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Abstract

Recent work indicated that pretrained lan-
guage models (PLMs) such as BERT and
RoBERTa can be transformed into effective
sentence and word encoders even via sim-
ple self-supervised techniques. Inspired by
this line of work, in this paper we pro-
pose a fully unsupervised approach to improv-
ing word-in-context (WiC) representations in
PLMs, achieved via a simple and efficient
WiC-targeted fine-tuning procedure: MIRROR-
WIC. The proposed method leverages only
raw texts sampled from Wikipedia, assuming
no sense-annotated data, and learns context-
aware word representations within a standard
contrastive learning setup. We experiment
with a series of standard and comprehensive
WiC benchmarks across multiple languages.
Our proposed fully unsupervised MIRROR-
WIC models obtain substantial gains over off-
the-shelf PLMs across all monolingual, mul-
tilingual and cross-lingual setups. Moreover,
on some standard WiC benchmarks, MIRROR-
WIC is even on-par with supervised models
fine-tuned with in-task data and sense labels.

1 Introduction

Pretrained Language Models (PLMs) such as
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) provide dynamic contextual represen-
tations; they induce token-level lexical representa-
tions that capture the impact of the word’s context
on its embedding. Recent studies have assessed the
PLMs by probing into their off-the-shelf represen-
tation/feature space (Garí Soler et al., 2019; Wiede-
mann et al., 2019; Reif et al., 2019; Garí Soler and
Apidianaki, 2021). While off-the-shelf PLMs al-
ready offer a useful contextualised lexical semantic
space, their contextualised representation spaces
suffer from instability and anisotropy (Mickus et al.,
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Figure 1: An illustrative overview of the MIRROR-
WIC method, based on contrastive learning, for elicit-
ing better word-in-context (WiC) representations from
pretrained language models. We augment a randomly
selected WiC instance with random span masking and
apply dropout to the hidden states to create two slightly
different representations of the base instance. These
two representations form a positive pair for contrastive
fine-tuning. During fine-tuning, we pull the representa-
tions of each positive pair closer together, while at the
same time pushing away representations of other WiC
instances, serving as negative examples.

2020; Pedinotti and Lenci, 2020). As a conse-
quence, they usually fall far behind the perfor-
mance of the same PLM fine-tuned with (i) sense
annotations (Hadiwinoto et al., 2019; Blevins and
Zettlemoyer, 2020) or (ii) external (e.g., WordNet)
knowledge (Levine et al., 2020).

However, PLMs have been shown to actually
store more lexical and sentence-level information
than what can be directly extracted from their off-
the-shelf variants. In simple words, this knowl-
edge must be ‘unlocked’ or exposed via additional
adaptive fine-tuning (Ruder, 2021). For instance,
while off-the-shelf PLMs are not directly effective
as universal sentence encoders, it is possible to con-
vert them into such encoders through supervised
(Reimers and Gurevych, 2019a; Feng et al., 2020;
Liu et al., 2021a) or self-supervised fine-tuning
(Carlsson et al., 2021; Liu et al., 2021b; Gao et al.,
2021) based on the contrastive learning paradigm.

The fundamental limitation of extracting con-
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textual features/representations directly from the
layers of the off-the-shelf PLMs is the mismatch
between their (pre)training objectives and the fea-
ture extraction method. In other words, the con-
textual representations, typically extracted as the
averages over the top four layers of a base PLM
(Liu et al., 2020; Garí Soler and Apidianaki, 2021),
can be seen as a by-product of training a language
model, and are not directly optimised for contex-
tual sensitivity. Inspired by the previous work on
adaptive fine-tuning for word and sentence repre-
sentations (Liu et al., 2021b), we propose a simple
self-supervised technique termed MIRRORWIC: it
rewires input PLMs to provide improved word-in-
context (WiC) representations.

Unlike prior work on fine-tuning towards im-
proving WiC representations, our MIRRORWIC
procedure disposes of any sense labels, annotated
task data, and any external knowledge, and elic-
its improved WiC representations from PLMs in
a fully unsupervised way. We design a contrastive
learning framework that directly optimises the con-
textual representations (i.e., the top four hidden
layers of the input PLM) that are also the feature
space at inference time; see Figure 1 and Table 1.
MIRRORWIC relies on the sets of positive and neg-
ative pairs, where the positive pairs are created by
pairing an input sequence (which contains a target
word) with its slightly altered variant. This altered
sequence is obtained via random span masking and
the resulting representations for this pair are fur-
ther altered by dropout. The negative pairs are then
simply the same or different word’s contextual rep-
resentations in a different context; Figure 1. These
pairs for fine-tuning are mined from raw Wikipedia
sentences. To understand why MIRRORWIC works
so well, we provide ablation studies on the design
choices (including dropout rate, random span mask-
ing, etc.) and layer-wise analyses and visualisation
on MIRRORWIC’s effects on embedding properties
such as isotropy.

Contributions. 1) We present a simple yet ex-
tremely effective unsupervised MIRRORWIC tech-
nique for eliciting contextual lexical knowledge.
2) Our experiments on a range of English, mul-
tilingual, and cross-lingual context-sensitive lex-
ical benchmarks demonstrate that MIRRORWIC
achieves consistent and substantial improvements
over different baseline PLMs, indicating its robust-
ness and wide applicability. 3) We offer extensive
analyses and additional insights into the inner work-

ings of MIRRORWIC, and its impact on the contex-
tual representation space. We release our code at
github.com/cambridgeltl/MirrorWiC.

2 Related Work and Background

Word-in-Context Representations. Modelling
context influence on lexical meaning and creat-
ing context-aware word representations is a long-
standing research goal in lexical semantics. One
direction is to create discrete sense embeddings
according to a fixed sense inventory such as Word-
Net. These embeddings can be created from the
attributes in the sense inventory such as glosses
(Chen et al., 2014) or from the knowledge struc-
ture (Camacho-Collados et al., 2016). We point
to Camacho-Collados and Pilehvar (2018) for a
thorough survey on sense embeddings. Such sense
representations require a fixed and discrete sense
inventory and might not be sensitive enough to the
the dynamic and fluid nature of contextual changes.

More recently, PLMs provide dynamic and con-
tinuous contextual representations, not tied to pre-
defined sense inventories, computed as a function
of both the target word and its context. The use of
PLMs has resulted in further progress on a range
of context-aware evaluation benchmarks (Pilehvar
and Camacho-Collados, 2019; Wang et al., 2019;
Raganato et al., 2020). A body of work has aimed
to enrich context-aware and sense information in
the PLMs by injecting such knowledge (e.g., sense
annotations from predefined sense inventories) at
pretraining stage (Levine et al., 2020) or during
inference (Loureiro and Jorge, 2019). Other work
has attempted at combining/ensembling multiple
contextualised and static type-level embeddings to
refine the contextualised representation space (Liu
et al., 2020; Xu et al., 2020).

Inducing Text Representations from PLMs via
Self-Supervision. Recently, there has been grow-
ing interest in learning completely unsupervised
sentence representations from PLMs using con-
trastive learning techniques (Carlsson et al., 2021;
Liu et al., 2021b; Gao et al., 2021; Yan et al., 2021;
Kim et al., 2021; Zhang et al., 2021). Similar to
the supervised approaches such as Sentence-BERT
(Reimers and Gurevych, 2019b) or SapBERT (Liu
et al., 2021a), the idea is to transform an input PLM
into an effective sentence encoder via additional
fine-tuning. During self-supervised contrastive fine-
tuning, the model learns from identical or automat-
ically modified text sequences (treated as positive

github.com/cambridgeltl/MirrorWiC
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examples), and regards different sentences as neg-
ative pairs. MIRRORBERT (Liu et al., 2021b) is
a general self-supervised contrastive fine-tuning
framework that transforms off-the-shelf PLMs into
effective word and sentence encoders. Our pro-
posed MIRRORWIC method can be seen as an ex-
tension of MIRRORBERT, now focused on elicit-
ing improved word-in-context representations and
context-sensitive lexical tasks.

3 MIRRORWIC: Methodology

Baseline WiC Representations. Prior work di-
rectly extracts word-in-context representations
from the parameters of the off-the-shelf PLMs. The
most effective (empirically validated) strategy is
1) averaging the representations from the top four
PLM’s layers, and 2) then taking either the first
constituent subword from the PLM’s vocabulary to
represent the target word, or further averaging the
representations of the word’s constituent subwords
(Liu et al., 2020; Garí Soler and Apidianaki, 2021).

3.1 Self-Supervised WiC Fine-Tuning

We hypothesise that it is possible to convert the
input PLM into an improved WiC encoder through
adaptive (self-supervised) fine-tuning. Given a
set of raw sentences without labels, how do we
tune the PLMs to further expose their word-in-
context knowledge? Inspired by MIRRORBERT

(Liu et al., 2021b), we apply a self-supervised con-
trastive learning scheme to elicit better word-in-
context representations. We fine-tune the input
PLM by contrasting the representations of different
word-in-context pairs while pulling representations
of a self-duplicated word-in-context pair closer in
the representation space (see Figure 1).

Data Creation. Given a set of N non-duplicated
sentences, we randomly select a word in each
sentence as the target word: i.e., the sentences
become a set of ‘word-in-context instances’.
We then follow MIRRORBERT and generate a
labelled dataset by duplicating each instance in
the set and assigning identical labels to iden-
tical instances and different labels to different
word-in-contexts (Table 2, upper half): D =
{(x1, y1), (x1, y1), . . . , (xN , yN ), (xN , yN )},
where ∀i = 1, . . . N , it holds xi = xi, yi = yi.

Data Augmentation. We further follow MIRROR-
BERT to create a slightly altered (or augmented)
‘view’ of the same text sequence: we randomly

replace a span of text with ‘[MASK]’1 in all dupli-
cated examples. There is a fundamental difference
to MIRRORBERT where such ‘random span mask-
ing’ technique is applied on sentences; for word-in-
context, we keep the target word intact (otherwise
the semantics changes drastically) and randomly
replace a span of length K on both sides of the tar-
get word; see Table 2 (lower half). Besides random
span masking, the dropout modules in the Trans-
former layers also slightly and randomly alter the
representations of each word-in-context instance.
They serve as another source of data augmenta-
tion to further perturb the word-in-context repre-
sentations. After both input space augmentation
(random span masking) and feature space augmen-
tation (dropout layers embedded in the Transformer
layers), the resulting embeddings of even a positive
pair will be slightly different.2

Contrastive Fine-Tuning. Following the feature
extraction procedure from off-the-shelf PLMs, we
compute the average of hidden states from the
PLM’s top four layers, and then take the average of
all token(s) that correspond to the target word, as
the word-in-context representation. Let f(·) denote
the encoder which outputs such WiC representa-
tion. We leverage InfoNCE (Oord et al., 2018) to
cluster/attract the positive pairs together and push
away the negative pairs in the embedding space:

L = −
N∑
i=1

log
exp(cos(f(xi), f(xi))/τ)∑

xj∈Ni

exp(cos(f(xi), f(xj))/τ)
. (1)

where τ is a tunable temperature; Ni denotes all
negatives of xi, which includes all xj , xj where
i 6= j in the current data batch (i.e., |Ni| = N −
2). Intuitively, the numerator is the similarity of
the self-duplicated pair (a positive pair) and the
denominator is the sum of the similarities between
xi and all other strings besides xi (negative pairs).

For positive pairs, though one sequence in the
pair is slightly altered via random span masking
and the representations go through dropout, the en-
coding function f(·) should learn an invariant map-
ping and reconstruct the correct semantics from
the noise (Liu et al., 2021b). Most negative ex-
amples contain different target words and different
contexts (e.g., x1 and xN in Table 2). Naturally,

1Or ‘<MASK>’ for input to RoBERTa.
2Note that random span masking is applied on only one

instance of each duplicated pair, while the dropouts are applied
to all instances.
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model representations fine-tuned representations extracted

off-the-shelf PLMs ([CLS] +) language modelling head word token average (top four layers)
MIRRORBERT [CLS]/mean-pooling [CLS]/mean-pooling
MIRRORWIC word token average (top four layers) word token average (top four layers)

Table 1: MIRRORWIC benefits from the consistency of representations at (i) fine-tuning and (ii) feature extraction
and inference: both are focused on word-in-context (WiC) representations.

Step 1: Automatic dataset creation for WiC fine-tuning

(x1, y1) (Due to the fat-tailed nature of pandemic risk, . . . , 1)
(x1, y1) (Due to the fat-tailed nature of pandemic risk, . . . , 1)

. . . . . .
(xi, yi) (Human interaction with nature has played a major role., i)
(xi, yi) (Human interaction with nature has played a major role., i)

. . . . . .
(xN , yN ) (The end doesn’t always justify the means., N )
(xN , yN ) (The end doesn’t always justify the means., N )

Step 2: Random span masking

(x1, y1) (Due to the fat-tailed nature of pandemic risk, . . . , 1)
(x1, y1) (Due _e fat-tailed nature of pandemic _ . . . , 1)

. . . . . .
(xi, yi) (Human interaction with nature has played a major role., i)
(xi, yi) (Human intera_ with nature has play_major role., i)

. . . . . .
(xN , yN ) (the end does not always justify The means.,N )
(xN , yN ) (The end does_always justify _eans., N )

Table 2: Upper: the automatically generated labelled
dataset for fine-tuning PLMs towards learning better
word-in-context representations. Bold denotes the tar-
get word. Lower: data augmentation via random span
masking. ‘_’ denotes the ‘[MASK]’ token.

such pairs are of different meanings and the model
should produce different representations.Note that
it is possible to also have the same target word ap-
pearing in different contexts as a negative pair (e.g.,
x1 and xi in Table 2). If the pair indeed has very
different semantics (of a different sense), then push-
ing them apart is actually desirable. However, even
if the items in the pair happen to have similar mean-
ings, our learning objective still instructs the model
to push them away from each other. Our rationale
and decision here are based on the following: (1)
Such false negative pairs can act as a regularisation;
and (2) in essence, one could argue that all distinct
word-in-context instances have slightly different
meanings since sense is a continuous function of
word and context.

4 Experimental Setup

WiC Evaluation. We evaluate MIRRORWIC on a
range of context-sensitive lexical semantic tasks in
monolingual English settings, as well as in multi-
lingual and cross-lingual settings.

For English, we evaluate on two similarity-based

tasks: Usim and CoSimLex; two word-in-context
classification tasks: WiC and WiC-TSV; and one-
shot Word Sense Disambiguation (WSD). Usim
(Erk et al., 2013) measures the similarity between
two instances of the same word occurring in two
different sentential contexts. CoSimLex (Armen-
dariz et al., 2020) measures the change in simi-
larity between two different words appearing in
two different contexts: paragraphs. We follow the
standard evaluation protocol, computing the cosine
similarity of the contextual word representations
and comparing them against human-elicited scores
via Spearman’s rank correlation (ρ).

The WiC classification task (Pilehvar and
Camacho-Collados, 2019) challenges a model to
make a binary decision on whether or not the same
target word has the same meaning in two different
contexts. The WiC-TSV (TSV) task (Breit et al.,
2021) extends the original WiC to multiple domains
with three different subtasks. In TSV-1, the task is
to decide if the intended sense of the target word in
the context matches the target sense described by
the definition. In TSV-2, the model must identify if
the intended sense (in the context) is the hyponym
of the provided hypernyms. TSV-3 combines the
previous two subtasks (see Breit et al. (2021) for
further details).

The WSD task (Navigli, 2009; Raganato et al.,
2017) requires a system to select the correct label
for a given target word in context from a candidate
set of all possible meanings for this target word. To
evaluate the feature space of the models in WSD,
we create a one-shot setting where we provide one
context example3 per label and perform nearest
neighbour search over contextual word represen-
tations from the candidate labels. We directly test
the models on the concatenated ALL test set from
Raganato et al. (2017) without access to training
and development data.

We also perform multilingual and cross-lingual
evaluation on XL-WiC (Raganato et al., 2020)

3The context examples are taken from WordNet entries. If
a sense does not contain context, we reformat the definition as
’<target word> means ...’ as the target word’s context.
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and AM2iCo (Liu et al., 2021c). XL-WiC pro-
vides WiC-style evaluations in multiple languages.
AM2iCo extends XL-WiC to lower-resource lan-
guages, adds more difficult adversarial examples,
and enables cross-lingual evaluations. For brevity,
we show results for four typologically diverse lan-
guages both from XL-WiC (ZH, KO, HR, ET); and
four languages in AM2iCo (ZH, KA, JA, AR).4

For WiC, TSV, XL-WiC and AM2iCo, our main
experiments follow the unsupervised method from
Pilehvar and Camacho-Collados (2019): we com-
pute cosine similarity between the contextual word
representations in each pair, and search for a thresh-
old to divide true (i.e., same meaning) and false
instances on the development set in each task.5

We report accuracy scores in the main paper, while
additional area-under-curve (AUC) scores are avail-
able in App. §A.1.

Underlying PLMs. We experiment with several
standard input PLMs for English, but we remind the
reader that the MIRRORWIC framework is applica-
ble with a wide range of PLMs: 1) BERT (Devlin
et al., 2019) as a standard choice for WiC repre-
sentation learning and evaluation (Raganato et al.,
2020); 2) RoBERTa (Liu et al., 2019) as an opti-
mised and improved PLM; and 3) DeBERTa (He
et al., 2020) as a more recent PLM that achieves
state-of-the-art results in a range of natural lan-
guage understanding tasks (Wang et al., 2019).6

For all non-English experiments, unless noted oth-
erwise, we rely on multilingual BERT (mBERT) as
the underlying PLM (see App. §A.2).

Fine-Tuning Details. We largely follow the MIR-
RORBERT fine-tuning setup (Liu et al., 2021b), us-
ing 10k sentences randomly drawn from Wikipedia
as the MIRRORWIC fine-tuning corpus. For mono-
lingual models, we sample 10k sentences from the
corresponding Wikipedia of that language. For

4ZH: Mandarin Chinese, KO: Korean, HR: Croatian, ET:
Estonian, KA: Georgian, JA: Japanese, AR: Arabic.

5We add templates in each TSV subtask: ‘[target word]
means <definition>’ (TSV-1); ‘[target word] is a kind of <hy-
pernym>’ (TSV-2) and ‘[target word] is a kind of <hypernym>
and means <definition>’ (TSV-3). We then compute similarity
based on the contextual representations of the target words
in these templates. This results in an unsupervised approach
which is more effective than the approach from prior work
(Breit et al., 2021), where cosine similarity is computed on
definition/hypernym embeddings.

6DeBERTa extends the standard BERT architecture by in-
corporating two novel techniques: disentangled attention that
encodes a word’s content and position separately, and an en-
hanced masked decoder that incorporates absolute position for
predicting masked tokens during masked language modelling.

cross-lingual models, we sample 5k sentences from
English Wikipedia and 5k from Wikipedia of each
target language. We train all models with AdamW
(Loshchilov and Hutter, 2019) with a learning rate
of 2e-5 for 1 epoch. The τ in Eq. (1) is set to 0.04.
We set K (random span masking rate) to 10, 0 and
1 for BERT, RoBERTa and DeBERTa respectively.
The respective dropout rates are 0.4, 0.3 and 0.3
for BERT, RoBERTa and DeBERTa. All hyper-
parameters are tuned on the development set of
WiC and kept unchanged for all other experiments.
We refer the reader to the Appendix (Table 13) for
a full listing of hyperparameters along with their
search space.

5 Results and Discussion

5.1 Main Results: Evaluation on English

The main results are provided in Table 3 and Ta-
ble 4. Most notably, we observe consistent and
substantial gains over all unsupervised baselines,
including the off-the-shelf PLMs without MIRROR-
WIC fine-tuning. While the underlying PLMs, as
suggested by prior work (Garí Soler and Apidi-
anaki, 2021), do encode a wealth of sense-related
knowledge, that knowledge can be further exposed
via the proposed context-aware MIRRORWIC fine-
tuning procedure.

Impact of the Underlying PLM (Table 3). MIR-
RORWIC is effective with BERT, RoBERTa and
DeBERTa. DeBERTa+MIRRORWIC yields larger
gains, and even results in the highest absolute
scores on average. In other words, a seemingly
‘weaker’ off-the-shelf PLM under the naive feature
extraction baseline (DeBERTa) is transformed into
the best-performing WiC encoder after the MIR-
RORWIC procedure. This hints at the necessity
to unlock the input PLM’s ’task solving potential’
through adaptive fine-tuning.

Comparison with Sentence Encoders (Table 3).
We also probe how modelling the sentences (with-
out knowing which target word the context is de-
scribing) performs on the evaluation tasks. In par-
ticular, we evaluate the standard ’go-to’ sentence
encoder Sentence-BERT (Reimers and Gurevych,
2019b), and the original MIRRORBERT (Liu et al.,
2021b). We find that MIRRORWIC, with its direct
focus on word-in-context representations and WiC-
oriented fine-tuning, substantially outperforms the
two sentence encoders. The finding validates our
hypothesis that naively applying sentence encoders
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model↓, dataset→ Usim (ρ) WiC (acc) TSV-1 (acc) TSV-2 (acc) TSV-3 (acc) CoSimLex (ρ) One-shot WSD (acc)

Sentence-BERT 23.57 61.91 62.46 59.64 62.72 - 42.63
MIRRORBERT 23.21 64.10 66.32 64.78 66.32 - 44.93

BERT 54.52 68.49 61.69 60.66 61.95 76.2 52.90
+ MIRRORWIC 61.82 71.94 69.15 66.06 68.38 77.41 57.10

RoBERTa 50.25 66.77 55.52 56.55 57.58 75.64 51.38
+ MIRRORWIC 57.95 71.15 69.92 67.60 71.70 77.27 56.51

DeBERTa 54.77 66.14 59.38 59.89 60.41 72.06 53.99
+ MIRRORWIC 62.79 71.78 70.95 67.86 71.20 77.70 59.02

Table 3: Results across a collection of context-aware lexical semantic tasks in English.
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Figure 2: Layer-wise analyses of BERT (left column) and DeBERTA (right column) before and after applying MIR-
RORWIC. The first row (a,b) shows the model performance and can be linked to the isotropy analysis (the middle
two rows: c,d,e,f) and contextualisation analysis (the last row: g,b). Task performance correlates strongly with
isotropy and contextualisation changes especially in the last four layers (highlighted with dots); shade=variance.

is not sufficient for context-aware lexical semantic
tasks. While the two sentence encoders do provide
competitive performance in WiC-style tasks, their
performance decreases drastically on Usim. This
further indicates that the fine-grained similarity-
based Usim evaluation requires a more accurate

and subtler contextual lexical semantic ability than
the binary classification in WiC.

Comparison with Supervised WiC Methods
(Table 4). The scores reveal that the unsupervised
BERT + MIRRORWIC variant can even outperform
the supervised model (fine-tuned with labelled in-
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model↓, dataset→ WiC TSV-1 TSV-2 TSV-3

BERT 65.85 65.08 62.09 63.16
+ MIRRORWIC 69.64 73.66 69.83 73.73

task-supervised BERT 69.00 75.30 71.40 76.60

Table 4: BERT+MIRRORWIC versus supervised
BERT-based methods on the test sets of English WiC-
style tasks. The supervised variant on WiC is replicated
from Wang et al. (2019). The supervised results on
TSV are taken from Breit et al. (2021).

XL-WiC ZH * KO * HR ET

BERT 73.74 68.41 61.10 57.06
+ MIRRORWIC 75.70 72.26 67.32 61.43

AM2iCo ZH KA JA AR

BERT 63.80 59.90 64.10 60.60
+ MIRRORWIC 64.60 61.00 64.70 63.90

Table 5: Results (test set accuracy) on multilingual and
cross-lingual word-in-context tasks. We use mBERT
as the underlying PLM for all the languages except for
ZH * and KO * (in XL-WiC) where their monolingual
BERT models were used.

task data) in the WiC task. The results on TSV indi-
cate that the gap between the unsupervised BERT-
based approach to the supervised performance is
much reduced: from the∼10% gap to only∼2% in
all three TSV tasks when MIRRORWIC is applied.

5.2 Multilingual and Cross-Lingual Results

The results are summarised in Table 5. Notably, we
observe that the effectiveness of MIRRORWIC is
not tied to English, and extends to other languages.
We observe consistent improvements with the un-
derlying PLMs monolingually pretrained in other
languages, as well as with the multilingually pre-
trained mBERT. The gains on XL-WiC are more
pronounced than on the more difficult AM2iCo
benchmark. By design AM2iCo is a more challeng-
ing benchmark, and additional external knowledge
injection might be necessary to improve the results
further; unlike XL-WiC, AM2ico requires the mod-
els to understand the cross-lingual correspondence
of mostly entity names that occur less frequently.

5.3 Further Discussion and Analyses

Layer-wise Performance (Figs. 2a and 2b). The
figures reveal that the success of MIRRORWIC is
attributed to the performance gains achieved in
the last four layers of the fine-tuned PLMs. This
is expected as these four layers are exactly what

we optimise in the MIRRORWIC procedure. This
also confirms our hypothesis that matching training
and inference representations helps adapt and elicit
word-in-context knowledge from the PLMs.

Isotropy (Figs. 2c and 2d). As empirically val-
idated in prior work on sentence representations
(Gao et al., 2021; Liu et al., 2021b), contrastive
fine-tuning reshapes the embedding space geome-
try towards more isotropic representations, which
in turn has a positive impact on semantic similarity
tasks. We now examine whether the same ‘isotropy-
increasing’ effect is achieved with MIRRORWIC.
To this end, we leverage a quantitative isotropy
score (IS), proposed in prior work (Arora et al.,
2016; Mu and Viswanath, 2018),7 and defined as:

IS(V) = log

(
minc∈C

∑
v∈V exp(c

>v)

maxc∈C
∑

v∈V exp(c
>v)

)
(2)

where V is the set of vectors, C is the set of all
possible unit vectors in the embedding space (i.e.,
{c : |c| = 1}). Practically, C is approximated
by the eigenvector set of V>V (V is the stacked
embeddings of V). The larger the IS value, the
more isotropic an embedding space is.8

As seen in Fig. 2c and Fig. 2d, both BERT and
DeBERTa create more isotropic embedding spaces
in general in the last four layers after MIRRORWIC
training. Note that DeBERTa’s space isotropy is
able to benefit more from MIRRORWIC, which
also explains its large gains in the end tasks.

It is also possible to assess isotropy by simply
looking at the cosine similarity of random words
(Ethayarajh, 2019). We calculate word representa-
tions in each layer as the average of the word’s con-
textual representations from Wikipedia. We then
take five random samples of 200 random words and
compute pair-wise similarity. We take the average
of the similarity scores in each sample with vari-
ance reported in Fig. 2e and Fig. 2f. The results
confirm the trend: the last four layers with MIR-
RORWIC exhibit much lower random word cosine
similarities than the off-the-shelf PLM.

Intra-Sentence Similarity (Figs. 2g and 2h). As
a measure of contextualisation, we follow Etha-

7The same metric is used for measuring isotropy of con-
textual word representations by Rajaee and Pilehvar (2021).

8We randomly sample 10k sentences from English
Wikipedia as V . We compute the average word-in-context
embeddings for all words in each sentence and then compute
the IS value. We repeat the process for five times to reduce
the randomness introduced in sampling.



569

Word-in-context 1 Word-in-context 2 BERT +MIRRORWIC Gold

Spend money. He spends far more on gambling
than he does on living proper.

-0.0850 (F) 0.2327 (T) T

That toaster can make wonderful toasts. I ate a piece of toast for breakfast. 0.0160 (F) 0.3234 (T) T

War is hell. The hell of battle. -0.0403 (F) 0.2378 (T) F

Ease the pain in your legs. The pain eased overnight. 0.0157 (F) 0.2873 (T) F

Table 6: Examples of changed cosine similarity scores (isotropy-adjusted) after MIRRORWIC; English WiC (dev).

10 0 10

10

5

0

5

10

model = BERT

10 0 10

model = BERT+MirrorBERT

10 0 10

model = BERT+MirrorWiC

sense
spring (hydrology)
spring (device)
spring (season)
summer (season)

Figure 3: t-SNE embedding visualisation of different senses of spring and summer under different models.

yarajh (2019), and define intra-sentence similar-
ity as each word’s similarity to its context. The
context is computed as the mean vector of all the
word representations in the sentence. The scores
are isotropy-adjusted by substracting the intra-
sentence similarity scores by the random word sim-
ilarity in each layer, see (Ethayarajh, 2019). For
both BERT and DeBERTa, we can see that the
last four layers become more contextualised after
applying MIRRORWIC: they encode more informa-
tion about the context as the contextual word rep-
resentations become much more similar to its con-
text in the top Transformer layers than in the base
PLM. This increased contextualisation could ex-
plain why MIRRORWIC gives better performance
in the context-sensitive lexical semantic tasks.

Error Analysis (Table 6). Conducting an error
analysis of BERT before and after MIRRORWIC
on the WiC dev set, we observe that 94 instances
changed their labels, among which 58 are MIR-
RORWIC correcting the original predictions. In 43
out of 58 cases, MIRRORWIC is producing more
TRUE positives. The examples with the largest
similarity changes are provided in the upper half
of Table 6. For the 36 cases where MIRRORWIC
changes the originally correct predictions to the
wrong prediction, 29 are false positives; see the
lower half of Table 6. We manually inspect these
cases and find that the distinctions between the two
contexts are usually too fine-grained to tell even for

humans. For instance, it seems acceptable to align
with the MIRRORWIC’s (incorrect) predictions for
hell and ease in the two examples in Table 6.

Visualising the Embedding Space (Fig. 3). Con-
textualised embeddings for an ambiguous word
(spring) with off-the-shelf BERT, MIRRORBERT

and MIRRORWIC are visualised in Fig. 3 (sense
labels from Wikipedia). While MIRRORWIC main-
tains the sense clusters from BERT and teases apart
the different senses even more, MIRRORBERT ex-
hibits no clear sense distinctions. This shows a
fundamental difference between MIRRORWIC and
MIRRORBERT: MIRRORBERT is insensitive to the
target word, and directly applying it to context-
sensitive lexical tasks yields subpar performance.

5.4 Ablation Study

An ablation study is conducted on English WiC
(dev). Foreshadowing, the dropout rate and the
layer averaging strategy are the two most important
factors for MIRRORWIC to be effective.

Dropout and Random Span Masking (Tabs. 7
and 8). The MIRRORWIC performance is most
sensitive to the dropout rate; it requires larger
dropout rates (0.3 for DeBERTa and 0.4 for BERT)
than MIRRORBERT (0.1 dropout). This may be re-
lated to the different levels of granularity. Sentence
meanings can largely change with even slight differ-
ences in context: therefore, positive sentence pairs
for MIRRORBERT are required to be very similar.
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dropout rate→ 0 0.1 0.2 0.3 0.4 0.5 0.6

BERT + MIRRORWIC 68.02 68.65 70.21 71.31 71.94 68.80 68.49
DeBERTa + MIRRORWIC 65.67 69.12 70.53 71.78 67.08 65.98 66.30

Table 7: Impact of dropout rate in MIRRORWIC.

model↓, random span masking→ off on

BERT + MIRRORWIC 71.31 71.47↑0.16
DeBERTa + MIRRORWIC 71.78 71.94↑0.16

Table 8: Impact of random span masking.

average last n layers→ 1 2 3 4 5 6 12

BERT + MIRRORWIC 68.96 68.80 70.06 71.94 70.68 70.84 67.71
DeBERTa + MIRRORWIC 71.47 73.04 72.41 71.78 71.15 70.53 69.74

Table 9: Impact of layer averaging strategies.

Word-in-context meaning can tolerate larger con-
textual differences: larger dropout rates are thus
preferable with MIRRORWIC to create positive
pairs with more distinct representations. Random
span masking is less crucial than the dropout rate,
and gives only slight gains (Table 8).

Layer Averaging Strategy (Table 9). Averag-
ing across all layers of the PLM is suboptimal
for WiC representations, and the strategy of av-
eraging only over the last four layers is indeed
the optimal one for BERT. However, DeBERTa
reaches its peak when averaging over the last 2 lay-
ers. Our findings corroborate those from previous
studies which report that contextualised informa-
tion is usually stored in higher layers (Ethayarajh,
2019; Garí Soler and Apidianaki, 2021), and the
bulk of decontextualised information is stored in
lower layers (Vulić et al., 2020).

Input Size (Fig. 4). As in Fig. 4, we show a sharp
increase of performance from 5k to 10k on both
Usim and WiC. While WiC maintains its perfor-
mance with small fluctuation from 10k throughout
to 50k, there is a clear downward slope for Usim
from 10k onward. This is in line with findings in
MIRRORBERT, and also shows that the model does
not require plenty of fine-tuning data to transform
into a WiC encoder. This further confirms that the
model is not so much learning new knowledge as
rewiring knowledge to the surface.

6 Conclusion

We proposed MIRRORWIC, a fully unsupervised
approach for eliciting word-in-context representa-
tions from pretrained language models (PLMs), re-
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Figure 4: Impact of input size of the training data for
MIRRORWIC. Evaluation on WiC (dev).

quiring only raw sentences as input, and disposing
of labelled data and sense inventories. We showed
that MIRRORWIC is PLM-agnostic and language-
agnostic, yielding substantial performance boosts
in context-aware lexical semantic tasks in English,
multilingual and cross-lingual setups and demon-
strating that additional WiC knowledge can be
exposed from the PLMs. We then delved into
the inner-working of MIRRORWIC, demonstrat-
ing that the performance improvement strongly
correlates with metrics such as isotropy score and
intra-sentence word similarity. In future work, we
will also look into weakly supervised approaches
that combine self-supervision with external sense-
related knowledge.
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A Appendix

A.1 AUC Score Tables for Binary
Classification Tasks

model↓, dataset→ WiC TSV-1 TSV-2 TSV-3

Sentence-BERT 64.20 63.99 61.81 66.01
MIRRORBERT 67.31 70.53 68.00 70.28

BERT 71.61 62.06 59.48 61.45
+ MIRRORWIC 74.89 72.10 67.92 73.03

DeBERTa 70.58 62.11 60.51 63.25
+ MIRRORWIC 76.70 75.44 71.24 75.64

Table 10: AUC results for English tasks.

Following prior work, we reported accuracy
in the main text. However, the threshold for

TRUE/FALSE classification needs to be tuned on
dev set. We thus report the AUC scores in Tabs. 10
and 11 which does not require tuning of any hyper-
parameter. The AUC scores demonstrate the same
trend as accuracy scores.

A.2 Pretrained Encoders Details
For a full listing of HuggingFace model links and
number of parameters for each model, see Table 12.

A.3 Hyperparameter Optimisation
Table 13 shows a full listing of the hyperparame-
ters (and their search space). As said in main text,
hyperparameters remain as the same as set in prior
work of Liu et al. (2021b), except for random span
masking rate and dropout rate.

A.4 Sensitivity to Training Corpora
To test the robustness of the model to different
corpora, we individually sampled five sets of 10k
raw sentences and found only minor difference
when fine-tuning on them (≈ 0.003 standard devi-
ation for BERT +MIRRORWIC and ≈ 0.001 for
DeBERTa +MIRRORWIC). We also tested with
fine-tuning with strictly ‘in-domain’ data, i.e., raw
sentences (w/o labels) sampled from the training
sets of WiC tasks, but found no substantial differ-
ence when comparing to fine-tuning on Wikipedia
texts.

A.5 Software and Hardware Dependencies
Our experiments are implemented with PyTorch
and Huggingface Transformers. For PyTorch train-
ing, Automatic Mixed Precision (AMP)9 is turned
on. The hardware configuration is listed in Table 14.
MIRRORWIC training on this machine takes ≈ 30
seconds.

9https://pytorch.org/docs/stable/amp.
html
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level→ XL-WiC AM2iCo

model↓, language→ ZH * KO * HR ET ZH KA JA AR

BERT 80.97 75.17 67.79 62.72 68.06 64.50 69.32 68.98
+ MIRRORWIC 83.39 80.44 76.80 64.62 69.23 65.57 72.86 69.27

Table 11: AUC results for multilingual and cross-lingual tasks.

model #param URL

BERT 110M https://huggingface.co/bert-base-uncased
RoBERTa 110M https://huggingface.co/roberta-base
DeBERTa 138M https://huggingface.co/microsoft/deberta-base
mBERT 168M https://huggingface.co/bert-base-multilingual-uncased
BERT (ZH) 103M https://huggingface.co/bert-base-chinese
BERT (KO) 118M https://huggingface.co/kykim/bert-kor-base

Table 12: A listing of HuggingFace URLs of all pretrained models used in this work.

hyperparameters search space

learning rate {1e-5, 2e-5∗,3e-5}
batch size 200
training epochs {1∗, 2, 3, 4}
training data size {5k, 10k∗, 20k, 30k, 40k, 50k}
max_seq_length of tokeniser 50
τ in Eq. (1) {0.02, 0.03, 0.04∗, 0.05, 0.06}
random span masking rate (BERT) {0, 1, 5, 10∗, 15}
random span masking rate (RoBERTa) {0∗, 1, 5, 10 15}
random span masking rate (DeBERTa) {0, 1∗, 5, 10, 15}
dropout rate (BERT) {0.1, 0.2, 0.3, 0.4∗, 0.5, 0.6}
dropout rate (RoBERTa) {0.1, 0.2, 0.3∗, 0.4, 0.5, 0.6}
dropout rate (DeBERTa) {0.1, 0.2, 0.3∗, 0.4, 0.5, 0.6}

Table 13: Hyperparameters along with their search grid. ∗ marks the values used to obtain the reported results.
The hparams without any defined search grid are adopted directly from Liu et al. (2021a).

hardware specification

RAM 128 GB
CPU AMD Ryzen 9 3900x 12-core processor × 24
GPU NVIDIA GeForce RTX 2080 Ti (11 GB) × 2

Table 14: Hardware specifications of the used machine.
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