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Abstract

Transformer networks have revolutionized

NLP representation learning since they were

introduced. Though a great effort has been

made to explain the representation in trans-

formers, it is widely recognized that our un-

derstanding is not sufficient. One important

reason is that there lack enough visualiza-

tion tools for detailed analysis. In this pa-

per, we propose to use dictionary learning

to open up these ‘black boxes’ as linear su-

perpositions of transformer factors. Through

visualization, we demonstrate the hierarchi-

cal semantic structures captured by the trans-

former factors, e.g., word-level polysemy dis-

ambiguation, sentence-level pattern formation,

and long-range dependency. While some

of these patterns confirm the conventional

prior linguistic knowledge, the rest are rela-

tively unexpected, which may provide new in-

sights. We hope this visualization tool can

bring further knowledge and a better under-

standing of how transformer networks work.

The code is available at https://github.
com/zeyuyun1/TransformerVis.

1 Introduction

Though the transformer networks (Vaswani et al.,

2017; Devlin et al., 2018) have achieved great suc-

cess, our understanding of how they work is still

fairly limited. This has triggered increasing efforts

to visualize and analyze these “black boxes”. Be-

sides a direct visualization of the attention weights,

most of the current efforts to interpret transformer

models involve “probing tasks”. They are achieved

by attaching a light-weighted auxiliary classifier at

the output of the target transformer layer. Then

only the auxiliary classifier is trained for well-

known NLP tasks like part-of-speech (POS) Tag-

ging, Named-entity recognition (NER) Tagging,
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Syntactic Dependency, etc. Tenney et al. (2019)

and Liu et al. (2019) show transformer models

have excellent performance in those probing tasks.

These results indicate that transformer models have

learned the language representation related to the

probing tasks. Though the probing tasks are great

tools for interpreting language models, their lim-

itation is explained in Rogers et al. (2020). We

summarize the limitation into three major points:

• Most probing tasks, like POS and NER tag-

ging, are too simple. A model that performs

well in those probing tasks does not reflect the

model’s true capacity.

• Probing tasks can only verify whether a cer-

tain prior structure is learned in a language

model. They can not reveal the structures be-

yond our prior knowledge.

• It’s hard to locate where exactly the related

linguistic representation is learned in the trans-

former.

Efforts are made to remove those limitations and

make probing tasks more diverse. For instance,

Hewitt and Manning (2019) proposes “structural

probe”, which is a much more intricate probing

task. Jiang et al. (2020) proposes to generate spe-

cific probing tasks automatically. Non-probing

methods are also explored to relieve the last two

limitations. For example, Reif et al. (2019) visu-

alizes embedding from BERT using UMAP and

shows that the embeddings of the same word un-

der different contexts are separated into different

clusters. Ethayarajh (2019) analyzes the similarity

between embeddings of the same word in different

contexts. Both of these works show transformers

provide a context-specific representation.

Faruqui et al. (2015); Arora et al. (2018); Zhang

et al. (2019) demonstrate how to use dictionary

learning to explain, improve, and visualize the un-

contextualized word embedding representations. In
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this work, we propose to use dictionary learning

to alleviate the limitations of the other transformer

interpretation techniques. Our results show that dic-

tionary learning provides a powerful visualization

tool, leading to some surprising new knowledge.

2 Method

Hypothesis: contextualized word embedding as
a sparse linear superposition of transformer
factors. It is shown that word embedding vectors

can be factorized into a sparse linear combination

of word factors (Arora et al., 2018; Zhang et al.,

2019), which correspond to elementary semantic

meanings. An example is:

apple =0.09“dessert” + 0.11“organism” + 0.16

“fruit” + 0.22“mobile&IT” + 0.42“other”.

We view the latent representation of words in a

transformer as contextualized word embedding.

Similarly, we hypothesize that a contextualized

word embedding vector can also be factorized as

a sparse linear superposition of a set of elemen-

tary elements, which we call transformer factors.

The exact definition will be presented later in this

section.

Figure 1: Building block (layer) of transformer

Due to the skip connections in each of the trans-

former blocks, we hypothesize that the representa-

tion in any layer would be a superposition of the hi-

erarchical representations in all of the lower layers.

As a result, the output of a particular transformer

block would be the sum of all of the modifications

along the way. Indeed, we verify this intuition

with the experiments. Based on the above observa-

tion, we propose to learn a single dictionary for the

contextualized word vectors from different layers’

output.

To learn a dictionary of transformer factors
with non-negative sparse coding.

Given a set of tokenized text sequences, we col-

lect the contextualized embedding of every word

using a transformer model. We define the set of

all word embedding vectors from lth layer of trans-

former model as X(l). Furthermore, we collect

the embeddings across all layers into a single set

X = X(1) ∪X(2) ∪ · · · ∪X(L).

By our hypothesis, we assume each embedding

vector x ∈ X is a sparse linear superposition of

transformer factors:

x = Φα+ ε, s.t. α � 0, (1)

where Φ ∈ IRd×m is a dictionary matrix with

columns Φ:,c , α ∈ IRm is a sparse vector of coef-

ficients to be inferred and ε is a vector containing

independent Gaussian noise samples, which are as-

sumed to be small relative to x. Typically m > d
so that the representation is overcomplete. This

inverse problem can be efficiently solved by FISTA

algorithm (Beck and Teboulle, 2009). The dictio-

nary matrix Φ can be learned in an iterative fashion

by using non-negative sparse coding, which we

leave to the appendix section C. Each column Φ:,c

of Φ is a transformer factor and its corresponding

sparse coefficient αc is its activation level.

Visualization by top activation and LIME inter-
pretation. An important empirical method to visu-

alize a feature in deep learning is to use the input

samples, which trigger the top activation of the fea-

ture (Zeiler and Fergus, 2014). We adopt this con-

vention. As a starting point, we try to visualize each

of the dimensions of a particular layer, X(l). Un-

fortunately, the hidden dimensions of transformers

are not semantically meaningful, which is similar

to the uncontextualized word embeddings (Zhang

et al., 2019).

Instead, we can try to visualize the transformer

factors. For a transformer factor Φ:,c and for a

layer-l, we denote the 1000 contextualized word

vectors with the largest sparse coefficients α
(l)
c as

X
(l)
c ⊂ X(l), which correspond to 1000 differ-

ent sequences. For example, Figure 3 shows the

top 5 words that activated transformer factor-17

Φ:,17 at layer-0, layer-2, and layer-6 respectively.

Since a contextualized word vector is generally af-

fected by many tokens in the sequence, we can use

LIME (Ribeiro et al., 2016) to assign a weight to

each token in the sequence to identify their relative
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importance to αc. The detailed method is left to

Section 3.

To determine low-, mid-, and high-level trans-
former factors with importance score. As we

build a single dictionary for all of the transformer

layers, the semantic meaning of the transformer fac-

tors has different levels. While some of the factors

appear in lower layers and continue to be used in

the later stages, the rest of the factors may only be

activated in the higher layers of the transformer net-

work. A central question in representation learning

is: “where does the network learn certain informa-

tion?” To answer this question, we can compute

an “importance score” for each transformer factor

Φ:,c at layer-l as I
(l)
c . I

(l)
c is the average of the

largest 1000 sparse coefficients α
(l)
c ’s, which cor-

respond to X
(l)
c . We plot the importance scores

for each transformer factor as a curve is shown in

Figure 2. We then use these importance score (IS)

curves to identify which layer a transformer factor

emerges. Figure 2a shows an IS curve peak in the

earlier layer. The corresponding transformer factor

emerges in the earlier stage, which may capture

lower-level semantic meanings. In contrast, Fig-

ure 2b shows a peak in the higher layers, which

indicates the transformer factor emerges much later

and may correspond to mid- or high-level seman-

tic structures. More subtleties are involved when

distinguishing between mid-level and high-level

factors, which will be discussed later.

An important characteristic is that the IS curve

for each transformer factor is relatively smooth.

This indicates if a vital feature is learned in the

beginning layers, it won’t disappear in later stages.

Instead, it will be carried all the way to the end

with gradually decayed weight since many more

features would join along the way. Similarly, ab-

stract information learned in higher layers is slowly

developed from the early layers. Figure 3 and 5

confirm this idea, which will be explained in the

next section.

3 Experiments and Discoveries

We use a 12-layer pre-trained BERT model (Pre;

Devlin et al., 2018) and freeze the weights. Since

we learn a single dictionary of transformer factors

for all of the layers in the transformer, we show that

these transformer factors correspond to different

levels of semantic or syntactic patterns. The pat-

terns can be roughly divided into three categories:

(a) (b)

Figure 2: Importance score (IS) across all layers for

two different transformer factors. (a) This figure shows

a typical IS curve of a transformer factor correspond-

ing to low-level information. (b) This figure shows a

typical IS curve of a transformer factor corresponds to

mid-level information.

word-level disambiguation, sentence-level pattern

formation, and long-range dependency. In the fol-

lowing, we provide detailed visualization for each

pattern category. Due to the space limit, only a

small amount of the factors are demonstrated in the

paper. To alleviate the “cherry-picking” bias, we

also build a website for the interested readers to

play with these results.

Low-level: word-level polysemy disambigua-
tion. While the input embedding of a token con-

tains polysemy, we find transformer factors with

early IS curve peaks usually correspond to a spe-

cific word-level meaning. By visualizing the top

activation sequences, we can see how word-level

disambiguation is gradually developed in a trans-

former.

We show how the disambiguation effect devel-

ops progressively through each layer in Figure 3.

In Figure 3, the top 5 activated words and their

contexts for transformer factor Φ:,30 in different

layers are listed. The top activated words in layer

0 contain the word “left” varying senses, which is

being mostly disambiguated in layer 2 albeit not

completely. In layer 4, the word “left” is fully

disambiguated since the top-activated word con-

tains only “left” with the word sense “leaving, exit-

ing.” We also show more examples of those types

of transformer factors in Table 1: for each trans-

former factor, we list out the top 3 activated words

and their contexts in layer 4. As shown in the table,

nearly all top-activated words are disambiguated

into a single sense.

Further, we can quantify the quality of the disam-

biguation ability of the transformer model. In the

example above, since the top 1000 activated words
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(a) layer 0 (b) layer 2 (c) layer 6

Figure 3: Visualization of a low-level transformer factor, Φ:,30 at different layers. (a), (b) and (c) are the top-

activated words and contexts for Φ:,30 in layer-0, 2 and 4 respectively. We can see that at layer-0, this transformer

factor corresponds to word vectors that encode the word “left” with different senses. In layer-2, a majority of the

top activated words “left” correspond to a single sense, "leaving, exiting." In layer 4, all of the top-activated words

“left” have corresponded to the same sense, "leaving, exiting." Due to space limitations, we invite the readers to

use our website to see more of those disambiguation effects.

Top 3 activated words and their contexts Explanation

Φ:,2

• that snare shot sounded like somebody’ d kicked open the door to your
mind".
• i became very frustrated with that and finally made up my mind to start
getting back into things."
• when evita asked for more time so she could make up her mind, the crowd
demanded," ¡ ahora, evita,<

• Word “mind”
• Noun
• Definition: the element of a
person that enables them to be
aware of the world and their ex-
periences.

Φ:,16

•nington joined the five members xero and the band was renamed to linkin
park.
• times about his feelings about gordon, and the price family even sat away
from park’ s supporters during the trial itself.
• on 25 january 2010, the morning of park’ s 66th birthday, he was found
hanged and unconscious in his

• Word “park”
• Noun
• Definition: a common first and
last name

Φ:,30

• saying that he has left the outsiders, kovu asks simba to let him join his
pride
• eventually, all boycott’ s employees left, forcing him to run the estate without
help.
• the story concerned the attempts of a scientist to photograph the soul as it
left the body.

• Word “left"
• Verb
• Definition: leaving, exiting

Φ:,33

• forced to visit the sarajevo television station at night and to film with as
little light as possible to avoid the attention of snipers and bombers.
• by the modest, cream@-@ colored attire in the airy, light@-@ filled clip.
• the man asked her to help him carry the case to his car, a light@-@ brown
volkswagen beetle.

• Word “light”
• Noun
• Definition: the natural agent
that stimulates sight and makes
things visible

Table 1: Several examples of low-level transformer factors. Their top-activated words in layer 4 are marked blue,

and the corresponding contexts are shown as examples for each transformer factor. As shown in the table, nearly

all of the top-activated words are disambiguated into a single sense. Please note the last example of Φ:,33 is a rare

exception, the reader may check the appendix to see a more complete list. More examples, top-activated words

and contexts are provided in Appendix.

and contexts are “left” with only the word sense

“leave, exiting”, we can assume “left” when used

as a verb, triggers higher activation in Φ:,30 than

“left” used as other sense of speech. We can verify

this hypothesis using a human-annotated corpus:

Brown corpus (Francis and Kucera, 1979). In this

corpus, each word is annotated with its correspond-

ing part-of-speech. We collect all the sentences

contains the word “left” annotated as a verb in one

set and sentences contains “left” annotated as other

part-of-speech. As shown in Figure 4a, in layer 0,

the average activation of Φ:,30 for the word “left”

marked as a verb is no different from “left” as other

senses. However, at layer 2, “left” marked as a

verb triggers a higher activation of Φ:,30. In layer

4, this difference further increases, indicating dis-

ambiguation develops progressively across layers.

In fact, we plot the activation of “left” marked as

verb and the activation of other “left” in Figure 4b.

In layer 4, they are nearly linearly separable by this
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(a) (b)

Figure 4: (a) Average activation of Φ:,30 for word vector “left” across different layers. (b) Instead of averaging, we

plot the activation of all “left” with different contexts in layer-0, 2, and 4. Random noise is added to the y-axis to

prevent overplotting. The activation of Φ:,30 for two different word senses of “left” is blended together in layer-0.

They disentangle to a great extent in layer-2 and nearly separable in layer-4 by this single dimension.

(a) layer 4 (b) layer 6 (c) layer 8

Figure 5: Visualization of a mid-level transformer factor. (a), (b), (c) are the top 5 activated words and contexts

for this transformer factor in layer-4, 6, and 8 respectively. Again, the position of the word vector is marked blue.

Please notice that sometimes only a part of a word is marked blue. This is due to that BERT uses word-piece

tokenizer instead of whole word tokenizer. This transformer factor corresponds to the pattern of “consecutive

adjective”. As shown in the figure, this feature starts to develop at layer-4 and fully develops at layer-8.

Precision
(%)

Recall
(%)

F1 score
(%)

Average perceptron POS
tagger

92.7 95.5 94.1

Finetuned BERT base
model for POS task

97.5 95.2 96.3

Logistic regression clas-
sifier with activation of
Φ:,30 at layer 4

97.2 95.8 96.5

Table 2: Evaluation of binary POS tagging task: predict

whether or not “left” in a given context is a verb.

single feature. Since each word “left” corresponds

to an activation value, we can perform a logistic

regression classification to differentiate those two

types of “left”. From the result shown in Figure 4a,

it is pretty fascinating to see that the disambigua-

tion ability of just Φ:,30 is better than the other two

classifiers trained with supervised data. This result

confirms that disambiguation is indeed done in the

early part of pre-trained transformer model and we

are able to detect it via dictionary learning.

Mid level: sentence-level pattern formation. We

find most of the transformer factors, with an IS

curve peak after layer 6, capture mid-level or high-

level semantic meanings. In particular, the mid-

level ones correspond to semantic patterns like

phrases and sentences pattern.

We first show two detailed examples of mid-level

transformer factors. Figure 5 shows a transformer

factor that detects the pattern of consecutive usage

of adjectives. This pattern starts to emerge at layer

4, develops at layer 6, and becomes quite reliable at

layer 8. Figure 6 shows a transformer factor, which

corresponds to a pretty unexpected pattern: “unit

exchange”, e.g., 56 inches (140 cm). Although this

exact pattern only starts to appear at layer 8, the

sub-structures that make this pattern, e.g., paren-

thesis and numbers, appear to trigger this factor in

layers 4 and 6. Thus this transformer factor is also
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(a) layer 4 (b) layer 6 (c) layer 8

Figure 6: Another example of a mid-level transformer factor visualized at layer-4, 6, and 8. The pattern that cor-

responds to this transformer factor is “unit exchange”. Such a pattern is somewhat unexpected based on linguistic

prior knowledge.

2 example words and their contexts with high activation Patterns
L4
(%)

L6
(%)

L8
(%)

L10
(%)

Φ:,13

• the steel pipeline was about 20 ° f(- 7 ° c) degrees.
• hand( 56 to 64 inches( 140 to 160 cm)) war horse is that
it was a

Unit exchange with paren-
theses

0 0 64.5 95.5

Φ:,42

• he died at the hospice of lancaster county from heart
• holly’ s drummer carl bunch suffered frostbite to his
toes( while aboard the ailments on 23 june 2007.

Something unfortunate
happened

94.0 100 100 100

Φ:,50

• hurricane pack 1 was a revamped version of story mode;
• in 1998, the categories were retitled best short form
music video, and best

Doing something again,
or making something new
again

74.5 100 100 100

Φ:,86

• he finished the 2005 – 06 season with 21 appearances
and seven goals.
• of an offensive game, finishing off the 2001 – 02 season
with 58 points in the 47 games

Consecutive years, used
in foodball season nam-
ing

0 100 85.0 95.5

Φ:,102

• the most prominent of which was bishop abel muzorewa’
s united african national council
• ralambo’ s father, andriamanelo, had established rules of
succession by

African names 99.0 100 100 100

Φ:,125

• music writer jeff weiss of pitchfork describes the" endur-
ing image"
• club reviewer erik adams wrote that the episode was a
perfect mix

Describing someone in a
paraphrasing style. Name,
Career

15.5 99.0 100 98.5

Φ:,184

• the world wide fund for nature( wwf) announced in 2010
that a biodiversity study from
• fm) was halted by the federal communications commis-
sion( fcc) due to a complaint that the company buying

Institution with abbrevia-
tion

0 15.5 39.0 63.0

Φ:,193

• 74, 22@,@ 500 vietnamese during 1979 – 92, over
2@,@ 500 bosnian
•, the russo@-@ turkish war of 1877 – 88 and the first
balkan war in 1913.

Time span in years 97.0 95.5 96.5 95.5

Φ:,195

•s, hares, badgers, foxes, weasels, ground squirrels, mice,
hamsters
•-@ watching, boxing, chess, cycling, drama, languages,
geography, jazz and other music

Consecutive of noun
(Enumerating)

8.0 98.5 100 100

Φ:,225

• technologist at the united states marine hospital in key
west, florida who developed a morbid obsession for
• 00°,11”, w, near smith valley, nevada.

Places in US, follow-
ings the convention “city,
state"

51.5 91.5 91.0 77.5

Table 3: A list of typical mid-level transformer factors. The top-activation words and their context sequences for

each transformer factor at layer-8 are shown in the second column. We summarize the patterns of each transformer

factor in the third column. The last 4 columns are the percentage of the top 200 activated words and sequences that

contain the summarized patterns in layer-4,6,8, and 10 respectively.

gradually developed through several layers.

While some mid-level transformer factors verify

common semantic or syntactic patterns, there are

also many surprising mid-level transformer factors.

We list a few in Table 3 with quantitative analysis.

For each listed transformer factor, we analyze the

top 200 activating words and their contexts in each

layer. We record the percentage of those words and

contexts that correspond to the factors’ semantic

pattern in Table 3. From the table, we see that large
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Adversarial Text Explaination α35

(o)
album as "full of exhilarating, ecstatic, thrilling, fun and
sometimes downright silly songs"

The original top-activated word and its
context sentence for transformer factor
Φ:,35 (not an adversarial text)

9.5

(a)
album as "full of delightful, lively, exciting, interesting
and sometimes downright silly songs"

Replace the adjectives in sentence (o)
with different adjectives.

9.2

(b)
album as "full of unfortunate, heartbroken, annoying, bor-
ing and sometimes downright silly songs"

Replace the adjectives in sentence (o)
with negative adjectives.

8.2

(c)
album as "full of [UNK], [UNK], thrilling, [UNK] and
sometimes downright silly songs"

Mask the adjectives in sentence (o)
with unknown tokens.

5.3

(d)
album as "full of thrilling and sometimes downright silly
songs"

Remove the first three adjectives in sen-
tence (o).

7.8

(e)
album as "full of natural, smooth, rock, electronic and
sometimes downright silly songs"

Replace the adjectives in sentence (o)
with neutral adjectives.

6.2

(f)
each participant starts the battle with one balloon. these
can be re@-@ inflated up to four

Use a random sentence. 0.0

(g)
The book is described as "innovative, beautiful and bril-
liant". It receive the highest opinion from James Wood

We create this sentence that contain the
pattern of consecutive adjective.

7.9

Table 4: We construct adversarial texts similar but different to the pattern “Consecutive adjective”. The last column

shows the activation of Φ:,35, or α
(8)
35 , w.r.t. the blue-marked word in layer 8.

percentages of top-activated words and contexts

do corresponds to the pattern we describe. It also

shows most of these mid-level patterns start to de-

velop at layer 4 or 6. More detailed examples are

provided in the appendix section F. Though it’s still

mysterious why the transformer network develops

representations for these surprising patterns, we

believe such a direct visualization can provide ad-

ditional insights, which complements the “probing

tasks”.

To further confirm a transformer factor does

correspond to a specific pattern, we can use con-

structed example words and context to probe their

activation. In Table 4, we construct several text

sequences that are similar to the patterns corre-

sponding to a particular transformer factor but with

subtle differences. The result confirms that the con-

text that strictly follows the pattern represented by

that transformer factor triggers a high activation.

On the other hand, the closer the adversarial exam-

ple to this pattern, the higher activation it receives

at this transformer factor.

High-level: long-range dependency. High-level

transformer factors correspond to those linguistic

patterns that span an extended range in the text.

Since the IS curves of mid-level and high-level

transformer factors are similar, it is difficult to dis-

tinguish those transformer factors based on their

IS cures. Thus, we have to manually examine the

top-activation words and contexts for each trans-

former factor to differentiate between mid-level

and high-level transformer factors. To ease the

process, we choose to use the black-box interpreta-

tion algorithm LIME (Ribeiro et al., 2016) to iden-

tify the contribution of each token in a sequence.

There also exist interpretation tools that specifically

leverage the transformer architecture (Chefer et al.,

2021, 2020). In the future, one could adapt those

interpretation tools, which may potentially provide

better visualization.

Given a sequence s ∈ S, we can treat α
(l)
c,i , the

activation of Φ:,c in layer-l at location i, as a scalar

function of s, f
(l)
c,i (s). Assume a sequence s trig-

gers a high activation α
(l)
c,i , i.e. f

(l)
c,i (s) is large. We

want to know how much each token (or equivalently

each position) in s contributes to f
(l)
c,i (s). To do

so, we generated a sequence set S(s), where each

s′ ∈ S(s) is the same as s except for that several

random positions in s′ are masked by [‘UNK’] (the

unknown token). Then we learns a linear model

gw(s
′) with weights w ∈ R

T to approximate f(s′),
where T is the length of sentence s. This can be

solved as a ridge regression:

min
w∈RT

L(f, w,S(s)) + σ‖w‖22.

The learned weights w can serve as a saliency

map that reflects the “contribution” of each token

in the sequence s. Like in Figure 7, the color re-

flects the weights w at each position. Red means

the given position has positive weight and green

means negative weight. The magnitude of weight

is represented by the intensity. The redder a token

is, the more it contributions to the activation of

the transformer factor. We leave more implementa-

tion and mathematical formulation details of LIME

algorithm in the appendix.
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We provide detailed visualization for two differ-

ent transformer factors that show long-range depen-

dency in Figure 7, 8. Since visualization of high-

level information requires more extended context,

we only offer the top two activated words and their

contexts for each such transformer factor. Many

more will be provided in the appendix section G.

We name the pattern for transformer factor Φ:,297

in Figure 7 as “repetitive pattern detector”. All top

activated contexts for Φ:,297 contain an obvious

repetitive structure. Specifically, the text snippet

“can’t get you out of my head" appears twice in the

first example, and the text snippet “xxx class pas-

senger, star alliance” appears three times in the sec-

ond example. Compared to the patterns we found

in the mid-level [6], the high-level patterns like

“repetitive pattern detector” are much more abstract.

In some sense, the transformer detects if there are

two (or multiple) almost identical embedding vec-

tors at layer-10 without caring what they are. Such

behavior might be highly related to the concept

proposed in the capsule networks (Sabour et al.,

2017; Hinton, 2021). To further understand this be-

havior and study how the self-attention mechanism

helps model the relationships between the features

outlines an interesting future research direction.

Figure 8 shown another high-level factor, which

detects text snippets related to “the beginning of

a biography”. The necessary components, day of

birth as month and four-digit years, first name and

last name, familial relation, and career, are all mid-

level information. In Figure 8, we see that all the

information relates to biography has a high weight

in the saliency map. Thus, they are all together

combined to detect the high-level pattern.

Figure 7: Two examples of the high activated words

and their contexts for transformer factor Φ:,297. We

also provide the saliency map of the tokens generated

using LIME. This transformer factor corresponds to the

concept: “repetitive pattern detector”. In other words,

repetitive text sequences will trigger high activation of

Φ:,297.

Figure 8: Visualization of Φ:,322. This transformer fac-

tor corresponds to the concept: “some born in some

year” in biography. All of the high-activation contexts

contain the beginning of a biography. As shown in the

figure, the attributes of someone, name, age, career, and

familial relation all have high saliency weights.

4 Discussion

Dictionary learning has been successfully used to

visualize the classical word embeddings (Arora

et al., 2018; Zhang et al., 2019). In this paper,

we propose to use this simple method to visual-

ize the representation learned in transformer net-

works to supplement the implicit “probing-tasks”

methods. Our results show that the learned trans-

former factors are relatively reliable and can even

provide many surprising insights into the linguis-

tic structures. This simple tool can open up the

transformer networks and show the hierarchical

semantic or syntactic representation learned at dif-

ferent stages. In short, we find word-level disam-

biguation, sentence-level pattern formation, and

long-range dependency. The idea of a neural net-

work learns low-level features in early layers, and

abstract concepts in the later stages are very simi-

lar to the visualization in CNN (Zeiler and Fergus,

2014). Dictionary learning can be a convenient

tool to help visualize a broad category of neural

networks with skip connections, like ResNet (He

et al., 2016), ViT models (Dosovitskiy et al., 2020),

etc. For more interested readers, we provide an

interactive website1 for the readers to gain some

further insights.
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