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Abstract

Language identification (LID), the task of deter-
mining the natural language of a given text, is
an essential first step in most NLP pipelines.
While generally a solved problem for docu-
ments of sufficient length and languages with
ample training data, the proliferation of mi-
croblogs and other social media has made it
increasingly common to encounter use-cases
that don’t satisfy these conditions. In these situ-
ations, the fundamental difficulty is the lack of,
and cost of gathering, labeled data: unlike some
annotation tasks, no single “expert” can quickly
and reliably identify more than a handful of lan-
guages. This leads to a natural question: can
we gain useful information when annotators
are only able to rule out languages for a given
document, rather than supply a positive label?
What are the optimal choices for gathering and
representing such negative evidence as a model
is trained?

In this paper, we demonstrate that using nega-
tive evidence can improve the performance of a
simple neural LID model. This improvement is
sensitive to policies of how the evidence is rep-
resented in the loss function, and for deciding
which annotators to employ given the instance
and model state. We consider simple policies
and report experimental results that indicate the
optimal choices for this task. We conclude with
a discussion of future work to determine if and
how the results generalize to other classifica-
tion tasks.

1 Background

Language identification (LID) is the task of classi-
fying a document according to the natural language
in which it is written (Lui and Baldwin, 2011).
It is a special case of text classification, where a
document is assigned a label l from a finite set of
discrete values L. Such problems, and LID as a
special case, have been widely studied for decades
(Kranig, 2005; Jauhiainen et al., 2018), with recent

state-of-the-art methods focusing on neural archi-
tectures over character representations (Joulin et al.,
2017; Zhang et al., 2015). Most methods share the
intuition (verified by many traditional studies) that
the signal for LID comes from the character level.
This intuition is reinforced by the difficulty that
flexible neural architectures have unseating tradi-
tional n-gram methods (Lippincott et al., 2019):
frequencies of short character-sequences seem to
hold most signal for the task.

Negative evidence, for a feature or label, is ex-
plicit evidence that it is not present in or does
not apply to an instance (Schneider, 2004): in
this study, it refers to annotations that say “this
document is not language X”. A given annotator
can only know a handful of languages, so in addi-
tion to the positive evidence when presented with
one of them, there may be a much higher volume
of implicit negative evidence, i.e. the documents
whose language they couldn’t recognize. Among
text classification tasks, the LID task is a partic-
ularly acute, naturally-occurring example of this
imbalance, in contrast to specific phenomena like
linguistic structure or small-inventory tasks like
named-entity recognition or sentiment, where an-
notators are expected to have a full grasp of the
potential label-space.

Our use of model estimates to choose annotators
has similarities to work on multi-armed contextual
bandits (Riquelme et al., 2018), where the con-
text includes both the new instance and the current
model state. Similar to Bayesian last layer opti-
mization (Weber et al., 2018) we focus on the final
linear layer in the model, though rather than em-
ploying reinforcement learning we directly spec-
ify simple policies based on the output distribu-
tions. The choice of likeliest annotators is similar
to Thompson sampling (Riquelme et al., 2018).

Figure 11 shows the performance of a LID model

1All figures in this paper show results for four values
of annotations_per_instance, 2, 4, 8, and 16, indicated by
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Figure 1: Performance when training only on nega-
tive evidence (“this is not language X”) and no use of
the model for routing instances to annotators or for es-
timating probabilities (i.e. the Random and Uniform
policies described in Section 2). As languages are ruled
out, probability-mass is shifted to the set containing the
correct label. Improvements occur with more labeled
instances (x-axis), and with more labels-per-instance.

trained on just negative evidence. The curves
clearly demonstrate that negative evidence contains
useful information for the task. Figure 2 compares
positive evidence with both positive and negative
evidence, when negative evidence is incorporated
naively (see descripions of Uniform and Random
in Section 2). There is no performance gain from
including the negative evidence under these con-
ditions. Our goal is to preserve the signal from
Figure 1, that is currenly being lost in Figure 2, and
determine how to best employ annotation resources
as training progresses.

2 Methods

Data The Twitter Language Identification dataset
consists of 70k tweet IDs distributed evenly over
70 languages (Twitter, 2015). This provides a sig-
nificant LID challenge due to the short, idiosyn-
cratic messages and a large label space that includes
many less-studied languages. We balance the data
by randomly shuffling and keeping the first 400
instances of each language, and discarding seven
languages with less than 400 total, as some tweets
have become unavailable since the data set was
published.

Model Our model truncates and pads input sen-
tences to 128 characters, and maps each charac-
ter into a randomly initialized 64-dimension em-
bedding space. The (128x64xBatchSize) tensors

increasingly-solid lines: for better readability, we omit this
from the legends

Figure 2: Performance using positive evidence, with
and without negative evidence, also with no use of the
model for routing or estimation. The signal identified in
Figure 1 brings no advantages under this simple policy.
Here and in subsequent figures, the black line indicates
performance under the ideal situation where the full
training set is positively labeled.

are fed to a two-dimensional CNN layer with fil-
ters of widths w ∈ 1 : 5 followed by ReLU non-
linearity. The CNN outputs are concatenated, fed
to a dense linear layer and softmax to produce dis-
tributions over the labels. The choice of character-
level CNNs of the given widths gives the model
access to the same statistical information employed
by traditional n-gram models.

Training We simulate L annotators, one per la-
bel, each only capable of recognizing their re-
spective label. Starting with zero instances and a
randomly-initialized model, at each step we are pro-
vided with 500 new instances, and for each of them,
allowed to query annotators_per_instance of
the annotators, ranked according to an annotator
policy. Each annotator returns positive if the in-
stance is in the language they recognize, negative
otherwise. This evidence is represented as a tar-
get categorical distribution for the model’s loss
function, according to a representation policy.
The model is then trained via SGD for a maxi-
mum of 500 epochs, with learning rate=0.1, mo-
mentum=0.9, maximum iterations=500, minibatch
size=32, early stop=20, learning rate reduction of
magnitude=0.1 and patience=10, and dropout of
0.5 on the CNN outputs.2 Note that we are training
to convergence between receiving each new batch
of annotated instances.

Evidence Given the annotations received during
the training process, we can selectively employ evi-

2This training configuration produced optimal results on
dev performance across all experimental conditions
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dence: Positive and Positive+Negative are the most
important point of comparison, while Negative was
used in Figure 1 to illustrate the potential value of
the negative annotations.

Annotation policies We experiment with two
policies for ranking potential annotators for a new
instance: in both cases, the instance is labeled by
the first annotators_per_instance annotators in
the ranked list. The Random policy simply shuffles
the annotators randomly. The Likeliest policy ranks
annotators by the probability the model currently
assigns to their language for the new instance, from
most likely to least. The intuition is that getting
annotations for the likeliest languages will either 1)
correctly label the instance or 2) remove the maxi-
mal amount of misallocated probability mass under
the current model parameters.

Representation policies We also experiment
with two policies for representing negative evi-
dence as an L-dimensional categorical distribution
for input to the loss function (positive evidence
is always the corresponding one-hot distribution).
The Uniform policy, given negative evidence for
labels Lneg, builds the distribution P (l) = 0 if
l ∈ Lneg, otherwise P (l) = 1

|L−Lneg | . The Esti-
mated policy also sets P (l) = 0 if l ∈ Lneg, but
otherwise sets P (l) proportional to the model’s
current estimate of that language for the instance.
We experimented with treating each potential label
for each instance as a binary task via binary cross-
entropy loss metrics, and with selectively propagat-
ing the loss depending on whether an annotation
(positive or negative) had been seen for the task,
but found that the best approach was to treat it as a
categorical, with a KL-divergence loss metric.

t r a i n = [ ]
f o r s i n 1 : S :

new = g e t _ m o r e _ i n s t a n c e s ( 5 0 0 )
l a b e l e d = l a b e l ( new , a n n o t a t o r _ p o l i c y )
t r a i n += encode ( l a b e l e d , r e p r e s e n t a t i o n _ p o l i c y )
c o n t i n u e _ t r a i n i n g ( model , t r a i n )
r e c o r d S c o r e ( model , t e s t )

Figure 3: Training procedure: the model is incremen-
tally fed additional labeled documents, and each time
SGD is run until dev set performance stops improv-
ing, at which point the test set score is recorded for the
current amount of training data.

Measurements We perform five folds of each
experiment, in which the full data set is randomly
shuffled, and split into train/dev/test sets in 0.8, 0.1,
and 0.1 proportions, respectively. Performance on

the dev sets was used for early stopping and learn-
ing rate decay, while we report test performance
averaged over the five folds. Variance was low,
and we omit it from figures, but include it in Ad-
ditional Materials. Figures show macro F1 score
as a function of training instance count: line style
corresponds to annotators_per_instance, while
color corresponds to the policies being compared.
The solid horizontal line at the top of the figures
is a reference point of performance with complete,
positive annotation of all instances.

We assume that we have access to one annotator
per language and route each document as it arrives.
In the absence of active learning, a document has a
1/70 chance to be labeled as its correct language,
and 69/70 chance to be labeled as not one of the
other languages. We also experiment with a simple
policy of routing each document to the annotator
for the model’s current best-guess language, with
the hypothesis this will reassign the most misallo-
cated probability mass.

1. Treat the outputs as a categorical distribution
by applying softmax and use standard cross-
entropy between this and positive labels, mak-
ing no use of negative labels. As extreme as
this seems, it’s not unrealistic in situations
that focus on under-represented populations
like sub-Saharan Africa or fine-grained dis-
tinctions like Arabic dialects to have an acute
lack of on-demand expertise, or a large cost
associated with it.

2. Treat the outputs and labels as independent
Bernoulli distributions, and for each docu-
ment only back-propagate the error from its
explicitly-labeled language (be it a positive or
negative label). This focuses the objective on
the precise information the annotators have
provided.

3. Treat the outputs as a categorical distribution,
so identical to 1) for positive labels, but to
additionally cast the negative labels as under-
specified categorical distributions. With zero
additional evidence we can use the maximum
entropy distribution subject to the constraints
of any negative labels, i.e. the uniform dis-
tribution with the negative labels set to zero
and renormalized. We could also use external
information, such as the population language
distribution from another source, or an itera-
tive prior estimation from current estimates, to
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inform how the probability mass is distributed
across the label space.

3 Results and Discussion

Figure 4: Comparison of the best approach using
Positive evidence, and the best approach using Posi-
tive+Negative evidence, both of which use Likeliest
annotation policy and Estimated representation policy.
Given the same number of annotations-per-instance
(line solidity), negative evidence provides significant
performance improvements, after a brief initial delay
(see Figure 6).

Figure 4 shows our primary result: the use of
negative evidence, in combination with the Esti-
mated representation policy and Likeliest annotator
policy, produces large improvements over the best
baseline approach using positive evidence alone.
In particular, when the algorithm is given a small
number of annotation opportunities per instance (2,
4, 8), it surpasses the baseline at 20k instances by 7,
15, and 10 points, respectively. Positive+negative
with 4 annotations per instance exceeds perfor-
mance of positive with 8 annotations per instance,
and with 8 annotations per instance is within 3
points of performance with perfect positive evi-
dence.

On the other hand, the Positive+Negative models
show performance delays compared to the corre-
sponding positive models. Because the negative
instances rely on the quality of the current esti-
mates for constructing target distributions, these
are initially quite poor until the model escapes its
random initialization. This escape is easier to ac-
complish with more annotations, which can be seen
by comparing where the Positive+Negative models
start outperforming their Positive counterparts.

Figures 6 and 5 compare representation and an-
notator policies under the simplest configurations.
The delayed performance is clearest between the

Figure 5: Comparison of Random and Likeliest anno-
tator policies, both using the Uniform representation
policy and Positive+Negative evidence. The Likeliest
policy lacks the performance delay seen in Figure 4, but
also falls short of the improvement given more training
instances.

Figure 6: Comparison of Uniform and Estimated rep-
resentation policies, both using the Random annotator
policy and Positive+Negative evidence. The Estimated
policy exhibits the performance delay of Figure 4, indi-
cating this stems from the model’s initial poor estimates
of unseen label probabilities, but also shows the value
of those estimates in the improvements once those esti-
mates are based on sufficient training instances.

representation policies. The Estimated representa-
tion policy also provides the most performance im-
provement, eventually providing benefits for every
value of annotators_per_instance. The annota-
tor policies, on the other hand, only provide signifi-
cant benefits when annotators_per_instance ≥
8. Referring back to Figure 4 confirms the combina-
tion of both policies outperforms either in isolation.

4 Conclusions and future work

We have demonstrated a general method for exploit-
ing negative evidence using an underlying virtuous
cycle, where an improved model leads to better
annotator selections and more accurate target distri-
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butions. These appear to be crucial ingredients for
negative evidence to provide benefit: when we re-
move them, and always select annotators at random
and employ CMEDs, the positive+negative models
provide no advantage over the positive-only mod-
els throughout training. It may be that the benefits
would only materialize on larger training sets, but
since the models already approach the optimum
(black line) this is never seen in practice for this
LID task.

Negative evidence can be gathered (and simu-
lated) for any classification task, and it is an open
question whether the same approaches will general-
ize. In particular, we would like to run experiments
in speech processing, which has its own language
identification problem as well as a number of tasks
with even sparser annotation abilities (e.g. speaker
identification), and image recognition.

The initial performance delays we observed in
Figures 4 and 6 come from the Estimated policy’s
use of the model before it has sufficiently improved.
Representation policies that take this into account
should be able to shift the early performance curves
to the left, similar to work on multi-armed bandits
(Weber et al., 2018) emphasizing the importance
of uncertainty estimates. The annotation policies
we considered can only gather annotations for in-
coming instances: it may be useful to expand this
to include all currently-known instances, to allow
more flexible shifting of probability mass using the
same amount of annotation resources.
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