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Abstract
Several studies investigated the linguistic in-
formation implicitly encoded in Neural Lan-
guage Models. Most of these works focused
on quantifying the amount and type of in-
formation available within their internal rep-
resentations and across their layers. In line
with this scenario, we proposed a different
study, based on Lasso regression, aimed at
understanding how the information encoded
by BERT sentence-level representations is ar-
ranged within its hidden units. Using a suite of
several probing tasks, we showed the existence
of a relationship between the implicit knowl-
edge learned by the model and the number of
individual units involved in the encodings of
this competence. Moreover, we found that it
is possible to identify groups of hidden units
more relevant for specific linguistic properties.

1 Introduction

The rise of contextualized word representations
(Peters et al., 2018; Devlin et al., 2019) has led
to significant improvement in several (if not ev-
ery) NLP tasks. The main drawback of these ap-
proaches, despite the outstanding performances, is
the lack of interpretability. In fact, high dimen-
sional representations do not allow for any insight
of the type of linguistic properties encoded in these
models. Therefore this implicit knowledge can
only be determined a posteriori, by designing tasks
that require a specific linguistic skill to be tackled
(Linzen and Baroni, 2020) or by investigating to
what extent certain information is encoded within
contextualized internal representations, e.g. defin-
ing probing classifier trained to predict a variety
of language phenomena (Conneau et al., 2018a;
Hewitt and Manning, 2019; Tenney et al., 2019a).

In line with this latter approach and with re-
cent works aimed at investigating how the informa-
tion is arranged within neural models representa-
tions (Baan et al., 2019; Dalvi et al., 2019; Lakretz

et al., 2019), we proposed an in-depth investigation
aimed at understanding how the information en-
coded by BERT is arranged within its internal rep-
resentation. In particular, we defined two research
questions, aimed at: (i) investigating the relation-
ship between the sentence-level linguistic knowl-
edge encoded in a pre-trained version of BERT and
the number of individual units involved in the en-
coding of such knowledge; (ii) understanding how
these sentence-level properties are organized within
the internal representations of BERT, identifying
groups of units more relevant for specific linguistic
tasks. We defined a suite of probing tasks based on
a variable selection approach, in order to identify
which units in the internal representations of BERT
are involved in the encoding of similar linguistic
properties. Specifically, we relied on a wide range
of linguistic tasks, which resulted to successfully
model different typology of sentence complexity
(Brunato et al., 2020), from very simple features
(such as sentence length) to more complex prop-
erties related to the morphosyntactic and syntactic
structure of a sentence (such as the distribution of
specific dependency relations).

The paper is organized as follows. In Sec. 2
we present related work, then we describe our ap-
proach (Sec. 3), with a focus on the model and the
data used for the experiments (Sec. 3.1) and the
set of probing tasks (Sec. 3.2). Experiments and
results are discussed in Sec. 4 and 5. To conclude,
we summarize the main findings of our work in
Sec. 6.

2 Related work

In the last few years, a number of recent works
have explored the inner mechanism and the lin-
guistic knowledge implicitly encoded in Neural
Language Models (NLMs) (Belinkov and Glass,
2019). The most common approach is based on
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the development of probes, i.e. supervised mod-
els trained to predict simple linguistic properties
using the contextual word/sentence embeddings of
a pre-trained model as training features (Conneau
et al., 2018b; Zhang and Bowman, 2018; Miaschi
et al., 2020). These latter studies demonstrated that
NLMs are able to encode a wide range of linguistic
information in a hierarchical manner (Blevins et al.,
2018; Jawahar et al., 2019; Tenney et al., 2019b)
and even to support the extraction of dependency
parse trees (Hewitt and Manning, 2019). For in-
stance, Liu et al. (2019) quantified differences in
the transferability of individual layers between dif-
ferent models, showing that higher layers of RNNs
(ELMo) are more task-specific (less general), while
transformer layers (BERT) do not exhibit this in-
crease in task-specificity.

Other works also investigated the importance of
individual neurons within models representations
(Qian et al., 2016; Bau et al., 2019; Baan et al.,
2019). Dalvi et al. (2019) proposed two methods,
Linguistic Correlations Analysis and Cross-model
correlation analysis, to study whether specific di-
mensions learned by end-to-end neural models are
responsible for specific properties. For instance,
they showed that open class categories such as
verbs and location are much more distributed across
the network compared to closed class categories
(e.g. coordinating conjunction) and also that the
model recognizes a hierarchy of linguistic propri-
eties and distributes neurons based on it. Lakretz
et al. (2019), instead, proposed a detailed study of
the inner mechanism of number tracking in LSTMs
at single neuron level, showing that long distance
number information (from the subject to the verb)
is largely managed by two specific units.

Differently from those latter work, our aim was
to combine previous approaches based on probes
and on the study on individual units in order to pro-
pose an in-depth investigation on the organization
of linguistic competence within NLM contextual-
ized representations.

3 Approach

To study how the information used by BERT to
implicitly encode linguistic properties is arranged
within its internal representations, we relied on a
variable selection approach based on Lasso regres-
sion (Tibshirani, 1996), which aims at keeping as
few non-zero coefficients as possible when solving
specific regression tasks. Our aim was to identify

which weights within sentence-level BERT inter-
nal representations can be set to zero, in order to
understand the relationship between hidden units
and linguistic competence and whether the infor-
mation needed to perform similar linguistic tasks is
encoded in similar positions. We relied on a suite
of 68 sentence-level probing tasks, each of which
corresponds to a specific linguistic feature captur-
ing characteristics of a sentence at different levels
of granularity. In particular, we defined a Lasso re-
gression model that takes as input layer-wise BERT
representations for each sentence of a gold standard
Universal Dependencies (UD) (Nivre et al., 2016)
English dataset and predicts the actual value of
a given sentence-level feature. Lasso regression
consists in adding an L1 penalization to the usual
ordinary least square loss. To do so, one of the most
relevant parameters is λ, which tunes how relevant
the L1 penalization is for the loss function. We
performed a grid search with cross validation for
each feature-layer pair, in order to identify the best
suited value for λ according to each task. Specifi-
cally, our goal was to find the most suited value for
seeking the best performance when having as few
non-zero coefficients as possible.

3.1 Model and data
We used a pre-trained version of BERT (BERT-
base uncased, 12 layers). In order to obtain the
representations for our sentence-level tasks we ex-
perimented with the activation of the first input
token ([CLS]) and the mean of all the word embed-
dings for each sentence (Mean-pooling).

With regard to the data used for the regression
experiments, we relied on the Universal Dependen-
cies (UD) English dataset. The dataset includes
three UD English treebanks: UD English-ParTUT,
a conversion of a multilingual parallel treebank con-
sisting of a variety of text genres, including talks,
legal texts and Wikipedia articles (Sanguinetti and
Bosco, 2015); the Universal Dependencies version
annotation from the GUM corpus (Zeldes, 2017);
the English Web Treebank (EWT), a gold standard
universal dependencies corpus for English (Silveira
et al., 2014). Overall, the final dataset consists of
23,943 sentences.

3.2 Linguistic features
As already mentioned, we defined a suite of prob-
ing tasks relying on a wide set of sentence-level
linguistic features automatically extracted from the
parsed sentences in the UD dataset. The set of
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Level of Annotation Linguistic Feature Label

Raw Text
Raw Text Properties

Sentence Length sent length
Word Length char per tok

Vocabulary Vocabulary Richness
Type/Token Ratio for words and lemmas ttr form, ttr lemma

POS tagging

Morphosyntactic information
Distibution of UD and language–specific POS upos dist *, xpos dist *
Lexical density lexical density

Inflectional morphology
Inflectional morphology of lexical verbs and auxiliaries xpos VB-VBD-VBP-VBZ, aux *

Dependency Parsing

Verbal Predicate Structure
Distribution of verbal heads and verbal roots verbal head dist, verbal root perc
Verb arity and distribution of verbs by arity avg verb edges, verbal arity *

Global and Local Parsed Tree Structures
Depth of the whole syntactic tree parse depth
Average length of dependency links and of the longest link avg links len, max links len
Average length of prepositional chains and distribution by depth avg prep chain len, prep dist *
Clause length avg token per clause

Order of elements
Order of subject and object subj pre, obj post

Syntactic Relations
Distribution of dependency relations dep dist *

Use of Subordination
Distribution of subordinate and principal clauses principal prop dist, subordinate prop dist
Average length of subordination chains and distribution by depth avg subord chain len, subordinate dist 1
Relative order of subordinate clauses subordinate post

Table 1: Linguistic Features used in the experiments.

features is based on the ones described in Brunato
et al. (2020) which are acquired from raw, morpho-
syntactic and syntactic levels of annotation and
can be categorised in 9 groups corresponding to
different linguistic phenomena. As shown in Ta-
ble 1, these features model linguistic phenomena
ranging from raw text one, to morpho–syntactic
information and inflectional properties of verbs, to
more complex aspects of sentence structure model-
ing global and local properties of the whole parsed
tree and of specific subtrees, such as the order of
subjects and objects with respect to the verb, the
distribution of UD syntactic relations, also includ-
ing features referring to the use of subordination
and to the structure of verbal predicates.

4 Linguistic competence and BERT units

As a first analysis, we investigated the relationship
between the implicit linguistic properties encoded
in the internal representations of BERT and the
number of individual units involved in the encod-
ing of these properties. Figure 1 and 2 report lay-
erwise R2 results for all the probing tasks along
with the number of non-zero coefficients obtained
with the sentence representations computed with
the [CLS] token and the Mean-pooling strategy re-
spectively. As a first remark, we can notice that
the Mean-pooling method proved to be the best
one for almost all the probing features across the
12 layers. Moreover, in line with Hewitt and Man-
ning (2019), we noticed that there is high variabil-
ity among different tasks, whereas less variation

occurs among the model layers. In general, we
observe that best scores are related to features be-
longing to raw text and vocabulary proprieties, such
as sentence length and Type/Token Ratio. Never-
theless, BERT representations implicitly encode
information also related to more complex syntactic
features, such as the order of the subject (subj pre)
or the distribution of several dependency relations
(e.g. dep dist det, dep dist punct). Interestingly,
the knowledge about POS differs when we consider
more granular distinctions. For instance, within the
broad categories of verbs and nouns, worse predic-
tions were obtained by sub-specific classes of verbs
based on tense, person and mood features (see es-
pecially past participle, xpos dist VBN). Similarly,
within the verb predicate structure properties, we
observe that lower R2 scores were obtained by
features related to sub-categorization information
about verbal predicates, such as the distribution of
verbs by arity (verbal arity *).

Focusing instead on the relationship between R2

scores and number of non-zero coefficients, we
can notice that although best scores are achieved
at lower layers (between layers 12 and 8 for both
configurations), the highest number of non-zero
coefficients occurs instead at layers closer to the
output. This is particularly evident for the results
achieved using the [CLS] token, for which we ob-
serve a continuous increase across the 12 layers in
the number of units used by the the probing models.

For both configurations, features more related
to the structure of the whole syntactic tree are
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Figure 1: Layerwise R2 results for all the probing tasks (left heatmap) along with the number of non-zero coeffi-
cients (right heatmap) obtained with the sentence representations computed using the [CLS] token.

those for which less units were set to zero dur-
ing regression (e.g. max links len, parse depth,
n prepositional chains), while properties belong-
ing to word–based properties (i.e. features related
to POS and dependency labels) were predicted re-
lying on less units. Moreover, we can clearly no-
tice that features related to specific POS and de-
pendency relationships are also those that gained
less units through the 12 layers (e. g. xpos dist .,
xpos dist AUX). On the contrary, features belong-
ing to the structure of the syntactic tree tend to
acquire more non-zero units as the output layer is
approached. This is particularly evident for the
linguistic features predicted using sentence repre-
sentations computed using the [CLS] token (e.g.
subj pre, parse depth, n prepositional chains). We
believe this is due to the fact that the interdepen-
dence between different units in each representa-
tion tend to increase across layers, thus making
the information less localized especially for those

features that belong to the whole structure of the
syntactic tree. This is coherent with the fact that
using the Mean-pooling strategy a higher number
of non-zero coefficients was preserved also in the
very first input layers, suggesting that this strategy
increases the interdependence between each unit
and makes the extraction of localized information
more complex.

In order to focus more closely on the relationship
between R2 scores and non-zero units, we reported
in Figures 3a and 3b average R2 scores versus av-
erage number of non-zero coefficients, along with
the line of best fit, for each layer and according
to the [CLS] token and to the Mean-pooling strat-
egy respectively. Interestingly, for both [CLS] and
Mean-pooling representations, R2 scores tend to
improve as the number of non-zero coefficients in-
creases. Moreover, when considering sentence rep-
resentations computed with the [CLS] token, this
behaviour becomes more pronounced as the output
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Figure 2: Layerwise R2 results for all the probing tasks (left heatmap) along with the number of non-zero coeffi-
cients (right heatmap) obtained with the sentence representations computed with the Mean-pooling strategy.

layer is reached. This is in line with what we al-
ready noticed, namely that the interdependence be-
tween different units tend to increase across layers,
especially when taking into account representations
extracted without using a mean-pooling strategy.

In order to investigate more in depth the be-
haviour of BERT hidden units when solving the
probing tasks, we focused more closely at how the
different units in the internal representations are
kept and lost across subsequent layers. Figure 4
reports the average number of non-zero coefficients
in a layer that are set to zero in the following one
(4a), the average number of zero coefficients in a
layer that are set to non-zero in the following one
(4b) and the average value of the difference be-
tween the number of non-zero coefficients at pairs
of consecutive layers (4c). As it can be observed,
there is high coherence between each layer and its
subsequent one, meaning that the variation in the
number of selected coefficient is stable (4c). How-
ever, the first two plots also show that there is a
higher variation when considering non-zero coeffi-

cients in the same positions between pairs of layers.
This underlines the fact that the information is not
localized within BERT’s internal representations,
since the algorithm shows a degree of freedom in
which units can be zeroed and which cannot.

In Figure 5 we report instead how many times
each individual unit in the [CLS] (5a) and Mean-
pooling (5b) internal representations has been kept
non-zero when solving the 68 probing tasks for
all the 12 BERT layers (816 regression task). In
general, we can observe that the regression tasks
performed using sentence-level representations ob-
tained with the Mean-pooling strategy tend to use
more hidden units with respect to the [CLS] ones.
It is also interesting to notice that there is a highly
irregular unit (number 308) that has been kept dif-
ferent from zero in a number of tasks and layers
much higher than the average. This could suggest
that this unit is particularly relevant for encoding
almost all the linguistic properties devised in our
probing tasks.
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(a) (b)

Figure 3: Average R2 scores versus average number of non-zero coefficients, along with the line of best fit, for
each layer and according to [CLS] (a) and Mean-pooling (b) strategy.

(a) (b)

(c)

Figure 4: In (a) the average number of non-zero coefficients in a layer that are set to zero in the following one
(average number of dropped coefficients), in (b) the average number of zero coefficients in a layer that are set to
non-zero in the following one (average number of gained coefficients) and in (c) the value of the difference between
the number of non-zero coefficients at pairs of consecutive layers (average number of changed coefficients).

5 Is information linguistically arranged
within BERT representations?

Once we have investigated the relationship between
the linguistic knowledge implicitly encoded by

BERT and the number of individual units involved
in it, we verified whether we can identify groups of
units particularly relevant for specific probing tasks.
To this end, we clustered the 68 probing features
according to the weights assigned by the regression
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(a)

(b)

Figure 5: Number of times in which each BERT indi-
vidual unit (computed with [CLS] token in (a) and with
Mean-pooing aggregation strategy in (b)) has been kept
as non-zero when solving all the probing tasks for all
the 12 layers.

models to each BERT hidden unit. Specifically, we
perform hierarchical clustering using correlation
distance as distance metric. Figure 6 and 7 report
the hierarchical clustering obtained with the [CLS]
and Mean-pooling internal representations at lay-
ers 12, 8 and 1. We chose layers 12 and 1 in order
to study differences of the clustering of linguistic
features taking into account the representations that
were more distant and more closer to the language
modeling task respectively, while layer 8 was cho-
sen since it was the layer after which BERT’s repre-
sentations tend to lose their precision in encoding
our set of linguistic properties.

As a general remark, we can notice that, despite
some variations, the linguistic features are orga-
nized in a similar manner across the tree layers
and for both the configuration. This is to say that,
despite the number of non-zero coefficients varies

significantly between layers and according to the
strategy for extracting the internal representations,
the way in which linguistic properties are arranged
within BERT embeddings is quite consistent. This
suggests that there is a coherent organization of lin-
guistic features according to non-zero coefficients
that is independent from the layer and the aggrega-
tion techniques taken into account.

Focusing on specific groups of features, we ob-
serve that, even if the traditional division with
respect to the linguistic annotation levels (see
Table 1) has not been completely maintained,
it is possible to identify different clusters of
features referable to the same linguistic phe-
nomena for all the 3 layers taken into account
and for both configurations. In particular, we
can clearly observe groups of features related
to the length of dependency links and preposi-
tional chains (e.g. max links len, avg links len,
n prepositional chains), to vocabulary richness
(ttr form, ttr lemma), to properties related to ver-
bal predicate structure and inflectional morphology
of auxiliaries (e.g. xpos dist VBD, xpos dist VBN
aux form dist Fin, aux tense dist pres) and to
the use of punctuation (xpos dist ., xpos dist ,,
dep dist punct) and subordination (e.g. subor-
dinate dist 1, subordinate post). Interestingly
enough, BERT representations also tend to put to-
gether features related to each other but not nec-
essarily belonging to the same linguistic macro-
category. This is the case, for instance, of charac-
teristics corresponding to functional properties (e.g.
upos dist ADP, dep dist det).

6 Conclusions

In this paper we proposed an in-depth investigation
aimed at understanding how BERT embeddings
encode and organize linguistic competence. Re-
lying on a variable selection approach applied on
a suite of 68 probing tasks, we showed the exis-
tence of a relationship between the implicit lin-
guistic knowledge encoded by the NLM and the
number of individual units involved in the encod-
ing of this knowledge. We found that, according to
the strategy for obtaining sentence-level represen-
tations, the amount of hidden units devised to en-
code linguistic properties varies differently across
BERT layers: while the number of non-zero units
used in the Mean-pooling strategy remains more or
less constant across layers, the [CLS] representa-
tions show a continuous increase in the number of
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Figure 6: From top to bottom, the hierarchical clustering for the [CLS] setting of all the tasks respectively at layers
12, 8 and 1.

used coefficients. Moreover, we noticed that this
behaviour is particularly significant for linguistic
properties related to the whole structure of the syn-
tactic tree, while features belonging to POS and
dependency tags tend to acquire less non-zero units
across layers.

Finally, we found that it is possible to identify
groups of units more relevant for specific linguis-
tic tasks. In particular, we showed that clustering
our set of sentence-level properties according to
the weights assigned by the regression models to
each BERT unit we can identify clusters of fea-
tures referable to the same linguistic phenomena
and this, despite some variations, is true for both
the configurations and for all the BERT layers.
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