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Abstract

Though language model text embeddings have
revolutionized NLP research, their ability to
capture high-level semantic information, such
as relations between entities in text, is limited.
In this paper, we propose a novel contrastive
learning framework that trains sentence em-
beddings to encode the relations in a graph
structure. Given a sentence (unstructured text)
and its graph, we use contrastive learning to
impose relation-related structure on the token-
level representations of the sentence obtained
with a CharacterBERT (El Boukkouri et al.,
2020) model. The resulting relation-aware sen-
tence embeddings achieve state-of-the-art re-
sults on the relation extraction task using only
a simple KNN classifier, thereby demonstrat-
ing the success of the proposed method. Addi-
tional visualization by a tSNE analysis shows
the effectiveness of the learned representation
space compared to baselines. Furthermore, we
show that we can learn a different space for
named entity recognition, again using a con-
trastive learning objective, and demonstrate
how to successfully combine both representa-
tion spaces in an entity-relation task.

1 Introduction

Pretrained language models (LMs), such as BERT
(Devlin et al., 2018), RoBERTa (Liu et al., 2019)
and GPT-3 (Brown et al., 2020), capture contex-
tualized information effectively and are used in a
wide variety of natural language processing (NLP)
tasks. They have revolutionized NLP research. The
main mechanism of these models is multi-head
self-attention (Vaswani et al., 2017), which enables
capturing patterns of semantic and syntactic inter-
est in text. However, their ability to encapsulate

high level semantic information, such as relations
in the text, and domain-specific knowledge, is lim-
ited because they are trained on very large corpora
using the main objectives of language modeling.
In many NLP tasks, pretrained LM embeddings
are used as model input. A common strategy is
to concatenate the embeddings that are extracted
from different LMs and let the model decide which
part of the information is useful for the task. This
empirical approach does not provide strong intu-
ition and results in poor explainability capabilities
because most of the task-specific models are black
boxes.

In this study, we present a novel contrastive learn-
ing (CL) framework to leverage the embedding
space of CharacterBERT and impose a relation
structure on the embeddings. The proposed frame-
work receives a sentence and a graph that repre-
sents the text relations in a structured way, and
the CL paradigm is applied to impose this struc-
ture on the token embeddings of the Character-
BERT text encoder. Different graph formulations
that represent the text relations are explored. The
main goal is to create a common embedding space
where relations can be easily detected. To evaluate
progress towards this goal, we use the ADE dataset
(Gurulingappa et al., 2012), which is widely used
for relation extraction (RE) (Zhao and Grishman,
2005; Jiang and Zhai, 2007; Sun et al., 2011; Plank
and Moschitti, 2013) and named entity recogni-
tion (NER) tasks (Curran and Clark, 2003; Florian
et al., 2006; Nadeau and Sekine, 2007; Florian
et al., 2010) in the challenging field of information
extraction (IE) from biomedical text.

To evaluate the efficacy of our approach, a sim-
ple baseline neural network classifier for RE, us-



338

ing the pretrained CharacterBERT medical version
representations, is trained. The representations of
the CharacterBERT tuned version after applying
CL are used to train the same classifier, which
vastly outperforms the baseline classifier. A tSNE
(Van der Maaten and Hinton, 2008) analysis illus-
trates that meaningful relation-related clusters can
be identified in the learned embedding space. This
provides a second strong indication that structure
can be effectively imposed on LM embeddings us-
ing our proposed framework.

Even if the main focus of this work is not solving
the IE problem directly, to further explore the capa-
bilities of the relation-aware representation space,
we train a simple KNN classifier for RE that is com-
petitive with state-of-the-art performance. Strict
evaluation (Bekoulis et al., 2018b; Taillé et al.,
2020) of the RE task presupposes correct detec-
tion of the boundaries and the entity type of each
argument in the relation. Hence, we apply the CL
paradigm to learn a distinct embedding space for
the entities and use a KNN classifier to solve the
NER task. Finally, we perform a strict evaluation
of the complete entity-relation extraction task. This
transparent, computationally inexpensive and intu-
itively simple approach has comparable results to
the state-of-the-art models. This achievement illus-
trates how informative and meaningful the learned
embedding spaces are.

In summary, our key contributions are:

• We propose a novel CL framework for impos-
ing a relation-related structure on LM embed-
dings.

• We investigate different ways to model texts
and graphs and show the effectiveness of em-
bedding relations in pairs of token embed-
dings.

• We exploit the capabilities of the learned rep-
resentation spaces by using them in the IE
task and achieve competitive results to state-
of-the-art models, even if we use transparent
and intuitively simple KNN classifiers.

The paper is structured as follows. Section 2
presents the ADE dataset and the data preprocess-
ing steps, and section 3 explains the framework in
detail. In section 4, we evaluate the quality of the
framework in baseline setups. The tSNE analysis
is presented in section 5. In section 6, we use the
framework to solve the IE task and compare the
results to state-of-the-art models.

2 Dataset

This study focuses on biomedical text, and ADE
dataset is used. The sentences are annotated with
labels for drugs and adverse effects, as well as
the relations among these entities. Adverse effects
(AEs) cover a range of signs, symptoms, diseases,
disorders, abnormalities, organ damage and even
death caused by that drug. The corpus is annotated
at the sentence-level, so non-local relations (be-
tween entities of different sentences) do not exist.

2.1 Data Preprocessing

The input of the main CL framework consists of the
encoded padded sentence and the relation graph,
which is extracted from the sentence. The graphs
are used only in the training setup. To prepare the
input for CharacterBERT, tokenization is applied
to each sentence using the character-CNN module
(Peters et al., 2018). The BERT tokenizer handles
out-of-vocabulary (OOV) words by splitting these
words into word pieces. However, the existence
of word pieces can be an obstacle in creating and
testing the CL experiments of this study from the
implementation point of view. Additionally, word
pieces may add biases to the model (El Boukkouri
et al., 2020), especially in biomedical text where
most of the drugs and many adverse effects are
OOV words. Hence, CharacterBERT is chosen
instead of BERT.

For each sentence, a knowledge graph is ob-
tained to model the relations between the drugs
and the adverse effects. The graph nodes are ini-
tialized with embeddings that are extracted by the
final layer of the pretrained medical version of
CharacterBERT. The graph convolutional network
(GCN) (Kipf and Welling, 2016), which is a key
layer of the main proposed CL framework (Fig. 1,
Fig. 2), receives two inputs: an NxF matrix (N :
number of nodes, F : number of features) with the
embeddings (features) of each node and an adja-
cency matrix NxN , which models the connections
(edges) of the undirected graph. Generally, the
adjacency matrices are very sparse if we consider
all the tokens and create the whole graph because
the relations are rare and there are many singleton
nodes. Alternatively, the tokens that are part of a
relation can only be used, and the essential sub-
graph is extracted. For example, in the sentence
"Methods: we report two cases of pseudoporphyria
caused by naproxen and oxaprozin." There are two
AE relations between AE pseudoporphyria and the
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drugs naproxen and oxaprozin. Hence, by creat-
ing the subgraph, only these AE and drug tokens
are included, and the singleton nodes (rest of the
sentence tokens) are removed.

The drug and the AE entities may consist of
more than one word. There are two methods to
model this case. On the one hand, the whole phrase
can be represented as one node in the graph by av-
eraging the embeddings of each distinct word of
the phrase. On the other hand, each node refers
to the last word of the entity. For example, if the
initial relation is between the drug "gabapentin"
and the adverse effect "renal impairment", then in
the graph, the relation [gabapentin, impairment] is
modeled. The latter approach is mainly adopted
in nonspan-based relation extraction models (Bek-
oulis et al., 2018b; Zhao et al., 2020). In this study,
the second approach is adopted because it gives the
flexibility in applying contrastive learning at the
token and relation levels.

The normalization of the adjacency matrix is
essential for aggregating and propagating the infor-
mation in the graph effectively (Kipf and Welling,
2016) and is described by the following equations:

Ahat = A+ I, (1)

Anorm = D−0.5 ∗Ahat ∗D−0.5, (2)

where A is the initial adjacency matrix, I is the
identity matrix and D is the degree matrix.

Initially, the whole corpus is stored in one text
file. Hence, the data should be transformed and
stored using a different more flexible format. For
each sentence of the dataset, a distinct JSON file is
created and contains a list with the tokens 1, a list
with named entity (NE) tags adopting the BIO en-
coding scheme (Sang and Veenstra, 1999; Ratinov
and Roth, 2009), a list with token index pairs that
are members of an existing relation, the padded
encoded version of the sentence, the attention mask
vector of the sentence, a list with the embeddings
of each node of the graph and the normalized adja-
cency matrix.

2.2 Dataset Statistics
The ADE dataset is not officially split into training,
validation, and test sets. Hence, we evaluate our
models using 10-fold cross-validation similar to Li
et al. (2017). We use the same splits as Eberts and

1The sentence tokenization is performed using the SpaCy
library.

Ulges (2020). As Taillé et al. (2020) stresses, many
works on the IE task do not report the data prepro-
cessing and detailed statistics of the datasets. This
is an obstacle for a sanity check and reproducibility.
The ADE dataset consists of 4,272 sentences, with
5,063 drug entities (1,048 unique drugs), 5,776 AE
entities (2,983 unique AEs) and 6,821 relations.
We report the statistics of each split (Table 1) and
propose using this particular split for a fair compar-
ison 2.

Split Training Set Test Set
Relation Count Entity Count Relation Count Entity Count

1 6,155 9,769 666 1,070
2 6,097 9,713 724 1,126
3 6,133 9,748 688 1,091
4 6,164 9,771 657 1,068
5 6,173 9,785 648 1,054
6 6,089 9,713 732 1,126
7 6,155 9,768 666 1,071
8 6,117 9,754 704 1,085
9 6,133 9,760 688 1,079
10 6,173 9,770 648 1,069
Mean 6,139 9,755 682 1,084

Table 1: Statistics of 10-fold splits - ADE dataset

3 Framework

In essence, contrastive learning is a paradigm for
learning representations which capture some aux-
iliary information by training them to distinguish
positive from negative instances of this auxiliary in-
formation. Our framework is inspired by the recent
publications on image view-based CL of visual rep-
resentation (Khosla et al., 2020; Zhang et al., 2020;
Henaff, 2020; Chen et al., 2020; He et al., 2020),
but differs from the existing work by the applica-
tion of CL to the graph and text modalities. Our
work is also inspired by the semantic bootstrapping
hypothesis (Pinker, 1996), which proposes that chil-
dren acquire their native language through expo-
sure to sentences of the language (i.e., a language
model) paired with structured representations of
their meaning (Abend et al., 2017).

The main CL framework for imposing relation-
aware structure on the token embeddings is tested
under two different settings. The difference in each
setting is related to the modeling of the graph and
the level of applying the CL paradigm. To solve
the end-to-end IE task, a second model is proposed
for learning a distinct embedding space where the
named entities are projected.

2To facilitate further research, the preprocessed data and
the code will be publicly available in the official repository of
the paper.
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3.1 Model Architectures

In the first setting (Fig. 1), we apply the CL method
to the embeddings of graph nodes in their graph
context and the embeddings of sentence tokens in
their sentence context. We call this variation in
the main CL framework CLGS. The positive and
sampled negative graph representations are com-
puted by a graph convolutional network (GCN)
(Kipf and Welling, 2016; Schlichtkrull et al., 2018)
layer followed by a pooling layer. We model the
graph considering only the tokens that are part of
a relation (subgraphs). To obtain one representa-
tion for the graph, average and maximum pooling
strategies are tried. Tanh (range: [-1, 1]) is chosen
as the activation function of the GCN layer because
the text encoder also extracts negative embeddings.
Hence, a similar range of embedding values should
be extracted from the graph. The sentence is passed
to the text encoder (CharacterBERT), which has the
first six layers frozen. CharacterBERT is initialized
with the pretrained weights (medical version). A
pooling layer follows, to create a representation for
the whole sentence. Taking the average, maximum
embedding vector and the [CLS] token representa-
tion are tested as pooling strategies. The addition
of a projection layers before applying CL is a com-
mon approach (Chen et al., 2020; Zhang et al.,
2020). ReLU is used as the activation function of
the projection layers to introduce nonlinearity. By
adding the projection layers, there is the danger
that the task will be solved mainly in the projection
layers, while the final goal is pushing structured
relation-aware information in the text encoder. Fi-
nally, CL is applied to the resulting pair of graph
and sentence representations, so that the pooled
sentence token embeddings are trained to carry the
information in the pooled graph node embeddings.

In the second setting, we apply the CL method to
the embeddings of graph relations and the embed-
dings of pairs of sentence tokens. This variation
in the CL framework is called CLDR. The graph
is simplified to the extreme level. Each relation
is modeled completely independently in the graph,
and the relation representations are extracted by
concatenation of the nodes that are connected in
the disjoint graphs (Fig. 2). This graph modeling
makes the CL at the relation level a more tractable
task. In addition, sampling negative graphs can be
implemented more easily in a more controlled way.
In this setting, because the graphs only have two
nodes, the adjacency matrix should not be normal-

GCN CharacterBERT

PoolingPooling

Projection Projection

Nodes 
Embeddings
Z x (N x 768)

Normalized 
Adjacency Matrix

Z x (N x N)

Padded Encoded 
Sentence
(1 x W)

Attention 
Masks
(1 x W)

G S

LS - G 

Pre-trained
First 6 layers 

frozen

Z: number of sampled graphs

W x 768

1 x 768

1 x 512Z x 512

Z x (1 x 768)

Z x (N x 768)

[CLS],
Mean,
Max

Mean,
Max

Sentence
Representation

Graph
Representations

Figure 1: CL framework CLGS - 1st Setting

ized in a balanced way. If the adjacency matrix
is
(
0.5 0.5
0.5 0.5

)
, then the final node embeddings will

be the same for the two nodes that form the graph.
Hence, we suggest focusing more on the self-loop
of each node to keep its predefined contextualized
information up to a certain level 3. The final adja-
cency matrix has the following format

(
λ 1−λ

1−λ λ

)
,

where λ is a hyperparameter of the model. The
λ parameter defines the balance of focusing on
the self-loop of each node and its neighbor (con-
nected node). Intuitively, a λ value equal to 0.8 is a
good choice for focusing attention on the self-loop
and having distinct embeddings for the connected
nodes. ReLU is used as the activation function of
the GCN layer.

GCN CharacterBERT

Concatenated
Relation

Representations

Nodes 
Embeddings

R x Z x (2 x 768)

Normalized 
Adjacency Matrix
R x Z x (2 x 2)

Padded Encoded 
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ReLU

R x (1 x 1536)

Figure 2: CL framework CLDR - 2nd Setting

3We remind that the nodes are initialized with embeddings
extracted from the pretrained CharacterBERT medical version.
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On the text side, the pair of tokens that form
a relation in the disjoint graphs are chosen, and
the concatenation of their representations is used
as the final relation representation. Finally, CL
is applied on the relation level, so that the pairs
of sentence token embeddings are trained to carry
the information in the pairs of related graph node
embeddings.

A distinct model (called CLNER) for learning
meaningful representations for named entities is
designed (Fig. 3). CharacterBERT captures con-
textualised information very well. Hence, only one
dense layer is added after CharacterBERT. Then
a random sampling for the named entities is per-
formed in a balanced way. A pool of sampled
entities of the batch is selected and CL is applied
on the token level.

CharacterBERT

Attention 
Masks

B x (1 x W)

Padded Encoded 
Sentence
B x (1 x W)

Pre-trained
First 6 layers 

frozen

Dense

B x (W x 768)

B x (W x 768)

Sampling

S x 768

NE

LNE

Named Entity
Representations

B: batch size

S: Number of samples
 in the batch level

Figure 3: Model CLNER for learning named entity rep-
resentations

3.2 Sampling Strategy

Hard negative sampling is important to effectively
apply the CL paradigm. The negative graphs are
created by randomly selecting tokens that are not
part of an adverse effect entity, keeping the cor-
rect drug tokens, and vice versa. Hence, hard in-
correct drug and adverse effects relation pairs are
introduced to the graph. The positive and negative
graphs of each sentence have the same number of
relations but not necessarily the same number of
nodes. The sampling strategy is similar for the
CLGS (Fig. 4) and the CLDR model (Fig. 5). For

the CLDR model, the positive graph is simplified to
a disjoint graph, and then hard negative sampling
is performed.

Methods: we report two cases of pseudoporphyria 
caused by naproxen and oxaprozin.  

naproxen

oxaprozin

pseudoporphyria

Positive subgraph Negative subgraphs

cases

report

pseudoporphyria

methods

causedoxaprozin

naproxen

Figure 4: Example of sampling negative graphs - CLGS
model

Methods: we report two cases of pseudoporphyria 
caused by naproxen and oxaprozin.  

naproxen

oxaprozin

pseudoporphyria

Positive subgraph

Negative subgraphs

cases pseudoporphyria methods

causedoxaprozin

naproxen

Disjoint positive subgraph

pseudoporphyria

pseudoporphyriaoxaprozin

naproxen

pseudoporphyriareport

Figure 5: Example of sampling negative graphs -
CLDR model

In the CLNER, random sampling4 is executed at
the batch level. Analysis of the number of differ-
ent entity tags (drug, AE or outside token) in the
batch is performed a priori to choose an appropriate
number of positive and negative samples (balanced
sampling).

4Hard negative sampling based on the Euclidean distance
and cosine similarity is also tested, but the performance is not
increased. Hence, the complexity-performance trade-off leads
us to finally select random sampling.
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3.3 Design Choices

In this subsection, the justification for the model
design choices is discussed. For the CLGS and
CLDR models, the GCN layer is the key element
because it can produce useful node representations
considering the graph links. The propagation rule
of the GCN layer is described by the following
equation:

Xl+1 = σ(Anorm ∗Xl ∗Wl), (3)

where σ(·) is the activation function (e.g., ReLU,
Tanh), Anorm is the normalized adjacency matrix
(Eq. 2), Xl the node embeddings and Wl the
weights of the l layer.

In the first setting (CLGS model), the graph is
propagated through the GCN layer, and a final
pooled graph representation is extracted. We hy-
pothesize that using the CL paradigm, the model
can learn which part of the information is essen-
tial for the relation representations by keeping the
structure-related information in the graph represen-
tation. In the second setting (CLDR model), the
level of abstraction is reduced because instead of
applying CL in the graph sentence, we use the CL
paradigm at the relation level. The strategy of cre-
ating disjoint graphs results in learning similar rep-
resentations for the drug and AE nodes. To address
this, the relations are represented asymmetrically as
a concatenation of the nodes. We hypothesize that
relation-related information can be imposed in the
pair-of-tokens embeddings of the LM by applying
CL to them and these pair-of-nodes embeddings of
the graph relations (Fig. 2).

3.4 Training Details

The models are trained using a CL loss function
that is similar to the SimCLR loss function (Chen
et al., 2020). In the first setting (CLGS model),
the main concept is to leverage the two graph and
sentence representations so the true representation
pair is close and similar in the learned embedding
space. At each training time, a set of Z graphs (the
positive and some negative graphs) and the corre-
sponding sentence are passed on the model, and
the corresponding representations are calculated.
Therefore, the contrastive loss receives the graph
and sentence representations and for the i-th pair is
as follows:

l
(S→G)
i = −log( exp(<Si,Gi>/τ)∑Z

z=1 exp(<Si,Gz>/τ)
), (4)

where < Si, Gi > represents the cosine similar-
ity and τ is a temperature parameter.

In the second setting (CLDR model), the pair
of node embeddings that are extracted from the
disjoint graphs encode their relation, because this is
the main functionality of the GCN layer. Hence, the
main idea is to increase the similarity between the
representations of the correct relation in the graph
and the relation representations that are extracted
from the text encoder.

The contrastive loss for each sentence is as fol-
lows:

l(RS→RG) =
∑R

r=1−log(
exp(<RSr,RGr>/τ)∑Z

z=1 exp(<RSr,RGz>/τ)
), (5)

where R is the total number of relations in the
sentence, RS is the relation representation of the
text encoder and RG is the relation representation
of the graph.

For the CLNER model, the contrastive loss is as
follows:

lNE =
∑N

n=1−log(
∑P

p=1 exp(<RNn,RNp>/τ)∑K
k=1 exp(<RNn,RNk>/τ)

), (6)

where N is the total number of tokens in the
batch, P is the number of the positive samples
(same NE tag), K is the total number of samples
and RN is the extracted token representation.

We use a batch-size of 8 for training the CLGS
and CLDR models, and 16 for the CLNER model.
ADAM optimizer (Kingma and Ba, 2014) is se-
lected with a learning rate of 1e-5 5.

4 Evaluation - Baseline

For the CLGS model, the first evaluation step is a
simple similarity check. We use the trained CLGS
model to extract the sentence representation and
the positive and negative graph representations for
all the sentences in the test set. Then, a similarity
check is applied using the extracted sentence and
graph representations. The most similar graph is
predicted as the positive sentence graph. Given the
positive and all the negative hard graphs extracted
from each sentence, the model should be able to
detect the correct graph. The different model varia-
tions perform well, but the mean pooling selection
in the graph and sentence side results in better per-
formance, as the accuracy is over 91%. The addi-
tion of the projection layers is not advantageous.

5More information about hyperparameter tuning-selection
is given in the Appendix section.
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Graph Pooling Text Pooling Projection layer Accuracy
Mean [CLS] - 88.39
Mean Mean - 91.23
Max Max - 89.1
Mean [CLS] Yes 88.63
Mean Mean Yes 87.68

Table 2: Results - CLGS model: Finding the correct
graph with similarity check

The second evaluation step is applied to both
models (CLGS and CLDR). Following previous re-
search on representation learning (Henaff, 2020;
Chen et al., 2020; He et al., 2020; Zhang et al.,
2020), we evaluate the tuned CharacterBERT text
encoder, taken from the trained CLGS and CLDR
models, in a linear classification setting, where all
the candidate relations (concatenation of the token
embeddings) are created, and a linear classifica-
tion layer is trained for the RE task. As a baseline
model, we use the pretrained medical Character-
BERT to create the representation for the relations6.
This linear setting directly provides insight into
how successfully the relation-related structure is
imposed at the token level of the text encoder, by
evaluating the quality of the learned representations
for RE.

Model Precision Recall F1
Baseline 69.96 64.39 66.79
CharacterBERTCLGS 56.82 59.42 58.09
CharacterBERTCLDR 79.51 84.39 81.73

Table 3: RE - linear classification setting

Using the tuned CharacterBERT representation
from the CLGS model (mean graph and text pool-
ing) results in poor performance. The pooling layer
smooths the information. Hence, structure-related
information cannot be passed at the token level of
the text encoder. A smarter pooling strategy that
preserves most of the relation-aware information
would be ideal, but designing such pooling is dif-
ficult. The main obstacle is the varied number of
relations. In contrast, when we use the tuned Char-
acterBERT of the CLDR model, the basic classifier
vastly outperforms the baseline model. This is a
strong indication that the relation-related structure
is successfully imposed on the pairs of token em-
beddings of the text encoder.

6We also try fine-tuning both the text encoder and the
linear head, but the performance is not improved.

5 tSNE Analysis

A tSNE analysis is performed to further explore
the quality of the learned embedding spaces. Us-
ing the tuned CharacterBERT of the CLDR model,
the relation representation space is created. We
project the positive (orange dots) and hard negative
relations (blue dots), where one of the two rela-
tion tokens is correct. In the tSNE plot (Fig. 6),
meaningful relation clusters can be easily identified,
which demonstrates the efficiency of our frame-
work (CLDR model). The relation representations
are asymmetric, as the drug and AE tokens have
similar representations (Fig. 7). This means that
we cannot solve RE and NER tasks using the same
representation space. Hence, we learn a different
space for the named entities (CLNER model).

Figure 6: tSNE plot - Relation representation space ob-
tained with CharacterBERT of CLDR model (1: rela-
tion, 0: no relation)

Figure 7: tSNE plot - Relation representation space ob-
tained with CharacterBERT of CLDR model - Named
Entities

In the tSNE plot in the entity representation
space (Fig. 8), we can detect insightful entity clus-
ters. In particular, the clusters related to the drug
tags (B-DRUG, I-DRUG) are very dense and well



344

shaped. This is a strong finding that illustrates that
the CLNER model can extract very good represen-
tations for the NER task.

Figure 8: tSNE plot - Entity representation space ob-
tained with CLNER model

6 Entity-Relation task

The insights of the tSNE analysis, with the well-
defined clusters in the embedding spaces, lead us to
approach the entity-relation task using intuitively
simple and transparent KNN classifiers. For the
RE task, we utilize the tuned CharacterBERT of
the CLDR model to create the candidate relation
representations. At the inference step, for each
candidate relation, we decide whether it is positive
based on the labels of the k-nearest neighbors in the
learned embedding space. The value of k is chosen
based on the performance in the randomly selected
validation set (10% of training set) for each fold.
We adopt the same strategy for the NER task using
the CLNER model and project each token to the
named entity representation space.

To solve both NER and RE tasks, we combine
the two semantic spaces. First, we determine
whether a candidate relation (concatenation of the
tokens) is predicted as positive in the relation rep-
resentation space, which is obtained by the tuned
CharacterBERT of the CLDR model. Then, we
determine whether the boundaries and the types of
the two entities in the candidate relation are pre-
dicted correctly in the entity representation space
obtained by the CLNER model. All possible candi-
date relations and the named entities of the test set
are classified.

We strictly evaluate the performance of the IE
task. As Bekoulis et al. (2018b) state, an entity is
considered correct if its boundaries are detected cor-
rectly and the predicted type (drug or AE) matches
the ground truth. In the same setup, a relation is

considered correct if its type and the two entities
(boundaries and type) involved in the relation are
correctly predicted. We measure precision, recall
and F1 score. Following previous work on IE, we
report the macro-averaged F1 score, and as 10-fold
cross-validation is adopted, we average the scores
over the folds.

Model NER RE RE-
Li et al., 2016 79.5 63.4 -
Li et al., 2017 84.6 71.4 -
Bekoulis et al., 2018b 86.4 74.58 -
Bekoulis et al., 2018a 86.73 75.52 -
Tran and Kavuluru, 2019 87.11 77.29 -
Eberts and Ulges, 2020 89.25 79.24 -
Wang and Lu, 2020 89.7 80.1 -
Zhao et al., 2020 89.4 81.14 -
Ours 88.3 79.97 86.5

Table 4: Test set results: macro-averaged F1 score

Table 4 presents the best performing models,
evaluated on the ADE (Gurulingappa et al., 2012)
dataset. These studies address the IE problem as
a joint task, solving NER and RE tasks jointly. Li
et al. (2016) employ global features and a CNN
(LeCun et al., 1995) module to solve the problem.
The proposed model of Li et al. (2017) includes
bidirectional RNNs (Graves et al., 2013), inspired
by the work of Miwa and Bansal (2016). Bekoulis
et al. (2018a,b) formulate the IE problem as a multi-
head selection problem. Tran and Kavuluru (2019)
approach the IE task as a table-filling problem and
introduce a relation-metric network, combining the
idea of metric learning and the usage of CNNs
for table filling. Eberts and Ulges (2020) present
a span-based model that its core module is pre-
trained BERT (Devlin et al., 2018). Wang and Lu
(2020) propose table-sequence encoders that learn
table and sequence representations to solve the IE
problem. Zhao et al. (2020) introduce a deep cross-
modal attention network, constructed by stacking
multiple attention units, for joint entity and relation
extraction.

In the RE task, we achieve very competitive re-
sults using a simple and transparent KNN classifier.
In contrast, the state-of-the-art models (Wang and
Lu, 2020; Zhao et al., 2020) are very complex and
computationally expensive. This fact highlights
the high quality of the learned relation representa-
tion space (CLDR model). In principle, the NER
task is a sequence-tagging problem. However, we
obtain good performance with a KNN classifier
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that performs the inference in the learned entity
representation space (CLNER model).

Notably, the last column of Table 4 (RE-)
presents the performance of the RE KNN classi-
fier in predicting whether there is a relation be-
tween two tokens, without considering the NER
task (type and boundaries of the entities). In this
case, the F1 score is 86.5, and this value is the up-
per bound performance of our approach. Hence,
incorporating a state-of-the-art model for the NER
task (e.g., Wang and Lu, 2020, Eberts and Ulges,
2020) could further improve the scores of the RE
task under strict evaluation. However, we use the
SpERT model (Eberts and Ulges, 2020) for NER
(F1 score: 89.25), but the results in the RE task are
not improved. This illustrates that our NER results
are already very competitive.

The above results reveal the quality of the rep-
resentations for both NER and RE tasks. Hence,
the proposed CL framework can be used as a pre-
processing and representation learning step in the
pipeline for IE models. The CL framework can be
trained to leverage the embedding space and create
meaningful, disentangled representations for the IE
task. We successfully evaluated the representations
with a simple KNN classifier, but the learned repre-
sentations can be used as input in complex models
for entity and relation classification to achieve bet-
ter results and faster convergence. We will explore
this research direction in the future.

7 Conclusion

We present a novel CL framework, which, in princi-
ple, is text encoder-agnostic, for effectively impos-
ing relation-related structure to LMs and leveraging
the embedding space. We evaluate the quality of
the learned representations using relative baselines
and competitively solve an entity-relation task. The
overall results indicate that the learned represen-
tations are very powerful. The performed tSNE
analysis illustrates that meaningful clusters can be
easily identified in the learned embedding spaces.
We note that the proposed framework can be used
as a representation learning step for complex IE
systems. In future work, we intend to explore
the capabilities of our approach in continual learn-
ing settings and exploit external graph structured
knowledge in representation learning of language
data.
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Training Details - Hyperparameters

Initially, the data are split to train and test set using
10-fold cross-validation (same splits to Eberts and
Ulges (2020)). In each training session, for each
split, the seed number is set to 42 in order to ran-
domly create a validation set for tuning (10% of
the train set). The seed number is chosen in order
to have the same split of train and validation set in
all training sessions of the CL framework and the
baseline and KNN classifiers. ADAM optimizer
(Kingma and Ba, 2014) is selected with learning

rate 1e-5 for training of the CL framework. The
best weights, based on the performance in the vali-
dation set, are stored.

We train the CL framework (CLGS, CLDR,
CLNER models) for 20 epochs and apply the tech-
nique of early stopping after 3 epochs without im-
provement in the validation set. We experiment
with different hyperparameter values and select the
best values based on the performance in the val-
idation set (averaged across the 10 splits) in the
basic classifier that is presented in section 4. For
the CLGS and CLDR models, the different negative
graphs of each sentence are created offline. The
length of sentences varies significantly, so the num-
ber of negative graphs also varies. Based on that,
randomly selecting 8 negative graphs for each train-
ing set is intuitively a good choice. In parentheses,
there are the tested values. The hyperparameters of
the CLGS model are:

• Batch Size: 8 (8, 16)

• Temperature τ : 0.1 (0.05, 0.1, 0.2)

• Number of negative graphs: 8 (4, 8, 12)

Those of the CLDR model are:

• Batch Size: 8 (8, 16)

• λ parameter (adjacency matrix): 0.8 (0.7, 0.8,
0.9)

• Temperature τ : 0.1 (0.05, 0.1, 0.2)

• Number of negative graphs: 8 (4, 8, 12)

The essential parameter of the CLNER model is
the number of samples. The number of available to-
kens depends on the batch size. In order to sample
in a balanced way (Table 5), when the batch size
is 16, a good number of samples is 80. For exam-
ple, if we have a ’B-DRUG’ token, then we sample
all the tokens with the same tag (positive tokens -
around 20, Table 5) and the remaining negative to-
kens are sampled in a balanced way. This sampling
strategy should be defined because the NE token
distribution is highly imbalanced (Table 6). The

’O’ tag is highly represented, while the ’I-DRUG’
tag is under-represented. The temperature value τ
is set to 0.1.

The KNN classifier has only one hyperparameter,
the number of k neighbors that are taken into ac-
count in the inference step. We choose the k value
based on the performance in the validation set for
each split. The k value is 5 for the RE KNN clas-
sifier, and 7 for the NER KNN classifier (section
6).
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NE type Count
B-DRUG 19
I-DRUG 4
B-AE 21
I-AE 26
O 268

Table 5: Average number of tokens per NE tag - Batch
size: 16

NE type Count
B-DRUG 5,039
I-DRUG 1,062
B-AE 5,701
I-AE 7,054
O 71,858

Table 6: Total number of tokens per NE tag


