and the LSTM leads to significant varia-
tions in general performance as well as behavioural
patterns.

5 Conclusion

In this paper, we compared both attention (SHA-
RNN) and non-attention (LSTM) language models
across two languages, namely Dutch and English.
To test these models, we extended the Number
Agreement task from Lakretz et al. (2019) to the
Dutch language, which allows us to compare these
models across both languages. In addition to this,
we extended a feature attribution method called
Contextual Decomposition (Murdoch et al., 2018)
to the SHA-RNN model. We applied Contextual
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NA-task
Singular Subject Plural Subject

Condition SHA-RNN LSTM Condition SHA-RNN LSTM
Simple S 92.1 (77.8) 99.2 (65.4) P 94.0 (25.9) 94.4 (58.6)
NounPP SS 99.0 (83.3) 94.7 (56.1) PS 91.5 (20.7) 98.5 (70.0)
NounPP SP 95.2 (82.0) 94.7 (48.3) PP 96.8 (21.3) 98.7 (71.2)
NamePP S 59.3 (58.3) 81.8 (57.2) P 83.8 (43.3) 75.3 (48.8)
SConj SS 95.8 (77.0) 96.0 (90.3) SP 88.7 (43.8) 89.3 (63.0)
SConj PS 42.8 (67.0) 89.5 (89.3) PP 94.0 (50.2) 95.5 (42.8)
ThatNounPP SSS 98.3 (72.2) 96.7 (80.7) SPS 99.3 (61.8) 100.0 (89.3)
ThatNounPP SSP 99.0 (65.5) 94.7 (75.2) SPP 99.2 (66.2) 100.0 (91.8)
ThatNounPP PSS 97.8 (70.7) 96.8 (83.5) PPS 99.7 (62.2) 100.0 (89.3)
ThatNounPP PSP 98.2 (62.0) 91.3 (78.0) PPP 99.5 (65.8) 100.0 (91.7)

(a) Results for the Dutch language models.

NA-task
Singular Subject Plural Subject

Condition SHA-RNN LSTM Condition SHA-RNN LSTM
Simple S 94.0 (93.3) 92.7 (93.3) P 99.3 (11.7) 96.3 (35.7)
NounPP SS 86.0 (92.3) 78.3 (95.5) PS 82.5 (8.8) 93.3 (54.6)
NounPP SP 83.8 (93.5) 54.8 (94.0) PP 97.0 (9.0) 96.8 (59.5)
NamePP S 68.0 (89.3) 86.7 (96.5) P 66.2 (14.5) 52.3 (12.5)
SConj SS 93.8 (93.0) 94.3 (90.5) SP 99.3 (15.7) 96.3 (87.2)
SConj PS 82.3 (93.5) 94.3 (94.3) PP 99.3 (10.7) 98.8 (90.5)
ThatNounPP SSS 91.8 (100.0) 70.7 (92.0) SPS 92.3 (5.0) 95.8 (51.3)
ThatNounPP SSP 85.2 (100.0) 43.7 (94.0) SPP 98.7 (4.2) 100.0 (65.7)
ThatNounPP PSS 86.2 (99.8) 69.7 (92.3) PPS 92.0 (4.3) 97.0 (55.7)
ThatNounPP PSP 81.2 (100.0) 46.3 (92.3) PPP 98.2 (2.3) 99.5 (68.0)

(b) Results for the English language models.

Table 3: Overview of prediction accuracy scores (the numbers outside the brackets) and subject attribution be-
haviour (in brackets) on the Number Agreement tasks for the Dutch and English language models. For each task,
the noun inflections are given in the condition column, with S indicating singular and P indicating plural. The
underlined letter in the condition indicates the noun belonging to the verb that is predicted. The numbers in brack-
ets denote the performance on the subject attribution task: the percentage of cases in which the attributions of the
subjects were higher to the congruent verb than to the non-congruent ones. The colour coding of the table cells
follows the performance on this subject attribution task along a colour gradient from green (high performance) to
red (low performance).

Decomposition to the Number Agreement task to
obtain interpretable explanations and compared the
different models from a feature attribution stand-
point.

We found that both the Dutch and English mod-
els behaved similarly in terms of accuracy. While
general performance differed between the two lan-
guages, we did find that similar behavioural pat-
terns emerged from the models. This partially held
for the explanations obtained through Contextual
Decomposition, where we did uncover differences.
These differences were centred around the SHA-
RNN, which we found behaved as if it applied
default reasoning similar to the work of Jumelet
et al. (2019).

Comparing our attention and non-attention mod-
els, we found immediate differences, both when

comparing the performance on the Number Agree-
ment task as when looking into the attributions.
Both models performed differently on the same
tasks and feature attributions varied between them.
We found that our LSTM performed better on the
attribution task.

Our current results suggest that attention and
non-attention models behave differently according
to Contextual Decomposition. More specifically,
we find that the attention models have more diffi-
culty producing correct attributions for plural sen-
tences. A logical next step would then be to com-
pare our current results by those obtained through
different attribution methods such as SHAP (Lund-
berg and Lee, 2017) and Integrated Gradients (Sun-
dararajan et al., 2017). Should we find that Contex-
tual Decomposition holds up well to these other
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Figure 3: Contextual Decomposition attributions for the English models (SHA-RNN and LSTM) on the SP and PS
conditions of the NounPP task. Fig. 3a shows the attributions of two individial sentences, while Figs. 3b and 3c
show aggregated attributions over all sentences of that condition. Note that in Fig. 3b the attribution for the subject
under the singular verb is both higher in the SP condition as well as in PS condition, while in Fig. 3c the attribution
is higher for the subject matching the verb form.

methods, it could then prove to be a valuable
method for approximating Shapley values in poly-
nomial time. Moreover, it is worth looking into the
application of Contextual Decomposition in Trans-
former architectures, which rely more heavily on
these kinds of attention mechanisms.

An alternative line of research that we would
like to explore is the attention mechanism itself.
Even though it has been shown that attention does
not provide guarantees for explainability (Jain and
Wallace, 2019), it would still be worthwhile to in-
vestigate the attention patterns that are employed
by the SHA-RNN.
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Abstract

Numerical common sense (NCS) is necessary
to fully understand natural language text that
includes numerals. NCS is knowledge about
the numerical features of objects in text, such
as size, weight, or color. Existing neural lan-
guage models treat numerals in a text as string
tokens in the same way as other words. There-
fore, they cannot reflect the quantitative as-
pects of numerals in the training process, mak-
ing it difficult to learn NCS. In this paper, we
measure the NCS acquired by existing neural
language models using a masked numeral pre-
diction task as an evaluation task. In this task,
we use two evaluation metrics to evaluate the
language models in terms of the symbolic and
quantitative aspects of the numerals, respec-
tively. We also propose methods to reflect not
only the symbolic aspect but also the quantita-
tive aspect of numerals in the training of lan-
guage models, using a loss function that de-
pends on the magnitudes of the numerals and a
regression model for the masked numeral pre-
diction task. Finally, we quantitatively evalu-
ate our proposed approaches on four datasets
with different properties using the two met-
rics. Compared with methods that use exist-
ing language models, the proposed methods re-
duce numerical absolute errors, although exact
match accuracy was reduced. This result con-
firms that the proposed methods, which use the
magnitudes of the numerals for model train-
ing, are an effective way for models to capture
NCS.

1 Introduction

Numerical common sense (NCS) is knowledge
about the numerical features of objects in the real
world, such as size, weight, or color, each of which
has its own range and probability distribution (Ya-
mane et al., 2020). Consider the following example
sentence.

“John is 200 cm tall."

Figure 1 An overview of our proposed approaches for the
masked numeral prediction task. We propose to use a new
loss function LossNUM (LN) that is based on the magnitudes
of numerals for fine tuning masked word prediction (MWP)
model and a regression (REG) model that treats the masked
numeral prediction as a regression task.

When we read this sentence, we can infer from it
not only that John’s height is 200 cm but that John
is a tall person. However, this kind of inference can-
not be achieved by a system that does not have NCS
about how tall people generally are. Therefore, it
is essential to have knowledge about real-world nu-
merical features for a deep understanding of natural
language text containing numerals.

In recent years, BERT, GPT-3, and other neural
language models have achieved a level of perfor-
mance on par with or better than human perfor-
mance in many natural language processing tasks
(Devlin et al., 2019; Liu et al., 2019; Lan et al.,
2020; Brown et al., 2020). Moreover, several stud-
ies have recently been conducted to investigate
whether pre-trained neural language models have
commonsense knowledge, and these studies often
conclude that the language models have been suc-
cessful in acquiring some commonsense knowl-
edge (Petroni et al., 2019; Davison et al., 2019;
Bouraoui et al., 2019; Zhou et al., 2019; Talmor
et al., 2020).

However, it has also been reported that current
neural language models still perform poorly in nat-
ural language processing tasks that require NCS
and a deep understanding of numerals, such as
numerical reasoning, numerical question answer-
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ing, and numerical error detection/correction (Dua
et al., 2019; Chen et al., 2019). Numerals appear
frequently in various forms, such as dates, numbers
of people, percentages, and so on, regardless of the
domain of passages. Hence, the acquisition of nu-
merical common sense by neural language models
and the analysis of the acquired numerical common
sense are essential research topics to support sys-
tems for reasoning on text containing numerals and
smooth conversation with humans at a high level.

One of the major problems that make it difficult
for language models to understand the meaning
of numerals and to acquire NCS is that naive lan-
guage models treat numerals in text as string tokens,
just like any other word (Spithourakis and Riedel,
2018). This makes it difficult to obtain a mapping
between the string tokens and the magnitudes of
the numerals, which is needed to capture NCS.

In this study, we use the masked numeral predic-
tion task (Spithourakis and Riedel, 2018; Lin et al.,
2020) to evaluate and verify the NCS acquired by
neural language models. The task requires models
to predict masked numerals in an input passage
from their context. We use two types of evalu-
ation metrics: hit@k accuracy (Lin et al., 2020)
and MdAE and MdAPE (Spithourakis and Riedel,
2018) for this task. Hit@k accuracy calculates the
percentage of predictions in which the groundtruth
numeral is within the top k predicted numerals, and
we can say that they evaluate language models in
terms of the symbolic aspect of numerals. MdAE
and MdAPE are calculated from the difference be-
tween the groundtruth numerals and the predicted
numerals, and we can say that they evaluate lan-
guage models in terms of the quantitative aspect
of numerals.

To perform this task, we investigate the follow-
ing two approaches to reflect the magnitudes of the
numerals for fine-tuning language models on the
masked numeral prediction task (Figure 1).

1. A masked word prediction model with a new
loss function LossNUM that is based on the
differences between the groundtruth numerals
and predicted numerals;

2. A masked word prediction model, called the
REG model, structured with an additional out-
put layer to predict a numeral from an input
passage containing a masked numeral.

We use the BERT-based masked word prediction
model as a baseline and conducted experiments on

four datasets, which differ from each other in the
length and domain of the passages as well as the
distribution and characteristics of the numerals ap-
pearing in the datasets. We compare the results and
investigate the relationship between the character-
istics of the numerals in the datasets and the perfor-
mance of each method. Although fine-tuning with
LossNUM causes a decrease in the exact match
accuracy, we found that it reduces numerical ab-
solute errors, which indicates the effectiveness of
LossNUM. The results of the REG model show
the difficulty of predicting numerals in natural lan-
guage text with the regression model. However,
there were some numerals that the REG model
predicted better than the existing language model,
indicating that the REG model and existing lan-
guage models are good at predicting numerals with
different characteristics.

In our experiments, to eliminate the negative ef-
fects of the sub-word approach, we do not split the
numerals into sub-words. The sub-word approach
splits words into shorter tokens called sub-words.
It has the advantage that even low-frequency words
can be represented by a combination of sub-words
that appear in a text more frequently. However,
unlike the case of words, sub-words derived from
numerals often have little relationship to the mean-
ing of the original numerals, which can make it
difficult to understand the meaning of numerals
(Wallace et al., 2019). All other words are sepa-
rated into sub-words in our experiments.

To summarize, in this work, we tackle the prob-
lem of dealing with numerals in naive language
models on the masked numeral prediction task. Our
contributions are as follows:

• We use two evaluation metrics (exact match
accuracy and numerical absolute errors) for
the masked numeral prediction task to evalu-
ate the language models in terms of the sym-
bolic and quantitative aspects of the numerals,
respectively.

• We propose a new loss function to reflect not
only the symbolic aspect but also the quan-
titative aspect of numerals in the training of
language models. For the masked numeral
prediction task, we also employ a regression
model, which predicts numerals as quantities.

• We quantitatively evaluate our proposed ap-
proaches on four datasets with different prop-
erties using the two metrics. The reduction
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in the numerical absolute errors of the pre-
dictions confirms the effectiveness of our pro-
posed approaches.

2 Related Work

2.1 Masked Numeral Prediction
Masked numeral prediction is the task of predict-
ing a masked numeral in an input passage from
the context (e.g., “The movie I saw yesterday was
[MASK] minutes long.") It can be used as an in-
dicator to evaluate the NCS acquired by language
models.

Lin et al. (2020) analyzed NCS captured by cur-
rent language models using a masked numeral pre-
diction task in which masked numerals were lim-
ited to numerals that could be uniquely determined,
such as “A car usually has [MASK] wheels." They
showed that even the current best pre-trained lan-
guage models still perform poorly compared to
humans on the task, which requires NCS. They
also found that even though pre-trained language
models seemingly make the correct predictions, the
models are often unable to maintain the correct an-
swer under even small changes, for instance, if the
above target sentence changes to “A car usually has
[MASK] round wheels."

Spithourakis and Riedel (2018) examined numer-
acy of neural language models using the masked
numeral prediction task. Numeracy refers to the
ability to understand the meanings of numerals and
to deal with them properly. They conducted their
experiments on scientific paper and clinical text
datasets that include many numerals that represent
the quantities of something. To improve the predic-
tion accuracy for such numerals, they proposed a
method that uses character-level recurrent neural
networks (Graves, 2013; Sutskever et al., 2011) for
prediction, a method that predicts the distribution
of the numerals as a mixture of Gaussian distribu-
tions, and an ensemble method of these methods.
They showed that the accuracy of the prediction of
quantity-like numerals can be improved by meth-
ods that consider the magnitudes of the numerals.

2.2 Natural Language Processing Tasks That
Involve Numerals

2.2.1 Machine Reading Comprehension
Requiring NCS

Dua et al. (2019) created a machine reading com-
prehension dataset called DROP that contains ques-
tions requiring numerical operations such as addi-

tion, subtraction, and sorting to answer correctly.
They used the DROP dataset to evaluate current ma-
chine reading comprehension models and showed
that many questions requiring only simple numer-
ical operations easily solved by humans cannot
be answered correctly by current models. To im-
prove the performance of the models on the DROP
dataset, Hu et al. (2019) built a specialized archi-
tecture for numerical operations and achieved a
significant improvement in accuracy, although not
to human level. In contrast, Geva et al. (2020)
showed that even if they use a generative model
that is not specialized for numerical operations,
they can improve the performance on DROP using
additional data for numerical operation training. In
our experiments, we use the passages in the DROP
dataset for the masked numeral prediction task.

2.2.2 Numerical Error Detection
Numerical error detection is the task of determin-
ing whether or not numerals in input passages are
errors (Chen et al., 2019; Spithourakis et al., 2016).
To determine if a target numeral is an error, it is
necessary to have knowledge of the range of values
that the numeral can and cannot take. For example,
to notice numerical errors in sentences with dates
(for example, “Her birthday is December -3." or
“Her birthday is December 20.5."), it is necessary
to know that the range of possible values for nu-
merals representing dates is generally an integer
between 1 and 31. Therefore, the accuracy of nu-
merical error detection can be used to quantitatively
evaluate the NCS of the detection models. Chen
et al. (2019) experimented with the BiGRU model
to detect numerals multiplied by a random factor
in Numeracy-600K, which is a dataset of market
comments. They showed that the BiGRU model
was able to detect numerical errors with less than
60% accuracy even with small numeral changes of
approximately 10%. Moreover, it achieved an accu-
racy of only 76% even with large numeral changes
of approximately 90%. In our experiments, we
use the article titles from this dataset as one of the
datasets for the masked numeral prediction task.

2.2.3 Numeral Type Prediction
Numeral type prediction is the task of classifying
numerals in text into one of several fixed categories.
Prediction models are required to classify numerals
using their numerical values and contexts. Chen
et al. (2018) aimed to understand the meanings
of numerals in financial tweets for crowd-based
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Token-type • Spiders have 8 legs.
NCS • A week has 7 days.

Quantity-type • The adult male is approximately 170 cm tall.
NCS • The length of movies is about 120 minutes.

Table 1 Two types of NCS.

forecasting, providing the dataset FinNum, which
contains financial tweets in which numerals are
annotated with their categories. Their categories in-
clude “Monetary," “Percentage," “Temporal" (date
and time), and so on. They used a convolutional
neural network (CNN), long short-term memory
(LSTM), and bidirectional LSTM in experiments
and concluded that character-level CNN performed
the best. We use the FinNum dataset in our experi-
ments for the masked numeral prediction task.

3 NCS

3.1 Two Types of NCS

NCS is the knowledge about numerical features of
objects in the real world, such as size, weight, and
price. NCS is required to understand natural lan-
guage text that includes numerals or that refers to
the real-world numerical features of some objects.
We focus on the fact that numerals have two as-
pects, symbolic and quantitative, and hypothesize
that there are two types of NCS: token type and
quantity type (Table 1).

Token-type NCS refers to numerical knowledge
involving numerals that can be appropriately under-
stood as string tokens. This knowledge is definition-
like or rule-like knowledge that cannot use other
numerals instead, like “A week has 7 days." (Table
1). This kind of NCS is relatively easy to learn,
even with conventional language models that treat
numerals as string tokens in the same way as other
words. Related work on the evaluation and analy-
sis of token-type NCS acquired by current neural
language models was reviewed in Section 2.1.

Quantity-type NCS refers to knowledge of nu-
merical properties that have some kind of distribu-
tion or range, like “The adult male is approximately
170 cm tall." (Table 1). To acquire this kind of NCS,
it is necessary to understand numerals as not only
string tokens, but also quantities. Quantity-type
NCS is more important for numerical error detec-
tion/correction and numerical reasoning than the
token-type NCS. In recent years, there has been
an increasing amount of research on the acquisi-
tion of quantity-type NCS, including the creation

of datasets that collect the distributions of some
attributes such as weight, length, and price of com-
mon objects as well as the verification of such NCS
acquired by neural language models using these
datasets (Elazar et al., 2019; Zhang et al., 2020;
Yamane et al., 2020). In this paper, we aimed to
acquire quantity-type NCS as well as token-type
NCS with language models, focusing on the fact
that there are these two types of NCS.

3.2 Masked Numeral Prediction
3.2.1 Task Description
Masked numeral prediction is the task of predicting
a masked numeral in an input natural language text
from the words around the masked numeral (e.g.,
“The movie I saw yesterday was [MASK] minutes
long.") (Spithourakis and Riedel, 2018; Lin et al.,
2020). In this paper, we use this task as an indicator
to evaluate the NCS acquired by language models.

The masked numeral prediction task is defined
as follows:

Input : A passage containing exactly one tar-
get numeral masked with a special token
“[MASK]"

Output : A ranking of predicted numerals

Language models take a passage that contains ex-
actly one masked numeral as input, predict the nu-
merals that could replace the mask token from the
context words, and return the predicted numerals
in the form of a ranking. The aim of the language
models is to predict numerals that are closer to the
groundtruth numerals. In the task considered in this
paper, the target numerals are limited to numerals
in arithmetic form such as “3.14" and “1,000," and
numerical words such as “five" or “twenty" are not
considered. For negative numerals, only the parts
excluding signs were treated as target numerals;
the signs were treated as context words (for exam-
ple, in the case of the negative numeral “-10," only
“10" was masked as the target numeral). For frac-
tions, the denominator and numerator were treated
as two different numerals in training and evaluation
(e.g., the fraction “2/3" was masked in two ways:
“[MASK]/3” and “2/[MASK]”).

3.2.2 Evaluation Metrics
Exact Match Accuracy A masked numeral pre-
diction model generates a probability distribution
over its vocabulary of numeral tokens using a soft-
max function and returns a ranking of them for each
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mask. Hit@k accuracy calculates the percentage
of predictions in which the groundtruth numeral is
within the top k predicted numerals from the gener-
ated ranking (Lin et al., 2020). In our experiments,
we used k = 1, 3, and 10 for evaluation.

Numerical Absolute Error The hit@k accuracy
metric simply evaluates whether the groundtruth
numerals are included in the top k predictions. It
does not take into account how close the predicted
numerals are to the groundtruth numerals. How-
ever, in the masked numeral prediction task, a pre-
diction for a mask that is closer to the groundtruth
numeral is generally considered to be a better pre-
diction, even if it is incorrect, so we need an addi-
tional evaluation metric to evaluate language mod-
els in terms of the magnitude of the difference be-
tween the groundtruth numeral and the predicted
numeral.

Therefore, in the evaluation in this paper, fol-
lowing a previous work (Spithourakis and Riedel,
2018), we use the median absolute error (MdAE)
and median absolute percentage error (MdAPE).
MdAE and MdAPE are commonly used to eval-
uate regression models. They evaluate closeness
on the number line between groundtruth numerals
and predicted numerals (Spithourakis and Riedel,
2018). We can say that they evaluate language mod-
els in terms of the quantitative aspects of numerals.
MdAE and MdAPE are calculated as follows:

MdAE = median{|ansi − predi|} (1)

MdAPE = median

{∣∣∣∣
ansi − predi

ansi

∣∣∣∣
}

(2)

where ansi is the magnitude of a groundtruth nu-
meral, predi is the magnitude of a predicted nu-
meral, and N is the number of masked numerals.

4 Approach

4.1 LossNUM

Naive masked word prediction (MWP) models re-
turn a probability distribution over their vocabulary
(only numeric words) and they are trained using
the cross entropy loss between their outputs and
the distribution of the correct answers as a loss
function. The usual cross entropy loss treats each
token in the vocabulary except for the correct an-
swer equally. However, in the case of the masked
numeral prediction task, we are motivated to train
language models with a loss function that yields a
smaller error for predictions that are numerically

closer to the groundtruth numeral and a larger er-
ror for predictions that are further away. This is
because it is generally considered that a prediction
of “9" is better than a prediction of “1" for a mask
for which the correct answer is “10." Therefore, in
this paper, we propose a loss function LossNUM,
that depends on the magnitudes of the numerals for
fine-tuning MWP models.
LossNUM is defined as follows:

(3)LossNUM =
N∑

i=1

{
(log(ansi)− log(predi))

2

× CELi

}

where ansi is the numerical magnitude of a
groundtruth numeral, predi is the magnitude of
the initial numeral predicted by the MWP model,
N is the number of masked numerals, and CELi is
the cross entropy loss calculated for the i-th masked
numeral. LossNUM is computed using the logarith-
mic differences between the groundtruth numerals
and predicted numerals following the treatment of
numerical errors in a previous study (Geva et al.,
2020). This is because the logarithmic difference
gives more weight to off-by-one errors in small
numerals, which are considered to be more fatal
than off-by-one errors in large numerals. These
differences are then multiplied by the usual cross
entropy loss to obtain the LossNUM. If it is used
when fine-tuning pre-trained language models, we
expect that the models will be fine-tuned to return
numeral tokens that are numerically closer to the
groundtruth numerals.

4.2 REG Model

The approach described in Section 4.1 uses ordi-
nary MWP models and the proposed loss, which
reflects the magnitudes of the predicted and
groundtruth numerals as the loss function during
fine tuning. In this section, we propose to use a
regression (REG) model for the masked numeral
prediction task.

The REG model is structured with an additional
numeric output layer as the final layer of BERT.
The output layer generates a single numeral be-
tween 0 and MAX_NUM from an input passage
processed by BERT, where MAX_NUM is the
largest numeral occurring in training data. The
mean squared error between groundtruth numerals
and predicted numerals, which is often used as a
loss function and an evaluation metric in regression
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tasks, is adopted as the loss function (LossMSE)
for fine-tuning the REG model on the masked nu-
meral prediction task. Similarly to the calculation
of LossNUM, LossMSE is calculated using the log-
arithmic values of both the groundtruth numerals
and predicted numerals to give more weight to off-
by-one errors in small numerals, which are consid-
ered to be more fatal than off-by-one errors in large
numerals.

LossMSE =
N∑

i=1

(log(ansi)− log(predi))
2 (4)

where ansi is the numerical magnitude of a
groundtruth numeral, predi is the magnitude of
the initial numeral predicted by the REG model,
and N is the number of masked numerals. For the
evaluation, which includes exact match accuracy,
the final output numeral is rounded to the nearest
integer and is used as the initial predicted numeral.
Next, the integers closest to the first predicted nu-
meral are used as the second predicted numeral,
the third predicted numeral, and so on, in order of
closeness.

5 Experiments

5.1 Dataset
In our experiments, we used four datasets, DROP
(Wikipedia) (Dua et al., 2019), arXiv (Science Pa-
pers) (Spithourakis and Riedel, 2018), FinNum (Fi-
nancial Tweets) (Chen et al., 2018), and Numeracy-
600K (Article Titles) (Chen et al., 2019). The data
in these datasets differ in passage length, the do-
main of the passages, and the distribution of the
numerals that appear in the datasets. These datasets
were created and used for different numerical tasks
such as numerical machine reading comprehension
and numeral type prediction (Section 2). We use
them for the masked numeral prediction in this
work. We denote these datasets as “WP," “SP,"
“FT," and “AT," respectively.

Statistics about the passages and numerals in
these four datasets are listed in Table 2. The
percentage of numerals that appear only in each
dataset (“% of one-time numerals"), the number
of different numerals that appear in a dataset (“Va-
riety of numerals"), and the number of numerals
that appear more than once in the same passage
(“Numeral duplication") are given. Every passage
in all four datasets contains one or more numerals.

WP and SP have relatively long passages, and
prediction models can make predictions based on

Statistic WP SP FT AT

Number of passages 4,329 14,821 3,992 420,000
Ave. passage len [tokens] 281.8 278.2 36.7 12.9

Number of numerals 65,783 120,105 10,312 537,214
% of integers 96.4% 80.0% 86.7% 98.5%
% of one-time numerals 2.93% 3.69% 9.74% 0.36%
Variety of numerals 3,667 7,944 1,503 4,204
Numeral duplication 25,269 57,372 1,354 22,555

Mean 1.57e6 5.55e16 2.02e15 2.98e7
Median 24.0 5.0 20.0 17.0

Table 2 Dataset statistics across different four datasets (train-
ing set).

(a) WP (b) SP

(c) FT (d) AT

Figure 2 Distribution of the numerals in the training data.

hints from unmasked numerals around the masked
numeral. In contrast, FT and AT have shorter pas-
sages, so there are fewer unmasked numerals in
the same passage. In addition, WP and AT tend to
contain more token-type numerals such as dates,
years, and game scores, whereas SP and FT tend
to contain more quantity-type numerals such as the
scores of experimental results and stock prices.

The distribution of the numerals in each dataset
is shown in Figure 2. The x-axis of each figure
shows, from left to right, the counts of numerals
less than 1, numerals between 1 and 10, ..., nu-
merals between 10,000 and 100,000, and numerals
greater than 100,000. We can see from this figure
that WP and AT certainly contain many years, and
thus the proportion of four-digit numerals in WP
and AT is higher than in the other datasets, and
FT has more numerals with six or more digits to
represent high amounts of money.

5.2 Experimental Setup

In the experiments, we used the BERT-based MWP
model as the baseline model. It consists of the
BERT model with an additional softmax layer as
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the final layer. Given an input passage processed by
BERT, the softmax layer outputs the probability dis-
tribution over the model’s vocabulary of numeric
words. Each mask in a passage can be filled with
a single numeric word, and the numeric vocabu-
lary contains not numerals expressed in English
words such as “ten" and “twenty-four" but numer-
als expressed in arithmetic characters such as “10,"
“2021," and “10,000."

In this experiment, we used the Adam optimizer
with a learning rate of 5 × 10−5. The batch size
for fine-tuning and evaluation was 32 and the max-
grad-norm was 1.0. All tokens except the numerals
in the passages were tokenized by the BERT tok-
enizer and passages were truncated to sequences
no longer than 512 tokens.

In this evaluation, we did not split numerals into
sub-words using BERT but treated them as single
words using our own additional rules. By treating
numerals as single words, we believe that it be-
comes easier to learn mappings between strings of
numerals and their corresponding numerical mag-
nitudes, which is difficult to learn from sub-word
segmented numerals. The single word segmenta-
tion of numerals also eliminates the need to use
encoder–decoder models or other methods to pre-
dict sub-word sequences for masks when predicting
numerals, which has the advantage of making the
masked numeral prediction task easier to handle,
even for naive MWP models.

6 Result and Discussion

6.1 LossNUM

Table 3 shows the result of the naive BERT-based
MWP model with pre-training but without fine-
tuning (MWP), fine-tuned MWP with cross entropy
loss (Ft. MWP w/ CEL), and fine-tuned MWP with
LossNUM (3) (Ft. MWP w/ LN). Each dataset is
divided into three parts: training set, validation set,
and test set. Each fine-tuned model is fine-tuned
first on the training set and then on the validation
set of the corresponding dataset, and then it is eval-
uated on the test set of the same dataset.

First, comparing MWP and Ft. MWP w/ CEL,
we can see that the scores of all metrics have been
improved by fine-tuning for all datasets. Moreover,
the increases in the scores obtained on FT and AT
are substantially larger than those obtained on WP
and SP. This is probably because the average pas-
sage lengths of WP and SP are longer than those
of FT and AT, and the language models succeeded

Dataset Approach hit@1↑ hit@3↑ hit@10↑ MdAE↓ MdAPE↓

MWP 23.8 32.1 45.0 7.0 42.9
WP Ft.MWP w/ CEL 28.5 36.6 49.0 5.4 25.0

Ft.MWP w/ LN 28.5 37.2 50.2 6.0 28.6

MWP 40.1 50.2 63.1 2.0 50.0
SP Ft.MWP w/ CEL 45.5 55.5 67.7 1.0 33.3

Ft.MWP w/ LN 48.4 57.6 69.2 1.0 25.5

MWP 19.9 27.8 43.2 10.0 85.1
FT Ft.MWP w/ CEL 40.5 49.1 60.0 3.0 50.0

Ft.MWP w/ LN 40.0 48.2 59.4 3.0 46.7

MWP 20.1 32.7 54.7 7.0 80.0
AT Ft.MWP w/ CEL 56.3 69.1 80.4 1.0 0.0994

Ft.MWP w/ LN 55.7 68.5 80.0 1.0 0.0995

Table 3 Hit@k accuracy (%), MdAE, and MdAPE (%) of
the BERT-based MWP models on the four datasets.

in predicting masked numerals in WP and SP to
some extent from context words and surrounding
unmasked numerals without fine-tuning (Table 2).

Next, we compare Ft.MWP w/ CEL and Ft.
MWP w/ LN. Focusing on the MdAE and MdAPE
scores, it is confirmed that the reduction in the nu-
merical absolute errors of the predictions, which
is the objective of the proposed loss function
LossNUM, is achieved on the SP and FT datasets.
In contrast, the MdAE and MdAPE scores of the
WP and AT datasets increased. This may be due
to the different nature of the numerals in these
datasets. Because of the nature of the domains
of these datasets, the WP and AT datasets contain
many numerals that are better understood as string
tokens, such as years, dates, and football game
scores. Hence, fine-tuning with LossNUM does
not improve the accuracy of masked numeral pre-
diction in these datasets. In contrast, the SP and
FT datasets contain more numerals that are better
understood as quantities, such as the numerals rep-
resenting scores of experimental results or detailed
amounts of money, and it is thought that reflecting
the magnitudes of these numerals in model train-
ing improves the prediction accuracy in SP and
FT.1 The proposed loss function LossNUM, which
is intended to help language models understand
the magnitudes of the numerals and reduce the nu-
merical absolute errors, also leads to a small but
significant improvement in the hit@k accuracies
on some datasets.

Passages a) and b) in Table 4 are examples where
the MWP model fine-tuned with the cross entropy
loss made largely incorrect predictions. Passage
a) shows predictions in a context where it can be

1The percentage of integers in the dataset and the distribu-
tion of the numerals can also reveal the trend of the numerals
in the dataset (Table 2, Figure 2).
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inferred that the masked numeral is greater than
1724 and not much larger than 1724. The MWP
model fine-tuned with the cross entropy loss re-
turned “1925," which is numerically far from the
groundtruth numeral, although it is considered to
be a numeral representing a year. In contrast, the
MWP model fine-tuned with LossNUM returned
“1727," which is not correct, but is above 1724 and
not far from 1724. Note that “1925" and “1727" do
not appear in the context passage, and the models
chose these numerals out of their respective vocab-
ularies. In passage b), the context suggests that
the masked numeral is considered to be a numeral
representing a percentage between 0 and 100 (more
specifically, between 75.6 and 100) from its context.
However, for this mask, the MWP model fine-tuned
with the cross entropy loss predicted “50,000,"
which substantially exceeds 100. In contrast, the
MWP model fine-tuned with LossNUM success-
fully predicted a numeral less than 100, although it
should be greater than 75.6. These are successful
examples where language models were fine-tuned
to predict numerals that are numerically close to
the groundtruth numerals by fine-tuning them with
LossNUM, which imposes large penalties on nu-
merically large errors. In some cases, fine-tuning
language models with LossNUM caused them to
fail to predict numerals that the models fine-tuned
with the cross entropy loss predicted correctly. This
could also cause them to predict numerals that were
rather far from the groundtruth numerals.

6.2 REG Model

In this section, we compare and analyze prediction
results of the naive BERT-based MWP model fine-
tuned with the cross entropy loss and the REG
model fine-tuned with LossMSE (4). We used the
WP dataset to train and evaluate them.

The results of the fine-tuned MWP model with
the cross entropy loss (Ft. MWP w/ CEL) and the
fine-tuned REG model with LossMSE (Ft. REG w/
MSE) listed in Table 5 reveal that the REG model
is substantially inferior to the MWP model with re-
spect to prediction accuracy. 2 However, the REG
model can predict large numerals better and has
fewer large errors, indicating that the two models
are good at predicting numerals with different char-
acteristics (Figure 3). Figure 3 shows heat maps

2Note that the difference between the scores of “Ft. MWP
w/ CEL" in WP on Table 3 and the scores of “Ft. MWP w/
CEL" on Table 5 is because the models in Table 5 are trained
on half of the Wikipedia dataset.

(a) Fine-tuned MWP model (b) Fine-tuned REG model

Figure 3 Confusion matrices of the digits of the groundtruth
numerals and the predicted numerals from the two models.

representing confusion matrices of the groundtruth
numerals and the numerals predicted by the two
models. The numerals are classified by the num-
ber of digits. In both heat maps, the y axis is the
number of digits of the groundtruth numerals and
the x-axis is that of predicted numerals. The darker
the blue, the higher the percentage of numerals
belonging to the corresponding cell in each row.

The percentage of substantially incorrect predic-
tions that differ by more than one, two, and three
digits from the groundtruth numerals are respec-
tively 8.5%, 3.4%, and 1.5% for the MWP model,
whereas they are significantly lower, that is, 7.7%,
1.8%, and 0.4% for the REG model (Table 6). This
indicates that the overall prediction accuracies of
the REG model are quite low, and for many numer-
als, the MWP model can provide better predictions.
However, there are certain numerals that the REG
model can predict more accurately than the MWP
model. Moreover, the confusion matrices also in-
dicate that the REG model is more suitable for
predicting large numerals than the MWP model,
suggesting that the MWP and REG models are
good at predicting different types of numerals.

Table 4 shows examples of incorrect predictions
made by the MWP models and the REG model.
Passage c) is an example where the REG model
made better predictions for a large numeral than
did the MWP models. The reason why the MWP
models predicted “94.7" and “10.7" is that the con-
text in which the word “census" appears in the
training data has many occurrences of numerals
that represent percentages (including “94.7" and
“10.7"), such as the percentage of population by age.
From these results, it can be seen that the MWP
models basically do not understand the magnitude
of the numerals and learn relationships between nu-
merals as string tokens and context words. Passage
d) shows that the MWP models are effective in pre-
dicting a masked numeral where the groundtruth
numeral also appears elsewhere in the passage.
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Passage Ans CEL LN REG

a) Captain John Lovewell made three expeditions against the Indians. On the first expedition
in December 1724, he and his militia company of 30 men left Dunstable, . . . On December
10, 1724, they and a company of rangers killed two Abenakis. In February [MASK],
Lovewell made a second expedition to the Lake Winnipesaukee area. . . .

1725 1925 1727 762.0

b) Houston is considered an Automobile dependency city, with an estimated [MASK]% of
commuters driving alone to work in 2016, up from 71.7% in 1990 and 75.6% in 2009. . . .

77.2 50,000 11 12.0

c) As of the census of 2010, there were [MASK] people, 140,602 households, and 114,350
families residing in the county. . . .

516,564 94.7 10.7 118523.0

d) In September 1941, Partisans organized sabotage at the General Post Office in Zagreb.
. . . In November [MASK], German troops attacked and reoccupied this territory, with the
majority of Partisan forces escaping towards Bosnia. . . .

1941 1941 1941 1287.0

Table 4 Examples of incorrect predictions in the WP dataset. We list the context passages containing one masked numerals
(“Passage"), the groundtruth numerals (“Ans") and the numerals predicted by the MWP model fine-tuned with the cross entropy
loss (“CEL"), by the MWP model fine-tuned with LossNUM (“LN"), and by the REG model fine-tuned with LossMSE (“REG").

Model hit@1↑ hit@3↑ hit@10↑ MdAE↓ MdAPE↓

Ft.MWP w/ CEL 27.4 35.8 48.6 6.0 28.6
Ft.REG w/ MSE 4.19 7.52 15.2 54.0 60.0

Table 5 Hit@k accuracy (%), MdAE, and MdAPE (%) of
two approaches on the WP dataset.

Model ±2~ digits ±3~ digits ±4~ digits

Ft.MWP w/ CEL 8.5% 3.4% 1.5%
Ft.REG w/ MSE 7.7% 1.8% 0.4%

Table 6 Percentages of substantially incorrect predictions of
the MWP and REG model.

6.3 Future Work

MdAE, which uses the numerical absolute errors
between predicted numerals and groundtruth nu-
merals, is sensitive to the scale of the data and
is easily affected by the prediction accuracy for
large numerals in a dataset that contains numer-
als of different scales and types. MdAPE, which
evaluates absolute percentage errors, imposes large
penalties on the overestimation of masked numer-
als. For example, a prediction of “1" for “31"
in a sentence “Today is October 31." and a pre-
diction of “31" for “1" in a sentence “Today is
October 1." should both be equally wrong, but
the former results in an error of approximately
|31−1|
31 × 100 ≈ 100%, whereas the latter results

in an error of |1−31|1 × 100 = 3000%. Because of
these problems, there is room for consideration of
the appropriate evaluation metrics for the masked
numeral prediction task.

Although the REG model has a lower prediction
accuracy than existing language models, there are
certain numerals that the REG model can predict

more accurately than the MWP model. This im-
plies that the overall prediction accuracy can be
improved by using the MWP model and the REG
model differently depending on the target numer-
als. Such a combination method is also one task
for future work.

7 Conclusion

In this paper, we used the exact match accuracy
and numerical absolute errors metrics to evaluate
the masked numerical prediction task, focusing on
the fact that numerals have two aspects: symbolic
and quantitative. Based on this fact, we proposed
two methods to reflect the two aspects of numer-
als in the training of language models. Although
the proposed loss function, LossNUM, decreased
the exact match accuracy slightly, it also reduced
the numerical absolute errors on the masked nu-
meral prediction task, indicating the effectiveness
of LossNUM. Furthermore, we analyzed the re-
lationship between the properties of numerals in
datasets and the performances of different predic-
tion methods on four datasets with different prop-
erties. As a result, it was found that the types of
numerals that are likely to be mistakenly predicted
depend on which method is used.
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