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Abstract

This paper briefly presents an evaluation of
three models: a domain-specific one based
upon typed feature structures, a neural lan-
guage model, and a mixture of the two, on an
unseen but in-domain corpus of user queries
in the context of a dialogue classification task.
We find that the mixture performs the best,
which opens the door to a potentially new
application of neural language models. A
further examination of the domain- We also
consider the inner workings of the domain-
specific model in more detail, as well as how
it came into being, from an ethnographic per-
spective. This has changed our perspective on
the potential role of structured representations
in the future of dialogue systems, and suggests
that formal research in this area may have a
new role to play in validating and coordinating
ad hoc dialogue systems development.

1 Introduction

While contemporary NLP research marvels at
how closely a simple neural language model can
come to a coherent conversation partner in dia-
logue tasks, it nevertheless remains true that lan-
guage models, neural or otherwise, are difficult to
adapt in a manner that keeps both the responses
constructive and the number of dialogue turns to a
minimum in settings where users expect a rapid and
successful conclusion to their information-seeking
interactions.

Over the past year, we have worked with an
industrial partner, iNAGO, Inc., a specialist in con-
versational agents in domains such as product in-
formation and control, navigation and automotive
driver assistance, to find ways in which recent
developments in dialogue systems could improve
their products. Focussing on dialogue act classifi-
cation at the outset, we did indeed find a way to
make a simple but important improvement, which

is described below, but what struck us as equally
salient is just how well their system works to be-
gin with, relative to research systems currently in
circulation.

A subsequent investigation of just how their sys-
tem works has revealed some novel simplifications
of concepts that should be very familiar territory
to this audience: typed feature structures, user
modelling and semantic distances defined through
a combination of lattice-theoretic calculations on
epistemic networks and similarity coefficients. The
novelty arises to a great extent because the devel-
opers at iNAGO were mostly unfamiliar with re-
search publications on these topics, and so the re-
semblance of their proposed solution to a variety
of representational strategies that have been used
in the dialogue research community over the last
30 years is in itself noteworthy.

But the reason that our improvement works, we
believe, stems from the complementarity of this di-
alogue classifier and the language-modelling-based
approach that we combined it with. This comple-
mentarity needs to be investigated in more detail
in a wider range of domains and across languages
with a wider distribution of resource availabilities
(we have experimented only with English-language
systems), but it opens the door to a possible appli-
cation of neural language models that has hitherto
not been considered, possibly because of misbe-
gotten claims of their cognitive plausibility, which
are in turn more suggestive of their use exclusively
as drop-in replacements. Domain-specific models
are known to have problems with coverage, partic-
ularly outside their domains. Large-scale neural
language models do not have this problem, even
if their within-domain performance is somewhat
lackluster by comparison. Even the simple combi-
nation of the two that we tried appears to address
the weaknesses of both of these approaches in iso-
lation.
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We will begin with a discussion of the general
approach to mixing the results of these two ap-
proaches to dialogue act classification, and then
return to how iNAGO’s system computes its own
results.

2 Re-ranking

Re-ranking is a simple method for combining
discriminative and generative models that takes the
top answers from the generative model, in order of
preference, and merely changes the order of pref-
erence using information from the discriminative
model. The top answers from the generative model,
which serve as the inputs to the re-ranker, are often
known as candidates. In our case, these candidates
are generated by iNAGO’s system in response to
a user-provided query. It should be noted that in
this particular application, the user-provided query
is also made available to the discriminative model,
which is not always the case in re-ranking.

3 Task and Models

We evaluated three models: iNAGO’s classifier,
without re-ranking, the responses of a BERT-based
dialogue act classifier, and the result of mixing the
two models, which we shall refer to as the Mixed
model.

With all three models, the task is to classify the
transcription of a query spoken by an automobile
driver according to several hundred predetermined
classes of query that the system is capable of an-
swering, based upon information about the vehicle,
the state of the vehicle at the time of the query,
and other information from map resources, etc.,
as needed. The result is a list of classes, in de-
creasing order of their confidence scores. Higher
confidence answers have lower ordinate rank, i.e.,
the best answer, of rank 1, is the class with the
highest confidence. The presumption is that the
answer corresponding to the class with the highest
confidence in the database of predetermined classes
would be returned to the user when this model is
used.

Our mixture method crucially relies upon the
availability of these confidence scores.

The BERT-based classifier uses the pre-trained
model distributed with the original paper (Devlin
et al., 2019), and adds the three levels of embed-
dings (Figure 1) into a single vector that represents
an entire string of input. Queries are classified
by computing the cosine similarity of the vector

for the query with the vectors for each of a list of
sentences, one for each class in the database, that
characterizes a prototypical question for that class,
very much as an FAQ list would. Again the classes
are ranked by this similarity score.

The Mixed model takes evidence from both iN-
AGO’s model and the BERT model into consider-
ation. It does so by treating iNAGO’s confidence
score, ci, as a mixture parameter, and computes the
sequence:

mi = ci · ai + (1− ci) · bi

for each candidate class, where ai is the rank as-
signed by iNAGO’s model, and bi is the rank as-
signed by the BERT model. The new ranking of the
candidates is then given by sorting the candidates
in decreasing order of mi.

4 Data

The queries that were used in our experiments
were automatically generated using the method of
Zheng (forthcoming) from documentation provided
by a Tier-1 auto manufacturer. The documentation
was only provided in April, 2021, and were thus not
available either to the present authors or to iNAGO
during the development of its model. The corpus
consists of 232 queries.

Ground-truth answers were not made available
for any of the queries by the manufacturer, but iN-
AGO manually mapped the corresponding answers
generated by Zheng (forthcoming) to the most suit-
able class within their database of prototype ques-
tions and answers. iNAGO provided us with their
model’s rankings and confidence scores, as well as
a complete list of the 410 classes and prototypes
from the database that their model could refer to.
As a result, we are capable of computing scores
that evaluate these models in a dialogue turn classi-
fication task, but not overall measures of dialogue
quality such as number of turns to completion, or
the percentage of accomplishment of a stated user
goal.

Among the 232 queries, 20 of them were un-
recalled, meaning that an appropriate class was
available within iNAGO’s database (it was for all
232), but was not in iNAGO’s model’s candidate
list. The existence of these instances precludes
the use of an average precision score directly, as
is standard in query-reranking approaches to inter-
net search or information retrieval systems, on any
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Figure 1: A graphical depiction of the computation of BERT embeddings (Devlin et al., 2019).

of our three models except BERT, which always
produces a score.

Below, we report our evaluation of the three mod-
els on two query samples from this dataset: Without
Unrecalled Cases, in which only the 212 queries
for which the correct class label was recalled at any
rank are used, and With Unrecalled Cases, which
considers all 232. For the latter sample, for the pur-
poses of computing the Mixed model’s ranking of
the 20 unrecalled queries, the manually annotated
class is appended at the bottom of the list of candi-
date classes for iNAGO’s model, with a confidence
of zero.

5 Evaluation Scores

We used three different scores to evaluate each
model. All can be regarded as derivative measures
of performance, although they have applications to
further exploratory data analysis, such as through
visualization.

We compute the mean, variance and median
of the rank of the ground truth category in each
candidate list. In the case where confidences can
be interpreted as probabilities, this corresponds to
a data likelihood score.

We also compute the mean reciprocal rank
(MRR), which is a variant of mean average pre-
cision. The formula of MRR is:

MRR =
1

N

N∑

i=1

1

ranki

where N is either 212 or 232 (see Section 4) and
ranki denotes the rank of item i in a list. MRR
is a classification accuracy measure that bestows
partial credit for answers of rank greater than 1,
according to a hyperbolic curve.

Finally, we compute the top-1 accuracy of the
model. Here, we simply consider the percentage of

cases where the model assigned the top rank (1) to
the manually annotated class.

6 Model Evaluations

The evaluation scores are given in Tables 1–2.
See also Figures 2–4 for the counts of the man-
ually annotated label’s rank (the highest was 75)
without consideration of unrecalled cases, and Fig-
ures 5–8 for counts including unrecalled cases. The
generally hyperbolic shape of those distributions
compels us to compute the logarithms of the counts
at each rank and fit those logarithms to a line with
slope B using least-squares regression, having co-
efficient of determination, R2.

7 Discussion of Results

There are two points that can be clearly ascer-
tained. The first is that iNAGO’s model is to be
credited for its generally better performance on
these queries, which were unseen during the devel-
opment of that model, but mostly in-domain. BERT
is widely regarded as not an easy model to beat,
and iNAGO’s model did beat it soundly in both
conditions across all measures. As the histograms
show, iNAGO’s model and the Mixed model are
also both generally sharper around the top rank
than BERT.

That a linear combination of two independent,
unbiased estimators should exist that lowers vari-
ance is to be expected. On the other hand, we did
not determine the mixture parameter by directly op-
timizing variance or covariance. Note also that the
iNAGO model’s variance was already low, when it
was able to locate the correct class label at any rank.
This suggests that the mixed model’s improvement
to the iNAGO model was primarily through its
greater coverage.

The second point is that iNAGO’s and BERT’s
performances are complementary enough to be of
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Mean (Var) Median MRR T1 −B R2

iNAGO 1.594 (2.489) 1.0 0.854 77.83% 0.866 0.741
BERT 3.675 (16.145) 2.0 0.575 41.04 0.187 0.701
Mixed 1.552 (2.903) 1.0 0.851 75.00 1.031 0.933

Table 1: Performance on Dialogue Classification Task, not including unrecalled cases.

Mean (Var) Median MRR T1 −B R2

iNAGO 2.263 (10.766) 1.0 0.798 73.28% 0.266 0.407
BERT 3.560 (15.382) 2.0 0.590 43.10 0.259 0.567
Mixed 1.629 (3.239) 1.0 0.841 74.14 1.544 0.835

BERT (unrecalled cases only) 2.350 (6.029) 1.0 0.748 65.00 0.360 0.481

Table 2: Performance on Dialogue Classification Task, including unrecalled cases.

mutual benefit to each other. This is particularly
true when we consider the cases unrecalled by iN-
AGO’s model on their own, where BERT’s perfor-
mance is so good that the Mixed model’s perfor-
mance on all 232 cases has a mean rank of less than
2.

With a corpus of this size, fine-tuning BERT was
beside the point, and so this experiment was con-
ducted in a zero-shot setting. On the other hand, the
BERT model that assigned ranks within the mixed
model was also the base model.1 Corpora of this
size are not uncommon to dialogue system design-
ers, and so this is an ecologically valid setting.

8 How Did They Do It?

The better performance of iNAGO’s model natu-
rally compelled us to ask how it works. The answer
is surprising in just how unsurprising it is. It begins
with a round of slot/filler labelling inside the query
or candidate prototype using a sequential labeller,
very much as one finds in the ATIS NLU task (Niu
and Penn, 2019). Three linear passes over the an-
notated string with very small cascades of between
one and three rules lead to the iterative construc-
tion of a data structure that is essentially identical
to a typed feature structure (Carpenter, 1992). The
signature of the formalism contains 17 features and
a type hierarchy consisting of around 40 000 types,
although all but about 4 000 of those types are
proper nouns that designate types of cuisine, land-
marks, titles of songs, etc. The feature structures
represent a combination of propositional content

1An anonymous reviewer suggested that we attempt to
fine-tune the BERT model on this dataset, in spite of obvious
concerns about the generalization bound on a set of this size.
Indeed, performance was worse with respect to every measure
after fine-tuning.

and user intention, the latter being classifiable into
11 discrete types.

8.1 Rules
The first cascade of rules looks only for evidence

that the input is or is not a continuation of an ear-
lier dialogue, and then classifies the input by user
intention. The second cascade fills in or refines the
value types of features that have been determined
to exist either (1) by the intention type, (2) by the
presence of a particular slot filler in the labelled
input sequence or (3) by previous dialogue turns in
the case of a continuation. The “filling” is mono-
tonic and is consistent with the type-inferencing
rules of Carpenter (1992) that are used to compute
what he terms most general satisfiers of expressions
from a Rounds-Kasper-style attributed description
language.

The third cascade modifies the feature structure
non-monotonically if it matches a template defined
by one of its rules. This stage essentially handles
exceptions that could not be accommodated by the
second stage. Each rule in this cascade handles one
exception each. Templates can detect:

1. whether the value at a feature path has been
refined by the second cascade as a result of
the current input,

2. whether a feature value bears a subtype of a
given type,

3. whether a feature value is exactly a given type,
and

4. whether the value of one of a finite number
of extra-logical variables is equal to a given
constant,
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5. closed under conjunction and disjunction.

The extra-logical variables are set by the state of
the automobile. Impressively, however, there are
only two rules/exceptions in the third cascade.

8.2 Similarity
Given a pair of these feature structures, one for

a query and one for a candidate, their similarity is
determined through a modified form of a weighted
Jaccard index acting upon a set-theoretic reduction
of the two structures. In this reduction, both fea-
ture structures are reduced to sets of feature paths
terminating in a value that consists of a type and
no other substructures. The actual lengths of the
feature paths are irrelevant to the similarity score,
but serve to identify like values between the two
feature structures that can be compared. Given
|K| such paths, on which at least one of feature
structures F and G define a value, let us call Fk

(resp. Gk) the value of F (resp. G) on path k ∈ K,
where it is defined, and the most general type, ⊥
(in the orientation of Carpenter (1992) — many
others would call it >), elsewhere.

While each value is merely a type with no ap-
propriate features, that type is situated within a
type hierarchy. This graph of subtyping relations
is assumed by Carpenter (1992) to be a meet semi-
lattice for convenience, as it is here. Let h(τ) be
the height of type τ , where the height of a type is
taken to be the length of the longest chain from ⊥
to that type. The A-similarity of F and G is then
definable as:

A(F,G) =
Σkwk · h(Fk uGk)

Σkwk ·max(h(Fk), h(Gk))
,

where σuτ is the meet of types σ and τ . It is this A-
similarity that is returned as iNAGO’s confidence
score. Note that its range is [0, 1] when Σkwk = 1
and that high values are attained through a combi-
nation of (1) there being many (vs. few) paths on
which both the query and a candidate have values
defined, and (2) those values having very high (vs.
low) meets. The meets are maximally high when
both Fk = Gk and Fk takes on a very high/specific
value. iNAGO determined the weights wk through
ad hoc experimentation on labelled training queries
that had been obtained from a different source.

The use of the height of a meet, or the depth of a
least common superconcept (LCS) in the parlance
of lexical semanticists, dates back to the conceptual
similarity score of Wu and Palmer (1994), although

there it is used as a normalizer on the length of the
walk from Fk to Gk via their LCS in the semi-
lattice. The walk lengths from either Fk or Gk to
Fk uGk are not taken into account in A-similarity.

The iNAGO model ranks the prototypes of its
classes by their A-similarity to each query, subject
to two thresholds. First, no more than the top 75
classes can be returned. Second, no class with an
A-similarity of less than 0.1 can be returned. These
thresholds were set empirically. Only one query
returned a list that was truncated at 75. The median
length of ranked class labels was 11.

8.3 Nomenclature

It is clear from the nomenclature used in
company-internal documentation that the develop-
ers of this system had not read Carpenter (1992),
nor anything else about typed feature logic, or
feature-based grammar development. Types are
referred to as “entities,” features as “roles,” fea-
ture paths as “criteria,” typed feature structures as
“interpretations,” the type hierarchy as a “criteria
set,” and chains of types in the hierarchy as “paths.”
Their knowledge of these structured representa-
tional devices seems to factor exclusively through
the same early-1980s research on programming lan-
guage theory and inclusional polymorphism that
was so influential on both typed feature logic and
linguistic formalisms such as HPSG (particularly
the earlier, pre-1994 versions of it; Pollard and
Sag, 1987), on the one hand, and modern, object-
oriented, imperative programming language con-
structs, on the other.

As a result, we see no evidence for any sort of
deeper convergence or objective suitability of the
formalism for dialogue analysis that iNAGO hap-
pened upon. Instead, we claim that this manner of
structured representation had become, and arguably
remains, the de facto strategy for reasoning about
language and dialogue among university-educated
software engineers. The real question may there-
fore be not how they did it, but why they would
ever have done anything else.

9 Conclusion

This paper briefly presented an evaluation of
three models, a domain-specific one based upon
typed feature structures, a neural language model
and a mixture of the two, on an unseen but in-
domain corpus of user queries. Our first recom-
mendation is therefore that mixtures of semanti-
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cally rich, conventional dialogue classifiers with
neural language models should be investigated fur-
ther, as our results suggest that they can produce
the best combination of classifier accuracies and
coverage.

We then considered the domain-specific model
in more detail. While it is probable that the ap-
proach taken by this model would not scale up
well to very large domains on its own, to say noth-
ing of domain-independent dialogue modelling, it
is indeed difficult to fathom why this manner of
reasoning about dialogue should simply go away.
Software developers, it appears, need no particular
formal instruction in order to create them, perhaps
apart from some standardization of their terminolo-
gies. Domain-specific approaches very apparently
can still achieve higher levels of performance than
what black-box semantic embeddings are currently
capable of.

Our second recommendation is therefore the
same as our first recommendation: we really
should, as a community, encourage this sort of
model combination as a means of enabling and
enhancing what software developers are already
doing without our permission. It not only improves
the accuracy of the systems they are building, but
may provide a low-cost means of relaxing domain
restrictions. Our third recommendation is that those
engaged in the formal study of structured repre-
sentations should develop their unique capacity to
provide the means for validating and coordinating
domain-specific dialogue systems that spring up
“in the wild,” which will allow us to harness a very
large pool of unspecialized talent to advance the
state of the art in this field.
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Figure 2: Count of ground truth’s rank (iNAGO’s
model), without unrecalled cases.

Figure 4: Count of ground truth’s rank (Mixed model),
without unrecalled cases.

Figure 6: Count of ground truth’s rank (BERT model),
with unrecalled cases.

Figure 8: Count of ground truth’s rank (Mixed model),
with unrecalled cases.

Figure 3: Count of ground truth’s rank (BERT model),
without unrecalled cases.

Figure 5: Count of ground truth’s rank (iNAGO’s
model), with unrecalled cases.

Figure 7: Count of ground truth’s rank (BERT model),
unrecalled cases only.
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