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Abstract

This paper addresses Semantic Role Label-
ing (SRL) within the context of English Dis-
course Representation Structure (DRS) pars-
ing. In particular, we investigate whether se-
mantic roles predicted by a near-state-of-the-
art SRL model can be used to improve the out-
puts of modern end-to-end neural DRS parsers
using a rule-based post-processing algorithm.
We compare two methods of generating train-
ing data for the SRL model from the Parallel
Meaning Bank, one DRS-based and one CCG-
based. We also compare two different post-
processing algorithms. Our results vary across
different DRS parsers, but overall we find a
small to moderate improvement of up to 0.5 F1
on the final DRSs. We find a small but consis-
tent advantage of DRS-based over CCG-based
training data generation, and of token-based
over concept-based post-processing, where ap-
plicable.

1 Introduction

With the increasing availability of multi-layered
semantically annotated corpora, semantic pars-
ing today is typically approached as an end-
to-end task of predicting a meaning representa-
tion in one go, including information on word
senses, predicate-argument structure, scope, se-
mantic roles, and more. Since each of these lay-
ers is complex in its own right, it might be benefi-
cial to rely on multiple specialized components to
separately predict individual semantic layers, and
to combine their output. In this paper, we focus
on separately predicting semantic roles in the con-
text of Discourse Representation Structure (DRS)
parsing.

DRSs are meaning representations grounded
in Discourse Representation Theory (Kamp and
Reyle, 1993). We use the English part of the
Parallel Meaning Bank (PMB; Abzianidze et al.,

2017), which contains sentences annotated with
DRSs. Figure 1 shows an example. Events (e.g.,
e1) are related to their participants (e.g., x1, x2)
via semantic roles (e.g., Theme, Destination)
from the VerbNet/LIRICS inventory (Bonial et al.,
2011). Semantic roles are a crucial aspect of
meaning since they encode how each entity par-
ticipates in an event (Fillmore, 1968).

e1 t1 b2

jump.v.01(e1)
Theme(e1, x1)
Destination(e1, x2)

time.n.08(t1)
Time(e1, t1)
t1 ≺ now

x1 b1

male.n.02(x1)

x2 b3

train.n.01(x2)

Figure 1: DRS for He jumped into the train (source:
PMB, document 00/2759)

Semantic role labelling (SRL) is typically ap-
proached as a task of labeling tokens or parse tree
edges with predicate/role labels, independently of
other aspects of meaning (e.g., Li et al., 2019,
2020b; Shi et al., 2020; Marcheggiani and Titov,
2020; Li et al., 2020a). Conversely, DRS parsers
such as Evang (2019); Fancellu et al. (2020); van
Noord et al. (2020); Liu et al. (2021) do not have
dedicated SRL modules but predict a complete
meaning representation of which roles are one
part. In this paper, we explore the possibility of
combining semantic parsers with a dedicated SRL
system. The main research question we seek to
answer is: can we in this way obtain DRSs with
more accurate semantic roles?

Our approach is summarized in Figure 2: we
first convert the PMB training data into a stan-
dard SRL annotation format (§2) in order to train
a near-state-of-the-art SRL system on it (§3). At
test time, we merge the output of DRS parsers
with that of the SRL system using a rule-based
post-processing algorithm (§4), aiming to produce
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a more accurate final DRS. We experiment with
applying our procedure on top of several recent
DRS parsing systems, and find that, albeit with
some caveats, our procedure leads to overall better
scores (§5). 1

Figure 2: System overview

2 DRS-to-SRL Conversion

Before we can train an SRL system, we first need
to convert semantic role annotations in the PMB
to a more standard SRL format. Two characteris-
tics of the PMB make this a non-trivial task. First,
role annotations in the PMB are predicate-based,
meaning that roles are carried by predicates in-
stead of by arguments, as in standard SRL sys-
tems. Table 1 illustrates this: in standard SRL, the
Theme role would be marked on he. Instead, in the
PMB, the role is annotated on jumped, the predi-
cate assigning the role; in a later step, the DRS
parser makes sure that the role is associated to the
discourse referent introduced by “He”. Second,
prepositional and adverbial roles (e.g. into the
train, slowly) are treated differently from “core”
semantic roles: they are carried by the preposition
or adverb itself, instead of by the verbal predicate
they are associated to.

Token He jumped into the train

PMB Theme Destination
SRL: head Theme PRED Destination
SRL: span Theme PRED { ← Destination → }

Table 1: PMB-style versus standard SRL annotations.

We experiment with two approaches for convert-
ing PMB role labels to a standard SRL format:

2.1 DRS-based conversion

Here, predicates and fillers for semantic roles are
found via DRSs, which in the training data are
anchored, i.e., most clauses are aligned to ex-
actly one token. We extract predicate-role-filler
triples such as 〈jumped,Theme,he〉 from the an-
chored DRSs by looking for role clauses such as

1Code and data at https://github.com/TaniaBladier/DRS
Parsing with SRL

b2 Theme e1 x1 and then finding the clause
introducing the filler (b1 REF x1, anchored to
He), and the clause introducing the event (b2
REF e1, anchored to jumped). The process is il-
lustrated in Figure 3.2

Disadvantages of this approach are 1) that it
only yields the heads of the fillers, not full spans,
and 2) that in some cases, the ‘deep’ semantic
structure of the DRS does not directly match the
surface realisations of the semantic roles we want
to find. One example of the latter problem is found
in sentences such as “She saw herself”, where a
DRS-based approach would return “She” as the
Stimulus role, instead of “herself”, which is the
surface filler of this role but does not introduce a
discourse referent of its own.

b1 REF x1             % He [0...2]
b1 PRESUPPOSITION b2  % He [0...2]
b1 male "n.02" x1     % He [0...2]
b2 REF e1             % jumped [3...9]
b2 REF t1             % jumped [3...9]
b2 TPR t1 "now"       % jumped [3...9]
b2 Theme e1 x1        % jumped [3...9]
b2 Time e1 t1         % jumped [3...9]
b2 jump "v.01" e1     % jumped [3...9]
b2 time "n.08" t1     % jumped [3...9]
b2 Destination e1 x2  % into [10...14]
b3 REF x2             % the [15...18]
b3 PRESUPPOSITION b2  % the [15...18]
b3 train "n.01" x2    % train [19...24]
                     % . [24...25]

2) find role filler 
(Theme → x1)  

1) find predicate 
(“jumped”)

3) find 
introduction of 
filler (x1 → “He”)

4) result: predicate 
= “jumped”, Theme 
= “he”

Figure 3: Example of DRS-based conversion.

2.2 CCG-based conversion
The second approach aims at overcoming both
limitations of the DRS-based approach by mak-
ing use of the CCG derivations in the PMB. Here,
predicates and fillers for semantic roles are found
via the CCG (Categorial Combinatorial Grammar,
Steedman 2000) syntax trees and predicate-based
role annotations in the PMB.

Main conversion process First, we transform
the CCG trees using the pmb ccg to term
module in the LangPro package (Abzianidze,
2017), removing directionality of the combina-
tory rules and reducing the number of possible
combinators, which simplifies tree traversing. In
particular, long-distance dependencies (such as
wh-movement) are handled using the λ-operator,
which introduces a relationship between two vari-
ables at different points in the tree. An example of
this kind of tree is given in Figure 4.

2The DRS in clause notation in Figure 3 is equivalent to
the one in box notation in Figure 1, but additionally shows
the alignment with tokens in the sentence.
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s[dcl]

@

np np~>s[dcl]

@

s[qem]~>np
~>s[dcl]

s[qem]

t

"I"

t
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@
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pp~>s[dcl]

t

"where"

λ

p1
(pp)

s[dcl]

@

np~>s
(np~>s)
~>s[dcl]

*

np

t

"he"

pp~>np
~>s[dcl]

@

p1
(pp)

t

"is"

Figure 4: Simplified CCG tree with examples of all combinators (@: simple functional application; λ: variable
introduction;, ∗: type-raising). Solid rectangles are types, circles are operators, dotted rectangles are lambda vari-
ables, and ovals are lexical nodes. s[dcl] means ‘declarative sentence’; s[qem] means ‘embedded question’.

Next, we deploy our role span extraction al-
gorithm, which traverses the simplified tree and
tries to match the semantic roles annotated on each
predicate to the constituents filling these roles.
Figure 5 displays a high-level overview of this pro-
cess, showing how CCG arguments get mapped to
constituents in the tree. This process is explained
in more detail in Figure 6.

Given a simplified tree, we extract each predi-
cate’s syntactic roles from its CCG type signature
and match them with the annotated semantic roles.
For example, suppose jump has the type signature
NP→S3 and the role annotation [Theme], then
it has a single NP syntactic role, corresponding to

3The original CCG category would be S\NP, which we
simplify into the direction-agnostic NP→S.

2) find & trace CCG 
argument for role 
(Theme → “\NP”)

1) find predicate 
(“jumped”)

3) find derivation 
step where role is 
resolved

4) result: predicate = 
“jumped”, Theme = 
“he”

Figure 5: Example of CCG-based conversion.

a Theme semantic role. Then, we move upwards
through the syntax tree, checking the type signa-
ture at every step; whenever we detect that a role
has been filled, we process the constituent that was
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Identify predicate

"jumped"
lemma: "jump"

cat: PP~>NP~>S[dcl]
verbnet: [Theme]

Match syntactic and
semantic roles

syn: [PP, NP]
sem: [PP_ROLE, Theme]

Any unfilled
roles left?

Stop

no

Move up one level in
the tree

yes

yes (PP and
NP/Theme)

"jumped into the train"
cat: NP~>S[dcl]
verbnet: [Theme]

Did this step
fill a role? (a) yes (the PP)

Find the span of the
role (b)

PP/Destination:

"into the train"

yes

Are we at the
root node?

no

no

no

yes

yes 
(NP/Theme)

"he jumped into the train"
cat: S[dcl]
verbnet: []

yes (the NP
/Theme)

NP/Theme:

"he"

Figure 6: Flow chart of the main CCG-based conversion process. Algorithmic steps in white, example in purple.

merged at that point of the tree as the filler of the
corresponding semantic role. This process is re-
peated until we have found a filler for every role,
or until we reach the top of the tree.4

Detecting merged constituents A crucial step
of our process (step (a) in Figure 6) is detect-
ing, given a particular node in the tree, whether
a role has been resolved at that node. In many
cases, this is straightforward; for example, in the
sentence in Figures 5 and 6, we can see that
he fills the NP/Theme role of jump at the point
where he is combined with jumped into the train
through simple functional application, changing
the type signature from NP→S to S. In other cases,
more complicated rules are needed, for example
when dealing with to-clauses (She wants me to
leave), where, on combining wants me with to
leave, the type signature of to leave changes from
NP→S[to] to NP→S[dcl]. In such cases, at
first glance, it appears as if not much has changed
except a change of clause type (from a to-clause

4In some cases, e.g. wh-questions, it is possible that some
roles remain unfilled.

to a declarative sentence), whereas in fact, me has
filled the subject NP of leave, and a new NP ar-
gument (the subject NP of wants) has been added.
We have developed a set of heuristics that cover
all such difficult cases occurring in the gold an-
notations in the PMB. While we believe that this
amounts to a wide general coverage, it is likely
that there exist other constructions that our algo-
rithm does not (yet) cover.

Once it has been defined that a role is resolved at
a given node in the tree, the next crucial step (step
b in Figure 6) is to find the correct role span within
the constituent that was combined. In many cases
(like he in he jumped), the entire constituent is the
role filler, but in other cases (like wants me in She
wants me to leave), only a part of the constituent
(me) is the role filler that we are looking for. To
find this constituent, we designed a separate al-
gorithm that moves down the tree starting from
the merged constituent, until an argument with the
correct type is found.

PP and adverbial roles Semantic roles carried
by PP constituents (e.g. into the train) or by adver-
bial phrases (e.g. quickly) pose an additional chal-
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lenge, since, in the PMB annotation framework,
these roles are annotated on the syntactic head of
the PP or adverbial phrase (e.g. into in into the
train) rather than on the verb that they combine
with. In cases where the PP is a syntactic argu-
ment of the verb (as in jump into the train), we
solve this by first adding a placeholder role (see
the PP role at the top of Figure 6) corresponding
to the verb’s PP argument, and then replacing this
by the semantic role carried by the PP at the point
where it is combined with the predicate. In cases
where a PP or adverb is an adjunct (e.g. with type
signature S→S or (NP→S)→(NP→S)), we add
the semantic roles introduced by the adjunct to the
predicates in the constituent that is modified (e.g.,
quickly modifies he ran in he ran quickly. To en-
sure that adjuncts get the right scope, we added a
constraint to our algorithm that forbids adding ad-
junct roles to predicates if doing so would cross a
clause boundary; e.g., loudly in he loudly said he
was going to leave can modify said but not leave.

Span-to-head conversion As a final step, to
make the outputs of the CCG-based algorithm
comparable to those of the DRS-based algorithm,
we add a final step that converts the extracted
role spans to their semantic heads. This algo-
rithm consists of a set of (recursive) rules defining
what the head of each type of phrase is. For ex-
ample, H(the old woman) = H(old woman) =
H(woman) = woman, where H is a function ap-
plying the appropriate rule for a given phrase type
and returning the ‘head part’ of the phrase. There
are many possible phrase types, but in general, the
head of an NP is a noun, the head of a VP is a
verb, the head of a PP is an NP, and the head of a
sentence is the VP.

2.3 Comparing the approaches

Comparing the outputs of both conversion ap-
proaches, we find that 68% of documents match
exactly, and 82% differ by at most one role. This
shows that both approaches show significant dif-
ferences worth further investigating. The differ-
ences mainly concern structural mismatches be-
tween syntax and semantics. For example, in sen-
tences with co-referential NPs, CCG-based con-
version gives more intuitive results than DRS-
based conversion: in she handed him1 the money
that she owed him2, DRS-based conversion treats
the two hims as the same entity and assigns the
Beneficiary role of owe to him1, whereas CCG-

based conversion correctly assigns it to him2. Sim-
ilarly, with reflexives, in she saw herself, DRS-
based conversion is unable to assign any role to
herself, since this word does not introduce a new
discourse referent but refers back to she. The
syntax-driven CCG-based conversion also allows
for a better resolution of hearer and speaker dis-
course participants in such sentences as I don’t re-
member your name.

On the other hand, CCG-based conversion has
difficulties dealing with light verb constructions
where the semantics of the main verb and the light
verb interact. For instance, in he had his wallet
stolen, the relationship between he and stolen is
not detected. Finally, more heuristics will need to
be added to CCG-based conversion to cover all ad-
junct semantic roles due to the way that these are
annotated in the PMB, e.g. by-clauses in passive
sentences. Also, the CCG-based conversion needs
additional rules to distinguish between the seman-
tic and syntactic head in such constructions as all
of the town or a kilo of plums.

3 SRL Predictions

We predict semantic roles using the graph-based
end-to-end coreference resolution system by He
et al. (2018). This syntax-agnostic SRL model
jointly predicts predicates, role fillers, and role la-
bels. The SRL system builds contextualized rep-
resentations for spans of arguments and predicate
tokens based on BiLSTM outputs. The argument
spans and predicates are predicted independently
of each other and the aggressive beam pruning is
used to discard the least probable combinations
of predicate and argument spans. The output of
the system is a graph, which lists predicted SRL
roles as edges and the associated text spans as
nodes. The SRL graph is predicted directly over
text spans. Unlike He et al., we do not predict
the full spans of semantic roles, but only syntactic
heads of the semantic role spans, since the DRSs
in the PMB do not contain information about full
spans of arguments.5 We experiment with GloVe
(Pennington et al., 2014) and ELMo (Peters et al.,
2018) embeddings to train the SRL system.6

We use the gold section of the English PMB
data (release 3.0.0) to train and test the SRL sys-
tem, which contains a train, dev, and test split of

5The full spans of semantic arguments can be recon-
structed from head spans using syntactic information from
dependency graphs (Gliosca and Amsili, 2019).

6The hyper-parameters are given in the appendix.
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6 620, 885, and 898 documents, respectively. The
SRL system is trained on the output of both DRS-
to-SRL conversion tools separately. We include
only verbal predicates and exclude the predicate
be due to its inconsistent annotation in the PMB.

4 Merging DRS and SRL Predictions

As baseline DRS parsers without external SRL
prediction, we use DRS parsers for which the out-
put is publicly available: the transition-based com-
positional parser of Evang (2019) and three neural
sequence-to-sequence models: the character-level
model of van Noord et al. (2018b), an extension of
this model that uses linguistic features (van Noord
et al., 2019) and the best BERT-based model of van
Noord et al. (2020). We refer to these models with
E19, N18, N19, and N20.

We propose two methods for merging DRS and
SRL output: a token-based method for parsers that
are lexically anchored (each clause maps to one to-
ken), such as E19, and a concept-based method for
parsers for which this is not the case (N18, N19,
N20). Both methods only aim to replace roles in
the DRS; no new full clauses are inserted.

Token-based merging When the SRL sys-
tem predicts a predicate-role-filler tuple such as
〈jumped,Theme,he〉, we look for a corresponding
role prediction in the parser output. A correspond-
ing prediction is a role clause such as b2 Agent
e1 x1, where the event discourse referent (e1)
and the filler discourse referent (x1) are intro-
duced by the corresponding tokens, i.e., jumped,
and he, respectively. We say that a referent is in-
troduced by a token if the token is anchored to a
concept clause for that referent, such as b2 jump
"v.01" e1 or b1 male "n.02" x1. In this
example, the DRS parser predicted a different role
(Agent) than the SRL system (Theme), so we re-
place the former with the latter.

Concept-based merging Concept-based merg-
ing works similarly but does not rely on clauses
being anchored to tokens. Instead, concept clauses
are matched to tokens using corpus-level align-
ment and lemmatization. We say that a concept
clause (e.g., b1 male "n.02" x1) matches a
token (e.g., he) if it is observed anchored to the
same word anywhere in the full PMB training
data (bronze, silver, and gold). We also say that
a concept clause (e.g., b2 jump "v.01" e1)
matches a token (e.g., jumped) if there is a string

match between the concept and the lemma7 of the
token (jump).

Restrictions In order to avoid some incor-
rect role replacements, we impose the following
heuristics to restrict replacement: a role r is not
replaced with r′ if 1) r is one of the special roles
Time and Name, 2) r′ was predicted by the SRL
system with < 50% precision, 3) r′ already exists
in the same box as r. For concept-based merging,
the general concepts person, be and entity
are never matched with any input tokens.

5 Experiments and Discussion

The main results of our experiments are shown
in Table 2. Overall, we see small but consistent
improvements for all parsers, except for N20, the
most recent system. It seems that once the parser
reaches a certain accuracy it is not straightforward
to improve the scores by using an imperfect exter-
nal system. This is also reflected by the number of
replaced roles, which goes down as the parsers get
better. Comparing the two conversion methods,
we find that DRS-based conversion leads to higher
scores. The difference with CCG-based conver-
sion is small, though consistent between setups.
In a sense, this is unsurprising given that DRS
is also our target representation format. Further-
more, we found that using ELMo outperformed
GloVe; while this is unsurprising, it supports the
intuition that using a higher quality SRL system
leads to more improvement. In other words, any
development on the SRL parsing side is likely to
lead to better performance on DRS parsing as well.
Comparing token-based to concept-based merging
on the output of the E19 parser (the only one where
it is applicable), it makes more replacements and
results in slightly higher accuracy, suggesting an
advantage in terms of recall over concept-based
merging.

Room for improvement As can be seen in Ta-
ble 2, SRL performance seems to be a bottleneck;
hence, using future, higher-quality SRL systems
might also lead to better overall performance of
our method. In particular, due to the merging
step in our pipeline system, missing roles in SRL
predictions are less costly than wrong predictions.
Hence, we expect that SRL systems that are opti-
mized for precision rather than for F-score will be
more suited for use in our task. Furthermore, we

7We use spaCy (Honnibal et al., 2020) for this.
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Experiments SRL E19-tok E19 N18 N19 N20

dev test dev test dev test dev test dev test dev test
Baseline – – 81.4 (0) 81.4 (0) 81.4 (0) 81.4 (0) 84.3 (0) 84.9 (0) 86.8 (0) 88.7 (0) 88.4 (0) 89.3 (0)
DRS conv.: upper 100 100 +1.5 (154) +1.3 (144) +1.3 (124) 1.2 (124) +0.9 (92) +1.2 (132) +0.9 (88) +1.1 (117) +0.5 (51) +0.7 (76)

CCG conv.: upper 100 100 +1.2 (145) +1.2 (134) +1.2 (115) 1.1 (118) +0.9 (89) +1.2 (129) +0.8 (80) +1.1 (114) +0.5 (50) +0.8 (78)
DRS conv. + GloVe 79.7 81.6 +0.3 (129) +0.3 (113) +0.4 (97) +0.2 (102) +0.2 (68) +0.4 (92) +0.1 (64) +0.2 (90) -0.2 (57) -0.1 (70)
DRS conv. + ELMo 85.8 86.3 +0.5 (128) +0.4 (120) +0.5 (104) +0.4 (110) +0.3 (73) +0.5 (107) +0.2 (74) +0.3 (104) -0.1 (55) 0.0 (69)
CCG conv. + GloVe 80.7 83.0 +0.3 (129) +0.3 (117) +0.3 (107) +0.2 (108) +0.1 (96) +0.4 (102) 0.0 (93) +0.1 (103) -0.2 (73) -0.1 (74)
CCG conv. + ELMo 85.2 87.0 +0.4 (118) +0.4 (109) +0.4 (99) +0.3 (103) +0.2 (81) +0.4 (104) +0.1 (73) +0.2 (102) -0.2 (63) 0.0 (66)

Table 2: Experiment results, including F-scores and number of replaced roles (in brackets). The F-scores are
calculated using Counter (van Noord et al., 2018a). Scores for N19 and N20 are averaged over 5 runs. E19-tok
uses token-based merging, E19 uses concept-based merging like the rest.

expect that further improvements in the conversion
algorithms will lead to better overall performance.

Error analysis We identified four sources of er-
rors in the SRL predictions. The data show an im-
balanced role distribution towards the roles Theme
and Agent, which take up 52% of all annotations
out of 32 semantic roles. This leads to overpre-
diction of these roles by the SRL-labeler. Indeed,
for N20 we find that these roles have an inser-
tion precision of < 50%, or in other words, they
were more often wrongly inserted than that they
correctly replaced a non-matching role. Figure 7
shows the confusion matrix for the most frequent
semantic roles.

pred./gold Agent Co-Theme Dest. Exper. Loc. Patient Source Stim. Theme

Agent 337 0 0 5 0 1 0 0 5

Co-Theme 0 54 0 0 0 1 0 0 3

Destination 0 0 33 0 2 0 0 0 0

Experiencer 1 0 62 0 3 0 1 1

Location 0 0 0 0 62 0 0 0 0

Patient 2 0 1 1 77 0 1 7

Source 1 0 0 0 0 0 21 1 2

Stimulus 2 0 0 0 0 0 0 56 2

Theme 14 2 1 0 2 7 0 4 356

Figure 7: Confusion matrix for semantic labeling er-
rors, showing the numbers of predicted labels for the
most frequent labels.

The role Theme and Agent are also frequently
predicted extra in cases where no semantic role
should be predicted. For example, the pronoun
her in the sentence she ate her dinner is erro-
neously assigned the role Agent. Semantic roles
of prepositional phrases also lead to prediction er-
rors. For example, the phrase the field of biology in
the sentence He is working in the field of biology is
wrongly recognized as Location instead of Theme.
Another cause of prediction errors are possessive
determiners which are wrongly predicted as role
fillers. For example, both her and dinner are pre-
dicted as Patient in the following sentence: She
ate her dinner. Also, no semantic roles are pre-
dicted by the SRL-labeler if the head word has no

vector embedding due to a special character, for
example like post∼office. Due to the merging step
in our pipeline, the erroneously missing semantic
roles in SRL predictions do not lead to a drop of
parsing performance and also do not improve it.

6 Conclusions and Future Work

We have presented experiments on using exter-
nally predicted semantic roles to improve the out-
put of four recent DRS parsers. We saw that
there is considerable room for improvement and
our method fills it – but not fully, especially as
parsers get more accurate. We conclude that our
approach is useful especially with parsers such as
E19 which do not reach state-of-the-art accuracy
but may have other advantages such as smaller
models or lexical anchoring. An advantage of our
approach is that it is very flexible: it can be applied
on top of any DRS parsing model without having
to alter or retrain the model itself. This means
that our method, or an improved version of it,
could also be applied to future DRS parsers, possi-
bly with completely different architectures. In fu-
ture work we intend to experiment with enhancing
the SRL system using syntactic input from CCG-
based supertags and also try out other SRL sys-
tems. We also plan to experiment with prediction
of nominal and adjectival predicates along with
their semantic roles. We also intend to reconstruct
and predict full spans of semantic roles. Moreover,
we plan to carry out parsing experiments with fur-
ther languages in the PMB, including Dutch, Ger-
man, and Italian, as our method should be univer-
sally applicable. Finally, it would be interesting
to improve the SRL predictions by enforcing co-
herence of predicted predicates and corresponding
semantic roles.
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conférence TALN 2019 (articles courts), Toulouse.

Luheng He, Kenton Lee, Omer Levy, and Luke Zettle-
moyer. 2018. Jointly predicting predicates and argu-
ments in neural semantic role labeling. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 364–369, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

8https://treegrasp.phil.hhu.de/

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy:
Industrial-strength Natural Language Processing in
Python.

Hans Kamp and Uwe Reyle. 1993. From Discourse
to Logic. Studies in Linguistics and Philosophy.
Kluwer, Dordrecht, Boston, London.

Tao Li, Parth Anand Jawale, Martha Palmer, and Vivek
Srikumar. 2020a. Structured tuning for semantic
role labeling. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 8402–8412, Online. Association for
Computational Linguistics.

Zuchao Li, Shexia He, Hai Zhao, Yiqing Zhang, Zhu-
osheng Zhang, Xi Zhou, and Xiang Zhou. 2019. De-
pendency or span, end-to-end uniform semantic role
labeling. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 6730–6737.

Zuchao Li, Hai Zhao, Rui Wang, and Kevin Parnow.
2020b. High-order semantic role labeling. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2020, pages 1134–1151, Online. As-
sociation for Computational Linguistics.

Jiangming Liu, Shay B. Cohen, Mirella Lapata, and Jo-
han Bos. 2021. Universal Discourse Representation
Structure Parsing. Computational Linguistics, pages
1–33.

Diego Marcheggiani and Ivan Titov. 2020. Graph con-
volutions over constituent trees for syntax-aware se-
mantic role labeling. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 3915–3928, On-
line. Association for Computational Linguistics.

Rik van Noord, Lasha Abzianidze, Hessel Haagsma,
and Johan Bos. 2018a. Evaluating scoped meaning
representations. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. Euro-
pean Language Resources Association (ELRA).

Rik van Noord, Lasha Abzianidze, Antonio Toral, and
Johan Bos. 2018b. Exploring neural methods for
parsing discourse representation structures. Trans-
actions of the Association for Computational Lin-
guistics, 6:619–633.

Rik van Noord, Antonio Toral, and Johan Bos. 2019.
Linguistic information in neural semantic parsing
with multiple encoders. In Proceedings of the 13th
International Conference on Computational Seman-
tics - Short Papers, pages 24–31, Gothenburg, Swe-
den. Association for Computational Linguistics.

Rik van Noord, Antonio Toral, and Johan Bos. 2020.
Character-level representations improve DRS-based
semantic parsing Even in the age of BERT. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 4587–4603, Online. Association for Compu-
tational Linguistics.

32



Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Tianze Shi, Igor Malioutov, and Ozan Irsoy. 2020. Se-
mantic role labeling as syntactic dependency pars-
ing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 7551–7571, Online. Associa-
tion for Computational Linguistics.

Mark Steedman. 2000. The Syntactic Process. MIT
Press.

33



Appendix

Layer Hyper-parameters Value

Characters CNN numb. of filters 50

Bi-LSTM state size 200
# layers 3

Words embedding vector dim. 300

Char. embedding dimension 8

batch size 40

Dropout dropout rate 0.5

Max. gradient norm 5.0

Optimizer Adam

Learning rate 0.001

Decay rate 0.999

Decay frequency 100

Hyper-parameters of the SRL system.
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