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Abstract

While End-2-End Text-to-Speech (TTS) has
made significant progresses over the past few
years, these systems still lack intuitive user
controls over prosody. For instance, generat-
ing speech with fine-grained prosody control
(prosodic prominence, contextually appropri-
ate emotions) is still an open challenge. In this
paper, we investigate whether we can control
prosody directly from the input text, in order to
code information related to contrastive focus
which emphasizes a specific word that is con-
trary to the presuppositions of the interlocutor.
We build and share a specific dataset for this
purpose and show that it allows to train a TTS
system were this fine-grained prosodic feature
can be correctly conveyed using control to-
kens. Our evaluation compares synthetic and
natural utterances and shows that prosodic pat-
terns of contrastive focus (variations of Fo, In-
tensity and Duration) can be learnt accurately.
Such a milestone is important to allow, for ex-
ample, smart speakers to be programmatically
controlled in terms of output prosody.

Index Terms: End-to-End TTS, fine-grained prosody
control, contrastive focus, interrogative/assertive sen-
tences.

1 Introduction

Text-to-Speech (TTS) systems attempt to produce
human-like speech by processing natural language text
inputs. Neural network based TTS has made rapid
progresses and attracted a strong attention in recent
years (Wang et al., 2017; Shen et al., 2018b; Łańcucki,
2021; Valle et al., 2020). Not only synthetic speech
quality but also inference speed were improved, the
latter benefiting from non-autoregressive TTS models
(Ren et al., 2019, 2020). Controlling prosody is an-
other issue, as features such as pitch and duration are
difficult to predict because of their large fluctuations
over time. While recent works proposed to synthe-
size speech which closely resembles the prosody of

∗This study was conducted during the internship at
NAVER LABS Europe.

a provided reference speech using latent representa-
tions (Skerry-Ryan et al., 2018; Lee and Kim, 2019;
Habib et al., 2019; Sun et al., 2020b), this work ad-
dresses explicit user control of prosody using the sym-
bolic (text) input. Our case study concerns control of
contrastive focus which emphasizes on a specific word
that is contrary to the presuppositions of the interlocu-
tor (figure 1). More precisely, we want the TTS system
to correctly convey the information initially transmit-
ted by the speaker including prosodic prominence (for
instance we want to emphasize the word HOUSE in the
sentence ’Sarah closed the HOUSE’).

We posit that controlling prosody in TTS is impor-
tant for future prosody transfer in speech-to-speech
translation systems (carrying the real meaning of a
source utterance spoken by a human). For instance,
spoken utterances of figure 1 in English (where focus
is only prosodically marked) would lead to different
word orderings if translated to a language like Hun-
garian (were focus is explicitely marked by putting the
verb right after the focused word).

The contributions of this paper are the following:

• we record and release a mono-speaker corpus of
36k English utterances usable for prosody-controlled
TTS as well as for phonetic analyses on contrastive
focus in English,1

• we show that this corpus can be used for modeling
contrastive focus in English TTS and thus demon-
strate that controlling prosody directly from the input
text is possible,

• we compare the prosodic patterns of contrastive fo-
cus from natural and synthetic speech and provide
synthetic speech samples as additional multimodal
material.

The rest of this article goes simply as following: sec-
tion 2 presents the background in End-to-End TTS and
controllable prosody synthesis; section 3 introduces the
corpus recorded for prosody-controlled TTS. Section 4
and 5 present the TTS model trained and its evaluation
respectively. Finally section 6 concludes this work and
gives some perspectives.

1https://europe.naverlabs.
com/research/publications/
controlling-prosody-in-tts

https://europe.naverlabs.com/research/publications/controlling-prosody-in-tts
https://europe.naverlabs.com/research/publications/controlling-prosody-in-tts
https://europe.naverlabs.com/research/publications/controlling-prosody-in-tts
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(a) Q. What happened ? A. SARAH CLOSED THE HOUSE.
(b) Q. Did Sarah closed the house ? A. Sarah closed the house.

(c.1) Q. Who closed the house ? A. SARAH closed the house.
(c.2) Q. What did Sarah do ? A. Sarah CLOSED the house.
(c.3) Q. What did Sarah closed ? A. Sarah closed the HOUSE.
(d.1) Q. Ava closed the house? A. SARAH closed the house.
(d.2) Q. Sarah occupies the house? A. Sarah CLOSED the house.
(d.3) Q. Sarah closed the parking? A. Sarah closed the HOUSE.

Figure 1: Example of four focus types.; (a) broad focus, (b) given (no focus), (c) narrow focus on (c.1) subject, (c.2)
verb and (c.3) object, and (d) contrastive focus on (d.1) subject, (d.2) verb, (d.3) object. We address contrastive
focus here.

2 Background
2.1 End-to-End TTS Models
While former TTS systems involved complex pipelines
of components optimized independently (Taylor,
2009), end-to-end neural TTS architectures were re-
cently introduced. Such integrated models can be
trained on<text, audio> pairs with minimal human an-
notation. Among those systems, autoregressive models
(e.g., Tacotron (Wang et al., 2017; Shen et al., 2018b)
and Deep voice 3 (Ping et al., 2018)) suffer from
slow inference speed and robustness. Recently, non-
autoregressive TTS models including Fastspeech (Ren
et al., 2019, 2020), Fastpitch (Łańcucki, 2021), and
JDI-T (Lim et al., 2020) address these issues by gen-
erating mel-spectrograms with extremely fast speed,
while achieving comparable voice quality with previ-
ous autoregressive models. In this paper, we will use
Fastpitch which is a fully-parallel TTS system, condi-
tioned on pitch contours. It enables faster synthesis of
mel-spectrograms (over 60× faster than real-time ) and
achieve better mean opinion scores (MOS) compared
to Tacotron 2.

2.2 Related work on controllable neural prosody
synthesis

Pioneering works on paralinguistic translation in
speech-to-speech systems (relying on HMM-based
ASR and TTS systems) (Anumanchipalli et al., 2012;
Aguero et al., 2006; Tsiartas et al., 2013) were only
limited to F0 and did not consider other acoustic fea-
tures such as duration or intensity. Most recent works
(Skerry-Ryan et al., 2018; Lee and Kim, 2019; Habib
et al., 2019; Sun et al., 2020b) focused on synthesizing
speech which closely resembles the prosody of a pro-
vided reference speech and try to control local prosody
by varying the values of corresponding latent features.
For instance, Lee and Kim (2019) introduce a fine-
grained structure to encode the prosody associated with
each phoneme in the input sequence using a latent vari-
able model. Sun et al. (2020a) extends this work by
incorporating a quantized latent representation to avoid
discontinuous and unnatural artifacts induced by the
initial approach of Lee and Kim (2019). The same
authors (Sun et al., 2020b) augment Tacotron2 (Shen
et al., 2018a) with a hierarchical latent variable model

(at utterance, word and phone level). Finally, Zhu and
Xue (2020) propose an embedding vector to continu-
ously control the emotion strength in a TTS system.

All these methods aim at modifying prosodic at-
tributes (duration, f0, energy) without affecting speaker
characteristics but they do not provide explicit control
of prosody from the symbolic (text) input. More related
to our work is the approach of Wang et al. (2018) which
introduces “global style tokens” (GSTs), a set of em-
beddings which can be seen as soft interpretable labels
used to control TTS (speed, speaking style). This ap-
proach is also conceptually related to the work of Sun
et al. (2020a) since it learns a quantized representation
of its input. However, those style tokens are difficult to
interpret since they represent meaningless prosodic di-
mensions learnt in an unsupervised way. Another line
of work (Morrison et al., 2020) incorporates explicit
user control into a prosody generation model but this
is done through manually modifying the prosodic at-
tributes such as f0 contour.

Our work shows that explicit control can be made
from the symbolic (text) input: at word level (focus),
utterance level (affirmative or interrogative form) or
both through composition. To our knowledge, TTS
generation of contrastive focus was not addressed yet
in End-to-End TTS, however Pitrelli et al. (2006) did
produce contrastive emphasis using concatenative TTS
and Do et al. (2017) did propose a module which syn-
thesizes emphasized speech using HMM-based TTS.
We were also very recently aware of this work (Shecht-
man et al., 2021) that is contemporary to ours.

3 Corpus Creation
3.1 Contrastive focus
Prosody includes rhythm, pause, loudness and melody,
and it reflects not only speaker’s personal state like
emotion, but also linguistic information like syntax,
semantics and pragmatics (among many see (Ladd,
2008)). In English, an identical text can be spoken
prosodically different. In other words, prosodic promi-
nence on different lexical units conveys different mean-
ings. This prosodic prominence is observed on fo-
cused words in a question-answer dialogue and correc-
tive contrasts are realised through prosodic prominence
(Rooth, 1995; Büring, 2012). Figure 1 shows the four
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types of focus. The first ’broad focus’ type is the case
when the whole statement is the answer, and all words
are focused (a), the second type, ’given’, is when there
is no focus, as all information in the statement is given
(b). The third type, ’narrow focus’, is when a new in-
formation is given by answering to a wh-question (c).
In this case, the focus should be on the precise word in
the answer according to the question, i.e. subject, verb,
or object. The fourth type, ’contrastive focus’, is when
the answer corrects the information in the question, and
the word is prosodically emphasized to convey this fo-
cused information. Roettger et al. (2019) showed the
4 distinctive F0 pitch forms corresponding to each of 4
focus types in human speech production, and we chose
to address contrastive focus, as this category shows the
most prominent form regarding the pitch of focused
word.

3.2 Defining text prompts

Starting from a seed of 50 short sentences, similar to
what is presented in Figure 1(d), we expanded them us-
ing BERT (Devlin et al., 2019), which stands for Bidi-
rectional Encoder Representations from Transformers.
We used Hugging Face (Wolf et al., 2019) library for
this task. We simply masked the different subject, verb
and object words in our initial utterances and let BERT
predict the masked words. More than 10K utterances
were generated this way in order to expand our initial
sentence set. The full corpus was then manually veri-
fied before recording the corresponding speech. We re-
moved the sentences which were not semantically cor-
rect. After manual validation of the full corpus, we kept
7320 sentences.

3.3 Recording

A professional American English female speaker was
recruited for the human speech recording. The record-
ing from prompted utterances was done remotely by
the speaker from her home. After a short training ses-
sion, she recorded 732 sessions where each session
contained 10 groups of target sentences and each group
contained five versions of the same utterance: neu-
tral (declarative), question (interrogative), contrastive
focus on subject, contrastive focus on verb and con-
trastive focus on object (see figure 1(d)). The neutral
and question sentences were presented with a corre-
sponding punctuation, a full stop and a question mark
respectively. To elicit contrastive focus, a question-
answer pair was prompted: the question in text was
presented on the first line on the screen and the answer
statement to this question with the focused word in up-
per case was presented to be read as a target sentence.

The recordings were saved on our server as audio
and text pairs. We performed some postprocessing to
filter out problematic samples. Finally, we got 26.7
hours of recorded signal for a total of 36600 recorded
utterances. The complete corpus is made publicly
available. A few sound samples are provided in the

supplementary material file associated to this paper.

4 End-to-End TTS System

4.1 Model used

We use Fastpitch (Łańcucki, 2021) for experiments
which is a Transformer based TTS model conditioned
on fundamental frequency contours which produces
state-of-the-art results. Its architecture is based on Fast-
speech (Ren et al., 2019, 2020), which is composed of
two Feed-Forward Transformer (FFTr) stacks. The first
FFTr produces a hidden representation h from the input
sequence, which is used for duration and average pitch
prediction for every character using a duration and a
pitch predictor module. The sum of the pitch embed-
ding and the hidden representation h is given to the sec-
ond FFTr to produce the Mel-spectrogram. WaveGlow
(Prenger et al., 2019) is used as vocoder to generate
English speech signal from the Mel-spectrograms.

4.2 Model training

For training the audio signals are sampled at 22KHz
and silences at begin and end of the utterances are
trimmed with a threshold of 30dB. Similarly to ma-
chine translation in case of domain adaptation (Kobus
et al., 2016) or inline casing (Bérard et al., 2019), we
annotate the input text with various control tags to mark
specific prosodic elements, as shown in Figure 2. For
the interrogative and declarative case, global tags at the
sentence level are used to distinguish question and neu-
tral. For the contrastive focus, we insert local tags, at
the word level, just prior to the word to be focused.

NVIDIA FastPitch implementation2 is used with the
default training parameters. Each FFTr consists of a 1-
D conv with ReLU activation followed by dropout and
layer norm. Both duration and pitch predictors have
same architecture: 1-D conv layers with ReLU, layer
norm and dropout layers. Dropout rate of 0.1 is used.
LAMB optimizer (You et al., 2019) is used with learn-
ing rate 0.1, β1 = 0.9, β2 = 0.98, and ε = 1−9.

We split the data into train, valid, and test (80/10/10
random split based on full groups of 5 sentences) and
train the model for 1000 epochs. For decoding, a
preexisting WaveGlow (Prenger et al., 2019) model
trained on LJSpeech (Ito and Johnson, 2017) is used as
vocoder. Training the model on more data using multi-
speaker end-to-end TTS approaches is left for future
work.

5 Evaluation of Synthetic Contrastive
Focus

5.1 Natural and synthetic samples

Natural and synthetic samples are provided in supple-
mentary material. More precisely we provide 4 groups

2https://github.com/NVIDIA/
DeepLearningExamples/tree/master/
PyTorch/SpeechSynthesis/FastPitch

https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechSynthesis/FastPitch
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechSynthesis/FastPitch
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechSynthesis/FastPitch
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(a) neutral sarah closed the house
(b) question <Q> sarah closed the house
(c) focus subject <F> sarah closed the house
(d) focus verb sarah <F> closed the house
(e) focus object sarah closed the <F> house

Figure 2: For training the input text was stripped
of punctuation, lowercased and annotated with global
control tags <Q> for questions and local control tags
<F> for focused terms. Neutral sentences have no
dedicated tag.

of wav files (from validation set) which are the record-
ings from female speaker where each group contains
5 sentence types (neutral, question, focus subject, fo-
cus verb and focus object). We also provide the syn-
thetic counterpart of those utterances, obtained with
our TTS model learnt using the train set of our corpus.
Listening to those examples show that our trained TTS
model is able to convey prosodic information related to
focus, a deeper quantitative analysis is proposed in the
next subsection. The complete natural speech corpus
(36k utterances) is also shared with the research com-
munity.

5.2 Synthetic Speech Analysis

(a) F0 evaluation

(b) Intensity evaluation

Figure 3: F0 (a) and Intensity (b) curves of each of the 5
instances (neutral, question, focus subject, focus verb,
focus object) are compared to each other pairwise us-
ing DTW distance. We display the confusion matrices
based on those distances for natural speech (left: dis-
tance between a natural speech instance and another
natural speech instance) and synthetic speech (right:
distance between a synthetic speech instance and a ref-
erence natural speech instance).

Figure 4: F0 plot of ’Eva avoids you’; Natural hu-
man voice (left) and synthesized voice from the model
(right)

For a quantitative and qualitative evaluation of our
model we analyse the F0, Intensity and Duration of
the generated samples. We use Dynamic Time Warp-
ing (DTW) (Sakoe and Chiba, 1978) to measure a dis-
tance directly between the F0 curves (resp. intensity
curves), for each group of 5 sentences. DTW is pre-
ferred here for its ability to compute distances between
temporal series of different lengths. The distance is
measured between each sample type (neutral, question,
focus subject, focus verb, focus object) inside the gold
standard (natural speech) and between the gold stan-
dard and the synthetic speech. In other words, we mea-
sure the variation of the prosodic patterns within nat-
ural speech (gold vs gold) to highlight the differences
between focused and neutral sentences (or between dif-
ferent places of focus), as well as between natural and
synthetic speech (gold vs synthetic) to evaluate the abil-
ity of our TTS model to reproduce prosodic patterns
correctly. The results are averaged on our test corpus
(590 groups of 5 sentences, corresponding to 2950 au-
dio files).

We summarize the results in Figure 3 as heatmaps
to visualize at once the relative distances between each
feature type in the natural and synthetic speech. For
each prosodic feature (F0 3a, Intensity 3b ), the left ma-
trix compares the natural speech to itself and the right
matrix compares the natural speech to the synthetic
speech. The lines correspond the the natural speech,
the columns correspond to the natural speech (left ma-
trix) or to the synthetic speech (right matrix).

5.2.1 F0 Analysis
As seen in 3a left matrix, the natural speech shows very
distinct F0 curve for each instance type. In terms of
difference, the prosodic curve for questions seems the
most different from the others (neutral and focused).
Between the 3 types of focus the contrastive focus on
verbs is the most distinct when compared to others in
terms of F0 (see also the curve of a single utterance
in figure 4). As shown in 3a right matrix, the syn-
thetic speech seems to replicate relatively well these
patterns. The diagonal shows a clear similarity of the
pitch curves between the natural and synthetic speech.
The overall patterns are also easily identifiable: syn-
thetic questions are the most different and between con-
trastive focus types the verb focus seems the most dis-
tinct.
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For finer-grained analysis, pitch curves in natural
and synthetic voice are plotted in figure 4. F0 pitch
curve differences between two sentence types (neutral
and focused verb) in natural voice are also observed in
the synthesized voice generated from our model. In
natural speech, focused words are reported to realize
a pitch accent or a rise-falling F0 movement (Roettger
et al., 2019; Ladd, 2008), and we observe similar trend
for the verb (’avoids’).

5.2.2 Intensity Analysis
As for the F0 curve, we can use Figure 3b to analyse
the Intensity in dB of the natural and synthetic speech
utterances. In terms of natural speech the neutral ut-
terances and questions seem to be the most similar
in terms of intensity curves and the focused sentences
are clearly different from the other two. As shown in
the right matrix our system tends to replicate the same
overall patterns with clear differences in terms of inten-
sity between neutral and questions vs focused.

Figure 5: Comparing the duration of sentences in both
real and synthetic speech for neutral and focused sen-
tences for subject, verb, and object cases.

5.2.3 Duration Analysis
In Figure 5, we plot the average duration of complete
sentences in both real and synthetic speech for neutral,
subject, verb, and object focused cases. We observe
that overall duration of focused sentences is longer than
the neutral sentences both in real and synthetic speech
(which displays however shorter utterances in general).
It could be due to the fact that natural utterances may
contain silences at the beginning and end of the record-
ings.

For more fine-grained analysis, we use Montreal
Forced Aligner (McAuliffe et al., 2017) and compute
duration of words in both (natural and synthetic) vali-
dation sets (2950 utt). We plot distributions of focused
words for subject, verb, and object and compare them
to those of corresponding non-focused words in Fig-
ure 6. We have less unique words for focus on subject
therefore our distributions have wider bars in that case.
Results on natural speech confirm that speaker reliably
marked focus location (subject, verb, or object) using
longer duration, as observed in Breen et al. (2010). The

(a) Subject focus vs non focus

(b) Verb focus vs non focus

(c) object focus vs non focus

Figure 6: Distribution of word durations in natural
(left) and synthetic (right) speech for utterances were
contrastive focus is put on (a) subject, (b) verb and (c)
object.

duration difference is however less distinct when the
focus is put on the object. Results on synthetic speech
display similar contrast between focused and non fo-
cused words which demonstrate our TTS model has
learnt to control duration in synthetic speech in order
to put focus on a given word.

Statistical analysis of these distributions is per-
formed with 2 samples Kolmogorov-Smirnov test
(Massey Jr, 1951) using alpha=0.05. We plot statistics
D and critical value c in Figure 7: for distributions to
be identical, D should be less than c. Figure 7 shows
that D values are greater than c and that non-focus and
focus duration distributions are not identical for natural
speech. Simililar trend (and similar D levels) is ob-
served for synthetic speech.

Finally, we further analysed neutral and focused
sentences by inspecting the pauses in between words
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Figure 7: Illustration of statistical difference between
word duration distributions for non-focused and fo-
cused words, using 2 samples Kolmogorov-Smirnov
test. Left: natural speech. Right: synthetic speech.

(we ignored the starting and ending pauses in all sen-
tences). The detection of pauses is given by the Mon-
treal Forced Aligner. For subject we count the pauses
made after the focused word; for object we count the
pauses made before the focused word; and for verb we
count the pauses made before and after the focused
word. Table 1 compares those counts for focused or
neutral sentences for both natural and synthetic speech.
We observe that focused sentences have more detected
pauses compared to the neutral ones and that our TTS
model is also able to reproduce this pattern in synthetic
speech.

Table 1: Comparing the number of detected pauses be-
tween focused and neutral sentences, for both natural
and synthetic speech.

Number of pauses in natural speech around Subj/Verb/Obj words
Subject
focused

Subject
neutral

Verb
focused

Verb
neutral

Object
focused

Object
neutral

425 3 446 32 488 33
Number of pauses in synthetic speech around Subj/Verb/Obj words
502 2 472 43 516 41

5.3 Varying amount of training data

Figure 8: Varying the amount of training data contain-
ing utterances with focus verb: 0%, 25% and 50%. We
display only DTW distances between F0 curves of each
of the 5 instances (neutral, question, focus subject, fo-
cus verb, focus object) compared to each other (natural
vs synthetic).

To test the generalisation capacity of the model, we
trained with three alternative subsets of the data with
respectively 0% of training data for focus verb, 25%
and 50%. These variations should be able to tell us if
the model is able to generate focused words in posi-
tions it has not seen before (here verb) and if not how
much data is needed for the model to generalize? Re-
sults for the F0 curves comparison are shown in Fig-

ure 8 (trend is similar for intensity and duration). As
we see in the first heatmap, without any training utter-
ances containing focus verb, the model has difficulties
to generalize (see 4th line and column). The model is
able to clearly differentiate with the questions but the
fine grained differences between focus words of dif-
ferent positions were not captured well. This is con-
firmed by a manual inspection we did on some sam-
ples: the model produced sometimes neutral sounding
sentences, sometimes focus was misplaced on another
word and sometimes it was correct. When we slightly
increase the amount of utterances containing this event
(25%) the model is able to regain good performance
and displays the same similarity patterns as the ones
we observed with the full training set.

6 Conclusion and Future work

In this paper, we proposed a control mechanism for
End-to-End TTS systems to manipulate fine-grained
prosodic features like contrastive focus (as well as af-
firmative vs interrogative sentences). This mechanism
uses local and global interpretable control tags directly
in the input sequences to manipulate the generated
prosody: F0, Intensity, pauses and durations. A spe-
cific mono-speaker corpus was recorded for this study
and we hope its release will help the speech commu-
nity to (a) study fine grain prosodic patterns of focus
that occur in natural speech, (b) continue investigating
the problem of fine grained control of prosody for TTS
models and (c) address the dual problem of automati-
cally detecting prosodic focus from natural speech.

In future work we plan to extend this study with
a stronger TTS baseline and human evaluations. We
would also like to verify how to train a multispeaker
TTS system using this same dataset. It would allow
to create a generic TTS model with, as base, a non
annotated dataset and, as extensions, many smaller
corpora with specific prosodic annotations. Natu-
rally the extension of this work to the complemen-
tary task seems also straightforward (i.e. building an
ASR system with automatic prosodic feature extrac-
tion) as well as the concrete application of the tech-
nology to Speech-to-speech Neural Machine transla-
tion with prosodic features transfer between the input
signal and the output translation, as was very recently
initiated by (Tokuyama et al., 2021). Finally, the pos-
sibility to emphasize not only word but also subword
units is another interesting perspective.
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