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Abstract

Commonsense Question Answering is an im-
portant natural language processing (NLP)
task that aims to predict the correct answer
to a question through commonsense reasoning.
Previous studies utilize pre-trained models on
large-scale corpora such as BERT, or perform
reasoning on knowledge graphs. However,
these methods do not explicitly model the rela-
tions that connect entities, which are informa-
tional and can be used to enhance reasoning.
To address this issue, we propose a relation-
aware reasoning method. Our method uses
a relation-aware graph neural network to cap-
ture the rich contextual information from both
entities and relations. Compared with meth-
ods that use fixed relation embeddings from
pre-trained models, our model dynamically
updates relations with contextual information
from a multi-source subgraph, built from mul-
tiple external knowledge sources. The en-
hanced representations of relations are then
fed to a bidirectional reasoning module. A
bidirectional attention mechanism is applied
between the question sequence and the paths
that connect entities, which provides us with
transparent interpretability. Experimental re-
sults on the CommonsenseQA dataset illus-
trate that our method results in significant im-
provements over the baselines while also pro-
viding clear reasoning paths.

1 Introduction

Commonsense Question Answering (CQA) is a
task that requires machines to not only understand
the question, but also infer through external knowl-
edge. For example, to answer the question in Fig-
ure 1 (“What do people typically do while playing
guitar?”), it is necessary to discover the connec-
tion between the evidence “playing guitar” and
“singing”. Although seemingly trivial for humans,
knowledge like this is difficult to learn for natural
language understanding (NLU) models.

Q:What do people typically do while playing guitar?

A. cry 

B. hear sounds 

C. singing  

D. anthritis 

E. making music

Figure 1: An example of CommonsenseQA.

Pre-trained language models (PTLMs) with dis-
tributed representations, such as BERT, RoBERTa,
XLNet and ELECTRA(Devlin et al., 2019; Liu
et al., 2019; Yang et al., 2019; Clark et al., 2020),
have performed well on many Natural Language
Processing (NLP) tasks. However, when answer-
ing commonsense questions, these models fail to
explicitly recover the reasoning process. Specifi-
cally, for the question in Figure 1, humans figure
out the correct answer by inferring from the rela-
tion between “playing guitar” and “singing”, while
PTLMs only provide a predicted answer and can
not explain the inference process. They are thus
lacking in transparency and interpretability. Appar-
ently, there is still a wide gap between the PTLMs
and human level performance in CQA tasks.

Since merely relying on pre-trained large lan-
guage models can not utilize commonsense knowl-
edge for reasoning, a straightforward solution is
to model the paths(Lin et al., 2019) in the knowl-
edge graph “that connect pairs of concepts”. Kag-
Net(Lin et al., 2019) encodes the paths extracted
from the knowledge graph, and further provides in-
terpretability through the attention mechanism. (Lv
et al., 2020) extract evidence from heterogeneous
external knowledge bases and reason based on the
graph neural network. These methods have man-
aged to help the model learn background knowl-
edge, especially the entities and structures in the
knowledge graph. But they either completely ig-
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nore relations or learn simple representations of
relations through pre-trained models(TransE(Wang
et al., 2014)). These methods keep the pre-trained
relation representations unchanged when training
their question answering model. And hence their
models do not fully learn the background knowl-
edge.

Relations are an integral part of knowledge
and should not be ignored. Therefore, enabling
the model to learn relations helps to fully uti-
lize the background knowledge in the CQA task.
We propose a relation-aware bidirectional reason-
ing framework RaB-PR1 for CQA. The frame-
work first extracts evidence from both knowledge
graphs and Wikipedia to form a multi-source sub-
graph. The graph is then integrated into a relation-
aware graph convolutional network to jointly learn
representations of nodes and relations. Further-
more, we introduce a new attention mechanism
between the paths and the question to selectively
derive salient information for final predictions. The
relation-aware graph convolutional networks on
multi-source subgraphs enables our model to com-
prehensively capture the rich evidence contained in
external knowledge bases (especially the relations),
and the attention mechanism brings better inter-
pretability for inference. The experiments on the
CommonsenseQA dataset indicate that our method
achieves superior performances over the baseline.

Our contributions of this paper can be summa-
rized as follows:

• We introduce a relation-aware graph convolu-
tional network, CompGCN, which can learn
nodes and relations in multi-relation graphs
based on composition(definition in 4.2).

• We propose a relation-aware bidirectional rea-
soning framework, which can explain the rea-
soning process of commonsense question an-
swering based on paths in the subgraph.

• Our bidirectional reasoning method exhibits a
significant performance improvement on the
CommonsenseQA dataset over previous mod-
els.

The rest of this paper is organized as follows.
In section 2, we give a brief review of the related
work. In section 3, we first provide a formal defini-
tion of commonsense question answering, and then

1We will open source our code upon acceptance of our
submission.

briefly introduce the framework of our method. In
section 4, we introduce the relation-aware bidirec-
tional path learning method in detail. Afterwards,
section 5 presents the experiments on the Com-
monsenseQA dataset with analysis. Finally, the
conclusion and future work are given in section 6.

2 Related Work

Our work is related to commonsense reasoning and
graph neural networks. Below, we introduce the
representative work and how our work differs from
theirs.

2.1 Commonsense Reasoning

Unlike the typical question answering task(Chen
et al., 2017; Wang et al., 2019; Wu et al., 2017),
Commonsense Reasoning is a task to infer the cor-
rect answer and identify implicit causes and ef-
fects combined with external commonsense knowl-
edge. There is a recent surge of novel large-scale
datasets(Sap et al., 2019; Rashkin et al., 2018; Os-
termann et al., 2019; Zellers et al., 2018, 2019;
Mostafazadeh et al., 2016) for testing machine com-
monsense with various focuses. Among them, a re-
cently proposed dataset CommonsenseQA(Talmor
et al., 2019) attracts much research attention.
Entity-GCN(Cao et al., 2019a) extracts an entity-
graph from the context of the question, and mod-
els the inference process through graph neural net-
works. BAG(Cao et al., 2019b) further combines
the bidirectional attention mechanism to perform
graph reasoning in the entity-graph. However, lim-
ited sources of evidence hinder the performance of
these methods. There are also studies using exter-
nal knowledge to construct knowledge subgraphs
with richer evidence. KagNet(Lin et al., 2019) ex-
tracts the knowledge subgraph from the structured
knowledge base (ConceptNet(Speer et al., 2017))
according to the question and the candidate answer,
and reason on the knowledge subgraph via a graph
neural network. Graph Reasoning+XLNet(Lv et al.,
2020) utilizes the evidence subgraphs extracted
from ConceptNet and Wikipedia simultaneously
to infer commonsense. Another approach is re-
trieving relevant knowledge from the knowledge
base or text library and directly imparting knowl-
edge to PTLMs(Pan et al., 2019; Ye et al., 2019;
Zhang et al., 2018; Li et al., 2019). These methods
cannot provide good coverage and interpretabil-
ity. By contrast, our method combines multiple
external knowledge bases to generate multi-source
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subgraphs, which guarantees coverage. It also pro-
vides clearer interpretable reasoning through the
attention between graph paths and question evi-
dence.

2.2 Graph Neural Networks

Our work is also closely related to Graph Neu-
ral Networks (GNN), as we consider the GNN
1) contextually refines the concept vectors and 2)
captures structural patterns of schema graphs for
generalization. Graph Neural Networks (GNN)
have been utilized widely in NLP. For example, the
study in(Sun et al., 2019) utilizes Graph Convolu-
tional Networks (GCN)(Kipf and Welling, 2017)
to jointly extract entities and relations. A re-
cently proposed extension of GCNs for relational
graphs(Schlichtkrull et al., 2018) is applied to rep-
resent the relations between the evidence in com-
monsense reasoning tasks(Lin et al., 2019). In-
spired by Relational Graph Convolutional Network
(RGCN), a novel graph neural network MHGRNcit-
eDBLP:conf/emnlp/FengCLWYR20 can leverage
general knowledge by multi-hop reasoning over
interpretable structures. Weighted Graph Con-
volutional Network (WGCN)(Shang et al., 2019)
utilizes learnable relational scalar weights during
GCN aggregation.

However, these approaches to handle multi-
relational graphs suffer from over-parameterization
and are difficult to learn effective representations
of edges. A newly proposed novel Graph Convo-
lutional based framework (CompGCN)(Vashishth
et al., 2020) for multi-relational graphs leverages
a variety of composition operations from knowl-
edge graph embedding techniques to jointly embed
nodes and relations in a graph. To process multi-
relational graphs, CompGCN fits our framework
perfectly. Thus CompGCN is used as the subgraph
encoder in our method.

3 Overview

In this section, we start with the problem statement.
Then we introduce the overall process of our pro-
posed method.

3.1 Problem Statement

For a given commonsense question q and the cor-
responding answer set {ai} that contains K can-
didates, the task requires selecting the correct one
from the candidate set. We assume that this task is
a sorting problem: given a statement s = ai : q for

question q and answer ai in the candidate set, we
calculate the matching score. Finally, the answer
with the highest matching score is selected as the
predicted answer.

3.2 Overall Framework

As described in Figure 2, our framework processes
a pair of question and answer denoted as q and
a. First, according to s we extract evidence from
multiple external knowledge sources to form a sub-
graph (details in 4.1), to enrich the evidence needed
for reasoning. Here, a piece of evidence is defined
as one valuable relation or entity for a concrete
question. In order to capture the particular contex-
tual information within the subgraph, the relation-
aware graph neural network module is adopted to
encode the subgraph entities. To conduct bidirec-
tional reasoning, the bidirectional path reasoning
module further augments the inference by aggregat-
ing the entities and relations into paths. Then, an
attention mechanism selectively aggregates impor-
tant paths according to the statement vector s (rep-
resented by a model-agnostic language encoder)
and calculate the graph vector g. The attention
module is designed to provide explicit relational
paths for model behavior interpretation. Finally,
we concatenate the statement vector s and graph
vector g, to calculate the matching score.

4 Proposed Method

In this section, we detail the four components of
our model: subgraph construction, relation-aware
graph neural network, bidirectional path reasoning,
and the attention module.

4.1 Subgraph Construction

First, we select ConceptNet(Speer et al., 2017) as
our knowledge base, a general-domain knowledge
graph with millions of nodes and edges. Concept-
Net can be seen as a set of triplets in the form of (h,
r, t), such as (music, RelatedTo, singing), where
h and t represent the head and tail concept in the
concept set V , and r is a certain relation type from
the pre-defined set R with 34 original relations.

Since not all knowledge is relevant, we distin-
guish which piece of evidence can help the model
infer the correct answer. To this end, we only ex-
tract relevant evidence from the external knowledge
base. Specifically, for each question and a candi-
date answer, we identify the question evidence eq
and the answer evidence ea , by matching the to-
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Figure 2: The overall workflow of the proposed framework.

kens in sentences and the concepts in the given Con-
ceptNet graph. Then, we search for paths between
the evidence pairs eq and ea, and merge these paths
into a subgraph where nodes are entities and edges
are the relations of ConceptNet. These paths will
provide the necessary knowledge for inference. To
extract the knowledge from WikiPedia, following
the work in (Lv et al., 2020), we first use Spacy2 to
extract 107 million sentences from Wikipedia3, and
index the sentences by Elastic Search tools4. Then,
in the given question and choices, we remove stop-
words and concatenate the rest words as queries
to search from the Elastic Search engine. This en-
gine will match the queries against all Wikipedia
sentences and rank them by the matching scores.
Then we choose the top-K sentences (K is set as
3 in the experiment) and use Standford OpenIE5

to extract the triples in them. We establish a rela-
tion matching mechanism between the relations in
the triples that correspond to the 34 relations de-
fined by ConceptNet. After replacing the relations,
we insert all the triples into the subgraph to form
a multi-source subgraph g. The vector represen-
tations of all nodes in the subgraph are obtained
via TransE(Wang et al., 2014) pre-training. Rep-
resentations of a newly added entity is randomly
generated.

4.2 Relation-aware Graph Neural Network

Although we have obtained the evidence vector
through pre-training, we need to further enrich the
evidence by aggregating the contextual information
in the subgraph. Since the graph structure provides

2https://spacy.io/
3Wikipedia version enwiki-20190301
4https://www.elastic.co/
5https://github.com/philipperemy/Stanford-OpenIE-

Python

potentially valuable contextual information for rea-
soning, we use Graph Convolutional Networks
(GCNs)(Kipf and Welling, 2017) to update node
vectors through the pooling features of neighboring
nodes. Few GCNs are designed to process rela-
tions. RGCN(Schlichtkrull et al., 2018) can handle
the relations but contains too many parameters to
cause overfitting. We select CompGCN(Vashishth
et al., 2020) as the network, since it can jointly
embed relation vectors and node vectors with low
resource consumption. Besides, CompGCN can
avoid overfitting by replacing matrices with embed-
ding vectors, and defining basis vectors only for the
first layer, which reduces parameters. Specifically,
all node embeddings vi ∈ Vg and relation embed-
dings ri ∈ Rg in the subgraph are first pre-trained
or randomly generated (h0i = Vi). Then we extend
the edges E by adding a reverse edge to all edges,
and add an edge to itself for each node:

Ē =E ∪
{

(v, u, r−1)|(v, u, r) 3 E
}
∪

{(u, u,⊥)|u 3 V }
(1)

and R̄ = R ∪ Rinv∪ ⊥, where Rinv ={
r−1|r ∈ R

}
denotes the inverse relations and ⊥

indicates the self-loop. This allows the information
in a directed edge to flow along both directions.
After that, we update the node embeddings at the
(k + 1)-th layer by averaging the representations
of their neighboring nodes (hkv) and edges (hkr ):

hk+1
v =σ(W k

selfh
k
i +∑

(u,r)∈N(v)

1

N(v)
W k
λ(r)φ(hkv , h

k
r ))

(2)

where φ indicates the composition of a neighboring
node u with respect to its relation r as defined
above. φ(hkv , h

k
r ) is denoted by (hkv) ∗ (hkr ). hr is
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obtained by a projection matrix Wrel of edge space
and node space. Wλ(r) is weighted by

WO, r ∈ R.
WI , r ∈ Rinv.
WS , r =⊥ (self − loop).

(3)

where WO denotes the matrix of the original rela-
tions. WI denotes the matrix of the inverse rela-
tions and WS denotes the matrix of the self-loop
relations. Then, the relation embeddings at the
(k + 1)-th layer are updated as:

hk+1
r = W k

relh
k
r (4)

4.3 Bidirectional Path Reasoning
This component aims to capture the path infor-
mation between the question evidence and the an-
swer evidence in the subgraph. When reasoning
along the path, a reverse direction should entail
different meanings of the relation. As shown in
Figure 1, we want the model to capture the re-
lation bias of “Capable Of” with respect to both
directions “People→Capable Of→Singing” and
“Singing→Capable Of→People”, respectively. In
this way, our model avoids information loss caused
by the direction, which improves robustness of the
model. Therefore, we encode the path by Bi-GRU.
We denote the c−th path formed between the i−th
question evidence and the j − th answer evidence
as follow:

Pathci,j =
[
e
(q)
i , r0, v0, r1, ..., rn−1, e

(a)
j

]
(5)

We adopt Bi-GRU to encode these nodes, and con-
catenate the hidden state of the first and last cell.

Pi,j,[c] = GRU(Pathci,j) (6)

4.4 Attention Module
Next, we jointly represent the learned path infor-
mation and the text information conveyed in the
question. Obviously, not all paths are meaningful:
usually only a few paths play a decisive role in
reasoning. Hence, we adopt the attention mech-
anism on the generated statement s and paths to
selectively aggregate significant paths. Our model
learns the parameter matrixW1 for calculating path
attention. The importance of the c − th path be-
tween the i− th question evidence and the j − th
answer evidence is denoted as α(i,j,c).

α(i,j,c) = sW1P(i,j,[c]) (7)

ᾱ(i,j,·) = softmax(α(i,j,·)) (8)

Then, we aggregate path P(i,j,[c]) and evidence
ci, cj as the vector representation g of the current
subgraph:

g =
∑
i,j

[
∑
c

ᾱ(i,j,c)P(i,j,[c]); ci; cj ], (9)

where [·; ·] represents the concatenation of two vec-
tors. The statement vector s in the above equa-
tion is obtained from a certain language encoder,
which can either be a trainable sequence encoder
like LSTM or features extracted from pre-trained
universal language encoders like BERT/RoBERTa).
To encode the text input into the distributed repre-
sentation, the language encoder which is the pre-
trained language model with a massive amount
of corpus takes an input that is formalized as
“[CLS]+Question+[SEP]+candidate answer.” The
score of the answer to the final question is ob-
tained by inputting the concatenation of g and
s into a fully connected layer: score(q, a) =
sigmoid(MLP ([g; s])).

We define questions containing the word “not”
as the negative question. Previous subgraph rea-
soning methods tend to choose the wrong answer
when dealing with negative question. On the con-
trary, the pre-trained models do not suffer from this
issue. Because they have learned the representation
of the word “not”, while the subgraph inference
method has not. Hence, we set a hyperparameter η
to control the weight between the statement s and
the subgraph vector g when calculating the answer.
And we add labels to all negative question manu-
ally in the dataset(train, development and test sets).
We call this change the negation mode.

5 Experiment

5.1 Dataset

The CommonsenseQA dataset(Talmor et al., 2019)
is a commonsense question answering dataset for
multiple choice questions (Figure 3). It requires dif-
ferent types of commonsense knowledge to predict
the correct answer and hence is quite challenging.
To ensure that commonsense knowledge is used to
answer the questions, each question contains an en-
tity from ConceptNet. Each question corresponds
to one correct answer and four interfering answers.

The official dataset has a total of 12,102
questions (official split: training/development/test
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9,741/1,221/1,140). Since the prediction of the of-
ficial test set can only be evaluated by the organizer
within two weeks, we split the given training set
into a new training and test set for evaluation. (new
split: training/development/test 8,500/1,221/1,241)

5.2 Experimental Settings

In the best model on the development dataset,
two CompGCN layers (100 dim and 50 dim re-
spectively) and a bidirectional GRU (256 dim)
are set. We use TransE (100 dimension) initial-
ized by GloVe to pre-train the knowledge embed-
ding. We use Roberta-LARGE, as a pre-trained
sentence encoder to obtain the fixed character-
istics of each pair of question and answer can-
didates. The input format for each choice is
“[CLS]+Question+[SEP]+candidate answer.” To-
tally, we get 5 confidence scores for all the choices.
Then we adopt the softmax function to calculate
the loss between the predictions and the ground
truth. We adopt the cross-entropy loss as our loss
function. We set the batch size as 4 and the learning
rate 5e− 6. We use the Adam optimizer (Kingma
and Ba, 2015) with β1 = 0.9 and β2 = 0.999.

5.3 Baselines

We divide the comparison methods into two groups.
The first group are pre-trained models without
external knowledge, including BERT, XLNet,
RoBERTa, ELECTRA. The above models are pre-
trained on a large text corpus and then fine tuned on
the training data. Prediction is conducted on the test
set without extracting external knowledge for the
current task. The second group consists of models
with external knowledge, include KagNet(Lin et al.,
2019), RoBERTa+IR, RoBERTa+KE, HyKAS(Ma
et al., 2019), RoBERTa+KEDGN, XLNet+Graph
Reasoning(Lv et al., 2020). These methods aug-
ment the inference by incorporating external knowl-
edge. Among them, KagNet(Lin et al., 2019)
constructs subgraphs from ConceptNet and uses
the path-based attention mechanism for reasoning.
XLNet+Graph Reasoning(Lv et al., 2020) com-
bines different knowledge sources (ConceptNet,
WikiPedia) to construct multiple subgraphs, and
infer the answers through the graph network atten-
tion mechanism. RoBERT+KE and RoBERTa+IR
adopt RoBERTa as the baseline and utilize the evi-
dence from Wikipedia and search engine, respec-
tively.

Model NDev-
Acc.(%)

NTest-
Acc.(%)

BERT-Large 60.3 55.8
XLNet-large 74.8 62.1
RoBERTa-Large 72.8 69.1
ELECTRA-Large 77.9 72.1
BERT-Large-RaB-PR 63.3 60.8
XLNet-large-RaB-PR 75.1 71.9
RoBERTa-Large-RaB-PR 75.6 73.7
ELECTRA-Large-RaB-PR 76.1 72.3

Table 1: Comparisons with large pre-trained language
model using the new split

Model ODev-
Acc.(%)

OTest-
Acc.(%)

KagNet 64.4 58.9
RoBERTa+IR 78.9 72.1
HyKAS - 73.2
RoBERTa+KE - 73.3
RoBERTa+KEDGN - 74.4
XLNet+Graph Reasoning 79.3 75.3
RaB-PR 81.6 76.7

Table 2: Comparison with official benchmark baseline
methods using the official split

5.4 Performance Analysis
We conduct the experiments on our new splits
to investigate whether our method can also work
well on other universal language encoders (BERT,
XLNet and ELECTRA). For the test set, Table 1
shows that our methods using fixed pre-trained lan-
guage encoders outperform fine-tuning in all set-
tings, achieving 60.8% with BERT-large, 71.9%
with XLNet-large, 73.7% with RoBERTa-large,
and 72.3% with ELECTRA-large. This indicates
that the concept representations obtained from the
our mothed had significant benefits and stable gen-
erality on CommonsenseQA, regardless of the lan-
guage model encoder types.

Additionally, we evaluate our method on the
official split. As shown in Table 2, we compare
our model with the baseline methods reported on
the paper and the leaderboard of commonsenseQA
dataset. Methods based on RoBERTa and XL-
Net are much better than other baseline methods,
demonstrating the ability of language models to
utilize commonsense knowledge in an implicit way.
Our method is similar to the architecture of Kag-
Net. The difference is that our method focuses on
the relations between the evidence pieces(details
in section 4), which resulted a much bigger im-
provement(17.8%). Compared with XLNet+Graph
Reasoning, our approach achieves a 1.4% absolute
improvement, largely due to aggregating the multi-
source knowledge. To conclude, our proposed
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Where on a river can you hold a cup upright to catch water on a sunny day?

waterfall, ×bridge, ×valley,  ×pebble,  ×mountain

I'm crossing the river, my feet are wet but my body is dry, where am I?

×waterfall, ×bridge, valley,  ×bank,  ×island

Where can I stand on a river to see water falling without getting wet?

×waterfall, bridge, ×valley,  ×stream,  ×bottom

Figure 3: A CommonsenseQA example (the bold green in the question represents the source concept; the blue font
in the answer represents the target concepts sampled from ConceptNet, where there is a correct answer. The red
and purple fonts represent the interfering concept sampled from ConceptNet.)

Model NTest-Acc.(%)
RaB-PR 73.7
-w/o WikiPedia4.1 72.9
-Replace CompGCN w/GCN 4.2 70.2
-Replace CompGCN w/RGCN 4.2 71.1
-Replace BiGRU w/GRU 4.3 70.7
-w/o Attention 4.4 71.5
-w/o Negation Mode 4.4 72.2

Table 3: Ablation experiment using the new split

framework outperforms strong baselines includ-
ing KagNet, HyKAS, XLNet+Graph Reasoning,
achieving an absolute improvement of 1.4 points
in accuracy on the test data, reaching a new state-
of-the-art performance.

5.5 Ablation Study

In order to investigate the effectiveness of indi-
vidual components in our method, we assess the
impact of the model components on our new splits,
shown in Table 3. Adding Wikipedia brings a 0.8%
improvement as an additional source of knowledge,
which proves that our model can effectively uti-
lize evidence from multiple sources of knowledge.
Compared with CompGCN, GCN and RGCN re-
sult in a 3.5% and 2.6% drop respectively. This con-
firms our initial hypothesis: 1.The relations contain
rich information. 2.The way of encoding relations
and entities affects the performance of the model.
By replacing GRU with BiGRU, we can obtain a
3.0% gain. This proves the effectiveness of bidirec-
tional path reasoning. Our attention mechanism is
also critical, bringing a 2.2% benefit. The negation
mode irons out 1.5% error cases. This proves that
compared to traditional knowledge-aware methods,
the negation mode can deal with negative questions
better.

5.6 Interpretability

Our method can provide transparent interpretability
through the bidirectional attention mechanism. Fig-
ure 5 shows an example from CommonsenseQA,
where our model correctly answers the question
and provides a reasoning path as evidence. In the
example, our model first generates the paths be-
tween the evidence pieces based on the subgraph in
Figure 1. Then the model follows the path with the
highest attention score (dark red round in Figure 1)
to reason for the correct answer. It is evident that
the path is crucial for the inference process.

In order to further explore model interpretability,
we randomly select 200 cases from the develop-
ment dataset where each model predicts the correct
answer. In these cases, we manually marked out the
correct path. We consider a reasoning case correct
when its reasoning path happens to have the highest
attention score. We calculate the proportion of the
correct reasoning case when using different GNNs,
as shown in the Figure4. The results show that
in 87.5% of the correct cases, our model chose a
reasonable reasoning path. The much higher scores
from models that use relations (CompGCN and
RGCN) over models that do not (GCN) highlight
the importance of learning relations which further
improves the interpretability of reasoning.

5.7 Error Analysis

For qualitative analysis, we randomly select 50
error examples from the development dataset and
conduct an analysis. There are two types of error
cases:

1.Subgraph evidence error: 28% of the extracted
subgraphs lack correct information, which makes it
impossible to establish a path between the question
evidence and the correct answer’s evidence. 26%
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Figure 4: The comparison of model interpretability ac-
curacy among GCNs.

What do people typically do while playing guitar?

A cry, B hear sounds, C singing(�), D anthritis, E 
making music

P1:People—CapableOf—>Singing

P2:People—CapableOf—>Playing Guitar—RelatedTo—>Sound<—

HasPrerequisite—Singing

P3:Playing Guitar<—CapableOf—People—CapableOf—>Singing

P4:Playing Guitar—RelatedTo—>Sound<—HasPrerequisite—Singing

Path-Question 
Attention

Figure 5: An example of interpreting the model behav-
ior by the path-based attention mechanism. The blue
entities correspond to evidence in the question. The red
entities correspond to evidence in the answer. The red
rounds on the left correspond to the attention scores.

cases of the error happen in the subgraph construc-
tion: the supplementary evidence imported from
the WikiPedia is sometimes incorrect and contra-
dicts with the correct relation evidence contained in
the original knowledge graph. These errors could
be fixed by further auditing and filtering of differ-
ent evidence sources, which we leave for future
work.

2.Path selection error:
We find that in 46% of the cases the model

chooses the wrong reasoning path which has the
highest attention score, even if the model has the
correct evidence subgraph. This situation is usually
due to the subjectivity of the problem or the lack
of semantic information.

6 Conclusion

In this work, we propose a path-based reasoning
framework that aims at obtaining high performance
on CQA tasks while providing explicit relation
paths for modeling behavior interpretation. Our
framework introduces a relation-aware graph neu-
ral network to jointly embedding both nodes and

relations, which enriches the evidence in the sub-
graph. The bidirectional reasoning module models
the bidirectional reasoning process based on the
rich evidence, and the attention mechanism effi-
ciently augments the joint representations of path
and question text. In addition, the attention mech-
anism enables our model to restore the reasoning
path. Evaluation results show the proposed method
is effective and achieves competitive results. In the
future, we plan to introduce reinforcement learn-
ing and semantic information into the framework,
and try to transfer the framework to multimodal
commonsense reasoning tasks.
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