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Preface

CNL 2020/21 is the seventh edition of the workshop series on Controlled Natural Language (CNL)1. It
was initially planned for 2020, but had to be postponed by one year due to the Covid-19 pandemic. It
is co-located with the SEMANTiCS 2021 conference2 and will be held on 8 and 9 September 2021 in
Amsterdam, as a hybrid event where onsite as well as online participation is possible.

We received 15 full paper submissions and two submissions as short papers. These 17 papers then
received in total 54 reviews from the members of the program committee, which corresponds to an
average of 3.2 reviews per paper. Out of the full paper submissions, eleven were accepted as such. Of
the remaining four, three were rejected as full papers but accepted as short ones. The two short paper
submissions were both accepted. Therefore, these proceedings include eleven full papers and five short
ones.

We would like to thanks all authors for their submissions and the program committee members for their
careful reviews. We are now looking forward to the workshop with this exciting program.

Tobias Kuhn
Silvie Spreeuwenberg
Stijn Hoppenbrouwers
Norbert E. Fuchs

1http://www.sigcnl.org/cnl2020.html
2https://2021-eu.semantics.cc/
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Towards a More Natural Controlled Language in Future Airbus Cockpits.
A Psycho-linguistic Evaluation
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Abstract

The main goal of this research is to
optimize an existing Airbus Cockpit
Controlled Language in order to
integrate it in future cockpit design.
The current controlled language used
aboard Airbus cockpit interfaces was
carefully constructed to avoid ambiguity
and complexity. In order to optimize
the existing language, we set out
to evaluate the appropriate levels of
simplification that would achieve more
accurate and faster comprehension with
optimized pilot training time by using
psycho-linguistic experimentation and
cognitive science tools. We present in
this paper a congruency task similar to
traditional judgment tasks in behavioral
experiments. It provides a firmly
controlled environment to test linguistic
hypotheses and CNL rules. Results show
that what we sometimes mistakenly label
as superfluous or empty syntactical
elements could go a long way in
ensuring better comprehension and
faster information processing from a
psycho-linguistic point of view.

1 Introduction

The main goal of this research is to optimize an
existing Airbus Cockpit Controlled Language in
order to integrate it in future cockpit design. The
current controlled language used aboard Airbus
cockpit interfaces was carefully constructed to
avoid ambiguity and complexity (as are all
comprehension oriented controlled languages,
(Kuhn, 2014; Schwitter, 2010; Kitteridge, 2003)
and is designed to help pilots operate and navigate
the aircraft (with the help of cockpit screen
interfaces) in normal and abnormal (in cases

of emergency or failures) situations. The need
for clear and unambiguous communication is
vital in safety critical domains. This controlled
language and the rules that make it were put
in place at a time when design flexibility was
limited (for example small screen sizes that
restrict word and sentence length (Spaggiari
et al., 2003; Jahchan et al., 2016; Jahchan,
2017). This results in a CNL which is non-
conforming to natural language syntax, highly
abbreviated, typographically variable, and color-
coded (Jahchan, 2019). As we are addressing a
more flexible disruptive cockpit design for future
aircraft, these limitations are no longer immutable
constraints, and the future controlled language
need not be so coded and compact, or follow very
strict simplification rules.

The goal being to take into consideration
the disruptive cockpit design (possibly larger
screen sizes (less character limitations), newer
technology, etc.) which goes hand in hand with an
adapted human-oriented controlled language and
which is safe, suitable and easily accessible for a
human operator.

Therefore, in order to optimize the existing
language, we set out to evaluate the appropriate
levels of simplification that would achieve
more accurate and faster comprehension with
optimized pilot training time by using psycho-
linguistic experimentation and cognitive science
tools. In order to determine the appropriate
levels of simplification, one must carefully
investigate the problem in context (operational
piloting constraints, cockpit design constraints,
linguistic ambiguities (syntactic, semantic, and
terminological ones). In this sense, we are more
particularly dealing with Ergonomic Linguistics
(Condamines, 2021) in which linguistic models,
theories, and hypotheses are used in specified
work contexts (mainly in industry) to achieve
precise goals efficiently and serve a real life
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operational purpose (one of the primary uses
of Human-oriented CNLs). These hypotheses
and propositions are derived from real language
productions and theoretical linguistic theories (for
example common CNL construction rules among
several languages (O’Brien’s, 2003) and should
be evaluated using experimental techniques and
acceptability tests to acquire empirical evidence
to support their efficiency when it comes to
comprehension and optimal performance for
human operators (target users of CNLs). This
concept is closely related to readability and
usability. Our own definition of readability for
the purposes of this research does not involve
the traditional definition, i.e. ease of reading,
reading proficiency, or the characteristics that
make readers willing to carry on reading (Flesch
Kincaid, Smog formula, (Flesch 1979), etc.).
Readability in our sense is about usability of the
text. Usability is defined as the “extent to which a
system, product or service can be used by specified
users to achieve specified goals with effectiveness,
efficiency and satisfaction in a specified context of
use” (ISO/DIS 9241-11.2 :2016).

To this date, CNL evaluations are not
systematically enforced and very rarely put
in place for human-oriented CNLs. There
have been some evaluations of CNLs using
NLP (natural language processing) tools in
corpus linguistics-based approaches such as
the verification of conformity of requirements
(Condamines and Warnier, 2014; Warnier,
2018) or for text complexity (Tanguy and
Tulechki, 2009), and machine translation
(O’Brien and Roturier, 2007; Aikawa et al.,
2007), or for syntactic transformations and corpus
alignment of specialized corpora with existing
simplified corpora (Cardon and Grabar 2018),
etc. There have also been evaluations based on
ontographs for knowledge representation and
formal languages (Kuhn, 2010). In this paper,
Kuhn (2010) contends that “user studies are the
only way to verify whether CNLs are indeed easier
to understand than other languages”. He argues
that it is difficult to obtain reliable approaches
with task-based and paraphrase-based evaluation
approaches, and offers an alternative method
for evaluating formal logic-based languages.
Consequently, existing CNL research falls short
on providing empirical proof on the effectiveness
of comprehension-oriented CNLs on the human

cognitive processes of language comprehension,
for instance by measuring reaction times and
accuracy in performance. We argue that the
relative lack of cognitive behavioral evaluations is
equivalent to rendering CNLs mere style guides
or good authoring practices, and the reasons for
adopting certain rules over others are unreliable.

Uncontrolled natural language is ambiguous
and unsuitable for use in domains where
ambiguity may be dangerous such as the aviation
industry, but on the other hand, it represents an
intricate part of our cognitive processes and its
rules must not be excluded. Readability, text
simplification, and text complexity research have
focused on simplifying the language by making it
less and less like natural language, and more like
an unambiguous set of codes and regulations so
that the resulting language veered away from the
“natural” dimension. But to what extent is text
simplification satisfactory and what are the limits
at which it becomes counter-productive? When
must natural language structures be respected? We
constructed a more natural controlled language
(MNL) by basing ourselves on the existing
more codified controlled language (MCL) and its
operational needs, syntactic and terminological
rules) by using research that has been done
on readability and text complexity and test, bit
by bit, how we can add sentential elements
that would make the language closer to natural
language structure of English. At the same
time, by adding a sentence structure we would
be limiting the different possible interpretations,
therefore avoiding, as much as possible, elliptical
ambiguities (C.f Figure 1)

Figure 1, Example of MCL and MNL

Although pilots are trained to understand
the meaning of the typographical ellipses (dots
separating "engine" and "off" and color coding
to mean an action that must be performed, the
sentence structure (in the proposed more natural
format) provides a fail-safe way of avoiding
ambiguity. The sentence “Turn off the engine”
adds two more words to the original statement
“engine.....off ” yet completely eliminates the
second possible interpretation (the engine is
off). Thus, information is solely contained
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in the linguistic elements, excluding color and
typographical separation. There is only one
possible way of interpreting and understanding the
second sentence. In this way, we based ourselves
on the MCL corpus (operational use and context,
goal) and created new more natural structures
(MNL) to be evaluated.

2 Method

As a first approach, we used congruency tasks to
evaluate passive comprehension. To be able to use
congruency tasks (commonly used in cognitive
psychology experimentation) we had to limit
ourselves to the use of the “information category”
in our corpus, and more particularly, the constative
messages informing pilots of the availability of
a certain function such as “Galleys extraction
available in Flight" or “Expect high cabin rate”.
These sentences do not require direct action but
comprehension and awareness on the pilot’s end
(c.f Figure 2).

Figure 2, Example of MCL and MNL in an
Informational Statement

2.1 Construction of Messages
In the following example case, the original
coded and abbreviated message is L TK 17000
KG MAX AVAIL which when decoded without
abbreviations means “left tank 17000 kilograms
maximum available”. It was relatively easy to
construct the MCL messages since we could keep
the same structure and same words when possible,
and find or construct an image that is congruent to
its meaning. However, constructing the equivalent
MNL messages was a little more complicated
as we had several options; there was at least
4 different ways of writing the sentence in the
previous example in a more natural language (cf.
Jahchan, 2019).

1. There are maximum 20 kilos available in the
left container

2. There are 20 kilos maximum available in the
left container

3. The left container has maximum 20 kilos
available

4. The left container has 20 kilos maximum
available

After careful consideration and in order not
to multiply variables, we chose the first option
for the MNL structure as the existential clause
“there is/are” introduced by the expletive pronoun
“there” + predicate “are” indicates the existence
or the presence of something in a particular place
or time, which in our experiment reinforced the
idea of something available or not available in
the target picture. The existential clause itself
expresses a predicate of existence which sets
the tone for the incoming noun phrase. While
the second option also includes an existential
clause, it was not deemed sufficiently plausible
by English native speakers that we consulted.
The existential clause introduced in the MNL
structures also inverts the theme and rheme
structure of the original MCL structure. The
current controlled language uses the theme at the
onset of the message “left container” followed
by the rheme. One of the main differences
between both languages is the addition of function
words in the MNL stimuli. Leroy et al.
(2010) affirms in a study about the effects of
linguistic features and evaluation perspectives that
“complex noun phrases significantly increased
perceived difficulty, while using more function
words significantly decreased perceived difficulty.
[...] Laypersons judged sentences to be easier
when they contained a higher proportion of
function words. A high proportion of function
words leads to a different cadence closer to spoken
language. It may also help space out individual
concepts in text to facilitate assimilation.”

2.2 Stimuli

We created a new corpus of messages inspired
by everyday life situations to test our hypothesis
with naïve participants that are not familiar with
aeronautical corpus terms. An example of this
sentences is “parking spot is available”, that
emulate the syntax and intentions of our original
corpus statements. As a first step, the newly
proposed structures were purposefully tested on
naïve participants (and not pilots) to avoid
expert bias and determine comprehension and
performance levels on a more general level. The
corpus was divided in 6 difficulty categories that
represent syntactical structure of the information
availability statements. They went from 1 the
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easiest structure (noun + nous + available) to 6
most difficult (noun + noun + noun + available
+ in +noun) as length has been proven to be an
effective and efficient index of syntactic difficulty
Szmrecsanyi (2004). According to Szmrecsanyi
(2004), sentence length (or a version of the
Flesch-Kincaid tests) are as good a means of
testing syntactic text complexity as counting
syntactic nodes in a sentence. Szmrecsanyi
reports comparing three methods of measuring
syntactic complexity node counts, word counts,
and ‘Index of Syntactic Complexity’ (which
takes into consideration the number of nouns,
verbs, subordinating conjunctions, and pronouns).
She concludes that the three measures are near
perfect proxies since they significantly correlate
and can be used interchangeably. Once the
messages were set, we looked for, constructed,
or modified existing real life images which
accurately portrayed the messages we previously
concocted, which have similar syntactic structure
and difficulty as messages present in the original
corpus (MCL), and for which we created a
corresponding MNL version (c.f. Figure 3)

Figure 3, Example of 6 conditions of difficulty

As messages were different in length, the
allotted reading time was different depending
on the number of words. MNL messages
necessarily have more words than MCL messages.
However, those words were only grammatical
words such as “there is” or “a”, or “the”,
etc. We decided to count only lexical words to
calculate reading time. This choice might have
inadvertently given a position of privilege to the
MCL messages since MNL messages had more
total words (grammatical and lexical) than the
equivalent MCL messages yet they had the same
reading time (same number of lexical words).
We based ourselves on word per minute and
reading time research to calculate the time the
messages appeared on the screen (Trauzettel-
Klosinski Dietz, 2012).

2.3 Experimental Design and Participant
Task

Before beginning the experiment, participants
filled out different forms: a general ethics
and compliance consent form, a data sheet
in which they specified their age, gender,
dexterity, native language, English placement,
knowledge of Airbus Control Language. All non-
native English speakers also performed a quick
English placement test online to determine their
CEFR levels (Common European Framework of
Reference for Languages). The levels range
from A1 or breakthrough/ beginner to C2 or
Mastery/Proficiency.

Participants started with a practice session
composed of a different set of 24 semi-
randomized stimuli representative of the difficulty
and language conditions, and the same image
construction methodology as the target stimuli
in the main lists. They had noise cancelling
headphones and were set in a quiet room with
no distractions. Each list consisted of 48 target
stimuli, split into 24 congruent stimuli (image
congruent with the message, correct answer is
a “yes”) and 24 incongruent stimuli (image
incongruent with the message, correct answer is
a “no”). Participants had 5000 ms to respond.
This time lapse was validated by doing several
pretests to ascertain the adequate display time for
reading the messages. In case of a non-answer
the next stimulus appears and so on. Once the
participant responds the image disappears and the
next fixation cross appears. The task consisted
of the participants reading a text written in either
the More controlled Language (MCL) syntax or
the More Natural Language (MNL) syntax (c.f.
Figure 4)

The messages appear out of context preceded
only by a 3000 ms fixation cross in the middle
of the screen. We decreased that value to 150
words per minute (WPM), so that a message that
has 3 lexical words would appear for 1.2 seconds
(3 x 60/150) and a message that has 6 lexical
words would appear for 2.8 seconds (6 x 60/150),
etc. The text (the prime) then disappears and
a target image appears, an image which could
be congruent with the previously read text or
incongruent. I.e. if the text says “bus stop
available” and the image shows a bus stop then
the participant has to press “yes” on the controller
to indicate congruency, and if for instance the
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image shows an image of a car then the participant
should press on “no” to indicate that the image is
incongruent with the text.

Response times and precision in both language
conditions were recorded. We chose sentences
that could show an accurate visual description of a
situation or scene.

Figure 4, Representation of Task Performance

2.4 Participants

72 participants took part in the first experiment
(12 native speakers of English and 60 non-native
speakers whose placement levels ranged from
A1 to C2 in CEFR). The non-native speakers’
languages included Arabic, Chinese, Dutch,
French, German, Portuguese, Spanish, Serbian,
and Indonesian, with the overwhelming majority
being French (45 out of 60). 38 participants had
no knowledge whatsoever of controlled languages.
16 claimed had beginner knowledge of the Airbus
controlled language (Airbus employees having
rarely worked with the language or its rules).
14 had a more intermediate knowledge of the
language. 5 participants had expert knowledge of
the language as it could be part of their daily task.

2.5 Experimental Materials and Equipment

DMDX is a Win 32-based display system used
in psychological laboratories to measure reaction
times to visual and auditory stimuli. We used this
software on a Dell Precision 3510 laptop to display
the messages and images. For that, we developed
6 scripts which consisted of 3 semi-randomized
lists of stimuli for right-handed participants and
3 for left-handed participants (same lists but the
“yes” and “no” buttons were inverted for left
handed participants).

2.6 Variables
The list of independent variables that we will
evaluate are:

• Language (MCL-MNL)

• Syntactic Difficulty (1 to 6)

• Type (Congruents-Incongruents) Extraneous
and participant variables:

• English placement level (Basic Intermediate,
Proficient, Mastery, Native)

• Familiarity with Airbus CL (None, Beginner,
Intermediate, Expert)

Dependent variables:

• Reaction time in ms, Accuracy (number of
errors)

2.7 Hypotheses and Research Questions:
1. MNL messages produce shorter reaction

times than MCL ones in different syntactic
difficulty conditions.

2. MNL messages produce less errors (are
more accurate) than MCL ones in different
syntactic difficulty conditions.

3. Did the language factor play a different
role for the different types of congruency
responses regarding reaction times?

4. Did the language factor play a different role
for different levels of English placement
(Basic Intermediate, Mastery, Natives)
regarding reaction times?

3 Results and Statistical Analysis

We reported the results below linked to each of
the previously mentioned hypotheses. We used
non-parametric statistical significance tests such
as Wilcox signed rank as the data had a non-
normal distribution (Gaussian distribution). These
tests help determine whether the independent
variables had an effect on reaction time and
accuracy of comprehension (dependent variables)
by calculating a statistical significance p-value
(results are significant if they show a p-value less
than 0.05, i.e. implying that it is acceptable to have
less than 5% probability of incorrectly rejecting
the true null hypothesis). 1. MNL messages
produce shorter reaction times than MCL
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ones in different syntactic difficulty conditions.
A Shapiro-wilk normality test was run on the
reaction times and the results showed that the data
is significantly non-normal (p = 2.054e-05) with
abnormal skew, therefore we used non-parametric
tests to test the main effect such as the Wilcox
signed rank test because the same participants
took part in both language conditions. Firstly,
the general effect was compared regardless of
difficulty for both language conditions. There
was a significant difference in the scores for MCL
(Median=2030.317 ms.) and MNL (Median=
1944.163 ms.) conditions; v=1692, p=0.0339,
effect size calculated with Pearson’s coefficient
r=0.24998. With the hypothesis confirmed, we can
conclude that the more natural language helped
participants process the stimuli and provoked
significantly faster reaction times than the more
coded language format.

We then performed a linear regression model to
ascertain the influence of the syntactic difficulty
condition in both languages. A simple linear
regression was calculated to predict the reaction
times of the MCL responses based on the 6
syntactic difficulty conditions. A significant
regression equation was found (F(1,1500) =
9.211, p < 0.002447), with an R2 of 0.006103.
Participants’ predicted reaction times is equal to
1873.77 + 42.55 ms for every additional difficulty
condition. Therefore, reaction time increased
42.55 ms for each additional difficulty condition.
A simple linear regression was also calculated to
predict the reaction times of the MNL responses
based on the 6 difficulty conditions. A significant
regression equation was found (F(1,1450) =
12.68, p < 0.0003822), with an R2 of 0.008667.
Participants’ predicted reaction times is equal to
1801.64 + 47.81 ms for every additional difficulty
condition. Therefore, reaction time increased
47.81 ms for each additional difficulty condition.
Figure 5 is the graph that plots those two linear
regression models for both languages in the 6
difficulty conditions. As we can see there is
no interaction between the two languages (lines
are parallel and do not intersect) but reaction
times get slower when difficulty increases in
both languages which confirms that syntactic
difficulty based on length is a valid measure
(confirms Szmrecsanyi (2004) findings). With
the hypothesis confirmed, we can also conclude
that MNL messages produced consistently faster

reaction times than MCL messages in all difficulty
conditions.

Figure 5, Linear Regression Models for MCL and
MNL Difficulty Condition

2. MNL messages produce less errors (are more
accurate) than MCL ones in different syntactic
difficulty conditions. Accuracy was calculated
using the average number of errors. Therefore,
we started by comparing the general effect of
accuracy regardless of difficulty for both language
conditions using the Wilcox signed Rank test.
There was no significant difference in the number
of errors by subject produced in the MCL (Mean
= 2.46 errors) and MNL (Mean = 2.9 errors)
conditions; v = 549, p = 0.07121. We could
interpret this by proposing that the difference in
the syntax of the two languages was not different
enough (a lot of the stimuli had only one or two
grammatical articles added to them) to cause one
language to have better performance with respect
to errors, but those subtleties were manifested in
the reaction times instead which stand to be more
adequate measures of early/initial comprehension.
Figure 6 is a histogram plot of the errors made
in the different conditions of difficulty for both
languages. As we can see the number of errors
in both languages is not consistent across different
difficulty conditions, but there is a tendency for
both languages to have more and more mistakes
as difficulty increases. The advance that the MCL
has over the MNL in the easy difficulty conditions
(probably due to having less words to read and
the same time as MNL stimuli with more words
to read) disappears the harder the stimuli get with
the exception of mid-way difficulty level 4.
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Figure 6, Histogram of errors in MNL and MCL
in the 6 difficulty conditions

3. Did the language factor play a different
role for the different types of congruency
responses regarding reaction times? It was
important to verify whether there was an effect of
congruent stimuli versus incongruent stimuli (to
the corresponding image) since congruent stimuli
were deemed easier targets than incongruent
ones, therefore understanding incongruent stimuli
constitutes an extra difficulty condition in and of
itself. To illustrate this with a concrete example:
An image that shows an empty parking lot with
a message that reads “Parking is available” is
easier to interpret as a “yes congruent” than
an image showing a desk lamp with a message
that reads “Ceiling lamp is available” as a “no,
incongruent”. Confusion might arise from the
presence of a lamp in the picture but which is
not a ceiling lamp. Most incongruent images
were purposefully chosen to include a little
forced ambiguity, or an extra “trick” where the
participant had to verify thoroughly the image
before responding. Therefore, we compared the
general effect of reaction times regardless of
difficulty for congruent stimuli in both language
conditions using the Wilcox signed Rank test.
There was no significant difference in reaction
times of the congruent stimuli produced in the
MCL (Median = 1888.502 ms) and MNL (Median
= 1879.167 ms) conditions; v = 1468, p = 0.3875.
However, when performing the same test for
the incongruent stimuli we found a significant
difference in the MCL (Median = 2241.473ms)
and the MNL (Median = 1927.541ms) conditions;
v = 1475, p = 0.0308. As we can see from
Table 2 the difference between medians in the
incongruent condition is far superior than the

congruent one and is statistically significant. We
attribute this difference to the added difficulty in
the interpretation of the incongruent stimuli, and
we conclude that the MNL syntax helps process
information faster than the MCL condition as the
difficulty in the task and stimuli increase.

Figure 7, Medians in ms of MCL and MNL
reaction times in congruent and incongruent

stimuli

4. Did the language factor play a different
role for different levels of English placement
(Basic Intermediate, Mastery, Natives)
regarding reaction times?

We grouped the English placement levels into
3 categories. “Basic intermediate” regroups
participants that were placed from levels A2 to C1,
“Mastery” has participants that were placed in C2
level and “native” are the native English speaker
participants. We did a series of t-tests (as reaction
times for those sub-groups were not significantly
non-normal so we could use a parametric test)
to compare the two different language conditions
in each of the English placement groups. For
basic intermediate level, there was a significant
difference in the scores for MCL (Mean =
2246.322 ms) and MNL (Mean = 2144.104 ms)
conditions; t = 2.5416, p = 0.01644. For mastery
level, there was no significant difference in the
scores for MCL (Mean=1956.563ms) and MNL
(Mean= 1954.745ms) conditions; t = 0.034395,
p = 0.9728. For native level, there was no
significant difference in the scores for MCL (Mean
= 1690.904 ms) and MNL (Mean = 1588.062
ms) conditions; t = 1.8301, p = 0.09444. As
we can see the only significant result is the basic
intermediate level. We can conclude that MNL
helps comprehension for the weaker levels of
English levels as reaction times are significantly
shorter for that group. While the native group does
not show statistical significance, most probably
because the group is made up of 12 participants
only, it is interesting to note the difference in the
average of the MNL and MCL which is equal to
the difference for lower intermediates (averages
which showed statistical significance). Native
speakers often mentioned that they preferred the
more natural language, and this is also apparent
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in their results. A simple linear regression was
also calculated to predict the reaction times of the
MCL responses based on the 3 English placement
levels. A significant regression equation was
found (F(2,432) = 21.83, p = 9.275e-10), with
an R2 of 0.0918. Participants’ predicted reaction
times is equal to 2221.92 – 280.14 ms for
every English placement level gained. Therefore,
reaction time decreased 280.14 ms for every
English placement level gained (cf. Figure 8).

Figure 8, Linear regression of MCL in the
different English Placement Levels

A simple linear regression was calculated to
predict the reaction times of the MNL responses
based on the 3 English placement levels.
A significant regression equation was found
(F(2,430) = 21.38, p = 2.288e-10), with an
R2 of 0.0981. Participants’ predicted reaction
times is equal to (2146.50 ms – 190.20 ms) for
every English placement level gained. Therefore,
reaction times decreased 190.20 ms for every
English placement level gained (cf. Figure 39).

Figure 9, Linear regression of MNL reaction
times in the different English Placement Levels

A graphical representation of both of those

linear regressions is shown in Figure 10. As we
can see, there is no interaction between these two
languages for all three English level placements,
but they both show decreasing reaction times
with every additional level of English placement.
The MNL proves to have consistently faster
reaction times in all English placement levels,
and therefore, we can conclude that MNL helps
comprehension and information processing more
than MCL regardless of participants’ English
placement level.

Figure 10, Linear regression for both MCL and
MNL reaction times in the different English

Placement Levels

4 Discussion

As shown in the results of hypothesis 1,
MNL condition shows significantly faster reaction
times than MCL condition, and both languages
performed equally with regards to accuracy (in
hypothesis 2). This could be explained by the fact
that the syntactic changes (sentential elements in
constative statements) between the two language
conditions did not have enough disparities
to warrant observable differences in accuracy,
whereas the observed differences in reaction
times were able to highlight the subtle syntactic
variations that led to faster comprehension. In
the experiment speed of stimuli presentation
and to a certain degree the stress it provoked,
accentuated the role of the more natural language
in information processing. Additionally, there
was no interaction between the two languages
with regards to the 6 levels of syntactic difficulty,
but reaction times get slower when difficulty
increases in both languages. We can also
conclude that MNL produced consistently faster
reaction times than MCL in all syntactic difficulty

8



conditions. As we illustrated in research question
3, incongruent stimuli had an additional touch of
difficulty and that is reflected in the reaction times’
discrepancies for congruency conditions in both
language conditions. Incongruent stimuli showed
significantly faster reaction times for the MNL
condition over the incongruent MCL condition,
while the congruent stimuli did not. Therefore,
in cases of increased difficulty the more natural
language helps ease comprehension. Concerning
English placement levels (research question
4), MNL seems to facilitate comprehension
for participants in the basic intermediate level
placement, and this suggests that speakers with
weaker levels of English proficiency would benefit
more greatly from a more natural language than
confirmed speakers, or at least we could say
that the effect is more conspicuous. While
native English speakers performed better on
average in the MNL condition, the effect was not
statistically significant and should be the object
of further studies with bigger samples of native
speakers. We could also conclude that there is no
interaction between the reaction time of the two
language conditions and the different English level
placement (one language did not start out having
better performance than the other but ended up
performing worse in different level placements),
however we do observe a downward tendency
in reaction times the more proficient speakers
become. Natives have significantly faster reaction
times than basic intermediate English speakers.

5 Conclusion

We presented in this experiment a congruency task
similar to traditional judgment tasks in behavioral
experiments. It provided a firmly controlled
environment to test linguistic hypotheses and
CNL rules, nonetheless, the downside of using
such experiments is that we are limited to
evaluating passive comprehension, mainly of
specific informative statements. It would be quite
difficult to evaluate the comprehension of an order
or an instruction using traditional judgment tasks.
In subsequent experiments, the congruency tasks
will be replaced by ecological performance tasks
for injunctive statements (participants performed
the action required and the accuracy and response
times are recorded) which include the urgency
factor (speed of stimuli, and stress generated
by limited response time). We will also be

recruiting more native speaker participants to
have a more representative panel of the target
population (pilots from all around the globe), and
ascertain whether the different syntactic language
conditions reflect equally on native and non-native
English speakers.

The results from this experiment are somewhat
satisfactory as they show that our initial hypothesis
is validated in a certain number of conditions.
In all cases, contrary to common misconceptions,
results showed that more simplification and
linguistic economies and ellipses hardly ever
led to better performance (MCL conditions
did in no condition show significantly better
reaction times or accuracy than MNL conditions).
Furthermore, this experiment brought us first
elements of empirically tested data which question
controlled language construction, and the limits
of simplification in general. It showed that what
we sometimes mistakenly label as superfluous or
empty syntactical elements (such as grammatical
words as opposed to lexical words) could go a long
way in ensuring better comprehension and faster
information processing from a psycho-linguistic
point of view.
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Abstract
Grammar-based domain-specific MT systems
are a common use case for CNLs. High-quality
translation lexica are a crucial part of such sys-
tems, but involve time consuming work and
significant linguistic knowledge. With parallel
example sentences available, statistical align-
ment tools can help automate part of the pro-
cess, but they are not suitable for small datasets
and do not always perform well with complex
multiword expressions. In addition, the corre-
spondences between word forms obtained in
this way cannot be used directly. Addressing
these problems, we propose a grammar-based
approach to this task and put it to test in a sim-
ple translation pipeline.

1 Introduction

Grammar-based translation pipelines such as those
based on Grammatical Framework (GF) have been
successfully employed in domain-specific Machine
Translation (MT) (Ranta et al., 2020). What makes
these systems well suited to the task is the fact
that, when we constrain ourselves to a specific do-
main, where precision is often more important than
coverage, they can provide strong guarantees of
grammatical correctness.

However, lexical exactness is, in this context,
just as important as grammaticality. An important
part of the design of a Controlled Natural Language
(CNL) is the creation of a high-quality translation
lexicon, preserving both semantics and grammati-
cal correctness. A translation lexicon is often built
manually, which is a time consuming task requiring
significant linguistic knowledge. When the task is
based on a corpus of parallel example sentences,
part of this process can be automated by means of
statistical word and phrase alignment techniques
(Brown et al., 1993; Och and Ney, 2000; Dyer et al.,
2013). None of them is, however, suitable for the
common case in which only a small amount of ex-
ample data is available — typically, with just one
occurrence of each relevant lexical item.

In this paper, we propose an alternative approach
to the automation of this task. While still being
data-driven, our method is also grammar-based and,
as such, capable of extracting meaningful corre-
spondences even from individual sentence pairs.

A further advantage of performing syntactic anal-
ysis is that we do not have to choose a priori
whether to focus on the word or phrase level. In-
stead, we can simultaneously operate at different
levels of abstraction, extracting both single- and
multiword, even non-contiguous, correspondences.
For this reason, we refer to the task our system
attempts to automate as Concept Alignment (CA).
A concept is a semantic unit expressed by a word
or a construction, which is also a unit of composi-
tional translation, where translation is performed
by mapping concepts to concepts in a shared syn-
tactic structure.

Conceiving concepts as lemmas equipped with
morphological variations rather than fixed word
forms or phrases allows us to generate translation
lexica complete with grammatical category and
inflection, so that correct target language forms can
be selected in each syntactic context.

This paper is structured as follows. Section 2
starts by giving an overview of our approach to
CA and comparing it with related work, followed
by a description of our CA algorithm. Section 3
presents the results obtained in a first evaluation of
the system. Section 4 summarizes our conclusions
and discusses some ideas for future work.

2 Methodology

The objective of CA is to find semantical corre-
spondences between parts of multilingual parallel
texts. We call concepts the abstract units of trans-
lation, composed of any number of words, iden-
tified through this process, and represent them as
alignments, i.e. tuples of equivalent concrete ex-
pressions in different languages.

The basic use case for CA, which we refer to
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specifically as Concept Extraction (CE), is the gen-
eration of a translation lexicon from a multilingual
parallel text. This is analogous to the well-known
earlier word and phrase alignment techniques.

An interesting and less studied variant of CA is
Concept Propagation (CP), useful for cases where
a set of concepts is already known and the goal is to
identify the expressions corresponding to each of
them in a new language, potentially even working
with a different text in the same domain. While our
system does implement basic CP functionalities, in
this paper we focus on its most mature portion: CE.
Because results analogous to those that could be ob-
tained via multilingual extraction can be obtained
more easily with a combination of CE and CP, we
restrict ourselves, for the time being, to bilingual
corpora.

As stated in the Introduction, most existing align-
ment solutions are based on statistical approaches
and are, as a consequence, unsuitable for small
datasets. Grammar-based approaches, making use
of parallel treebanks and collectively referred to
as tree-to-tree alignment methods, have also been
proposed (Tiedemann, 2011), but have historically
suffered from the inconsistencies between the for-
malisms used to define the grammars of differ-
ent languages and from the lack of robustness of
parsers. This work is a new attempt in the same
direction, enabled by two multilinguality-oriented
grammar formalisms developed over the course of
the last 25 years: Grammatical Framework (GF)
(Ranta, 2011) and Universal Dependencies (UD)
(Rademaker and Tyers, 2019).

GF is a constituency grammar formalism and
programming language in which grammars are rep-
resented as pairs of an abstract syntax, playing the
role of an interlingua, and a set of concrete syn-
taxes capturing the specificities of the various natu-
ral languages. In the case of translation, similarly
to what happens in programming language com-
pilation, strings in the source language are parsed
to Abstract Syntax Trees (ASTs), which are then
linearized to target language strings.

UD, on the other hand, is a dependency gram-
mar formalism meant for cross-linguistically con-
sistent grammatical annotation. As opposed to con-
stituency, dependency is a word-to-word correspon-
dence: each word is put in relation with the one it
depends on, called its head, via a directed labelled
link specifying the syntactic relation between them.
Importantly for our application, the standard for-

mat for UD trees, CoNNL-U, gives information
not only on the syntactic role of each word, but
also on its Part-Of-Speech (POS) tag, lemma, and
morphological features.

While both formalisms independently solve the
issues related to having to work with grammars that
are inconsistent with each other, UD is especially
appealing since, being dependency trees an easier
target, several robust parsers, such as (Straka et al.,
2016) and (Chen and Manning, 2014) are available.
Alone, UD trees are sufficient to extract (or propa-
gate) tree-to-tree alignments, but not to automate
the generation of a morphologically-aware trans-
lation lexicon for a generative grammar. This is
where GF comes into play: after correspondences
are inferred from a parallel text, our system is able
to convert them to GF grammar rules, easy to em-
bed in a domain-specific grammar but also making
it immediate to carry out small-scale translation
experiments using pre-existing grammatical con-
structions implemented in GF’s Resource Gram-
mar Library (RGL), which covers the morphology
and basic syntax of over 30 languages. This is en-
abled by gf-ud, a conversion tool described in
(Kolachina and Ranta, 2016) and (Ranta and Ko-
lachina, 2017). Concretely, then, the system we
propose consists of a UD parser, an alignment mod-
ule based on UD tree comparison and a program,
based on gf-ud, that converts them into the rules
of a GF translation lexicon.

2.1 Extracting concepts
The core part of the system outlined above is the
alignment module. Its function is to extract align-
ments from parallel bilingual UD treebanks. The
outline of the algorithm is given in the following
pseudocode:

procedure EXTRACT(criteria,(t, u))
alignments = ∅
if (t, u) matches any alignment criteria then

alignments += (t, u)
for (t′, u′) in SORT(SUBTS(t)) × SORT(SUBTS(u))

do
extract(criteria,(t′, u′))

return alignments

Here, the input consists of a list of priority-sorted
alignment criteria, i.e. rules to determine whether
two dependency trees should be aligned with each
other, and a pair (t, u) of UD trees to align. An
example alignment criterion is sameness of syn-
tactic label, which makes it so that, for instance,
subjects are aligned with subjects and objects with
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objects; the details will be discussed in Section
2.1.1. From an implementation point of view, UD
trees are rose trees (trees with arbitrary numbers of
branches) where each node represents a word with
its dependents as subtrees (see Figure 1). The rose
tree is easily obtained from the CoNLL-U notation
that UD parsers produce.

As a first step, the program checks whether the
two full sentence trees can be aligned with each
other, i.e. if they match one or more alignment cri-
teria. In the case of the example criterion discussed
above, this means that their roots are labelled the
same. If this is the case, they are added to a collec-
tion of alignments, which are represented as pairs
of UD (sub)trees associated with some metadata,
such as the id of the sentence they were extracted
from. Such a collection is what the function will
return after aligning all the dependency subtrees.
The same procedure is applied recursively to all
pairs of immediate subtrees of each sentence, until
the leaves are reached or alignment is no longer
possible due to lack of matching criteria. Subtrees
are sorted based on their dependency label to give
higher priority to pairs whose heads have the same
label (cf. SORT in the pseudocode).

A simple but useful refinement is that, depending
on which alignment criteria a pair of trees matches,
the heads of the two trees may or may not also be
added to the collection of alignments. This is done
in order not to miss one-word correspondences that
cannot be captured in any other way, for instance
between the root verbs of two full sentences. A rel-
evant implementation detail is that, in this context,
the head of a tree is not simply defined as its root.
Instead, if the root is part of a compound written
as two or more separate words or a verb with auxil-
iaries, the root nodes of the corresponding subtrees
are also considered parts of it.

When working on multiple sentences, the algo-
rithm can be applied in an iterative fashion, so
that knowledge gathered when a sentence pair is
aligned can be used when working on later sen-
tences and to keep track of the number of occur-
rences of each alignment throughout the entire text.
Furthermore, it is possible to initialize the algo-
rithm with a nonempty set of alignments, obtained
with the same program or by means of a statistical
tool outputting alignments in Pharaoh format and to
combine the results of several extraction processes
into a single translation lexicon.

2.1.1 Alignment criteria
While the alignment criteria are customizable, to
allow for a better understanding of the extraction
algorithm described above, we explain the criteria
that our implementation utilizes by default.

Matching UD labels The most obvious, but also
most effective idea is to determine alignability
based on comparing the dependency labels of the
members of the candidate UD tree pair. In particu-
lar, according to this idea, two subtrees in matching
context, i.e. attached to aligned heads, constitute an
alignment if their roots share the same dependency
label, meaning that they are in the same syntactic
relation with their heads. Note that, since the root
of a UD tree is always attached to a fake node with
an arc labelled root, this criterion also implies
that full sentences are always considered to align
with each other. This is desirable since we assume
that the parallel texts that are fed to our program
are sentence-aligned.

Part-Of-Speech equivalence As noted above,
the CoNNL-U notation provides information on
the grammatical categories of each word, repre-
sented as Universal POS tags (Petrov et al., 2012).
Intuitively, if the nodes of two trees in matching
contexts have the same POS tags, the two trees
are more likely to correspond to each other than
if not. This is especially true if we focus, for in-
stance, solely on the open class words (defined as
in the UD documentation1), thus ignoring func-
tion words such as prepositions, determiners and
auxiliary verbs, which tend to behave differently
across different languages. A useful relation to
define between dependency trees is, then, that of
POS-equivalence: two dependency trees t1, t2 are
POS-equivalent if M1 = M2 6= ∅, where Mi is
defined as the multiset of POS tags of all the open
class word nodes of ti. Applied as a backup for
label matching, this criterion can be used to capture
correspondences that would otherwise be missed,
thus increasing recall, but a decrease in precision
is also to be expected. However, since alignment
criteria are defined as boolean functions, it is easy
to combine them so to that they have to apply si-
multaneously. This can be useful in cases where
precision is more important than recall.

Known translation divergence Parallel texts of-
ten present significant, systematic cross-linguistic

1universaldependencies.org/u/pos/all.
html
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She studies consistently
PRON VERB ADV

� �
?
nsubj � �

?
advmod

?
root

Lei studia con costanza
PRON VERB ADP NOUN

� �
?
nsubj � �

?
case

� �
?

nmod

?

root

1 She PRON 2 nsubj
2 studies VERB 0 root
3 consistently ADV 2 advmod

1 Lei PRON 2 nsubj
2 studia VERB 0 root
3 con ADP 4 case
4 costanza NOUN 2 obl

2 studies VERB 0 root
3 consistently ADV 2 advmod
1 She PRON 2 nsubj

2 studia VERB 0 root
1 Lei PRON 2 nsubj
4 costanza NOUN 2 obl
3 con ADP 4 case

Figure 1: The graphical, simplified CoNNL-U and sorted rose tree representation of a pair of UD sentences. With
the default criteria, which among other things allow for matching adverbial with adjectival modifiers, the resulting
alignments are: 〈She studies consistently, Lei studia con costanza〉 (matching root label), 〈studies, studia〉 (head
alignment), 〈she, lei〉 (matching nsubj label) and 〈consistently, con costanza〉 (translation divergence; amod and
advmod treated as equivalent).

grammatical distinctions. When this is the case, it
is often straightforward to define alignment criteria
based on recognizing the corresponding patterns.
While many distinctions of this kind are specific to
particular language pairs or even stylistical, some
of them occur independently of what languages
are involved and do not depend on idiomatic usage
nor aspectual, discourse, domain or word knowl-
edge. Drawing inspiration from (Dorr, 1994), we
refer to them as translation divergences and han-
dle some of the most common ones explicitly. For
instance, categorial divergences occur when the
POS tag of a word in the source language changes
in its translation. An ubiquitous example of this
is that of adverbial modifiers (with the UD label
advmod) translated as prepositional phrases (with
the UD label obl, for oblique), such as in the
English-Italian pair 〈She studies consistently, Lei
studia con costanza〉 (see Figure 1). Structural
divergences, where a direct object in one language
is rendered as an oblique in the other, as in the
English-Swedish pair 〈I told him, Jag berättade
för honom.〉), are also frequently encountered.

Known alignment Another case in which it is
trivially desirable for two subtrees in matching con-
text to be aligned is when an equivalent alignment
is already known, for instance due to a previous iter-
ation of the extraction algorithm. When referred to
pairs of alignments, the term equivalent indicates
that the two alignments, linearized, correspond to
the same string.

At a first glance, this might look like a criterion
with no practical applications. However, it can be
useful when, instead of starting with an empty set
of correspondences, we initialize the program with
some alignments that are either inserted manually
or, most interestingly, obtained with some other
alignment technique. For instance, in this way it

is possible to combine the system proposed in this
paper with a statistical tool and give more credit to
correspondences identified by both.

2.1.2 Pattern matching

So far, we have described how CE can be used
in a setting where the objective is to generate a
comprehensive translation lexicon based on set of
example sentence pairs. We pointed out that the
program can be configured to prioritize precision
or coverage, but we never restricted our search to a
particular type of alignments. However, there are
cases in which only certain syntactic structures are
of interest: for instance, we might be looking for
adverbs or noun phrases exclusively.

To handle such cases, the CE module can fil-
ter the results based on a gf-ud tree pattern.
gf-ud supports in fact both simple pattern match-
ing, which is integrated in the CE module itself,
and pattern replacement2. Combining them, for
instance by pruning the UD trees extracted by the
alignment module, allows us to extract correspon-
dences that cannot be identified by CE alone.

For example, pattern matching can extract verb
phrases by looking for full clauses and dropping the
subtrees corresponding to subjects. By means of re-
placements, one can obtain predication patterns, i.e.
correspondences that specify the argument struc-
ture of verbs, such as the following English-Italian
one:

〈X gives Y Z, X dà Z a Y〉.

2.2 Generating grammar rules

The alignments outputted by the CE module de-
scribed so far are represented as pairs of UD
(sub)trees in CoNLL-U format. While converting

2documentation is available at github.com/
GrammaticalFramework/gf-ud
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them to GF ASTs is one of gf-ud’s core func-
tionalities, such trees also need be converted into
the grammar rules of a compilable GF translation
lexicon. To this end, our grammar generation mod-
ule requires a morphological dictionary of the lan-
guages at hand and an extraction grammar.

Morphological dictionaries, implemented for
several languages as part of the RGL, are large
collections of lemmas associated with their inflec-
tional forms.

An extraction grammar, on the other hand, de-
fines the syntactic categories and functions the en-
tries of the automatically generated lexicon are
built with. For example, entries can be prepo-
sitional phrases (PP) or verb phrases (VP) con-
structed by the following GF functions:

PrepNP : Prep -> NP -> PP # case head
PrepPP : VP -> PP -> VP # head obl

The dependency labels appended to the function
types instruct gf-ud to build GF trees from UD
trees that match these labels.

The final translation lexicon, i.e. a GF grammar
that extends the extraction grammar, is then derived
from these GF trees. In its abstract syntax, the name
of each concept is associated with its grammatical
category, i.e. the category of the root of the GF tree.
For example:

fun in_the_field__inom_område_PP : PP ;

The concrete syntaxes, on the other hand, con-
tain the linearization rules for each concept, directly
based on the trees obtained from gf-ud. For in-
stance, in English:

lin in_the_field__inom_område_PP =
PrepNP

in_Prep
(DetCN the_Det (UseN field_N)) ;

Most function words, such as in_Prep, and
many content words, such as field_N, are avail-
able through the morphological dictionaries. When
this is not the case, they are assumed to be regular
and an additional rule is generated for them. For
instance, if the English morphological dictionary
didn’t contain the word “field”, we would have:

oper field_N = mkN "field" ;

3 Evaluation

In this section, we evaluate the system proposed
above. We first discuss the data used in the eval-
uation. After that, we describe our experiments,

aimed at putting both the CE module per se and the
entire system from parsing to lexicon generation to
the test, and present our results.

3.1 Data
Because we want part of our evaluation to be inde-
pendent from the quality of UD parsing, some of
the experiments are carried out on treebanks instead
of raw text. To this end, we use a 100-sentence
subset of the Parallel UD (PUD) corpus, a set of
1000 manually annotated or validated sentences in
CoNLL-U format. Of the over 20 languages PUD
treebanks are available in, we selected English, Ital-
ian and Swedish. Using this data limits the amount
of alignment errors that are due to annotation is-
sues to a minimum, even though a small number of
inconsistencies is present even in this corpus.

When it comes to testing the program on raw text,
we use two small (< 1000 sentences) bilingual
sentence-aligned corpora consisting of course plans
from the Department of Mathematics and Com-
puter Science (DMI) of the University of Perugia
(for English-Italian) and from the Department of
Computer Science and Engineering (CSE) shared
between the University of Gothenburg and the
Chalmers University of Technology (for English-
Swedish). For brevity, we will refer to these two
datasets as to the DMI and the CSE corpora. This
data, available in the project repository, was col-
lected and sentence-aligned specifically for this
work and a related Bachelor’s thesis project (Eriks-
son et al., 2020). When using raw text, our parser
of choice is UDPipe (Straka et al., 2016). In partic-
ular, we use the ParTUT English and Italian models
for the DMI corpus and models trained on the bilin-
gual LinES English-Swedish treebank for the CSE
corpus 3.

3.2 Evaluating CE
While we focus mostly on the MT applications
of CA, automatic translation, and much less GF-
based domain-specific translation, is not the only
context in which CA can be put to use. For instance,
it is easy to imagine using it to build translation
memories to be use as an aid for human translation.
For this reason, a first set of experiments is aimed
at evaluating the alignments obtained with our CA
module independently from the other stages of our
lexicon generation pipeline.

3The pretrained UDPipe models and information about
their performance are available at ufal.mff.cuni.cz/
udpipe/1/models
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CE fast_align
(100 sentences)

fast_align
(full dataset)

en-it en-sv en-it en-sv en-it en-sv
distinct alignments 536 638 1242 1044 1286 1065

correct 392 (73%) 514 (80%) 346 (28%) 538 (52%) 540 (42%) 677 (64%)
usable in MT 363 (68%) 503 (79%) 316 (25%) 525 (50%) 510 (40%) 666 (63%)

Table 1: Comparison between our grammar-based CE module and fast_align on PUD data, training the
statistical model both on 100 and 1000 sentences and discarding the alignments obtained for sentences 101-1000 in
the latter case.

We first assess the correctness of the alignments
the CE module is able to extract from the PUD tree-
banks, comparing our results with those obtained
with a statistical tool, fast_align (Dyer et al.,
2013). In addition, we try to quantify the impact of
automated UD parsing on the performance of the
CE module by comparing the above results with
those obtained on the DMI and CSE corpora.

While precision and recall are two well-known
performance metrics, the lack of a gold standard
for CE forces us to, before calculating the ratio
between the number of correct alignments and the
total number of extracted alignments, manually as-
sess the correctness of each alignment. What is
more, since some alignments are only correct in
the specific context of the sentence pair in which
they occur, we make a further distinction between
correct alignments that are relevant for a translation
lexicon and alignments that are useful for compar-
ing the sentences but should not be used for MT.
As an extreme example of a pair-specific align-
ment, consider the sentences 〈He missed the boat,
Ha perso il treno〉. In both languages, the idea of
missing a chance is expressed with idiomatic ex-
pressions very similar to each other. However, the
Italian translation mentions a train (“treno”) in the
place of a boat.

3.2.1 Results on manually annotated
treebanks

In Table 1, we compare the results obtained with
our grammar-based module to those obtained
statistically on the PUD treebanks. Of course,
fast_align does not make use of the infor-
mation present in the CoNLL-U files except with
regards to tokenization. On the other hand, the
relatively large size of the PUD treebanks makes
it possible also to train the statistical tool on the
full dataset instead of just using the chosen 100-
sentences subset, allowing for a fairer comparison.
In both cases, fast_align is run with the recom-
mended parameters and the CE program is config-

ured to only extract one-to-many and many-to-one
word alignments, as fast_align does not align
larger phrases. This explains CE’s seemingly low
recall. To get a better idea, Table 1 can be com-
pared with Table 2, which summarizes the results
of an experiment where no constraints are placed
on the size of the extracted alignments.

While fast_align is designed to align every
word in the text (or explicitly state that a word has
no counterpart in its translation) and, consequently,
extracts around twice as many correspondences, the
percentage of correct correspondences is definitely
in favor of our system, even though fast_align
gets significantly more precise when trained on the
full 1000-sentence dataset.

3.2.2 Results on raw text

The course plan corpora are significantly harder to
work with, the additional challenges being the in-
exactness of many translations (which is the direct
cause of some of the alignment errors encountered
in our evaluation) and the fact that our CE mod-
ule relies, in this case, on the quality of automatic
lemmatization, POS-tagging and parsing.

In Table 2, we compare the results obtained on
manually annotated data and the course plans cor-
pora parsed with UDPipe.

What is immediately evident, but not unexpected,
is a decrease in precision. The percentage of cor-
rect alignments, however, stays significantly higher
than that obtained with fast_align in the previ-
ous experiment, even with the model trained on the
full PUD corpus. In fact, even though percentages
seem similar for English-Swedish, the CSE corpus
is roughly half the size of the full PUD corpus.

The results are less encouraging in terms of re-
call: the number of alignments extracted from the
course plan corpora is similar to that obtained from
the PUD treebank sample, despite the difference in
size. This is explained in part by the presence, in
the course plans corpora, of a large amount of very
short sentences, and in part by the fact that parse
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PUD (100 sentences) course plans
en-it en-sv DMI (881 sentences) CSE (539 sentences)

distinct alignments 1197 1325 1823 1950
correct 916 (77%) 1112 (85%) 1205 (66%) 1296 (66%)

usable in MT 880 (74%) 1099 (84%) 1157 (63%) 1248 (64%)

Table 2: Comparison between the grammar-based extraction of alignments of any size from manually annotated
PUD treebanks and from automatically parsed sentences from the course plans corpora.

errors introduced by UDPipe make it impossible to
align many subsentences without a significant loss
in terms of precision.

Our system is, on the other hand, capable of ex-
tracting multiword alignments that are unlikely to
be identified by a statistical tool, especially in the
case of such a small dataset. Examples of this are
the noun phrases 〈the aim of the course, l’obiettivo
del corso, syftet med kursen〉 (a concept found in
both corpora and, as such, trilingual), 〈Natural Lan-
guage Processing, språkteknologi〉 and 〈object ori-
ented programming, programmazione ad oggetti〉.

3.3 MT experiments

The second set of experiments has the objective
of assessing the quality of the final output of the
system we propose: GF translation lexica. Because
we are now focusing on using CA in the context
of domain-specific MT, we do not make use of the
PUD treebanks, where sentences come from a vari-
ety of different sources, but just of the course plans
corpora. We do not construct a grammar specific to
such domain: for small-scale MT experiments, it
is sufficient to extend the extraction grammar itself
with preexisting syntax rules defined in the RGL.

The idea is to automatically translate a set of
English sentences to Italian and Swedish, ask na-
tive speakers of the target languages to produce a
set of reference translations, and compare them to
the original machine-generated ones by computing
BLEU scores. Due to the small size of the datasets
and the consequently low coverage of the extracted
lexicon, we generate the sentences to translate di-
rectly in the GF shell rather than trying to parse
arbitrary sentences from other course plans. In
order to do that, we make use of GF’s random
AST generation functionality but at the same time
manually select semantically plausible sentences
to facilitate the task of the human translators. The
results of this process are two small testing cor-
pora, one for the DMI and one for the CSE corpus,
each consisting of 50 English sentences. Refer-
ence translations are obtained by asking partici-
pants to compare the original English sentences to

their automatically translated counterparts and cor-
rect the latter with the minimal changes necessary
to obtain a set of grammatically and semantically
correct translations. This is important as, if the
reference translations are obtained independently,
BLEU scores can easily become misleading.

3.3.1 Results
Corpus-level BLEU scores for the automatic trans-
lations of the 50+50 sentences of the testing cor-
pora are summarized in Table 3. Following con-
ventions, we report the cumulative n-gram scores
for values of n from 1 to 4 (BLEU-1 to BLEU-4).
However, being a significant portion of the sen-
tences of length 4 or less, we also report BLEU-1
to BLEU-3 scores, BLEU-1 to BLEU-2 scores and
scores obtained considering unigrams only.

DMI (en-it) CSE (en-sv)
BLEU-1 to 4 55 61
BLEU-1 to 3 63 68
BLEU-1 to 2 70 74

BLEU-1 79 81

Table 3: BLEU scores for automatic translations based
on the course plans grammars.

These synthetic figures are useful to give an idea
of the general quality of the translations: overall,
although with relatively low scores, English-to-
Swedish translation works significantly better than
English-to-Italian. Looking back at the results re-
ported in Section 3.2.2, the reason for this is not
immediately clear, as the difference in precision
between the two language pairs is negligible in the
course plan corpora.

Looking at sentence-level scores can, however,
be more insightful. For both corpora, scores as-
signed to individual segments range from the mini-
mum possible value of 0 to the perfect score of 100,
which indicates a perfect correspondence between
the automatic and reference translation. Examples
of sentences that were assigned a perfect BLEU-1
to 4 score are “the library provides useful textbooks”
(translated to Italian as “la biblioteca fornisce libri
utili”) in the DMI corpus and “this lab is more dif-
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ficult than the exam” (whose Swedish translation
is “den här laborationen är svårare än tentamen”)
in the CSE corpus. On the other hand, it is easy
for shorter sentences to be assigned the minimum
BLEU-1 to 4 score even when they only contain a
single grammatical or semantic error.

Furthermore, a problem with using the BLEU
score as the only evaluation metric is the fact that
it makes no distinction between content and func-
tion words, thus not allowing an evaluation focused
specifically on the extracted concepts. The small
size of the corpus, however, allows for some er-
ror analysis. From the participants’ observations
about the kind of errors encountered when manu-
ally editing the automatic translations, summarized
in Table 4, we can conclude that while most errors
are in fact due to wrong alignments, the main dif-
ference between two corpora lies in the number of
translations that only contain grammatical errors.
This explains the significant difference observed in
the cumulative BLEU scores shown in Table 3.

DMI (en-it) CSE (en-sv)
semantical 23 (46%) 23 (46%)

grammatical 10 (20%) 3 (6%)
both 3 (6%) 4 (8%)

Table 4: Types of errors encountered in the automati-
cally translated sentences.

Among other things, many Italian contractions
such as “del” (“di” + “il”, in English “of the”)
are systematically rendered as two separate words
due to UDPipe tokenization. Grammatical errors
in Swedish are less common and less systematic.
Only in one case, for instance, gender is incorrect
(“programbiblioteken”). These errors are easy to
handle when writing a domain-specific grammar
or, in cases like the latter, by making small adjust-
ments to the morphological dictionaries.

Some errors regarding the extracted concepts are
also interesting to analyze: the alignment 〈class,
classe〉, for instance, causes the sentence “I will at-
tend the class” to be (incorrectly) translated as “io
seguirò la classe” instead of “io seguirò la lezione”
even though the correspondence is in fact valid in
most contexts in which (within the same domain!)

“class” is not to be intended as a synonym of “lesson”
but as teaching group.

4 Conclusions

We have presented a syntax-based alignment
method with a focus on its applications in domain-

specific translation lexicon generation. Compared
with the existing statistical tools, our system has
the following advantages:

• it performs consistently well even on small
parallel corpora

• it is able to simultaneously extract correspon-
dences between individual words, multiword
expressions and longer phrases, including dis-
continuous constituents

• in conjunction with gf-ud pattern matching,
it can be used to extract specific types of cor-
respondences, such as predication patterns

• it can automatically generate compilable,
morphology-aware GF translation lexica

• it can be configured to easily handle system-
atic, possibly language pair- or corpus-specific
translation divergences.

While it requires manual corrections and com-
pletions to an extent that varies according to the
quality of the data and the strictness of the cho-
sen criteria, using the alignments obtained with our
method can reduce the time required for bootstrap-
ping the translation lexicon building process for a
domain-specific CNL significantly. In fact, espe-
cially if a comprehensive morphological dictionary
is available, part of the alignments will be ready to
use in a GF-based system without any intervention.

The tangible fruits of this work are a Haskell
library and a number of executables offering a user-
friendly interface to perform CE, lexicon genera-
tion and various kinds of evaluations. The source
code, including a preliminary implementation of
CP, is available on GitHub4. The software has al-
ready been used to analyse customer-provided data
in two commercial projects at Digital Grammars.

4.1 Current and future work
Our results, while encouraging, suggest that there is
room for improvement in many different directions.

An obvious possible development is optimizing
the current, initial implementation of Concept Prop-
agation (CP) for its two use cases: propagating
alignments to a new language looking for corre-
spondences using a translation of the same text
they were extracted from or using a different text
in the same domain. An alternative to the former
is to make CE, now working on bilingual texts,
n-lingual.

4github.com/harisont/concept-alignment
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When large enough amounts of data are avail-
able, using our system in conjunction with a statisti-
cal tool seems promising. As discussed above, this
is already partially supported and it could prove
useful to develop CA as an actual hybrid system.

Finally, since the freedom that generally char-
acterizes human translation and the quality of cur-
rently available UD parsers make maximizing both
alignment precision and recall unrealistic, tools
to make it easier to postprocess the automatically
generated lexica are under development.

References
Peter F. Brown, Stephen A. Della Pietra, Vincent J.

Della Pietra, and Robert L. Mercer. 1993. The math-
ematics of statistical machine translation: Parameter
estimation. Computational Linguistics, 19(2):263–
311.

Danqi Chen and Christopher Manning. 2014. A fast and
accurate dependency parser using neural networks.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 740–750, Doha, Qatar. Association for Com-
putational Linguistics.

Bonnie J. Dorr. 1994. Machine translation divergences:
A formal description and proposed solution. Compu-
tational Linguistics, 20(4):597–633.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameteriza-
tion of IBM model 2. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 644–648, Atlanta,
Georgia. Association for Computational Linguistics.

Eriksson, Gabrielsson, Hedgreen, Klingberg, Vestlund,
and Ödin. 2020. Grammar-based translation of com-
puter science and engineering terminology.

Prasanth Kolachina and Aarnte Ranta. 2016. From ab-
stract syntax to Universal Dependencies. In Linguis-
tic Issues in Language Technology, Volume 13, 2016.
CSLI Publications.

Franz Josef Och and Hermann Ney. 2000. Improved sta-
tistical alignment models. In Proceedings of the 38th
Annual Meeting of the Association for Computational
Linguistics, pages 440–447, Hong Kong. Association
for Computational Linguistics.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012.
A universal part-of-speech tagset. In Proceedings
of the Eighth International Conference on Language
Resources and Evaluation (LREC’12), pages 2089–
2096, Istanbul, Turkey. European Language Re-
sources Association (ELRA).

Alexandre Rademaker and Francis Tyers, editors. 2019.
Proceedings of the Third Workshop on Universal De-
pendencies (UDW, SyntaxFest 2019). Association for
Computational Linguistics, Paris, France.

Aarne Ranta. 2011. Grammatical Framework: Pro-
gramming with Multilingual Grammars. CSLI Publi-
cations, Stanford.

Aarne Ranta, Krasimir Angelov, Normunds Gruzitis,
and Prasanth Kolachina. 2020. Abstract syntax as
interlingua: Scaling up the grammatical framework
from controlled languages to robust pipelines. Com-
putational Linguistics, 46(2):425–486.

Aarne Ranta and Prasanth Kolachina. 2017. From Uni-
versal Dependencies to abstract syntax. In Proceed-
ings of the NoDaLiDa 2017 Workshop on Universal
Dependencies (UDW 2017), pages 107–116, Gothen-
burg, Sweden. Association for Computational Lin-
guistics.
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Abstract

We introduce a method for tailoring a con-
trolled language out of a specialized language
corpus, as well as for training the user to en-
sure a smooth transition between the special-
ized and the controlled language. Our method
is based on the selection of maximal cover-
age syntax rules. The number of rules cho-
sen is a naturalness vs. formality parameter of
the controlled language. We introduce a train-
ing tool that displays segmentation into left-to-
right maximal parsed sentences and allows ut-
terance modification by the user until a com-
plete parse is achieved. We have applied our
method to a French corpus of maintenance re-
ports of boilers in a thermal power station and
provide coverage and segmentation results.

1 Introduction

The distinction between naturalist and formalist
approach to controlled natural language has been
widely discussed in the literature (Pool, 2006; Clark
et al., 2010; Gruzitis et al., 2012; Marrafa et al.,
2012; Kuhn, 2014). We will adopt an intermedi-
ate approach. Indeed, in this paper we deal with
the specific problem of optimizing information and
knowledge extraction out of utterances in a spe-
cialized but spontaneously written language, the
language of maintenance reports of the boilers of
a thermal power station. The reports are written
under conditions of stress and lack of time, and
therefore largely adopt a “telegraphic” spontaneous
style, without post-editing or spell checking. The
ultimate goal of our ongoing project is to mine
the text in order to have it correlated with time-
stamped data from sensors in the equipment, in
search of anomalies. Use of a controlled language
is expected to improve the text mining process, but
asking technicians to rigorously adhere to a specific
controlled language fragment is not an option.

We have therefore chosen to make a compro-
mise by designing a controlled language based on

the existing maintenance reports corpus vocabu-
lary but with a restricted grammar. We have de-
veloped an editor that displays, in a non-intrusive
way, success or failure of the syntax parse of writ-
ten utterances. This means that we are adopting
a naturalist approach while using tools from the
formalist approach (subsets of syntax rules) to sim-
plify the legacy natural language and make it easier
to interpret.

To bring the controlled language closer to stan-
dard French, we used an additional, totally inde-
pendent corpus, consisting of sentences in regular
and carefully edited French. We extracted Phrase-
Structure Grammar rules from this corpus.

Let us call S the maintenance report corpus and
S its set of production rules,M the regular French
corpus and M its production rules. By using the vo-
cabulary of S and allowing only the most frequent
elements of M (and potentially some frequent rules
from S) we define a controlled language that is
a simplification of S (Saggion, 2017). Our first
innovation is the possibility of tailoring the formal-
ity/naturalness of the controlled language by reduc-
ing/increasing the number of allowed production
rules. Furthermore, the fact that these rules belong
to a “golden corpus of standard French,” entails
a regularization of the informal (and syntactically
chaotic) language of S.

Syntax is very central to our approach because
the vocabulary and its morphological variation are
limited, due to the technical nature of the corpus.

Our second innovation is an editor with a “non-
intrusive” training interface. A parsed utterance is
displayed in blue color (or bold style, or some other
graphical attribute) and the potentially unparsed
part of it remains in standard style. Depending on
working conditions during the text authoring act,
the technician can choose to invest time and energy
in “improving” eir1 linguistic production, or ignore

1We use gender-neutral Spivak pronouns https://en.
wikipedia.org/wiki/Spivak_pronoun.
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the fact that the utterance has not been entirely
parsed. When modifying the utterance, immediate
feedback (by some graphical artefact) is provided
to the author, who is thereby entering a smooth
training process.

2 Related work

(Clark et al., 2010) define CPL and CPL-Lite as
two variants of the same Computer-Processable
Language, where

While CPL searches for the best inter-
pretation, CPL-Lite is simpler and inter-
preted deterministically (no search or use
of heuristics). (Clark et al., 2010, 69)

In CPL-Lite, 113 sentence templates are allowed,
giving rise to an equal number of binary predicates
in Prolog-like syntax. We generalize this principle
by allowing a variable number of production rules.

Despite the differences between the two lan-
guages, (Kuhn, 2014) considers only one CPL
language and assigns it a PENS classification
of P 3E3N4S2FWI.2 Other controlled languages
based on a limited number of production rules
are SQUALL (∼ 50 rules) (Ferré, 2012), ucsCNL
(∼ 140 rules) (Barros et al., 2011) and Attempto
(∼ 360 rules without disjunctions) (Fuchs, 2018).
These have been classified as P 5E2N3S4FWA,
P 5E2N4S4FWDA and P 4E3N4S3FWA, respec-
tively by (Kuhn, 2014).

As we see, the lesser the rules (e.g., in SQUALL)
the higher is P (precision). In our case the con-
trolled language can be built with a variable number
of production rules, so P can be variable, proba-
bly between P 2 and P 4. Expressiveness is rather
low for the languages mentioned, but in our case
this is of no concern since the application domain
is very narrow: quantification is very sparse since
maintenance reports concentrate on a small num-
ber of boilers and their parts, general rule struc-
tures are also limited since sentences are almost

2(Kuhn, 2014) defines letter codes for properties of con-
trolled natural languages of different categories. In this frame,
C stands for comprehensibility as goal of the language; T for
translation; F for formal representation. As for the form of
the language, W stands for written languages and S for spo-
ken ones; and D stands for languages in a specific narrow
domain. As for origin of the controlled language, three codes
are defined: A stands for languages originating from academia,
I from industry and G from government. (Kuhn, 2014) de-
fines the PENS classification scheme to describe controlled
languages according to four axes: P (precision), E (expres-
siveness), N (naturalness) and S (simplicity). For each dimen-
sion, five degrees (arbitrarily) are used, such as P 1E5N5S1

for standard English and P 5E1N1S5 for propositional logic.

always declarative—only the presence of negation
is mandatory, to express failure of equipment. As
for naturalness, by using the same vocabulary as S
and building syntax based on the rules of standard
well-formed French, a high degree of naturalness is
achieved, which we estimate around N4. Simplic-
ity can be assessed with more difficulty since there
is no explicit description of the language. This
description would imply giving and explaining all
production and semantic rules involved and such a
description can indeed be done but will not be pro-
vided to the language’s users. Users are intended
to adapt progressively to the controlled language—
potentially a short notice on the editor’s working
principle may be addressed to them, but it will by
no means be a comprehensive description of the
language. We would therefore rather consider this
language as S2, a “language without exhaustive
description,” even though such a description would
theoretically be possible. As for properties, these
would be W (written) D (specific narrow domain)
and I (industry).

3 Description of the Corpora

Our main corpus S consists of 2,280 maintenance
reports, written in 8-hour intervals during two years.
The volumetry of S is as follows: 30,851 sentences,
138,140 words. We explore its properties in Sec-
tions 4 (lexicon), 5 (morphology) and 6 (syntax).

To serve as a “ground truth” of French syntax,
we built a second corpus, M, based on eleven
Harlequin-like novels by a well-known author.
They are written in informal everyday French lan-
guage, carefully edited by the publisher since the
given novels are best-sellers with a very large au-
dience. We have parsed the two corpora using
the Stanford CoreNLP parser and have kept only
syntax trees. On the syntax level, M provides
mostly short to medium-length sentences with ba-
sic syntax. They include informal sentences (in
the form of dialogs) but also simply-written formal
sentences, so that frequent production rules from
M can establish a transition from informal to rela-
tively formal utterances in the maintenance reports.
Using a legacy corpus such as FTB (Abeillé et al.,
2003) (originating from Le Monde articles) instead
ofM would be inadequate in our case, because of
FTB’s high syntactic complexity that is unlike the
average syntax of S sentences.
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4 The Lexical Level

In order to parse S efficiently we have pre-
processed the text and extracted codes, abbrevi-
ations and equipment identifiers. We replaced
these forms during parsing by a unique mark to
avoid misinterpretations. We also detected mis-
spelled/alternatively spelled words and replaced
them by standard forms. As forM, we removed
sentences with an elliptic syntax (titles, sentences
ending with ellipsis, etc.) using heuristic filters.
After filtering we kept 48,693 sentences (650,847
words).

To evaluate S’s vocabulary we have randomly
chosen a subsetM′ ⊂ M, having the same vol-
umetry as S. Unsurprisingly, S has a significantly
more restricted vocabulary thanM′: 5,505 differ-
ent lexemes in the former vs. 9,374 in the latter.
Their distribution is as follows:

ADJ NOUN VERB VN PROPN

S 7,137 43,034 12,616 9,295 18,305
M′ 9,224 36,610 26,335 23,737 8,358

where VN denotes past participles and PROPN
proper nouns to which we added codes, abbre-
viations and equipment identifiers. We see that
S has clearly more “proper nouns” and slightly
more nouns thanM′, but all other parts of speech
are underrepresented.

When words in S happen to be both frequent
and complex, they occasionally undergo signifi-
cant variation. Let us take the example of word
“régénération,” the sixth most frequent noun in S
(485 occurrences in its standard form), which ap-
pears in the following alternative forms:

régé: 1,117 times (apocope)
Régé: 549 times (apocope)
Rége: 14 times (apocope & accent error)
rége: 12 times (apocope & accent error)
rege: 11 times (unaccented apocope)
Regé: 6 times (apocope & accent error)
Rege: 5 times (unaccented apocope)
régés: 5 times (apocoped plural)
regé: 4 times (apocope & accent error)
Regénération: twice (accent error)
Régénaration, Régénèration, regenaration,
regeneration, régeneration, régéneration:
hapaxes (accent or spelling errors).

Variation is also frequent in English-origin words
such as “bypass”:

bypass: 240 times
by-pass: 147 times (with hyphen)

Bypass: 19 times (capitalized)
ByPass: twice (camel notation)
By-pass, By-Pass, BY-pass: hapaxes.

Some abbreviation processes are peculiar such as
the contraction “ppe” (for word “pompe”) that oc-
curs 117 times in the singular and 11 times in the
plural number, or the apocope “échaff” (7 times)
based on an erroneous (→ two ‘f’s) spelling of
word “échafaudage”.

We encountered 920 cases of erroneous/non-
standard spellings, involving 3,772 occurrences
(out of which 588 were hapaxes).

The vocabulary is technical and has to remain
unreduced. However, an interactive spell-checking
and auto-completion device can be useful to avoid
ambiguities, like in the cases of apocopes “aéro” or
“régul” that can have a multitude of completions.

5 The Morphological Level

French is an uncased language, so that its morpho-
logical variation is focused mainly on conjugation
for verbs and (less importantly) on number and
gender of nouns and adjectives.

The use of verbs is very restricted in S. While
inM′ we encountered 24 frequent different com-
binations of mode, tense, number and person, not
counting infinitives and participles, in S there were
only three frequent ones:

P3s P3p F3s

S 2,638 56 106
M′ 3,524 159 97

where P stands for present and F for future tense,
3 for third person and s/p for singular/plural.
Episodic detection of other verb forms is often due
to misspellings, such as in

appel astreinte GN pour information que
l’astreinte électrique ne peux rien faire de
plus aujourd’hui !!!

where the P1s form of verb “pouvoir” is mistakenly
used instead of the P3s form.

The low morphological variation of the S corpus
comes as no surprise since maintenance reports use
P3s and P3p to communicate the state of one or
more devices at the time of report writing, and F3s
(or F3p) for interventions that are scheduled in the
near future, as in:

la fin de la régénération de la chaîne 2 se
terminera vers 7h45
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6 The Syntax Level

Because of the conditions under which mainte-
nance reports are authored, we notice a predom-
inance of the “telegraphic style”. This results
in two phenomena: (1) elliptical language, as
many obvious words are omitted for the sake of
brevity; (2) chaotic syntax, where elementary rules
of French sentence construction are broken. Typi-
cal examples are:

(1) fuite impulsion séparateur stable

which is a sentence containing neither verb nor
determinant, consisting of three nouns and an ad-
jective, and

(2) Faire avis sur fuite d’huile sulzer que
si en augmentation voir consigne MPy

which seems like the (unpunctuated) transcription
of an oral utterance. Here are completed version
of these utterances, including implicit intentions,
missing determinants and verbs:

(1′) Nous avons constaté que la fuite de
l’impulsion du séparateur est stable.

(2′) Il est conseillé de faire un avis sur la
fuite d’huile du sulzer disant que si elle
est en augmentation alors il faudra voir la
consigne du MPy.

6.1 Parsing

We pre-processed the S corpus with regular expres-
sions to replace all numerals and physical values
with a single NUM tag and all device names and
abbreviations with the PROPN tag: this has cut the
number of distinct sentences in half, going from
30,851 sentences in the original corpus to 15,065.
We then parsed the data using Stanford CoreNLP
parser in order to obtain Phrase-Structure Gram-
mar syntax trees of both corpora. We removed
lexical leaves. We then extracted all production
rules. Here is an example of this process:

(a) Arrêt à 20h00, arrêt TG1 à 20h15

(b) Arrêt à NUM , arrêt PROPN à NUM

(c) SENT

NP

PP

NP

NOUN

ADP

MWN

PROPNNOUN

PUNCTVPpart

PP

NP

NUM

ADP

NOUN

(d) SENT→ VPpart PUNCT NP, VPpart
→ NOUN PP, PP → ADP NP, NP →
NUM, NP→MWN PP, MWN→NOUN
PROPN, PP→ ADP NP, NP→ NOUN.

We calculated the occurrence frequency of every
production rule in the corpus: it is the number of
sentences in the syntax trees in which it is used
(multiple use of a rule in the same syntax tree is not
taken into account). The frequency of production
rules follows a Zipf distribution: S consists of
8,583 rules, the most frequent of which (namely
PP → ADP NP) has a frequency of 18,584 and
the distribution has a tail of 5,662 hapaxes (66%
of the rules). On the other hand, M consists of
30,930 rules, the most frequent (once again PP→
ADP NP) having a frequency of 48,573 and the tail
contains 23,203 hapaxes (75% of the rules). To
give an example of the difference between S and
M, the SENT → PP rule which is typical of the
telegraphic style and corresponds to expressions
such as “en service” (frequency 263 in S) does
not appear at all in M—on the other hand, the
NP → DET NOUN rule that corresponds to the
fundamental property of French nouns of being
preceded by a determinant (a property that is often
relaxed in telegraphic style) is the second most
frequent rule in M but only the eleventh in S.

6.2 Frequency-Based Subgrammars

Let T,N be fixed sets of terminals and non-
terminals, and S an initial symbol. If R is a set
of production rules we denote by G(R) the cor-
responding formal grammar and by L(R) the for-
mal language recognized by G(R). When R ⊂
R′ (while T,N, S remain fixed) then, obviously,
L(R) ⊂ L(R′). Therefore by allowing a subset
of production rules we obtain a sub-language. By
keeping only the most frequent rules, we allow only
for the most common syntactic features in the sub-
language, and thereby the sub-language becomes
a simplified version of the original language (Sag-
gion, 2017, Ch. 4). Keeping a strongly reduced
set of rules allows efficient manual definition of
semantic rules, according to the principle of com-
positionality (Partee, 1995; Bird et al., 2019). The
more production rules we allow, the more cum-
bersome it is to define the corresponding semantic
rules. It is impossible to define semantic rules for
an entire natural language, but it is possible to do
so for controlled languages, provided their set of
production rules is of reasonable size.
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Input :Sentence (w1, . . . , wn), rules R
Output :Segments (s1, . . . , sm) where

si := (w`(i), . . . , wr(i)) for
1 ≤ i ≤ n, and
rest := (wn−j, . . . , wn) for j ≥ 0,
or ∅

if (w1, . . . , wn) ∈ L(R) then
s1 := (w1, . . . , wn);
return ((s1), ∅)

end
else if 6 ∃i, 1 ≤ i < n such that
(w1, . . . , wi) ∈ L(R) then

return (∅, (w1, . . . , wn))
end
else

k ← 1;
`(k)← 1;
while ∃r(k), `(k) ≤ r(k) ≤ n such that
(w`(k), . . . , wr(k)) ∈ L(R) do

sk ← (w`(k), . . . , wr(k));
`(k + 1)← r(k) + 1;
k ← k + 1;

end
k ← k − 1;
if r(k) = n then

return ((s1, . . . , sk), ∅)
end
else

return
((s1, . . . , sk), (wr(k)+1, . . . , wn))

end
end

Algorithm 1: Left-Right Maximal Segmenta-
tion Algorithm

In our case, production rules are ordered by de-
creasing frequency and we can consider sets such
as M≥50: “the language produced by the terminals
and non-terminals of theM corpus as well as the
set of rules of frequency greater or equal to 50”; or
S≥2: “the language produced by the terminals and
non-terminals of the S corpus using rules that are
not hapaxe”s; etc.

We will use these sets as a base for tailoring con-
trolled languages with a variable trade-off between
formality and naturalness.

6.3 Left-Right Maximal Segmentation

According to (Angelov and Měchura, 2018), edi-
tors for controlled languages are

of roughly two types. The first is the so
called syntax editors which let the user
manipulate a logical structure, while the

actual text is just a byproduct. [. . . ] The
second kind is called predictive editors,
which opt to work directly on the text
level and guide the user by showing the
set of possible continuations.

In the context of our project, both editor types are
doomed to fail: boiler maintenance technicians un-
der strong stress are probably not keen on visualiz-
ing syntax trees of their utterances, and a predictive
editor would be incompatible with the high speed
(not to say, haste) of the authoring act. Indeed,
a technician having important information about
the status of the equipment to transmit should be
able to do so without any interference, and if there
is time for improvement this can only happen a
posteriori, after the authoring act is completed.

So the question is: how can we train technicians
into using the controlled language in a way that
is acceptable under the circumstances? The least
intruding way would be to have a simple color
code indicating successful/unsuccessful parsing,
but then we fall into the other extreme: no infor-
mation is given to the user on how to improve eir
utterances, which can result in frustration when
possible corrections have to be guessed.

The intermediate solution we adopt is to dis-
play a segmentation of the utterance into parsed
sentences and, potentially, an unparsed rest. The ra-
tionale of this solution (loosely based on the pump-
ing lemma for context-free languages) is that if an
utterance (and in particular, a long one) is not a
sentence for the controlled language, then there is
a high probability (see Table 1) that some contigu-
ous subsegments of it are nevertheless recognized
as sentences. Starting from the left we mark the
largest part of the utterance that is a sentence and it-
eratively repeat this process for the rest of the utter-
ance, until we have reached a maximum sequence
of segments that are sentences for the controlled
language (see Alg. 1).

This gives the technician an understanding on
how the utterance is decomposed into sentences by
the parser. If the entire utterance is recognized by
the parser, the author can leave it as such, other-
wise e can intervene to change the phrase structure
and attempt validation anew. If some words remain
unparsed after the last segment, the author can at-
tempt to incorporate them into the last segment, or
to add text to produce a complete sentence out of
them.

The success of this “training process” will de-
pend on the coverage of the grammar. In Table 1
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Table 1: Results of Maximal Left-Right Segmentation of the S Corpus

M
S ≥ 2 (1,411 rules) ≥ 3 (762 r.) ≥ 5 (412 r.) ≥ 10 (163 r.) ≥ 50 (21 r.) ∅ (0 r.)

Coverage (sentences with at least one segment)

≥ 5 (2,204 rules) 90.87% 80.86% 78.8% 74.95% 64.93% 37.94%
≥ 10 (1,391 rules) 88.68% 77.11% 74.67% 70.47% 58.29% 28.72%
≥ 50 (460 rules) 81.72% 67.71% 64.84% 59.95% 43.38% 13.89%
≥ 100 (272 rules) 75.88% 61.18% 58.43% 53.48% 34.48% 6.96%
≥ 500 (81 rules) 61.36% 44.06% 42.08% 36.8% 18.15% 5.14%

Rest (ratio between ratio length and utterance length)

≥ 5 (2,204 rules) 0.07 0.08 0.09 0.11 0.16 0.25
≥ 10 (1,391 rules) 0.1 0.12 0.14 0.16 0.2 0.31
≥ 50 (460 rules) 0.19 0.23 0.25 0.28 0.33 0.46
≥ 100 (272 rules) 0.25 0.29 0.32 0.35 0.38 0.48
≥ 500 (81 rules) 0.42 0.46 0.48 0.5 0.48 0.51

Average segment size (in words)

≥ 5 (2,204 rules) 5.34 5.97 6.1 6.3 6.52 7.51
≥ 10 (1,391 rules) 5.63 6.18 6.31 6.51 6.73 7.88
≥ 50 (460 rules) 6.19 6.56 6.74 6.97 7.13 8.81
≥ 100 (272 rules) 6.39 6.7 6.88 7.09 7.22 10.2
≥ 500 (81 rules) 7.04 7.24 7.32 7.41 7.18 10.7

we present results of maximal left-right segmenta-
tion to the S corpus. Lines represent the various
sets of M rules used to segment the corpus. Taking
all non-hapax rules we obtain the best results, but
we must deal with semantic rules for thousands of
syntax rules—on the other hand, when using only
rules of high frequency, coverage drops drastically
but so does the number of rules. The foremost right
column represents the case where only M rules are
used to define the controlled language, the other
columns consider the case where some S rules are
also allowed. The worst result occurs on the 5th
line when only 81 M rules and no S rules are used:
these conditions result in a very strict controlled
language and it is not surprising that only 5.14%
of the sentences of the existing corpus provide a
segment. We can call M≥500 the “strict strategy,”
where one wishes a syntactically simple controlled
language at all cost.

Another strategy is M≥5 which represents a sig-
nificant effort to keep the controlled language close
to standard French language. It involves preparing
semantic rules for 2,204 syntactic rules, which is a
considerable task. Using this approach, if techni-
cians keep on writing as they did in the S corpus,
in 37.94% of cases they will get a segmentation
of, in average, three fourths of the utterance, with
segments of an average length of 7.51 words. This

is the “M-only at all costs” strategy.
A third strategy is to allow for additional rules

coming from S (note that the number of S rules
in the table stands for rules not already included
in M). By taking a small number of S rules, for
example 21 rules of frequency ≥ 50, coverage in-
creases significantly: we reach 64.93% vs. 37.94%
in the previous strategy.

Finally the “most expensive” extreme is to take
≥ 2 rules from S and ≥ 5 rules from M, which
makes a total of 2,615 rules to manage, with a cov-
erage of 90.87% of sentences and segments cover-
ing 93% of each sentence, in average. We consider
this approach as a kind of overfitting, where one
aims to reproduce the chaotic nature of the legacy
language in a controlled environment, at a very
high cost. Fortunately many intermediate solutions
exist between these extremes.

In the following we will give examples of vari-
ous utterances belonging or not to the controlled
language for specific parameters.
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7 Examples

7.1 M≥50 and no S rules

Our first example3 is the one of a sentence that is
successfully parsed with rule in M≥50:

ENT445

PUNCT

;

NP1,100

PP48,573

NP131

NOUN

chaudière

NOUN

remplissage

ADP

de

NOUN

essai

As we see the rule with lowest frequency is
NP → NOUN NOUN, which can be found in
M in expressions such as [[samedi]NOUN [après-
midi]NOUN]NP.

7.2 M≥10 and no S rules

The following example uses M rules of frequency
≥ 10 (with at least one rule of frequency ≤ 50) :

SENT14

NP12,755

PP48,573

NOUN

huile

ADP

d’

NOUN

température

VN28,852

VERB

réglé

NP10,636

PROPN

V723

The least frequent rule here is SENT→ NP VN NP,
which appears only 14 times in the M corpus, in
syntagms such as [[Le coup de poing]NP [partit]VN
[tout seul]NP]S

7.3 M≥2 with no S rules

The following example stretches syntax at its limits
since it uses rare M rules (of frequency higher
than 2 but less than 10):

SENT3

PUNCT

-RRB-

)

NP48

MWADV1,190

NOUN

cours

ADP

en

NOUN

avis

PUNCT

-LRB-

(

AP1,383

ADJ

fuyard

ADV

toujours

SENT→AP PUNCT NP PUNCT is a rare rule that
appears almost by accident in a sentence such as
[[Salut]AP [,]PUNCT [Marko]NP [?]PUNCT]S, which

3Indices in the syntax trees denote frequency in M, and
starred indices denote frequency in S.

is hardly similar to our example. This sentence is
clearly of telegraphic style. The rule NP→ NOUN
MWADV is not frequent either, it is attested in
syntagms such as [[oui]NOUN [bien sûr]MWADV]NP.

7.4 M≥50 ∪ S≥10

We now turn to an example that cannot be parsed
entirely with M rules and requires at least one S
rule, of frequency higher than 10:

SENT*263

PP48,753

NP1,100

PP48,753

NP1,100

PP48,753

NP12,755

NOUN

bypass

ADP

sur

NOUN

travaux

ADP

pour

NOUN

arrêt

DET

l’

ADP

à

The rule from the S corpus is SENT → PP (“a
sentence can be a prepositional phrase,” which is
typically telegraphic style) and it appears 263 times
in S . All other rules are quite frequent in M.

8 The Editor

To train users of the controlled language we have
developed a device that parses word sequences on-
the-fly, and displays maximal parsed segments us-
ing blue color (or some other graphical style) and
brackets, from left to right. For example, for the
utterance “en bouteille, voir schéma,” the user will
progressively see the following:

en
[en bouteille]
[en bouteille,]
[en bouteille,] [voir]
[en bouteille,] [voir] schéma

The last word cannot be absorbed by a segment
if, e.g., only M≥20 ∪S≥10 rules are allowed. This
segmentation is based on the following two trees:
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SENT51

PUNCT

,

PP48,573

NP

NOUN

bouteille

ADP

en

SENT23

VERB

voir

The second tree uses a rare rule SENT→ VERB,
which is of frequency 23 in M. At this point, the
user can attempt a correction by adding a definite
article “le” between “voir” and “schéma”:

[en bouteille,] [voir le schéma]

The color changes to blue as the utterance is now
entirely parsed, using the following trees:

SENT51

PUNCT

,

PP48,573

NP

NOUN

bouteille

ADP

en

SENT362

VPinf*109

NP37,024

NOUN

schéma

DET

le

VERB

voir

The second tree uses the rule VPinf→ VERB
NP that belongs to S with a frequency of 109.

We are planning to test the device and establish
performance evaluation through user feedback.

9 Conclusion and Perspectives

We have presented a methodology for tailoring a
controlled language out of the lexicon and morphol-
ogy of a corpus, using the most frequent Phrase-
Structure Grammar syntax rules of another corpus.
We have applied this approach to a corpus of in-
dustrial equipment maintenance reports written in
telegraphic style, as the former, and a corpus of
Harlequin-like French novels as the latter. The goal
is to make user utterances more easily interpretable.
By allowing also some syntax rules from the orig-
inal corpus, we obtain a better result in terms of
coverage of utterances by syntax rules. By varying
the number of allowed rules from the Harlequin-
like novels and from the maintenance reports, we
can change the formality/naturalness properties of
the controlled language.

We have also presented a new editor type that is
neither syntax-displaying nor predictive, but pro-
vides the user with information on the best possi-
ble left-to-right segmentation of the utterance into

parsed sentences. This allows optional intervention
by the user in order for the complete utterance to
get parsed. The editor is purposely non-intrusive
since the conditions under which maintenance re-
ports are written do not always allow for a calm
and reasoned reflection on syntax.

This is an ongoing project, the final goal of
which is to achieve anomaly detection in reports,
eventually correlating (timestamped) textual data
with temporal series of data originating from sen-
sors in the boilers, in search of anomalies. For this,
formal interpretation of the reports can be useful
but is not indispensable since text mining meth-
ods can compensate the lack of full interpretation.
Another potential application is to correlate linguis-
tic parameters of the corpus with author identities,
since these are always provided in the reports. This
would allow to evaluate the variability in lexicon,
morphology and syntax due to author change.
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Abstract

Multilingual Grammatical Framework (GF)
domain grammars have been used in a variety
of different applications, including question
answering, where concrete syntaxes for pars-
ing questions and generating answers are typi-
cally required for each supported language. In
low-resourced settings, grammar engineering
skills, appropriate knowledge of the use of sup-
ported languages in a domain, and appropriate
domain data are scarce. This presents a chal-
lenge for developing domain specific concrete
syntaxes for a GF application grammar, on the
one hand, while on the other hand, machine
learning techniques for performing question-
answering are hampered by a lack of suffi-
cient data. This paper presents a method for
overcoming the two challenges of scarce or
costly grammar engineering skills and lack of
data for machine learning. A Zulu resource
grammar is leveraged to create sufficient data
to train a neural network that approximates a
Zulu concrete syntax for parsing questions in a
proof-of-concept question-answering system.

1 Introduction

In any Grammatical Framework (GF) domain gram-
mar, typically called an application grammar, the
abstract syntax defines the domain, in the sense
that it provides the concepts of the domain and the
ways in which they can be combined to construct
meanings. The semantics is modelled, and hence
restricted, by the abstract syntax, which leads each
concrete syntax to be a controlled natural language
(CNL) of a specific natural language, due to its lim-
itation of semantics, syntax and vocabulary (Kuhn,
2014). The GF runtime enables both parsing of text
strings into abstract trees, which is a kind of lan-
guage understanding, and linearisation of abstract
trees into text strings, which is a kind of language
generation (Ranta et al., 2020).

GF-based CNLs have proven useful for de-
veloping language technology applications for
low-resourced languages.1 For example, Marais
et al. (2020) presents a multilingual CNL used
for speech-to-speech translation to enable health-
care providers to communicate with patients in
their own language. Coverage of the application
is restricted via a CNL in order to achieve high-
quality speech translation in a high risk setting. In
Marginean (2017), a GF domain grammar is used
to perform question-answering (QA) in the medical
domain.

The effort required to develop application gram-
mars is reduced if a GF resource grammar (RG)
exists for a language, since it can be used as a soft-
ware library for the morphology and syntax of the
language. Using an RG to develop an application
grammar essentially involves mapping the semantic
categories and functions in the application gram-
mar to the syntactic categories and functions in the
RG.

In this paper, we show how such a mapping can,
in a sense, be learned by a neural network so that a
workflow that relies heavily on grammar engineer-
ing skills can be replaced with one that requires
machine learning skills. The two approaches are
compared by considering the suitability of the re-
sulting artifacts for the use case.

In Section 2 we present the application context
for this work, namely a QA system where the con-
crete syntax we attempt to approximate is responsi-
ble for enabling language understanding. Then, in
Section 3 we describe what a typical workflow for
developing a Zulu concrete syntax would look like
in an under-resourced development context. Sec-
tion 4 presents the technique whereby the Zulu RG
is leveraged alongside a domain abstract syntax to
generate a dataset for training a neural network to

1For a recent audit of human language technology re-
sources for Zulu, see Moors et al. (2018)
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approximate a Zulu concrete syntax. A description
of the neural networks trained and a comparison of
them is given in Section 5. We discuss and contex-
tualise the results in Section 6, before concluding
with closing remarks in Section 7.

2 Overview of a grammar-based spoken
QA system

The grammar-based system that provides the con-
text for this work is a proof-of-concept spoken QA
system that answers questions related to weather
conditions for various locations in South Africa.
The most important semantic concepts are place
names, weather conditions, weather elements and
time. The WeatherFact abstract syntax is cen-
tered around the notion of a weather fact, and for
each supported language, two concrete syntaxes are
included for expressing questions about weather
facts and answers about weather facts, respectively.
The OpenWeatherMap One Call API2 is used to
acquire up-to-date information with which to an-
swer questions. It provides current weather infor-
mation, historic weather data for 5 days, minute
information for the next hour, hourly information
for 48 hours and daily information for 7 days for
any geographical coordinates. The semantics of
this domain is by nature constrained, making a se-
mantically limited CNL an appropriate choice for
presenting a language interface to it.

The WeatherFact grammar allows questions
about the weather for a fixed list of 33 locations in
South Africa, including the biggest cities, provin-
cial capitals, and cities and towns with airports. Fur-
thermore, users can ask about the general weather
conditions, or about specific weather metrics, such
as cloud coverage or temperature, and time can be
indicated by referring to a number (between 1 and
99) of minutes, hours or days in the past or future,
or the concepts of yesterday and tomorrow. Typi-
cal English questions included in the grammar are
‘What is the weather like in Johannesburg?’ and
‘What will the wind speed be in Cape Town in two
days?’.

Figure 4 shows the basic architecture of the text-
based part of the QA system. The WeatherFact
multilingual GF grammar is responsible for pars-
ing questions into semantic trees and linearising
semantic trees into answers. Any given semantic
tree can be linearised as a question or an answer,
but parsing a question will result in an incomplete

2https://openweathermap.org/api/one-call-api

Figure 1: QA architecture

semantic tree – a missing sub-tree must be created
and inserted by the QA system, so that the complete
tree can be linearised as an answer. Figure 2 shows
an example of a semantic tree, with the sub-tree
that would be missing if it was created by parsing a
question using the WeatherFactEngQ concrete
syntax indicated in bold.

The incomplete semantic tree contains all the
information necessary to inform the QA system
of which query to send to the weather service, as
well as how to extract the relevant information
from the result in order to complete the tree. The
root node informs the QA system what kind of
information to expect in the tree. The OpenWeath-
erMap One Call API accepts geographical coor-
dinates and returns a structured description of the
current, past and future weather conditions as men-
tioned above. For example, in the case shown here,
the QA system must use the Location informa-
tion (in the form of a place name) in the tree to
look up relevant geographical coordinates, which
is used to send a query. The TimeInstant and
WeatherElement information is then used to
extract the appropriate information from the query
result in order to supply the missing sub-tree.

3 Developing a question-parsing concrete
syntax

For language generation in this context, it is entirely
acceptable to provide a single way of expressing
a certain meaning. However, a spoken QA system
should allow some variation in how meaning is
expressed by the user. Training data-driven models
for this purpose typically requires large datasets of
question-answer pairs (Bao et al., 2016), which are
not available for many under-resourced languages,
such as Zulu. Instead, a grammar-based language
understanding system, developed for the relevant
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TimeElementFac t  :  Fac t

CapeTown :  Locat ion TimeFuture  :  T imeIns tan t WindSpeed  :  Wea the rE lemen t

S u b 1 0  :  S m a l l N u m b e r Day  :  T imeMeasure

D02 :  Digi t

FNum :  F loatNum

14.5

Figure 2: Semantic tree corresponding to the question ‘What will the wind speed be in Cape Town in two days?’
and the answer ‘In two days, the wind speed in Cape Town will be 14.5 kilometers an hour.’

domain, remains a feasible approach to making
spoken QA systems available for under-resourced
languages. It then falls to the grammar engineer
to produce a concrete syntax with an acceptable
amount of flexibility for user input.

For Zulu, this is not usually as simple as boot-
strapping from an existing concrete syntax for, for
example, English, since the two languages are very
dissimilar in terms of their linguistic characteris-
tics and lexicon. For example, consider the En-
glish utterances ‘Is it hot in Johannesburg?’ and
‘Is it windy in Johannesburg?’, which concern the
WeatherElement concepts of Temperature
and WindSpeed, respectively. These utterances
were translated by a Zulu language practitioner in
order to develop an idiomatic Zulu concrete syn-
tax, and the translations were given as Kuyashisa
eGoli? and Kunomoya eGoli?. At first glance, the
difference between the two Zulu utterances may
appear to mirror that of the English utterances, but
this is not the case.

Kuyashisa contains the verb root -shis-, which
means to be hot, and it is used here in the present
tense with the subject concord for noun class 17
(a locative class), to mean ‘it is hot’. Kunomoya,
on the other hand, contains the noun root -moya,
meaning ‘wind’, and it is used in the present tense
associative copulative construction, along with
the subject concord for noun class 17, to mean
‘it is with wind’. A concrete syntax developer
would have to know that the two concepts are ex-
pressed using different syntactic constructions in
Zulu, so that the Zulu linearisation category of
WeatherElement in the application grammar
reflects this variability. Ideally, the concrete syntax
developer needs a tool to analyse the translated ut-
terances to detect the syntactic and morphological
characteristics in the domain data.

A Zulu resource grammar (RG) is currently un-
der development3, and in conjunction with the GF
runtime and an appropriate lexicon, it provides the
ability to parse Zulu utterances in order to inspect
their linguistic structure. A typical workflow for
developing a domain specific concrete syntax using
the Zulu RG is as follows:

1. Develop the abstract syntax and an English
concrete syntax.

2. Identify a representative subset of utterances
from the grammar and render them in English.

3. Obtain a set of translations for the English
utterances.

4. Analyse the syntactic constructions used in
the Zulu translations (with the help of the RG),
and extrapolate from them in order to imple-
ment the Zulu concrete syntax.

5. Generate Zulu utterances from the concrete
syntax for review.

The resulting concrete syntax models the linguistic
structures found in the translated domain data. The
last step in the workflow requires specialised gram-
mar engineering skills. In South Africa, where
such skills are not taught at tertiary level, this work-
flow cannot be implemented widely. On the other
hand, machine learning is widely taught and a grow-
ing community of natural language processing re-
searchers in Africa (Orife et al., 2020) could exploit
workflows that rely on data-driven techniques.

4 Data for domain specific language
understanding

The obvious requirement for developing any data-
driven solution is sufficient and appropriate data.

3https://github.com/LauretteM/gf-rgl-zul
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Many efforts have been made and are currently un-
derway to gather corpora for the under-resourced
languages of Africa and South Africa (Barnard
et al., 2014; Moors et al., 2018). In this work, we
present a technique for generating a domain spe-
cific corpus. The use case admits of a semantically
restricted CNL – in essence, we intend to develop a
model for a Zulu CNL which is, in addition, implic-
itly restricted linguistically, rather than explicitly
as with a GF concrete syntax.

4.1 What to learn?

A concrete syntax enables the GF parser to accept
strings and to produce typed semantic tree struc-
tures, but this need not be the only options to con-
sider as input and output for a neural network.

When considering Zulu text input, a first option
is to use space separated tokens, but this presents
some problems for machine learning. Zulu is an
agglutinating language with a conjunctive orthog-
raphy, resulting in tokens that often consist of
long sequences of morphemes and which typically
leads to sparsity in datasets. Alternation rules gov-
ern sound changes between adjacent morphemes,
which makes the task of segmenting morpheme
sequences non-trivial. However, Kotzé and Wolff
(2015) have shown that segmenting on syllable
boundaries, which are easily identified, can im-
prove the performance of natural language transla-
tion systems. Furthermore, one could also consider
character-level segmentation (Lee et al., 2017).

The Zulu RG provides additional options for in-
put to a neural network, although it introduces a
pre-processing step that may be subject to failure.
Specifically, Zulu strings could be parsed by the
GF runtime using the Zulu RG to produce syntax
trees. Syntax trees, however, are hierarchical, and
it may not be necessary to retain this structure in
order to benefit from the pre-processing step. In
fact, transformer sequence-to-sequence models use
multi-head attention to learn the most relevant rela-
tionships between tokens in a sequence (Vaswani
et al., 2017). In order to exploit existing trans-
former model implementations, the trees could be
flattened into sequences of syntax function names.
Additionally, the syntax trees could be mined for
relevant information directly by, for example, ex-
tracting the lexical nodes to produce a lemma se-
quence.

A similar flattening might also be useful for the
target of the neural network. Developing a con-

crete syntax that parses semantic function name se-
quences into semantic trees is trivial: each linearisa-
tion category is defined as a string, and each lineari-
sation function is implemented to produce its own
name followed by the strings of its children. The
GF parser can then be exploited to restore the typed
hierarchical structure.4 Simpler sequences could
be implemented by letting non-terminal functions
produce an empty string followed by the strings
contributed by its children. Such a concrete syntax
essentially defines a natural language agnostic key-
word question language that could be used by the
QA system in exactly the same way as a concrete
syntax for natural language questions.

4.2 What to learn from?
In the workflow discussed in Section 3, the rep-
resentative subset of utterances from the domain
grammar that is rendered in English in order to be
translated, is chosen to be minimal and repetitive.
For each semantic category, a template utterance is
identified and the chosen category varied, so that
its effect on the utterance can be seen. This kind
of repetition is also a useful way to discourage a
translator from introducing spurious variability in
their translations that make it difficult to isolate
the effects of the various semantic functions on the
Zulu utterances. Variability, if required, is more
effectively elicited by procuring utterances from
different translators and by including variability in
the source language.

For the WeatherFact grammar, 76 questions
were generated via the English concrete syntax,
which were translated by two language practition-
ers, resulting in 152 Zulu utterances. The English
utterances included variations of utterances where
it seemed natural in the English, such as ’How hot
is it in Johannesburg?’ for ’What is the tempera-
ture in Johannesburg?’. Although, Zulu numerals
“are not a coherent morphosyntactic class” (Zerbian
and Krifka, 2008), their behaviour is not domain
specific information that requires elicitation from
a translator, and hence the semantic functions for
numbers were not varied in the elicitation data in
the same way as other semantic functions.

The translations were parsed using the Zulu RG
and a domain specific lexicon. Since the Zulu RG
has not been completed yet, for the purpose of this
experiment, it was extended, especially with re-

4Of course, this would only be possible if the function
name sequence is defined by the concrete syntax. We discuss
this caveat in Section 5.

32



gards to question words and their accompanying
syntactic functions, in order to be able to achieve
parses for 148 of the 152 translations, with at least
one parsed Zulu utterance for each English utter-
ance. The result is a set of 148 semantic-syntactic
tree pairs.

4.2.1 Augmenting data within a CNL
The constraints on a domain of utterances imposed
by the definition of an abstract syntax presents an
opportunity to perform data augmentation that is
likely to be semantically reliable. Augmentation
can be done based on semantic categories, while
the Zulu RG can be leveraged to produce grammat-
ically correct Zulu utterances. If it is known that a
certain change from one semantic tree to another
is accompanied by a certain change from the corre-
sponding syntax tree to another, this can be used to
derive so-called augmentation rules. A rule would
have the following form:
TA, TB → ta, tb: Given a semantic tree T1 and

corresponding syntax tree t1, if a semantic tree T2

is acquired by substituting TA in T1 for TB , and a
syntax tree t2 is acquired by substituting ta in t1
for tb, then t2 is the corresponding syntax tree of
T2.

A simple example from the WeatherFact do-
main is the following,

{Hour,Minute} → {hora 5 6 N,zuzu 3 4 N}

which essentially states that whenever the noun
stem -hora is used to express the meaning of Hour,
the noun stem -zuzu can be used to express the
meaning of Minute instead. With this rule, for
example, the Zulu sentence Bekushisa eMbombela
emahoreni amathathu adlule? (‘How hot was it
in Mbombela three hours ago?’) gives rise to a
new sentence, namely Bekushisa eMbombela em-
izuzwini emithathu edlule? (‘How hot was it in
Mbombela three minutes ago?’). Note the effect
that the change in the class of the noun has on the
modifying adjective -thathu (‘three’), namely that
amathathu becomes emithathu, as well as the rel-
ative clause based on the verb -dlule (‘passed’),
where adlule becomes edlule.

Rules are not limited with regards to the com-
plexity of the sub-trees they contain. Figure 3
shows the rule which states that whenever the ad-
verb izolo, which expresses Yesterday, is used,
an adverbial phrase, which is linearised as ema-
horeni amabili adlule, can be used to express the

notion of two hours ago (or TimePast (Sub10
D02) Hour).

A set of augmentation rules were developed with
reference to the semantic-syntactic tree pairs. This
was done by hand, but in principle, rules could also
be derived from the semantic-syntactic tree pairs
automatically, provided that the seed data is suf-
ficiently representative. For example, we did not
attempt to elicit examples of all numerals in the
seed data in order to derive appropriate augmen-
tation rules for numerals 1 to 99. Instead, these
rules were defined by consulting linguistic texts,
and could easily be reused for different domains.
The augmentation rules were exhaustively applied
to the seed data, which resulted in 341 254 unique
semantic-syntactic tree pairs.

Next, the Zulu RG was used to linearise each syn-
tax tree in order to obtain a Zulu utterance. Then,
both the semantic and syntax trees were flattened
and simplified to sequences of keywords and ab-
stract lexical functions (effectively lemmas), re-
spectively. The result was a dataset of 5-tuples
(as shown in Table 1) that could be used to train
sequence-to-sequence neural networks.

4.2.2 Review of augmentation algorithm

The semantic trees generated by the augmentation
algorithm were compared to all those defined by
the WeatherFact abstract syntax to determine
if any semantic trees for questions were missing.
The only trees not generated were those that con-
tain a digit sequence starting with a zero. Given
the semantics of the domain, this meant that all
meaningful numbers (and therefore semantic trees)
were generated.

A random sample of 100 5-tuples from the aug-
mented data was selected and the Zulu linearisa-
tions, alongside their English equivalents, were pre-
sented to a language practitioner for review. The
only errors discovered in the augmented data were
the incorrect use of the immediate future and past
tenses where the remote future and past tenses were
required. This was deemed not to be a problem for
this application, given the One Call API’s time
frame, for which the use of the remote tenses is
unlikely. If it had presented a problem, the solution
would have been to procure more translations that
contain the remote tenses in Zulu, and to refine the
augmentation rules accordingly.
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Figure 3: Example of an augmentation rule

Semantic tree TimeElementFact Mbombela (TimePast (Sub10 D03) Minute) (Temperature ?)
Keywords Mbombela TimePast D03 Minute Temperature
Syntax tree PhrUtt NoPConj (UttS (UseCl TPerfPresTemp PPos (PredVP (UsePron (ProDrop

it15 Pron)) (AdvVP (UseV shis V) (LocNPAdv (AdvNP (DetCN (DetQuant
IndefArt NumSg) (UseN Mbombela)) (LocNPAdv (DetCN (DetQuant IndefArt
NumPl) (RelCN (AdjCN (PositA thathu A) (UseN zuzu 3 4 N)) (UseRCl
TPerfTemp PPos (RelVP IdRP (UseV dlul V)))))))))))) NoVoc

Lemmas it15 Pron shis V Mbombela thathu A zuzu 3 4 N dlul V
Linearisation bekushisa eMbombela emizuzwini emithathu edlule

Table 1: Example of a 5-tuple data point

4.2.3 Balancing the data
The presence of especially numbers in the gram-
mar requires that the dataset be balanced to some
extent. Since some kinds of utterances can contain
any of the numbers below 100, these utterances
far outnumber other kinds. The kind of utterances
in this domain happens to correlate well with the
length of the keyword sequence it is represented
by, and so balancing was done on the length of the
target keyword sequences by duplicating shorter
utterances in the dataset. The final dataset contains
954 324 entries, and includes at least one exam-
ple of every semantic question tree defined by the
domain abstract syntax.

Usually, such duplication is not done when train-
ing machine learning systems, but in this case, we
are aiming to approximate a concrete syntax. We
will have achieved our goal if exactly those utter-
ances which would have been modelled by a con-
crete grammar are handled correctly by the model,
that is, those utterances that are in our implicit Zulu
CNL. In effect, we are introducing drastic sample
bias because our use case allows it.

5 Sequence-to-sequence models for
language understanding

The PyTorch5 implementation of a transformer
sequence-to-sequence model of Vaswani et al.
(2017) was used as the basis for a number of neural
networks with varying input types, namely Zulu
text strings, syntax function sequences and lemma

5https://pytorch.org

Figure 4: QA architecture

Model F score P score
token2key 1.00000 100%
syllable2key 1.00000 100%
char2key 0.99537 97.84%
syntax2key 1.00000 100%
lemma2key 0.99966 99.67%

Table 2: Comparison of different transformer models
on a test set

sequences. For input based on the Zulu text strings,
tokenisation was done on white space, syllable
boundaries, and characters. Keyword sequences
were used as the target. In total, five different mod-
els were trained on the augmented data, which was
split into training, validation and test sets. Training
was done over 3 epochs, which turned out to be
sufficient for the models to converge. Table 2 lists
the results obtained.
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F score was calculated using the NLTK6 imple-
mentation of ChrF score (with the default parame-
ter values) on each respective test set. We have in-
cluded the percentage of perfect predictions, which
we have called the P score, because this is an indi-
cation of the number of times the QA system will
be able to provide the user with exactly the infor-
mation that was asked for, with no need to engage
the user further.

The perfect or near perfect F for all the models
show that they all succeed in learning to translate
the controlled Zulu language to keyword sequences.
Furthermore, the perfect or near perfect P scores
mean that almost all output from the models can
be parsed successfully using the keyword sequence
concrete syntax. As such, the models could be used,
in conjunction with a keyword concrete syntax, to
approximate a Zulu concrete syntax for language
understanding.

5.1 Bias and generalisation

We have knowingly introduced sample bias into our
models by training exclusively on synthetic data.
The next step would be to try to determine if any
of the models generalise beyond the implicit Zulu
CNL represented by the training data to a more
semantically constrained CNL. In other words, can
the model(s) accurately understand independently
sourced Zulu utterances that express meanings de-
fined in the abstract syntax?

To investigate this, the original set of English
seed utterances were translated by two new Zulu
translators. The new translations only contain a
13% overlap with the original translations, which
seems to confirm the need for allowing variability
in user input for a Zulu QA system. As before,
the translations were parsed using the Zulu RG
and in this case, we did not extend the grammar to
parse the new translations. However, in order to
compare the different models, we only used those
new translations that could be parsed using the RG
as is: we used 71 utterances, and discarded 81.
As the RG becomes more complete, the former
number should rise and the latter should drop. For
now, we note that this step introduces some bias
in the evaluation towards the syntactic structures
currently covered by the RG.

The seed data was designed to be minimal and
repetitive, as noted earlier, which makes it an
unsuitable evaluation set. In order to achieve a

6http://www.nltk.org/

Model F score P score
token2key 0.65185 33%
syllable2key 0.83098 54%
char2key 0.81897 52%
syntax2key 0.81894 52%
lemma2key 0.83629 53%
lemma2key* 0.18702 0%

Table 3: Comparison of different transformer models
on independently generated data

more balanced evaluation set, we augmented the
71 parsed utterances (resulting in 138 896 utter-
ances) and sampled it so that the final evaluation
set contained 100 independently generated 5-tuples,
balanced according to keyword sequence length. It
should be noted that this augmentation step is only
possible on utterances that can be parsed using the
RG.

The bias introduced by limiting our evaluation to
such utterances becomes clear when inspecting the
evaluation set: although all the weather elements
included in the domain grammar appear in the set
of newly parsed utterances, this is only true for
the present tense. The syntactic constructions used
in the new translations to express the notion of
temperature in the past and future tenses are the
only ones currently covered by the RG. As a result,
the Temperature keyword occurs in 52 of the
100 keyword sequences.

From Table 3, we can see that the lemma2key
model performs the best in terms of F score, with
syllable2key, syntax2key and syntax2key achieving
comparable scores. In fact, the outlier is the to-
ken2key model trained on space separated tokens,
which seems to confirm that the orthography of
Zulu presents a problem for machine learning, and
that, presumably, any attempt to segment the text
systematically produces an improvement.

For reference, we have included the F and P
scores for a lemma2key* model trained only on
the original seed data. Table 4 gives a comparison
of some examples in the evaluation set for each
of the two lemma-based models. The predictions
have been post-processed to include only the tokens
appearing before the first end-of-sequence symbol.
It is evident that the model trained on the seed
data has simply learned to produce sequences that
mostly consist of the token ‘Johannesburg’, hence
its P score of 0%.
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Target Augmented model prediction
NorthernCape Yesterday NorthernCape Yesterday
EasternCape WindSpeed EasternCape Clouds
Durban Yesterday Temperature Durban Temperature
Limpopo TimePast D01 Hour Limpopo TimePast D01 Hour
Target Seed model prediction
NorthernCape Yesterday Johannesburg Johannesburg
EasternCape WindSpeed Johannesburg Temperature
Durban Yesterday Temperature Johannesburg
Limpopo TimePast D01 Hour Johannesburg Johannesburg Johannesburg

Table 4: Comparing the lemma2key model trained on the augmented data and the seed data

Figure 5: Grammar component of the QA architecture,
adapted to include a Zulu sequence-to-sequence model
for questions

6 Discussion

We have shown that the Zulu RG can be leveraged
in conjunction with a domain abstract syntax to aug-
ment a very small set of manually translated data
to a sufficiently large set of synthetic data, which
essentially represents all the utterances a concrete
syntax would be expected to cover. Using this
dataset, a variety of different transformer models
can be trained and incorporated into a pipeline that
would perform almost exactly like the GF runtime
enabled by a Zulu concrete syntax, with regards to
parsing natural language into typed semantic tree
structures. From this we conclude that it is possible
to approximate a Zulu GF concrete syntax with a
neural network to perform language understanding.
Figure 5 shows the adapted configuration.

The language that is correctly “understood” by
the models (i.e. the set of Zulu strings that lead
to perfect predictions) has also been shown to be
somewhat larger than what a concrete syntax might
include. While it does not make sense to talk about
the language accepted by a neural model, the model
is integrated into the QA system in conjunction
with a language agnostic keyword concrete syn-
tax. Hence, those Zulu sentences that cause the

neural model to produce strings that are in the key-
word sequence language can be thought of as being
“accepted”. And while it is not possible to know
exactly which Zulu sentences are accepted in this
way, it is known which keyword sequences can be
reconstructed into typed trees defined by the ab-
stract syntax. In the long definition of a CNL, with
regards to the C in CNL, Kuhn (2014) proposes
that a CNL must be restricted in terms of “lexicon,
syntax and/or semantics” (our emphasis) and also
that it be “explicitly and consciously defined”. It
is certainly the case that the domain abstract syn-
tax, as well as the keyword concrete syntax, is
explicitly and consciously restricted in terms of
semantics, while the input to the system is natural
Zulu. Hence, we contend that the conjunction of
a neural model and a keyword concrete syntax as
described here does indeed implement a controlled
natural language.

This work differs in some important ways from
other text augmentation attempts. The goal of text
augmentation is usually to improve machine learn-
ing by supplementing existing data (Duwairi R,
2021). The seed data is typically enough to train
a reasonable system, but significant improvements
can be made via augmentation. In this work, due
to the absence of suitable data, seed data was gen-
erated via manual translation. This is an expensive
way of obtaining data, and so the goal was to start
with a minimal seed corpus, which we showed to
be woefully insufficient to train a useful model.

Although the effective gain in data size for
text augmentation techniques is not often reported,
with authors instead reporting on improvements
in system performance (Sharifirad et al., 2018;
Kobayashi, 2018; Rizos et al., 2019; Şahin and
Steedman, 2018), an increase of 5 times the origi-
nal dataset is reported by Wang and Yang (2015),
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while Duwairi R (2021) report a tenfold increase.
This is in sharp contrast to the more than 2000-fold
increase achieved here, from 148 to 341 254 unique
utterances.

Furthermore, text augmentation has often fo-
cused on text classification tasks (Sharifirad et al.,
2018; Kobayashi, 2018; Rizos et al., 2019), as op-
posed to sequence generating tasks, such as POS-
tagging (Şahin and Steedman, 2018). Our work is
similar to the latter in that a sequence of labels is
generated, but, to the best of our knowledge, our
work differs from any previous work with regards
to the novelty of the target sequences generated by
the augmentation process. In classification tasks,
augmentation techniques have been aimed at pro-
ducing more examples that preserve (or at most
flip) the labels of the existing data (such techniques
are “meaning preserving” (Rizos et al., 2019) in
different senses, depending on the task), while the
work of Şahin and Steedman (2018) either reduces
or rearranges POS tags of existing target sequences
(along with their corresponding source sequences)
by cropping and rotating Universal Dependency
trees.

Our augmentation technique, in contrast, lever-
ages a domain grammar that models the seman-
tics of a domain to produce entirely new target
sequences. In addition, it leverages a Zulu resource
grammar that models the linguistics of the natu-
ral language to produce corresponding source se-
quences. A useful connection has been explored
between Universal Dependency trees and the GF
RG library (Kolachina and Ranta, 2019), and in
this sense also, our work is most similar to that
of Şahin and Steedman (2018). However, the ad-
dition of a semantic domain abstract syntax has
been the key to generating pairs of new source and
target sequences for the task of language under-
standing. For example, substituting the notion of
‘yesterday’ with that of ‘two hours ago’, as per the
rule in Figure 3, produces a new data point where
the source sequence (via the syntax tree) and the
target sequence (via the semantic tree) contain new
tokens.

The domain abstract syntax increases the factor
by which data can be augmented, while also impos-
ing limitations on the structure of new data points
that are generated. Future work will include exper-
imenting with the complexity of domain grammars
to better understand the ability of the augmenta-
tion technique to scale to larger and more complex

domains, as well as to study the ability of neural
networks to deal with increasingly complex con-
structs.7

7 Conclusion

The workflow described in this paper does not re-
quire any grammar engineering skills. Instead, it
relies on the ability to use the Zulu RG and GF run-
time to parse Zulu text and linearise syntax trees.
This is a significant advantage in contexts where
grammar engineering skills, especially in conjunc-
tion with knowledge of Zulu and its use in any
given domain, is costly or scarce.

In addition to approximating a concrete syntax,
we have shown that certain transformer sequence-
to-sequence models, trained on synthetic aug-
mented data, have some ability to generalise be-
yond the linguistic structures found in the seed
data. This is an improvement on the use of a con-
crete syntax, especially since the ability to deal
with variability in user input is important in spoken
QA systems. An attempt was made to evaluate
the extent of this kind of generalisation, although
a more accurate assessment will only be possible
once the Zulu RG is complete, since it forms the
basis for generating a balanced evaluation set from
seed data.

The neural networks developed in this work are
unidirectional, as opposed to a concrete syntax
which enables the GF runtime in both the parsing
and linearising directions. Future work will include
training neural networks in the opposite direction,
namely to generate Zulu utterances from semantic
trees. Since the language generation aspect of the
QA system only requires one way of expressing
meaning, it is expected that the technique presented
here would achieve similar success.

The data augmentation step, which centres on a
GF RG for the language, forms the core of the tech-
nique. In principle, therefore, it could be applied to
any under-resourced language for which a GF RG
exists.
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Abstract

In this paper we present the controlled lan-
guage and the grammar of the PENGASP sys-
tem and explain how the new version of the
grammar has been implemented in a logic pro-
gramming framework. The grammar is now bi-
directional and can be used to translate a spec-
ification written in controlled language into an
executable answer set program and vice versa.
The grammar is highly configurable for dif-
ferent application scenarios and can be used
for incremental text processing together with a
predictive authoring tool.

1 Introduction

A controlled language is a restricted version of a
natural language which has been engineered by re-
ducing the complexity of its grammar and/or its
vocabulary to meet a particular purpose (Schwitter,
2010; Kittredge, 2003). Human-oriented controlled
languages aim to improve the communication be-
tween humans or the readability of technical doc-
umentation for humans who are often not native
speakers of the language. Machine-oriented con-
trolled languages aim to improve machine trans-
lation of (technical) documentation or to support
automatic reasoning via the translation of the lan-
guage into a knowledge representation language.

PENGASP (Guy and Schwitter, 2017) is a
machine-oriented controlled language and is in
this respect similar to Attempto Controlled En-
glish (Fuchs et al., 2008), Computer-Processable
Language (Clark et al., 2005), and Logical En-
glish (Kowalski, 2020). However, in contrast to
these other three controlled languages, specifica-
tions written in PENGASP are exclusively trans-
lated into executable answer set programs (Gel-
fond and Kahl, 2014; Gelfond and Lifschitz, 1988).
Answer set programming offers a rich declara-
tive knowledge representation language for non-
monotonic reasoning and is supported by high per-
formance reasoning tools (Gebser et al., 2019). In

contrast to the grammar of the PENGASP system
introduced in Guy and Schwitter (2017), the lat-
est version of the grammar is now bi-directional.
This means that the same grammar can be used for
processing a specification and for verbalising an
answer set program.

According to the PENS scheme (Kuhn, 2014),
controlled languages can be classified along four
dimensions: precision (P), expressiveness (E), nat-
uralness (N), and simplicity (S). Each of these di-
mensions is then measured on a scale of 1 to 5.
In addition to these four dimensions, nine proper-
ties are used to identify the type of a controlled
language. Following this scheme, the controlled
language PENGASP can be classified as P5E3N4S3

A,W,F. This means PENGASP is a language with
fixed semantics (P5); offers medium expressive
power (E3); uses natural sentences (N4); and re-
quires a description of more than 10 pages (S3).
Furthermore, PENGASP originated from academia
(A), is intended to be written (W), and to be formally
(F) represented as an answer set program. In other
words, PENGASP is a high-level specification lan-
guage for answer set programs that combines the
readability and understandability of natural lan-
guage with the precision and expressiveness of a
declarative knowledge representation language.

The rest of this paper is structured as follows:
In Section 2, we outline the requirements to the
grammar of PENGASP . In Section 3, we give
a brief introduction to answer set programming,
since PENGASP is closely related to this formal
target language. In Section 4, we introduce a moti-
vating example that illustrates some features of the
language and show how the corresponding answer
set program looks like. In Section 5, we reveal
more details about the design of the controlled lan-
guage with a particular focus on the usage of certain
grammatical constructions. In Section 6, we take
a look at the implementation of the bi-directional
grammar; and in Section 7, we conclude.
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2 Requirements to PENGASP

The controlled language PENGASP and its gram-
mar have been designed with a number of require-
ments in mind. Firstly, a controlled language spec-
ification should be translatable into an executable
answer set program. Secondly, the grammar for this
language should be highly configurable for differ-
ent application scenarios, also for scenarios that do
not necessarily require the full power of answer set
programming. Thirdly, the same grammar should
support the processing of a specification and the
verbalisation of an answer set program; therefore,
the grammar should be bi-directional. Fourthly, the
grammar should also be useful to support the writ-
ing process of a specification in an incremental way,
in particular with respect to generating lookahead
information and resolving anaphoric expressions.

A possible processing strategy is to translate a
controlled language specification into a syntax tree
and then transform this tree into an answer set pro-
gram. A better strategy is to generate the answer
set program directly during the parsing process and
design the grammar in such a way that it can serve
as a language processor as well as a language gener-
ator. To achieve this, we start from a definite clause
grammar and specify the grammar rules for the
controlled language PENGASP in this unification-
based notation (Pereira and Warren, 1980), and
then use SWI Prolog (Wielemaker et al., 2012) as
programming language. However, when Prolog
is directly used to evaluate a definite clause gram-
mar in a system like ours that heavily relies on
incremental processing and user interaction, then
Prolog’s backtracking search strategy is not opti-
mal, since it forgets all the previous work that it
has done after a user interaction. To solve this
problem, we use a chart parser in conjunction with
the definite clause grammar to get the effect of
a more complete parsing strategy that remembers
substructures that it has already parsed (Gazdar and
Mellish, 1989). For the processing of a specifica-
tion, we transform the definite clause grammar into
an alternative notation using a logic programming
technique called term expansion (Wielemaker et al.,
2012). The resulting notation is easier to process
by a chart parser and the chart can then be used to
extract the information that is required to support
the writing process on the user interface level. For
the verbalisation of an existing answer set program,
the definite clause grammar can directly be used
and does not need to be transformed into another

format for chart parsing, since verbalisation does
not require any user interaction in our system.

Bi-directionality is a key feature of our grammar
and distinguishes the PENGASP system from other
controlled language processors (Fuchs et al., 2008;
Clark et al., 2005). Bi-directionality requires that
we can (a) feed a specification S as input to the
grammar G and get an answer set program A as
output, and (b) feed the answer set program A’ as
input to the same grammar G and get a semantically
equivalent version S’ of the original specification
as output. Figure 1 illustrates this form of lossless
semantic round-tripping (Schwitter, 2020).

Figure 1: Round-tripping in PENGASP

In order to achieve semantic round-tripping, we
use a Writer module that converts the internal ver-
sion of the answer set program built by the gram-
mar into an executable answer set program. In
the case of verbalisation, a Reader module is used
to read the executable answer set program and to
produce a linguistically processable version of that
answer set program. Since this processable version
may contain certain redundancies, a Planner mod-
ule is used that applies micro-planning tactics to
aggregate redundant information such as subject
aggregation and to deal with the identification of
definite descriptions. The output of the Planner is
a more compact version of the answer set program
that is sent to the grammar and used to verbalise
the answer set program.

3 Answer Set Programming

Answer set programming (ASP) is a declarative
programming paradigm for knowledge representa-
tion and reasoning (Gelfond and Kahl, 2014; Gel-
fond and Lifschitz, 1988). ASP has been devel-
oped in the field of logic programming and non-
monotonic reasoning and has been applied to a
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wide range of areas in artificial intelligence (Erdem
et al., 2016). ASP is supported by powerful reason-
ing tools and offers a rich representation language
that allows for recursive definitions, negation, con-
straints, aggregates, optimization statements, and
external functions (Gebser et al., 2019). An ASP
program consists of a set of rules of the following
form:

h1 ;...; hm :- b1 ,..., bn.

Here each hi is a classical atom and bi is a literal
for m ≥ 0 and n ≥ 0. A classical atom hi is either
a positive atom of the form p(t1,...,tk) or its
strong negation of the form -p(t1,...,tk), where
p is a predicate name, t1,...,tk are terms, and k

≥ 0 is the arity of the predicate name. A literal bi is
of the form A or not A, where A is a classical atom
or an atom over a built-in comparison predicate
used to compare terms, and the connective not

denotes weak negation (aka negation as failure or
default negation). Note that a literal of the form
not A is assumed to hold unless the atom A is
derived to be true. In contrast, strong negation of
an atom holds only if it can be derived. The if-
connective ‘:-’ separates the head of a rule from
its body. Intuitively, if all positive literals in the
body of a rule are true and all negative literals are
satisfied, then the head of the rule must be true.
The connective ‘;’ denotes a disjunctive head. A
disjunctive head holds if at least one of its atoms is
true. An ASP rule with an empty body (and without
the if-connective) is called a fact, and an ASP rule
with an empty head (but with the if-connective) is
called an integrity (strong) constraint.

An extension of ASP that is relevant for our work
are choice rules. A choice rule has the form:

l{e1 ;...; em}u :- b1 ,..., bn.

Here ei is a choice element of the form
a:L1,...,Lk, where a is a classical atom, Li are lit-
erals, and l and u are integers which express lower
and upper bounds on the cardinality of elements.
Intuitively, a choice rule means that if the body of
the rule is true, then an arbitrary number of ele-
ments can be chosen as true as long as this number
complies with the upper and lower bounds.

Note also that the input language to the ASP tool
clingo (Gebser et al., 2019) supports double default
negated literals in strong constraints. Furthermore,
the language also supports weak constraints. In
contrast to strong constraints, weak constraints do
not eliminate answer sets but weight and prioritise
them; more about this later.

4 A Motivating Example

The grammar of the PENGASP system translates
a specification written in controlled language into
an executable ASP program. The following exam-
ple is an excerpt of a specification that contains
information about students and their enrolments.

1. COMP3160 and COMP3220 are units.
2. Liam is a student and Olivia is a student.
3. Every student is either enrolled in COMP3160

or is enrolled in COMP3220.
4. If a student withdraws from a unit then the

student is not enrolled in that unit.
5. It is not the case that Liam is enrolled in

COMP3220.
6. Olivia withdraws from COMP3160.
7. Who is enrolled in COMP3220?

This specification consists of class assertions in
(1) and (2); two conditional statements in (3) and
(4); a constraint in (5), an unconditional statement
in (6), and a wh-question in (7).

Listing 1: Answer Set Program
named(1, comp3160). class(1, unit).
named(2, comp3220). class(2, unit).
named(3, liam). class(3, student).
named(4, olivia). class(4, student).
1 { prop(X, 1, enrolled_in) ;

prop(X, 2, enrolled_in) } 1 :-
class(X, student).

-prop(X, Y, enrolled_in) :-
class(X, student),
pred(X, Y, withdraw_from),
class(Y, unit).

:- prop(3, 2, enrolled_in).
pred(4, 1, withdraw_from).
answer(PN) :-
named(X, PN), prop(X, 2, enrolled_in).

As we can see in Listing 1, the translation of the
class assertions in (1) and (2) results in a number
of facts in the ASP program. The two conditional
statements are translated into two ASP rules. The
first one (3) is translated into a choice rule that
implements an exclusive disjunction describing al-
ternative ways to form answer sets. The second one
(4) is translated into a rule that contains a strongly
negated atom as head. This rule eliminates answer
set solutions if the body of the rule is true. The con-
straint in (5) results in a strong constraint in ASP
and weeds out a particular solution from the gener-
ated answer sets. The statement in (6) is translated
into a fact and the wh-question in (7) into an ASP
rule with a specific atom (answer/1) in its head.
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The ASP program uses a reified notation with a
small number of predefined predicate atoms (e.g.,
class/2, named/2, pred/3, and prop/3). These
predicate atoms can take variables, constants, pos-
itive numbers, or functional terms as arguments.
Constants represent content words that occur in a
specification and positive numbers replace existen-
tially quantified variables in the program.

5 The Language: PENGASP

PENGASP can be used to make statements, enforce
constraints, ask questions about a specification, and
issue directives. There is not enough space in this
section to cover all grammatical constructions of
the language; therefore, we focus on the most im-
portant ones and provide selected examples. Syn-
tactically, PENGASP distinguishes between simple
and composite sentences. Each sentence consists
of one or more clauses, and each clause has one
main verb. Within a composite sentence, clauses
may be joined via coordination or subordination,
thus forming a compound or a complex sentence,
respectively. The tense of the verb in a clause is
either simple present, present continuous or future
continuous depending on how the clause is used.

It is useful to introduce the concept of a core
clause that forms the building block for simple and
composite sentences in PENGASP . A core clause
has the following canonical structure:

subject + predicator + (complements)

The subject and the predicator are always manda-
tory in a core clause. The subject is realised by a
noun phrase and the predicator by a verb of a verb
phrase. The selection of complements depends on
the verb; dropping a complement either results in
an incomplete core clause or a significant change
in the meaning of the verb. A core clause forms the
predicate-argument structure of a simple sentence.
Adjuncts can follow the complement(s), but they
are always optional, since they are not required to
complete the meaning of a core clause. Phrases
that occur in adjunct position serve exclusively as
verbal modifiers; they add additional information
like spatial or temporal information to the meaning
of a core clause.

5.1 Making Statements

Simple statements can be made with the help of
a simple sentence like (8) that is based on a core
clause. The verb of this sentence can be modified

for instance by a prepositional phrase that occurs
in adjunct position; and this modification can be
expressed as part of a simple sentence like (9). A
positive clause like (9) can be rendered negative by
the insertion of a strong negation (10).

8. Liam arrives.

9. Liam arrives at 09:00.

10. Liam does not arrive at 09:00.

Complex statements can be expressed with the
help of compound sentences like (11), complex sen-
tences like (12), verb phrase coordination like (13),
and noun phrase coordination for class assertions
like (14).

11. Liam studies at Macquarie University and
Liam is enrolled in COMP3160.

12. Liam who studies at Macquarie University is
enrolled in COMP3160.

13. Liam studies at Macquarie University and is
enrolled in COMP3160.

14. Liam, Olivia, and Rona are students.

The compound sentence (11) uses two indepen-
dent clauses that are joined by a coordinating con-
junction (and). The complex sentence (12) consists
of an independent clause and a dependent clause
in the form of an embedded relative clause that
modifies the proper name with the help of a sub-
ordinating conjunction (who). In (13) verb phrase
coordination shares the same subject and in (14)
noun phrase coordination (enumeration) shares the
same complement. Note that the sentences (11-13)
are syntactic variations of each other and result in
the same ASP representation.

5.2 Making Conditional Statements
Like simple statements, simple conditional state-
ments can also be expressed with a simple sentence
that is based on a core clause. But in this case,
the sentence requires a universally quantified noun
phrase in subject position (15).

15. Every student is enrolled in at most 4 units.

Alternatively, a conditional sentence like (16)
consisting of a dependent clause (expressing the
condition) and a main clause (expressing the con-
sequent) can be used to make the same statement.

16. If there is a student then the student is enrolled
in at most 4 units.
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Combining weak and strong negation in the same
conditional sentence (17) allows us to express the
closed-world assumption with respect to a given
atom; meaning that all students who are not en-
rolled in a unit are explicitly known after process-
ing the corresponding ASP rule.

17. If a student is not provably enrolled in a unit
then the student is not enrolled in that unit.

18. If a person is holding an object at a time point
and the person delivers that object at the same
time point then the person will no longer be
holding the object afterwards.

The conditional sentence (18) is interesting,
since it describes an effect axiom (Mueller, 2015)
for a temporal PENGASP specification. The con-
dition contains a verb in present continuous tense
that denotes a state and a verb in present tense that
denotes an event. The consequent uses a verb in
future continuous tense that describes the effect of
the axiom.

5.3 Enforcing Constraints

In PENGASP constraints can be used to enforce
conditions in a specification that must not become
true. Syntactically, a constraint like (19) starts with
a keyphrase (in brackets below for illustration pur-
poses), followed by a potentially composite sen-
tence.

19. [It is not the case that] a student who is en-
rolled in COMP3160 arrives at 11:00.

This composite sentence can have the same syn-
tactic form as a sentence that can occur in the con-
dition of a conditional sentence. In our case, the
keyphrase is followed by a complex sentence that
contains an embedded relative clause.

5.4 Asking Questions

PENGASP distinguishes between yes-no questions
and wh-questions. Yes-no questions are formed in
the same way as simple sentences, except that they
have one auxiliary verb that occurs before, rather
than after, the subject noun phrase, for example (20)
and (21). Switching the placement of the auxiliary
verb and the subject is called subject-aux inversion.

20. Is John enrolled in COMP3160?

21. Do most students work?

The formation of wh-questions involves interrog-
ative words (wh-words and how). We distinguish in
PENGASP between subject questions and comple-
ment/adjunct questions. Subject questions such as
(22) and (23) are constructed from a wh-word and a
finite verb phrase. Complement/adjunct questions
such as (24) and (25) are formed from a wh/how-
word that has been moved to the front and acts now
as a filler for a gap in a subject-aux-inverted clause.

22. Who is enrolled in COMP3220?
23. Who is not enrolled in COMP3220?
24. What does Liam study?
25. When does the student arrive?

Note that we can answer question (23) in the
context of our motivating example in Section 4,
after adding the conditional sentence (17) to that
specification, since the corresponding ASP rule for
(17) ensures that all negative atoms for the enroll-
ment property are derived. Answering the yes-no
question in (21) requires a similar mechanism with
an agreed threshold for the quantifier most.

A special case are questions that ask for an
amount like (26) or a quantity like (27). They are
formed with the help of a keyphrase and a noun
that serve as a filler for a complement gap in a
subject-aux inverted clause.

26. [How much] time does Liam spend on the first
assignment?

27. [How many] units does Liam attend?

In the case of (26) the keyphrase is followed by
an uncountable noun and in the case of (27) by a
countable plural noun.

5.5 Issuing Directives
Directives are used in PENGASP to issue weak
constraints in order to prioritise certain solutions.
Syntactically, a directive is expressed with the help
of a keyphrase like in (28) or (29) that starts with a
specific verb in its bar infinitive form, followed by
a priority level expressed as a prepositional phrase
and a relative pronoun.

28. [Minimise with a priority of 3 that] a student
accommodation is noisy.

29. [Maximise with a priority of 2 that] a student
accommodation is central.

The description of the statement that is priori-
tised can have the same syntactic form as the de-
scription of a statement in a strong constraint.
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6 Implementation Details

The grammar rules for the PENGASP system are
specified in definite clause grammar notation and
contain feature structures as arguments. These fea-
ture structures have the form of name:value pairs;
names are Prolog atoms and values are Prolog
terms (even compound terms of the form [H|T]-T

are allowed).
The most important feature names in the gram-

mar are: mode for the processing mode; clause
with an incoming and an outgoing list as values
for the assembly of ASP clauses (in the case of
processing) and the disassembly of ASP clauses
(in the case of generation); ante with an incoming
and an outgoing list as values for the recording of
accessible antecedents; ctx with a value (e.g., fact
indicating a factual statement) for the functional
context of a rule; and fcn with a value (e.g., tmod
indicating a temporal modifier) for the structural
function of a rule.

The feature structures for the functional context
and the structural function of rules allow us to tai-
lor the grammar for application scenarios that do
not require the full power of ASP. This means the
grammar is highly configurable and we can easily
exclude certain linguistic constructions from the
grammar if they are not required.

A number of additional syntactic feature names
(e.g., crd, num, vmode, and wform) and semantic
feature names (e.g., def, arg and lit) are used in
the grammar; the meaning of these features should
become clear in the following discussion.

The implementation of the bi-directional gram-
mar can be best explained with the help of a con-
crete example. The grammar rules in Listing 4-10
translate a factual statement with a complex tempo-
ral modifier like:

30. Rona arrives on 2021-04-24 at 09:15.

incrementally into the following internal ASP rep-
resentation:

Listing 2: Internal Answer Set Program
[[’.’,

data_prop(A, 9, 15, time),
data_prop(A, 2021, 4, 24, date),
data_prop(A, B, date_time),
happens(event(C, arrive), B),
named(C, rona)]]

This internal ASP representation is then further
translated by the Writer module of the PENGASP

system into an executable ASP program:

Listing 3: Executable Answer Set Program
named(1, rona).
happens(event(1, arrive), 1619255700).
data_prop(2, 1619255700, date_time).

In the case of verbalising the above-mentioned
ASP program, the Reader module reads this exe-
cutable ASP program and expands it into the in-
ternal ASP representation but now in reverse order
compared to the representation in Listing 2. The
Planner module supports this process, if required,
and decides when two or more literals should be
aggregated and how these literals should be trans-
formed into the aggregated structure.

6.1 Processing a Specification
For the processing of a specification, the s-rule in
Listing 4 is used to split the sentence (30) into a
noun phrase and a verb phrase. The feature struc-
ture mode:M takes care of the mode (either proc
for processing or gen for generating). The feature
structure ctx:fact indicates that this grammar rule
is used to deal with a factual statement. The fea-
ture structure clause:C1-C4 consists of a variable
C1 for the incoming list and a variable C4 for the
outgoing list. Remember that this data structure
is used to collect the literals for the ASP program
during the parsing process. This means the noun
phrase takes a list as input and returns a modified
list as output as indicated by the feature structure
clause:C1-C2. This modified list then serves as
input to the verb phrase as indicated by the feature
structure clause:C2-C3 and its output as input to
the category for the full stop as indicated by the
feature structure clause:C3-C4, since the full stop
is the last element that is added to the front of the
outgoing list (as illustrated in Listing 2). In a simi-
lar way, the feature structure ante:A1-A3 collects
all accessible antecedents with the help of an in-
coming and an outgoing list. The feature with the
name tree takes a list as value and is responsible
for constructing a syntax tree; this is in particular
helpful for developing the grammar. It is important
to note that all the above-mentioned tasks occur in
parallel due to the power of unification.

Let us have a closer look at the noun phrase in
the s-rule: the feature structure crd:’-’ specifies
that this noun phrase cannot be coordinated; the fea-
ture structure fcn:subj states that the noun phrase
occurs in subject position and the feature structure
def: indicates that the definiteness of the noun
phrase is unspecified in our example.
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Listing 4: DCG rule for a factual statement
s([mode:M, ctx:fact, clause:C1-C4, ante:A1-A3, tree:[s:17, NP, VP]]) -->
np([mode:M, ctx:fact, crd:’-’, fcn:subj, def:_D, num:N, arg:X, clause:C1-C2,

ante:A1-A2, tree:NP]),
vp([mode:M, ctx:fact, crd:’+’, num:N, arg:X, clause:C2-C3, ante:A2-A3, tree:VP]),
fs([mode:M, clause:C3-C4]).

Listing 5: DCG rule for a noun phrase in subject position
np([mode:M, ctx:fact, crd:’-’, fcn:subj, def:’+’, num:N, arg:X, clause:C1-C3,

ante:A1-A3, tree:[np:72, PN]]) -->
pn([mode:M, wform:_, num:N, arg:X, clause:C1-C2, ante:A1-A2, tree:PN]),
{ anaphora_resolution(pn, [M, ’+’, X, C1, C2, C3, A1, A2, A3]) }.

Listing 6: DCG rules for the lexicon look up of a proper name
pn([mode:proc, wform:WForm, num:N, arg:X, clause:[C1|C2]-[[L|C1]|C2],

ante:[A1|A2]-[[L|A1]|A2], tree:[pn:323, WForm]]) -->
{ lexicon([cat:pn, wform:WForm, num:N, arg:X, lit:L]) }, WForm.

pn([mode:gen, wform:WForm, num:N, arg:X, clause:[[L|C1]|C2]-[C1|C2],
ante:[A1|A2]-[[L|A1]|A2], tree:[pn:324, WForm]]) -->

{ lexicon([cat:pn, wform:WForm, num:N, arg:X, lit:L]) }, WForm.

Listing 7: DCG rule for a verb phrase with a prepositional (temporal) modifier
vp([mode:M, ctx:fact, crd:’-’, num:N, arg:X, clause:C1-C3,

ante:A1-A3, tree:[vp:211, VP, PP]]) -->
vc([mode:M, ctx:fact, num:N, arg:X, hold:[pred(X, PN)]-[happens(event(X, PN), T)],

clause:C1-C2, ante:A1-A2, tree:VP]),
pp([mode:M, ctx:fact, crd:’-’, fcn:tmod, arg:T, clause:C2-C3, ante:A2-A3, tree:PP]).

Listing 8: DCG rule for an intransitive verb
vc([mode:M, ctx:fact, num:N, arg:X, hold:L1-L2, clause:C,

ante:A-A, tree:[vc:217, IV]]) -->
iv([mode:M, wform:_, num:N, vform:fin, arg:X, hold:L1-L2, clause:C, tree:IV]).

Listing 9: DCG rules for the lexicon lookup of an intransitive verb
iv([mode:proc, wform:WForm, num:N, vform:V, arg:X, hold:[L1]-[L2],

clause:[C1|C2]-[[L2|C1]|C2], tree:[iv:325, WForm]]) -->
{ lexicon([cat:iv, wform:WForm, num:N, vform:V, arg:X, lit:L1]) }, WForm.

iv([mode:gen, wform:WForm, num:N, vform:V, arg:X, hold:[L1]-[L2],
clause:[[L2|C1]|C2]-[C1|C2], tree:[iv:326, WForm]]) -->

{ lexicon([cat:iv, wform:WForm, num:N, vform:V, arg:X, lit:L1]) }, WForm.

Listing 10: DCG rule for a prepositional (temporal) modifier
pp([mode:M, ctx:fact, crd:’-’, fcn:tmod, arg:T, clause:C1-C3,

ante:A1-A3, tree:[pp:243, Prep1, Date, Prep2, Time]]) -->
prep([mode:M, wform:[on], tree:Prep1]),
date([mode:M, ctx:fact, arg:X, arg:T, clause:C1-C2, ante:A1-A2, tree:Date]),
prep([mode:M, wform:[at], tree:Prep2]),
time([mode:M, ctx:fact, arg:X, clause:C2-C3, ante:A2-A3, tree:Time]).
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The feature structure num:N enforces number agree-
ment between the noun phrase and the verb phrase,
and the feature structure arg:X ensures that the
argument for the noun (or proper name) in the
noun phrase becomes available for the predicate-
argument structure in the verb phrase. In contrast to
the noun phrase that cannot be coordinated, the fea-
ture structure crd:’+’ in the verb phrase indicates
that verb phrase coordination is possible.

The np-rule in Listing 5 first checks whether the
noun phrase that occurs in subject position consists
of a proper name. For this purpose, the first pn-rule
in Listing 6 is used that looks up the word form
for the proper name in the lexicon and unifies the
variable L for the literal with the corresponding
value named(C, rona) that is stored in the lexi-
con for the proper name. The value for the literal
is then added to the outgoing list that is responsi-
ble for clause construction (clause); at the same
time the outgoing list that records all the accessi-
ble antecedents (ante) is updated. Afterwards, the
anaphora resolution algorithm in the np-rule in List-
ing 5 is used to check if the proper name has been
previously introduced and is now used anaphori-
cally or not (both the clause lists and antecedent
lists are then updated accordingly).

Once this has been done, the vp-rule in Listing 7
takes care of the verb phrase. This rule basically
splits a verb phrase into an obligatory part and
an optional part. The obligatory part consists in
our case of an intransitive verb (without a com-
plement) and the optional part consists of a prepo-
sitional phrase that serves as a temporal modifier
for the verb. The important point to note here is
that the vc-rule transforms a literal for an atem-
poral specification pred(X, PN) into a literal for
a temporal specification happens(event(X, PN),

T) with the help of a holding list, once the tem-
poral modifier has been processed. The vc-rule in
Listing 8 calls the first iv-rule in Listing 9 that pro-
cesses the intransitive verb. Note that the variable
L1 that represents the literal for the intransitive verb
is not immediately added to the outgoing list for
the clause in this rule. This variable is first added
to a holding list together with a second variable L2

that serves as a placeholder. This second variable
is added to the outgoing clause list instead of the
first one. This is done because we do not known
at this point of processing if the verb will finally
be temporally modified or not. This information
becomes only available once the pp-rule for the

temporal modifier in Listing 10 has been processed.
This rule adds three literals to the outgoing clause
list (see Listing 2 for details) and completes the
processing of the verb phrase.

6.2 Verbalising an ASP Program

Before an ASP program can be verbalised, it needs
to be transformed into a linguistically processable
version by the Reader module and potentially re-
dundant structures need to be identified and aggre-
gated by the Planner module. The grammar then
takes the representation of the ASP program in
Listing 2 in reverse order as input. The second
pn-rule in Listing 6 removes the literal named(C,
rona) from the incoming clause list and adds this
literal to the outgoing antecedent list, since it may
serve as a potential antecedent later. The same rule
then generates the word form Rona for the removed
literal. The anaphora resolution algorithm of the
np-rule in Listing 5, then checks the status of the
antecedent. Once the noun phrase has been gener-
ated, the second iv-rule in Listing 9 removes the
(reduced) literal for the intransitive verb from the
incoming clause list with the help of the informa-
tion on the holding list and generates the verb form
arrives. In a similar way, the three incoming liter-
als for the temporal modifier are removed from the
incoming clause list and generate the word forms
that describe the temporal modifier. Generating a
full stop terminates this process.

7 Conclusion

PENGASP is a machine-oriented controlled lan-
guage designed to specify ASP programs in a nat-
ural way. The grammar of PENGASP is written
in definite clause grammar notation and is a bi-
directional one. The grammar can be used to trans-
late a specification into an executable ASP program
and to generate a semantically equivalent verbali-
sation of that ASP program. Anaphoric references
can be resolved directly during the parsing process,
since the anaphora resolution algorithm is tightly
integrate with the grammar. The grammar is pa-
rameterised using feature structures so that subsets
of the grammar can be selected in an easy way for
various application scenarios without breaking the
grammar. While this paper focuses on the features
and coverage of the language and the grammar of
PENGASP ; it is important to note that the writing
of a specification in PENGASP is supported by a
smart authoring tool.
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Abstract 

RegelSpraak is a CNL developed at the 

Dutch Tax Administration (DTA) over the 

last decade. Keeping up with frequently 

changing tax rules poses a formidable 

challenge to the DTA IT department. 

RegelSpraak is a central asset in ongoing 

efforts of the DTA to attune their tax IT 

systems to automatic execution of tax law. 

RegelSpraak now is part of the operational 

process of rule specification and execution. 

In this practice-oriented paper, we present 

the history of RegelSpraak, its properties 

and the context of its use, emphasizing its 

double functionality as a language readable 

by non-technical tax experts but also 

directly interpretable in a software 

generating setup.  

1 Introduction 

The Dutch Tax Administration (DTA) is 

responsible for levying and collecting taxes in the 

Netherlands. This task comprises a diverse range 

of taxes, concerning both civil and business tax 

payers. Changes in tax legislation are carried out 

yearly, following the annual budgeting process. 

Every change has to be implemented in the 

relevant IT-applications, updates of instructions, 

and communications for tax lawyers within the 

DTA and for tax payers. This calls for a precise 

and unambiguous representation of the meaning 

of tax legislation. 

Because the DTA’s IT-landscape evolved over 

the years, various developing methods and tools 

and various programming languages are still used. 

On the route from law to automated execution, 

many interpretations and translations of 

legislation are produced. These translations are 

created by a variety of units and teams and are 

used in various ways. Consequently, there is a 

considerable risk of faults and of fragmentation of 

knowledge representations.  
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The teams of tax and IT-specialists involved in 

the implementation of legislation noted these 

issues and expressed the wish for a more coherent 

approach (Ausems, 2009). This wish was 

supported by the management, in view of their 

business goals: time savings and reduction of the 

risk of mistakes through reuse of rules. In an 

interview with a DTA stakeholder the common 

goal was formulated as follows: “We need an 

approach that allows us to create a reusable 

specification of rules (Single Point of Definition), 

based on the text of legislation and policy rules 

and validated by tax experts, enabling an 

automatic translation to high power execution 

code.” 

For example, in the future, the online calculations 

for income tax on the DTA-website and the web-

portals for submitting yearly tax returns will use 

the same reusable components. Satisfaction of 

this requirement started with introduction of a 

new way of working, and a specific rule language: 

RegelSpraak. 

In this paper, we describe the history, the context 

of use, the users, and the main structure of 

RegelSpraak, finishing with recommendations for 

further development and improvement. We 

believe that RegelSpraak, being a fully 

operational CNL, is an interesting and rather 

unique artefact, given its double functional load: 

it is both human-understandable and indirectly, 

but fully, executable. In the field and tradition of 

CNLs (Kuhn, 2009) (Schwitter and Fuchs, 1996), 

this balance has always been a challenge.1 The 

DTA has tackled this challenge in practise and we 

like to demonstrate how this is done. At the end 

of this paper, we share the insights and lessons 

learned from this development process for future 

research and implementation. This paper is 

practice-oriented rather than academic in nature, 

nevertheless it can be a notable contribution to the 

CNL field and community. 

2 History of RegelSpraak 

In 2007 the data and rule experts from the DTA got 

together with the founders of RuleXpress 

 
1 In Azzopardi et al. (2018) and also in Calafato et al. (2016), 

the use of CNL’s in a tax and financial context in other 

countries is discussed. 

(Rulearts, 2021), a dedicated tool for business rule 

specification and management. A small team 

started researching how this tool could be applied 

within the DTA. They started with Semantics of 

Business Vocabulary and Rules (SBVR) (Object 

Management Group, 2021) as a basis, but soon 

discovered that this standard was not fit for purpose 

because it did not provide a full set of expressions 

(i.e. it is not really a rule language, as such). They 

switched to RuleSpeak (Ross, 2006) as a viable 

alternative, as it works with informally constrained 

natural language text and is thus suitable for 

discussion between lawyers and IT-experts (Baars, 

2009). RuleSpeak, however, does not impose a 

complete set of active syntactic constraints. 

Therefore, it allowed for too much freedom in rule 

specification, which limited its usefulness. The 

team started composing specific language patterns, 

still largely based on RuleSpeak structures, aiming 

for a more concise and completely constrained 

syntax. Consequently, a specific pattern schema 

was developed. The first version of the rule pattern 

document (Sangers - van Cappellen and Van Kleef, 

2010) consisted of keywords for use in rules, and a 

number of patterns. These were based on 

RuleSpeak as much as possible. 

 

The first patterns were written to convert existing 

rules for Tax Pre-Check (Dutch: Fiscale 

Voorcontrole) to a readable format. In those early 

days, MS Excel was used to provide a template for 

describing rules (see Figure 2). In order to properly 

and consistently convert the Tax Pre-Check rules to 

RegelSpraak rules, the DTA first went through the 

various Excel sheets to determine the different 

variants of the rules. Patterns and conventions were 

then drawn up for each of these rule variants. Next, 

all 2300+ rules had to be converted from Excel to 

RegelSpraak. A partly automated conversion was 

carried out. The code-like terms were translated 

into readable terms based on the Excel sheet and 

each sentence was converted to a rough 

RegelSpraak sentence. After that, a manual step 

was needed to make the rules fully compliant with 

the RegelSpraak format. The capture of the 

RegelSpraak (meta)rules was done in RuleXpress, 

the compilation and transformation in ANTLR. 

Parr (2014) offers a detailed description of the 
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ANTLR-parser. With this setup, the team started to 

build rules in XSD/XML.  

For the construction and development of a 

grammar file, the ANTLR Works GUI workbench 

was used. A grammar and parser were iteratively 

developed for each of the domains. These parsers 

were used to check if the RegelSpraak 

specifications were syntactically correct. Once 

every possible RegelSpraak statement could be 

parsed, a compiler could be generated. The 

intention was to demonstrate that compilers could 

be made for various different programming 

languages (e.g. SRL, Java, C++). Consequently, 

this led to a different format of output for each 

compiler. 

The next step in the development of RegelSpraak 

was the ‘Proof of Concept Health care insurance 

law’ (Dutch: Zorgverzekeringswet). In this PoC, 

for the first time, rules were written based on a 

direct analysis of the legislation. Thus, the natural 

language rules were not based on existing code 

rules but on the text of their legal sources. The 

analysis of the legislation was carried out along a 

number of questions that had to be answered for 

every part (article, section, subsection, sentence, 

formula) in the legislation. These questions were: 

• For whom should something be 

determined? This is the [role] or [object] 

in the rule pattern. 

• What must be determined? This 

concerns the 

[element_to_be_determined] in the rule 

pattern.  

• When should this be determined? This is 

the [reference_date] in the rule pattern. 

• Are there limit values that have to be 

taken into account? These are the 

[parameters] in the rule pattern. 

• Which keywords are used in the text? 

These are the fixed natural language 

terms or phrases. 

Several PoCs were carried out to test and refine 

RegelSpraak. In order to enable automated 

execution, extra constraints – in addition to Dutch 

grammar – were needed to achieve unambiguous 

rules. Parallel to these PoCs, the DTA invested in 

development of a method and tooling for 

structured analysis of legal texts, to achieve a 

solid and precise knowledge base underlying the 

RegelSpraak-rules. This resulted in iKnow 

Cognitatie (Cognitatie, 2021) Furthermore, tooling 

for validation and automatic transformation of the 

RegelSpraak-rules into code was developed, 

based on the MPS/Jetbrains workbench (Jetbrains, 

2021), now known as the Agile Law Execution 

Factory (ALEF). Thus, a production chain for 

rule-based IT development was realized, as 

illustrated in Figure 7. 

Today, RegelSpraak is broadly used in IT 

development at DTA and is subsequently 

expanded by newly added sections of the law, and 

by new patterns on the basis of experiences in 

applying the language. An important factor in the 

success of RegelSpraak is its deployment in 

multi-disciplinary teams which are an important 

driving force behind the ongoing development of 

RegelSpraak. The DTA has its own in-house 

training programme and documents new versions 

of language and tooling in detailed reference 

manuals. User evaluation was informally done in 

the past, see Wilmont et al. (2021) for a more 

formal method of evaluation.  

3 Main Features of RegelSpraak 

A basic rule pattern applies to all rules. A 

RegelSpraak rule always has the following format: 

[RESULT] IF [CONDITION(S)]. A condition 

compares attributes, which can have boolean or 

numerical values, or be dates, enumerations or 

roles. The result is executed as a consequence of 

the successful evaluation of the conditions. The 

results and conditions are connected using 

carefully composed Dutch phrases to maximize the 

resemblance to a natural sentence.  

 

For legibility’s sake, in our examples, (almost) all 

examples have been translated into English, 

without showing the original Dutch fragments. 

 

 
Figure 1: Example Rule 1 without metadata
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Figure 2: Example Rule 1 with metadata (Excel-file) 

 

The rule in the Excel file (see Figure 2) consists 

of two different parts, namely an IF and a THEN-

part. RuleSpeak prescribes starting with the 

THEN-part, usually followed by an IF-part. 

Rule 1 is a derivation rule, in which two elements 

are added up to create a third element. The two 

elements must not always be added up; the rule 

contains two conditions under which the 

calculation must be performed. In this case, one 

or both elements must be completed. 

 

For an adding up of two elements, the wording 

MUST BE CALCULATED AS ... PLUS … was 

chosen, because this comes as close as possible 

to a natural language expression. The element 

that is derived is called [element_to_be_ 

determined]. For the condition part, where one or 

both conditions must be true, IF ... SATISFIES 

AT LEAST ONE OF THE FOLLOWING 

CONDITIONS is used. Then the two conditions 

are mentioned, as an enumeration (the lines with 

indent in the example below). The rule pattern 

that fits the result part here is called “basic 

calculation”. A basic calculation is one of the 

basic rule patterns in RegelSpraak. 

 

As stated earlier, a basic rule pattern applies to all 

rules, i.e. most rules consist of two parts, namely 

a result part and a condition part.  

 

The result part is the first part of the rule, 

describing how the variable that has to be 

determined gets its value. At the moment, 

specific rule patterns exist for the result part of 

derivation rules, restriction rules, classification 

rules, and process rules. The condition part is the 

part of the rule that describes the conditions 

under which the variable that has to be 

determined gets its value. The condition part of a 

rule starts with the word “if” (see Figure 4 and 6). 

 

In RegelSpraak, rule 1 is expressed as follows:  

 
Figure 3: Example of RegelSpraak Rule 1 (Dutch) 

 

 
Figure 4: Example of RegelSpraak Rule 1 (English 

translation) 

 
The basic rule patterns used in this rule are “basic 

calculation” and “disjunction”. A basic 

calculation consists of a [value] 

PLUS/MINUS/MULTIPLY/DIVIDE BY 

[value]. In a basic calculation multiple operators 

and multiple values may occur. We will illustrate 

this in the two following examples:  

[element_to_be_determined] MUST BE 

CALCULATED AS [value] PLUS/ MIN/ 

MULTIPLY/ DIVIDE BY [value] 

 

 
Figure 5: Example of basic calculation (part of rule 

1) 

… IF HE /A /THE /EACH PRESENCE OF ITS 

[object] SATISFIES AT LEAST 
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ONE/TWO/THREE/... OF THE FOLLOWING 

CONDITIONS 

 

 
 

Figure 6: Example of disjunction (part of rule 1) 

 

Rules are often similar in form but different in 

purpose. For example, there are rules expressing 

an addition of amounts, or formulas that select 

the highest amount of two. Rule patterns have 

been developed to ensure that rules with the same 

goal are composed in the same way. A rule 

pattern is a template for concrete rules. By filling 

this template with the correct elements, an 

unambiguous rule is created. Each rule must 

comply with one or more rule patterns. 

 

4 Use and users 

RegelSpraak now is a much appreciated and 

crucial tool in the DTA. The constructive and 

step-by-step research and development process 

has paid off, and gradual implementation in the 

organisation has created substantial commitment 

and adoption. This allowed the DTA to increase 

the number of employees working on 

RegelSpraak in various teams and roles, in a 

multidisciplinary setting. 

 

 
Figure 7: Rule generation 

 

Figure 7 illustrates the rule generation process. It 

starts when a new or changed piece of legislation 

is adopted. Tax specialists, rule analysts and IT 

developers, working in a multidisciplinary team, 

analyse the piece of legislation in detail and draw 

up complementary test cases. They make 

annotations in the legislation using a legal 

analysing scheme, consisting of predefined 

labels for legal concepts in the legislation. The 

annotations are made in iKnow Cognitatie 

(Cognitatie, 2021), a tool especially developed 

for this. After that, the rule analysts specify rules 

based on the annotations. In some cases, 

RuleXpress is used for managing the rules and 

test cases. It provides repositories to do so. The 

next step in rule generating is importing this 

annotated law content into ALEF. In other cases, 

the rules are specified directly in ALEF. 

RuleXpress has a more user-friendly interface 

and better rule management functionality.  

 

The test cases are also added to ALEF, so the 

rules can be tested. At this point, the tax expert 

comes in again and validates whether the rules 

yield the correct test outcomes in the test cases. 

Finally, the rules are automatically transformed 

into Blaze-code (Blaze being a high-performance 

proprietary rule engine (Blaze, 1999)), tested 

again with the test-cases, and deployed as a 

webservice.  

 

This process allows for iteration; flaws are now 

often detected at an early stage in the process. An 

unambiguous representation, fully in accordance 

with the tax law, is better achievable. The output 

of this process is now primarily used as a 
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component in various back office IT systems, but 

it is also available for online tax declaration 

forms and calculation wizards on the website of 

the DTA. 

5 Lessons learned and conclusion 

What started off as a small exploration and 

gradually expanded to PoCs of CNLs in the DTA 

has now become a robust and scalable 

infrastructure which to our knowledge has no 

precedent. The DTA has successfully 

experimented with RegelSpraak and has 

gradually become leading within Dutch 

government in the development and use of CNL. 

Collaboration with other public organisations is 

in an exploratory stage, as acknowledgement is 

growing of the usefulness of shared, reusable 

rules as a basis for diverse IT applications, and as 

a central asset in the future of automated law 

execution.  

 

In the past years, the DTA has documented the 

RegelSpraak patterns and conventions in 

manuals, reference guides and workflow-

documents.  A knowledge community had been 

created, as well as an in-house training 

programme. Nevertheless, there is still a lot of 

tacit knowledge in the heads of the employees, 

especially with respect to quality aspects of 

RegelSpraak patterns and rules. The current 

paper provides a limited overview of what was 

done so far to make this knowledge explicit. 

However, further work is needed to validate and 

improve the framework, patterns, and rule 

specification procedure. We intend to perform a 

user research of this, observing and analysing the 

work of various experts with and on 

RegelSpraak. 

 

Lessons learned, for the DTA but also for other 

organisations implementing CNLs for law 

execution purposes, are the following: 

• Start small: choose a well-scoped and 

limited part of legislation to start; this 

will provide an interesting showcase, 

creating crucial managerial backing. 

• Put together a team which comprises 

the relevant expertise for your 

organisation. 

• Find a sponsor at management level 

who shows commitment and provides 

you and your team with the necessary 

resources (time and tooling), and even 

more importantly: with space to fail 

every now and then. 

• Invest in education, preferably by 

training on the job.  

• Share knowledge early – pay attention 

to explicit communication and 

promotion by means of presentations 

and publications. This is a good way to 

share the methods and knowledge 

within and outside the organisation. The 

DTA gladly took opportunities to give 

(invited) presentations, for example at 

Business Rules Platform Nederland 

(BRPN) meetings. 

• Start testing at once to quickly fix bugs 

and problems. This saves a 

considerable amount of money in the 

overall development project.  
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Abstract 

Daily experience teaches us that a situation re-
mains unchanged unless somebody or some-
thing changes it. Leibniz called this experience 
the law of inertia. Early attempts to formalise the 
law of inertia failed because they offered no easy 
way to describe that after a partial change of a 
situation the unaffected rest remains unchanged. 
This so-called frame problem was efficiently 
solved by later approaches, specifically by the 
event calculus and the default logic. Focusing on 
default logic, I will show that it can express the 
law of inertia not only in first-order logic, but 
also quite naturally in Attempto Controlled Eng-
lish. Furthermore, I will use the Attempto rea-
soner RACE to efficiently reason with the law 
of inertia. 

1 The Common Experience of Inertia 

When you return to your office in the morning 
you expect to find the items on your desk in ex-
actly the same order as you left them in the even-
ing before – unless somebody or something 
moved them. This common experience was ex-
pressed by the philosopher Leibniz as the law of 
inertia: "Everything is presumed to remain in the 
state in which it is." (Leibniz, 1679). At about the 
same time Newton published his three laws of 
motion, the first of which expresses the specific 
case of the law of inertia for moving physical bod-
ies (Newton, 1687). 

I will show that Leibniz' law of inertia can be 
formalised in Attempto Controlled English 
(ACE)1and that this formalisation allows us to 
reason with the law. In section 2, I describe early 
attempts to formalise common sense, specifically 

                                                             
1 http://attempto.ifi.uzh.ch/ 

the law of inertia, the encountered frame problem, 
and a variant of the Yale Shooting Problem. Sec-
tion 3 presents two solutions of the frame prob-
lem, the event calculus and the default logic. In 
section 4, I express the default logic in ACE. Sec-
tion 5 describes reasoning with the law of inertia 
using the Attempto reasoner RACE2. Section 6 
shows that incorporating the law of inertia into 
RACE facilitates the reasoning. Section 7 revisits 
the Yale Shooting Problem in ACE/RACE. Sec-
tion 8 summarises the paper and briefly addresses 
the fact that the law of inertia and, specifically, its 
formalisations are asymmetric with respect to 
time. 

2 Formalising Common Sense and the 
Frame Problem 

Beginning in the 1960s researchers began to for-
malise common sense, predominantly in first-or-
der logic. When trying the express the law of in-
ertia they encountered the so-called frame prob-
lem, that is how to effectively and efficiently de-
scribe the unaffected part of a situation after a par-
tial change.  

Initial attempts to solve the frame problem 
failed, mostly because only the changed parame-
ters were taken into account and the unchanged 
parameters ignored.  

The shortcomings were strikingly demon-
strated by the impossibility to adequately solve 
the so-called "Yale Shooting Problem" (Hanks 
and McDermott, 1987). In this paper I replace the 
original problem by a less violent, but "problem-
identical" one. 

2 http://attempto.ifi.uzh.ch/race/ 
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Initially, a wine glass is empty and a wine bot-
tle is not open. Opening the bottle, waiting a mo-
ment to read the label, and then pouring the wine 
should fill the glass. If this situation is formalised 
in first-order logic by only taking the changed pa-
rameters into account and ignoring the unchanged 
ones, it cannot be uniquely proved that the wine 
glass is finally full. In one logical solution the 
wine glass is actually full; in another logical solu-
tion the wine bottle is again not open and the wine 
glass remains empty. 

Here is a simple formalisation3 of my version 
of the Yale Shooting Problem using four time 
points 0, 1, 2, 3 and the two fluents – conditions 
that can change their truth value over time 
– empty and open expressed by the following 
first-order formulas: 

	 𝑒𝑚𝑝𝑡𝑦(0)		 (1)	

	 ¬	𝑜𝑝𝑒𝑛(0)		 (2)	

	 𝑡𝑟𝑢𝑒 → 𝑜𝑝𝑒𝑛(1)		 (3)	

	 𝑜𝑝𝑒𝑛(2) → 	¬	𝑒𝑚𝑝𝑡𝑦(3)		 (4)	

As it turns out, two evaluations of the fluents 
are consistent with the formulas, the first one  

{empty(0),	¬	open	(0)},	{empty(1),	open	(1)},	
{empty(2),	open	(2)},	{¬	empty(3),	open	(3)}	

describing the intended behaviour that the glass is 
not empty at time 3, the second one 

{empty(0),	¬	open	(0)},	{empty(1),	open	(1)},	
{empty(2),¬	open	(2)},	{empty(3),¬	open	(3)}	

describing the non-intended behaviour that the 
bottle strangely is not open again at time 2 and the 
glass is empty at time 3. 

The problem is that the formulas only describe 
the changes and that they do not specify that flu-
ents unaffected by the actions remain unchanged. 
Several so-called frame axioms – e.g. empty(1) = 
empty(0) – would be needed to restrict the solu-
tions to the one with the intended behaviour. 

3 Solutions of the Frame Problem 

In the end, several correct solutions for the frame 
problem and the Yale Shooting Problem were de-
veloped. Among the solutions that express Leib-
niz' law of inertia directly are the Event Calculus 

                                                             
3  adapted from https://en.wikipedia.org/wiki/Yale_shoot-

ing_problem 

(Kowalski and Sergot, 1986) and the Default 
Logic (Reiter, 1980). 

The Event Calculus uses the following concep-
tualisation: linear time, fluents F that hold or do 
not hold at time points, and events E that happen 
at time points and initiate or terminate fluents. 
There is one domain-independent axiom of inertia 

holdsAt(F,	T)	←	happens(E1,	T1)	∧	initiates(E1,	F)	
∧	T1<	T	∧	¬	∃	E2,	T2	[	happens(E2,	T2)	∧	termi-
nates(E2,	F)	∧	T1<	T2	∧	T2<	T	 (5)	

with the meaning "The fluent F holds at a time T 
if an event E1 happens at a time T1 before T and 
E1 initiates F and there is no event E2 and there is 
no time T2 between T1 and T so that E2 happens 
at T2 and E2 terminates F." 

To describe a concrete situation, a set of do-
main-dependent axioms would be needed to spec-
ify the actual fluents and the actual events that in-
itiate and terminate the fluents.  

The Default Logic – which will be used in this 
paper – relies on non-monotonic logic with as-
sumptions and exceptions expressed as default in-
ference rules of the form 

prerequisite	:	justification	
																(6)	

conclusion	

meaning "If the prerequisite is true and the justi-
fication is consistent with the known facts then 
the conclusion can be drawn." 

As a concrete example here is the default infer-
ence rule for the law of inertia 

r(X,S) : r(X, do(A,S))	
																	(7)	

r(X,	do(A,S)) 

paraphrased as "If r(X) is true in a situation S and 
it can be assumed that r(X) remains true after the 
action A is applied to S then r(X) remains true." 

Being inspired by (Erdem et al., 2016), I refor-
mulated (Equation 7) as an implication using log-
ical negation (¬) and negation as failure (not). 

r(X,S)	∧	not	(¬	r(X,	do(A,S)))	→	r(X,	do(A,S))									(8)	

with the paraphrase "If r(X) is true in a situation 
S and it is not provable that r(X) is false after the 
action A is applied to S then r(X) remains true." 
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Replacing the situation parameter by time 
points we get 

r(X,T1)	∧	T2>T1	∧	not	(¬	r(X,T2))	→	r(X,	T2))	(9)	

that is "If r(X) is true at a time T1 and there is a 
later time T2 and it is not provable that r(X) is 
false at T2 then r(X) is true at T2." 

4 Default Logic in Attempto Controlled 
English 

Default logic's basic axiom for inertia (Equation 
9) can be paraphrased in Attempto Controlled 
English (ACE) as 

	If	something	X	holds	at	a	time	T1	and	there	is	a	time	
T2	that	is	after	T1	and	it	is	not	provable	that	X	does	
not	hold	at	T2	then	X	holds	at	T2.																											(10)	

Note that I introduced a practically identical 
axiom when briefly discussing the frame problem 
in (Fuchs, 2016). 

As a concrete example let's model the situation 
of a sleeping person that can be expressed in Eng-
lish as "If a person falls asleep and the person does 
not wake then the person continues to sleep.", ig-
noring the duration and nature of human sleep to 
solely focus on the law of inertia. Using verbs of 
the sleep example (fall asleep, wake, sleep) di-
rectly instead of the verb hold we can customise 
(Equation 10) for the sleep example 

If	a	person	falls	asleep	at	a	time	T1	and	a	time	T2	is	
after	T1	and	it	is	not	provable	that	the	person	
wakes	at	T2	then	the	person	sleeps	at	T2.										(11)	

or simply using only the verb sleep 

If	a	person	sleeps	at	a	time	T1	and	a	time	T2	is	af-
ter	T1	and	it	is	not	provable	that	the	person	does	
not	sleep	at	T2	then	the	person	sleeps	at	T2.				(12)	

5 Reasoning with in Attempto Controlled 
English 

Having default logic's basic axiom for inertia ex-
pressed in ACE we may want to reason with it. 
There are several reasoners for ACE of which I 
will use the Attempto reasoner RACE (Fuchs, 
2012; Fuchs, 2016). RACE can 

• determine the (in-) consistency of an 
ACE text 

• deduce one ACE text from another one 
• answer an ACE query from an ACE text 

RACE is supported by about 100 auxiliary ax-
ioms – expressed in Prolog, using ACE's internal 
logical notation – that provide domain-independ-
ent knowledge like the relations between plural 
and singular nouns, the relations between num-
bers, the substitutions for query words, and much 
else. In spite of their large number auxiliary axi-
oms have little impact on RACE's performance 
since they are only called individually and only 
when needed. 

RACE is implemented in Prolog, has a web-
service and a web-interface whose output window 
will be used in the following.  

RACE has a restriction relevant for the prob-
lem at hand: For technical reasons RACE does not 
accept logical negation within the scope of nega-
tion as failure (it is not provable that ... not ...). 
Thus, we will have to replace negated verbs 
within negation as failure by verbs that express 
the intended negation, e.g. does not sleep → 
wakes. 

Reasoning Examples: Continuous Sleep and 
Interrupted Sleep. In the following RACE will 
prove that a person whose sleep is not interrupted 
will continue to sleep, while a person whose sleep 
is interrupted does no longer sleep.  

First the case of continuous sleep. To the axiom 
of the law of inertia of a sleeping person (Equa-
tion 11) two axioms are added to describe a con-
crete situation: one axiom to introduce a person 
sleeping at an initial time and a second axiom to 
introduce a later time. The theorem checks 
whether the person will sleep at the later time. 

If	a	person	sleeps	at	a	time	T1	and	a	time	T2	is	after	
T1	and	it	is	not	provable	that	the	person	wakes	at	
the	time	T2	then	the	person	sleeps	at	the	time	T2.		
A	person	sleeps	at	an	initial	time.	A	later	time	is	af-
ter	the	initial	time.		
⊢		
A	person	sleeps	at	a	later	time.	

Submitting this reasoning example to RACE's 
web-interface we get the expected result (Figure 
1) that RACE proves that the person sleeps at a 
later time. To present the result, I use a screen-
shot of the output window of RACE's web-inter-
face. This window contains the axioms, the theo-
rem, and the minimal subset of the axioms needed 
to prove the theorem. The entry "parameters" is 
used for testing.  
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Figure 1: Continuous Sleep 

Following is the case of interrupted sleep. To 
the axiom of the law of inertia of a sleeping per-
son (Equation 11) four axioms are added: one ax-
iom relates waking to not sleeping, one axiom in-
troduces a person sleeping at an initial time, one 
axiom introduces a later time, and one axiom 
states that the person wakes at the later time. The 
theorem checks whether the person will sleep at 
the later time. 

If	a	person	sleeps	at	a	time	T1	and	a	time	T2	is	after	
T1	and	it	is	not	provable	that	the	person	wakes	at	
the	time	T2	then	the	person	sleeps	at	the	time	T2.		
If	a	person	wakes	at	a	time	T	then	the	person	does	
not	sleep	at	the	time	T.	
A	person	sleeps	at	an	initial	time.	A	later	time	is	af-
ter	 the	initial	 time.	The	person	wakes	at	 the	 later	
time.	
⊢		
A	person	sleeps	at	a	later	time.	

 

Figure 2: Interrupted Sleep 

Submitting this reasoning example to RACE we 
get the expected result (Figure 2) that RACE can-
not prove that the person sleeps at the later time. 

6 Incorporating the Law of Inertia into 
RACE 

For a complex situation involving many fluents 
we would have to formulate for each fluent a sep-
arate ACE axiom of inertia thus blowing up the 
axiomatisation of the situation. Going back to 
ACE's general axiom of inertia (Equation 10) of-
fers no solution since for each fluent of the con-
crete situation we would have to introduce bridg-
ing axioms – as in the event calculus – thus again 

creating a blow-up. Instead, I decided to incorpo-
rate an abstract version of (Equation 10) as three 
auxiliary Prolog axioms into RACE: one axiom 
for intransitive verbs, one axiom for transitive 
verbs, and one axiom for the copula plus adjec-
tive. This threefold division is necessary since 
these verbs have different internal representa-
tions. There is no axiom for ditransitive verbs be-
cause they do not seem to cause the frame prob-
lem. By abstracting away from the details of the 
fluents – concretely replacing nouns, verbs etc. by 
variables – these three auxiliary axioms can cover 
any fluent. One could say that RACE now 
"knows" the law of inertia in the same way as it 
"knows" the relation between plural and singular 
nouns. 

There is an unexpected bonus: the new auxil-
iary axioms can deal with logical negation within 
the scope of negation as failure (it is not provable 
that ... not ...), eliminating the need to replace ne-
gated verbs by other verbs. 

Let us now return to the previous examples.  

Reasoning Examples: Continuous Sleep and 
Interrupted Sleep Revisited. In the following 
RACE will again prove that a person whose sleep 
is not interrupted will continue to sleep, while a 
person whose sleep is interrupted does no longer 
sleep.  

Note that the verb wake of the initial example 
can now be replaced by not sleep.  

Further note that in both cases the ACE axiom 
expressing inertia (Equation 12), is no longer nec-
essary for the proof. However, it is left crossed out 
as a reminder to the reader.  

Following is the case of the continuous sleep.  

If	a	person	sleeps	at	a	time	T1	and	a	time	T2	is	after	
T1	and	it	is	not	provable	that	the	person	does	not	
sleep	at	the	time	T2	then	the	person	sleeps	at	the	
time	T2.		
A	person	sleeps	at	an	initial	time.	A	later	time	is	af-
ter	the	initial	time.		
⊢		
A	person	sleeps	at	a	later	time.	

We get the expected result (Figure 3) that – us-
ing the (hidden) auxiliary axiom "Frame Axiom 
1: Persistence of intransitive verb." in addition to 
the (visible) axioms describing the concrete situ-
ation – RACE proves that the person sleeps at a 
later time.  
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Figure 3: Continuous Sleep Revisited 

Now the case of interrupted sleep. Note that 
also the axiom relating waking to not sleeping, 
that I used previously, is no longer needed. 

If	a	person	sleeps	at	a	time	T1	and	a	time	T2	is	after	
T1	and	it	is	not	provable	that	the	person	does	not	
sleep	at	the	time	T2	then	the	person	sleeps	at	the	
time	T2.		
A	person	sleeps	at	an	initial	time.	A	later	time	is	af-
ter	the	initial	time.	The	person	does	not	sleep	at	the	
later	time.	
⊢		
A	person	sleeps	at	a	later	time.	

 

Figure 4: Interrupted Sleep Revisited 

We get the not at all surprising result (Figure 4) 
that RACE cannot prove that the person sleeps at a 
later time. 

7 The Yale Shooting Problem Revisited 

RACE can now correctly and efficiently solve my 
version of the Yale Shooting Problem. Here again 
the version in English 

A wine glass is initially empty and a wine bottle is 
initially not open. Opening the bottle, waiting a 
moment and then pouring the wine should fill the 
glass. 

and here the ACE version 

A	glass	is	empty	at	a	time	T0	and	a	bottle	is	not	open	
at	T0.	A	time	T1	is	after	T0	and	the	bottle	is	open	at	
T1.	An	intermediate	time	T2	is	after	T1.	A	final	time	
T3	is	after	T2.	If	a	glass	is	empty	at	T2	and	a	bottle	
is	open	at	T2	then	the	glass	is	not	empty	at	the	final	
time	T3.	

⊢		

There	is	a	final	time.	A	glass	is	not	empty	at	the	final	
time.	

In addition to the three frame axioms intro-
duced before, a fourth frame axiom is needed to 
relate the state of some fluents to the precondition 
of an implicative axiom, concretely the fluents 
"empty glass" and "open bottle" at the time T2 to 
the precondition of the implicative axiom "If a 
glass is empty …". 

Submitted to RACE we get: 

 
Figure 5: Yale Shooting Problem Revisited 

The Yale Shooting Problem presented in sec-
tion 2 had two solutions, one expected, the other 
one unexpected. RACE – using its built-in inertia 
axioms "Frame Axiom 2: Persistence of copula 
plus adjective." and "Frame Axiom 4: Fluent used 
in the precondition of an implication." – generates 
only the expected one. 

8 Conclusions 

I arrive at the following conclusions 

• default logic effectively formalises the 
omnipresent law of inertia, 

• default logic – originally expressed in 
first-order logic – can be naturally formu-
lated in Attempto Controlled English 
(ACE), 

• the Attempto reasoner RACE can reason 
with the law of inertia, 

• reasoning with the law of inertia can be 
simplified and generalised by expressing 
the basic axioms not in ACE but as auxil-
iary Prolog axioms, quasi incorporating 
the law of inertia into RACE, 

• RACE can correctly solve the Yale 
Shooting Problem. 

Leibniz’ law of inertia connects the present im-
plicitly to the future, it does not make any assump-
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tions about a possible past. This is explicitly re-
flected in the formalisations presented. To reason 
backwards in time, one would need other ap-
proaches, for instance abduction, a simple form of 
which is found in (Fuchs, 2016). 
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Abstract 

RACE is a first-order reasoner for At-
tempto Controlled English (ACE). This 
paper introduces mathematical and func-
tional extensions. It is the third system 
description of RACE, and also the final 
one since RACE now covers all ACE 
constructs that have a representation in 
first-order logic. 

1 Introduction 

Attempto Controlled English (ACE)1 is a logic-
based knowledge representation language that 
uses the syntax of a subset of English. The At-
tempto Reasoner RACE2 allows users to show 
the consistency of an ACE text, to deduce one 
ACE text from another one, and to answer ACE 
queries from an ACE text.  

Two previous system descriptions (Fuchs, 
2012; Fuchs, 2016) of RACE detailed its struc-
ture, its functionality, its implementation and its 
user interfaces, material that will repeated here 
only to the extent to make this paper self-con-
tained.  

This is the third – and final – system descrip-
tion of RACE intended to complete its coverage 
of ACE. Concretely, RACE has been extended 
to reason with ACE's mathematical and func-
tional constructs. The mathematical extension 
offers primarily solutions for arithmetic prob-
lems and linear equations. The functional exten-
sion allows ACE to directly access Prolog pred-

                                                             
1 http://attempto.ifi.uzh.ch/ 
2 http://attempto.ifi.uzh.ch/race/ 

icates which has a number of important conse-
quences, for example the ability to express re-
cursive algorithms – previously not available – 
and to operate on ACE's list, set and string con-
structs.  

To avoid a possible misunderstanding, this is 
not a venture of ACE/RACE into the field of 
mathematics per se, as realised in the project 
Naproche3, or as outlined in this report4. 

Section 2 of this paper recalls general fea-
tures of RACE. Section 3 presents the mathe-
matical extension. Section 4 motivates and in-
troduces the functional extension. Section 5 
concludes with a summary of the presented ex-
tensions and with a discussion of their strengths 
and limitations. 

2 General Features of RACE 

For the convenience of the reader and to make 
this paper self-contained the material of this 
section is partially copied from (Fuchs 2012).  

RACE has the following general features: 
• RACE offers consistency checking, tex-

tual entailment and query answering of 
ACE texts. 

• RACE does not presuppose knowledge of 
formal logic or theorem proving, does not 
require users to understand RACE's inter-
nal workings, nor does it require users to 
control the reasoning process. 

• All input of RACE is in ACE, all output 
is in ACE and English. 

• Consistency checking: For inconsistent 

3 https://korpora-exp.zim.uni-duisburg-essen.de/naproche 
4 https://jiggerwit.files.wordpress.com/2019/06/header.pdf 
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ACE axioms RACE will list all minimal 
inconsistent subsets of the axioms. 

• Textual entailment and query answering: 
If the ACE axioms entail the ACE theo-
rems, respectively ACE queries, RACE 
will list all minimal subsets of the axioms 
that entail the theorems, respectively que-
ries. Furthermore, there will be substitu-
tions for all occurring query words. 

• RACE uses about 100 auxiliary axioms – 
not expressed in ACE, but in Prolog using 
ACE's internal representation – to pro-
vide domain-independent general 
knowledge. In spite of their large number, 
auxiliary axioms have little impact on 
RACE's performance since they are only 
called individually and only when 
needed. 

• RACE is implemented as a set of Prolog 
programs that can be used locally. Fur-
thermore, RACE can be accessed re-
motely via its web-client5 or via its web-
service6. 

3 Reasoning with Arithmetic, Linear 
Equations and Quadratic Equations 

Reasoning with positive integers that occur as 
determiners (2 apples, at most 3 apples) and 
with positive integers and reals that occur in 
measurement nouns (2.25 l of water) was de-
scribed in a previous system description (Fuchs, 
2012). Not covered, however, was until now 
reasoning with ACE's arithmetical constructs, 
which is part of the present system description.  

Here is a brief summary of ACE's arithmeti-
cal constructs. 

ACE offers numbers that syntactically act as 
nouns. Numbers are positive and negative inte-
gers and positive and negative reals. Further-
more, there are arithmetic expressions ((X ^ 3) ^ 
1/2 – 4*Pi) built with the help of the operators 
+, –, *, /, ^ from numbers, variables, proper 
names and parenthesised subexpressions. Arith-
metic expressions can evaluate to numbers and 
thus count as nouns. 

ACE's boolean formulas (X >= 13.4 and X < 
20.) are built from numbers, arithmetic expres-
sions, proper names and variables with the help 
of the comparison operators =7, \=, >, >=, < 

                                                             
5 http://attempto.ifi.uzh.ch/race/ 
6 http://attempto.ifi.uzh.ch/ws/race/racews.perl 

and =<. Boolean formulas syntactically act as 
sentences. 

When reasoning with arithmetic expressions 
and formulas one encounters four new phenom-
ena. 

• While previously RACE fundamentally 
relied on unification, i.e. on the syntactic 
matching of logical atoms, numerical ex-
pressions – like those in the formula 
100/50 + 8 ≟ 4 + 6 – cannot simply be 
unified but must be numerically evalu-
ated before being tested. 

• While previously the order of processing 
did not matter, the evaluation of expres-
sions – as in A is B + C. C is D - 1. B is 2. 
D is 3. – must be delayed until all constit-
uents have a value.  

• Even after evaluation remain problems of 
relating formulas, as can be seen in the 
deduction X=1 |– X>0. 

• As in standard logic, arithmetical contra-
dictions can involve negation, as for in-
stance in A is 1. A is not 1. But there are 
new forms of contradictions not involv-
ing negation, for example A is 1. A is 2. 
or simply 1=2. 

While it is possible to solve the problems as-
sociated with these phenomena in RACE's im-
plementation language SWI Prolog, this would 
amount to duplicating functionality that is avail-
able off-the-shelf in the form of mathematical 
frameworks. Because it efficiently copes with 
the four phenomena above, because it does not 
require changes of ACE's syntax, because it is 
highly efficient, and because of its simple inte-
gration, RACE uses SWI Prolog's library clpqr8 
that provides constraint logic programming 
over rationals and reals, and also logical entail-
ment.  

Following are three simple examples that 
show a range of possible applications of 
RACE's mathematical extension. 

A Banking Problem. A capital C is invested in 
a bank at an interest rate I for the duration of D 
years while the bank charges a yearly fee F. 
Then the approximate final balance is  

C	*(1+I)^D	-	F*(1+I)^(D	-	1)	-	F(1+I)*(D	-	1)	

disregarding higher powers of I in the last term 
to get a closed expression. This leads to a small 

7 Note: RACE accepts the copula is as a synonym for the 
comparison operator =. 

8 https://www.swi-prolog.org/man/clpqr.html 
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error that will be ignored here. Given the ACE 
axioms 

The	capital	C	is	1000.00.		
The	interest	I	is	0.005.		
The	yearly	fee	F	is	12.00.		
The	duration	D	is	10.		
The	 balance	 of	 the	 account	 is	 C	 *(1+I)^D	 -	
F*(1+I)^(D	-	1)	-	F*(1+I)*(D	-	1).		

and the ACE query  

What	is	the	balance	of	the	account?	

RACE arrives at the balance of 930.05. 

Figure 1: A Banking Problem 

The result (Figure 1) is presented as a screen-
shot of the output window of RACE's web-in-
terface. This window contains the ACE axioms, 
the ACE query, the subset of the axioms needed 
to answer the query and the substitution of the 
query word what, i.e. the actual numerical re-
sult. The entry "parameters" is used for testing. 

A Word Problem. Many word problems are 
dressed-up arithmetic problems. Here is an ex-
ample: 

A farmer has some cows and some ducks. Alto-
gether he has 100 animals with 260 feet. How 
many cows and how many ducks does the 
farmer have? 

To solve this word problem, one needs some 
background information, namely 

Every cow is an animal. Every duck is an ani-
mal. No cow is a duck. Every cow has 4 feet. 
Every duck has 2 feet. 

Even with this background information the 
problem cannot yet be solved because a prob-
lem-solving strategy is needed. Schwitter 
(2012) demonstrated how such a strategy could 
be devised for the Marathon Puzzle that should 

                                                             
9 https://en.wikipedia.org/wiki/Quadratic_equation 

determine the arrival order of a group of run-
ners. Schwitter's strategy consists of formulat-
ing the puzzle in the controlled natural language 
PENG, and then translating the PENG text into 
an answer set program (ASP) that is submitted 
to an ASP solver. Though Schwitter's strategy is 
elegant and efficient, it is specific to the Mara-
thon Puzzle and cannot be immediately gener-
alised. 

Instead, I suggest for word problems that are 
hidden arithmetic problems a strategy that is 
perhaps less elegant, but efficient and more gen-
eral, namely to manually derive from the text 
the – often linear – equations, thereby taking 
into account the explicit or implicit background 
information.  

Here is the ACE version of the farmer-cow-
duck problem, expressed as three axioms and 
two queries. Note that the axioms implicitly in-
corporate the complete background infor-
mation. 

A	farmer	has	a	number	X	of	some	cows	and	has	a	
number	Y	of	some	ducks.		
X+Y=100.		
4*X+2*Y=260.	
|-	
What	is	a	number	of	some	cows?	What	is	a	num-
ber	of	some	ducks?	

Submitting these axioms and queries to 
RACE we get the result (Figure 2) that the 
farmer has 70 ducks and 30 cows. Note that by 
design the two queries are answered separately 
since there are different substitutions of the two 
occurrences of the query word what. 

 

Figure 2: Farmer, Cows and Ducks 

Quadratic Equations. Quadratic equations oc-
cur in many problems9, specifically in physics 
and geometry.  
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Unfortunately, clpqr cannot solve quadratic 
equations directly. However, replacing the 
quadratic equation X^2 + P * X + Q = 0 by its 
two solutions X = -P/2 ± √ (P^2/4 - Q) elimi-
nates this stumbling block.  

As an example, here is the quadratic equation 
for the ubiquitous Golden Ratio10: 

 

Figure 1: Quadratic Equation for Golden Ratio 

Like most quadratic equations this one has 
two solutions (Figure 3). Only the positive so-
lution pertains to the golden ratio. 

The current implementation for quadratic 
equations has the following syntactic re-
strictions: The quadratic term has no coeffi-
cient, the terms P and Q are integers, integer 
fractions or reals. Since ACE does not know 
complex numbers, quadratic equations with 
complex solutions are flagged with an error 
message. 

Replacing quadratic equations by their solu-
tions solves an important problem, yet in a way 
that cannot easily be generalised. A mathemati-
cal framework more powerful than clpqr could 
possibly avoid this problem. 

4 Extending RACE by a Functional 
Notation 

For most of its intended applications ACE does 
not need a functional notation, and hence does 
not provide one. RACE, however, needs a func-
tional notation to extend its reasoning capabili-
ties. Exploiting ACE's list structure, I devised a 
functional notation in the form ["functor", ar-
gument1, argument2, ...] that allows RACE to 

                                                             
10 https://en.wikipedia.org/wiki/Golden_ratio 

call the Prolog predicate functor(argument1, ar-
gument2, ...). Note that the functor is expressed 
as a string to be accepted by the ACE parser 
without having an entry in ACE's lexicon.  

This simple extension has three beneficial 
consequences. RACE can 

• call any built-in or user-defined Prolog 
predicate, 

• make use of recursive algorithms that 
cannot be implemented otherwise, 

• operate on ACE's list, set and string con-
structs. 

Here is a simple example of list operations 
using three built-in Prolog predicates combined 
with RACE's arithmetic: 

There	is	a	list	L	of	["append",	[1,2,3],	[4,5,6],	L]	
and	there	is	a	maximum	M1	of	["max_list",	L,	M1]	
and	there	is	a	minimum	M2	of	["min_list",	L,	M2]	
and	there	is	a	result	R	and	R	=	M1	+	M2.	
|-	
What	is	a	result?	

Submitting this example to RACE we get 7 
as the result (Figure 4).  

	

Figure 4: Using Prolog's List Predicates 

Figure 5 shows an example of the user-de-
fined Prolog predicate gcd/3 that implements 
Euclid's recursive algorithm for the greatest 
common divisor. In this case a function name is 
explicitly introduced. 

 

Figure 5: Euclid's Recursive GCD Algorithm 
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Besides the three beneficial consequences 
listed above, the functional notation has another 
practical application. Understanding Prolog pro-
grams can pose problems for people not familiar 
with this language, as it happened recently in the 
context of a psychology project (private commu-
nication, 2021). The psychologist in question had 
developed a set of Prolog programs to solve sta-
tistical problems, but could not help to notice the 
lack of understanding of his colleagues. The 
functional notation would have enabled him to 
incorporate calls to these Prolog programs into 
ACE texts that his colleagues could understand 
without knowing much of Prolog. 

5 Conclusions 

I added to the Attempto Reasoner RACE math-
ematical and functional extensions and illus-
trated them by small examples.  

RACE's mathematical extension does not 
raise any questions besides being limited to 
some extent by the restrictions of the chosen 
mathematical framework clpqr. 

RACE's functional extension, however, 
raises two issues. First issue: Though the list no-
tation is accepted ACE syntax, the explicit calls 
of Prolog predicates in an ACE text could be 
considered a violation of the intention of the At-
tempto project to hide formality from its users. 
Second issue: RACE relies on auxiliary Prolog 
axioms that add domain-independent general 
knowledge to the domain-specific knowledge of 
the given ACE axioms (Fuchs, 2012). This reli-
ance on Prolog is increased by the functional ex-
tension that allows us to directly call Prolog 
predicates. Since Prolog has the power of the 
Turing machine, RACE could in principle de-
duce any conclusion from the axioms. As a con-
sequence, besides the usual questions of the cor-
rectness and the completeness of the reasoning 
process a further question arises, namely the rel-
evance. What should RACE actually deduce? 
For instance, RACE's auxiliary axioms enable 
the deduction John's cat purrs. |- John has a cat. 
Is this deduction – that has no logical justifica-
tion, but is based solely on common sense – ac-
ceptable? The answer depends not only on the 
application domain, but also on the expectations 
and intuitions of the users, and this – as my ex-
perience has amply shown – may be highly de-
batable.  

RACE now covers all language constructs of 
ACE with the exception of imperative sentences 
that do not play a role in logical deduction, and 
two constructs that have no – or at least no gen-
erally accepted – logical representation, namely 
the unconventional modal operators for recom-
mendation (should) and admissibility (may) that 
were provisionally introduced into ACE to 
cover the medical jargon of Clinical Practice 
Guidelines (Shiffman et al., 2009). 
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Abstract

The Dutch Tax Administration has developed
and exploited a CNL, RegelSpraak, to auto-
mate law execution. This CNL is meant to
be comprehensible for legal specialists, IT de-
velopers and computers. However, quality as-
sessment of rule patterns and their ability to ex-
press all relevant tax laws is currently not pos-
sible. In this study we evaluate potential qual-
ity criteria that offer the capability to evaluate
rule pattern quality based on semantic expres-
sive power, cognitive usability and functional
and structural correctness. We design a quality
framework based on insights from literature re-
view, interviews and observations, which has
been qualitatively operationalized. Initial re-
sults suggest that they touch on relevant vari-
ables, but that further quantitative operational-
ization and testing of the framework’s usability
in practice are needed.

1 Introduction

RegelSpraak is a Dutch controlled natural language
(CNL) developed in 2008 by the Dutch Tax Admin-
istration (DTA), which has since been employed
for the purpose of law execution. It is meant to be
comprehensible for legal specialists, IT developers
and computers alike, offering a common ground
for unambiguous communication about legislation.

RegelSpraak is based on RuleSpeak (RuleSpeak,
2021) and has a strong pragmatic focus. It is cur-
rently being employed in several projects for the
specification and implementation of tax rules, such
as income tax, corporation tax and wage tax. For
these selected purposes, RegelSpraak functions ad-
equately. However, it is not possible to assess
whether RegelSpraak, given its current state, is
capable of expressing all relevant tax laws. Never-
theless, new patterns for the formulation of rules
are being developed as deemed necessary. The
DTA is therefore seeking to develop a framework
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for evaluation of rule pattern quality which can be
directly used during the process of rule pattern de-
velopment rather than afterwards. In addition to
rule pattern assessment, the framework must be
able to assess the quality of the CNL as a whole.

This study focuses on the aspects of and perspec-
tives on quality which may be relevant to assess
in the context of a CNL aimed at automated exe-
cution of rules. We evaluate potential criteria for
assessment of the understandability of RegelSpraak
and the quality of a rule pattern, as well as whether
additional quality measures are needed. These in-
sights can further the development of rule patterns,
as well as the tooling used to implement them.

1.1 The basic structure of RegelSpraak
Two categories of CNLs are those improving read-
ability for human users, and those facilitating an au-
tomated semantic analysis (Tommila and Pakonen,
2014). RegelSpraak falls into both categories. The
foundations of RegelSpraak lie in the Dutch version
of RuleSpeak (RuleSpeak, 2021): a set of guide-
lines to formulate business rules in a precise yet
user-friendly manner. As opposed to RuleSpeak,
though, RegelSpraak has a predefined syntax and
semantics. The syntax is enforced though the de-
fined language patterns, which have a precisely
defined semantics. The use of examples of the in-
tended rule behaviors ensure that the rule analyst
understands the implication of the rules specified.
These language patterns facilitate the automated ex-
ecution of the rules, which is a major step forward
for the DTA’s IT implementation process.

Table 1 presents the types of rules RegelSpraak
employs. A RegelSpraak rule always has the fol-
lowing format: [RESULT] IF [CONDITION(S)].
A condition compares attributes, which can have
boolean or numerical values, or be dates, enumer-
ations or roles. The result is executed as a con-
sequence of the successful evaluation of the con-
ditions. The results and conditions are connected
using carefully composed Dutch phrases to maxi-
mize the resemblance to a natural sentence.

The following fictitious example is a Regel-
Spraak calculation rule. The results part is specified
before the listing of the conditions.

Rule tax based on travel time
Valid from 2011 to 2015

The tax on a train journey must be
calculated as the TAX PERCENTAGE of
(900 minus the travel time by train
in minutes of the taxed journey)

if the journey meets all of the
following conditions:

– the type of the travel tax is
equal to ‘gross tax based on
travel time’

– the travel time by train in
minutes of the taxed journey is
larger than or equal to 600

– the travel time by train in
minutes of the taxed journey is
smaller than 900.

The aforementioned rule is an instantiation of
the following rule pattern:

Rule <description>
Valid from <year> to <year>

The <attribute> of an <object> must
be calculated as the <expression>

if the <object> meets <all | one
| at least n | at most n | none
| exactly n> of the following
conditions:

– <condition>

– <condition>.

1.2 Two cognitive perspectives on rule
authoring

Rule authoring is a cognitively demanding task
for analysts, and it is therefore important to re-
view some cognitive process requirements. Analo-
gies from modeling and writing research are used
(Wilmont, 2020).

Early research on story writing found that writ-
ers use three strongly intertwined processes: plan-
ning, sentence generation, and revision (Hayes
and Flower, 1986). Furthermore, writing is goal
directed and goals are hierarchically organized.
Skilled writers comment on their goals early in
the process and continue to define subgoals after
having determined the main goal. This process can
also be observed in conceptual and scientific model-
ing (Ross et al., 1975; Sins et al., 2005). The ability
to abstract the essential meaning from concrete ac-
tivities or observations, as well as the ability to
engage in metacognitive monitoring behavior, are
important success factors in modeling (Wilmont
et al., 2013). Tax rules can be viewed as a model of
the legal reality, therefore the importance of these
skills applies to rule authoring as well.

Following Gemino and Wand (2003), during rule
authoring an analyst can take on one of two perspec-
tives: reader or writer. The rule writer is the active
role, responsible for translating knowledge into
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Rule type Description
Decision rule Deduces a true/false re-

sult
Calculation rule Calculates a number or

amount
Time/date rule Calculates dates
Consistency rule Validates whether the

value of an attribute is
consistent when com-
pared to the value of an-
other attribute, or a va-
lidity check for one at-
tribute

Assigning charac-
teristics

Determines the value of
a characteristic

Initialisation rule Assigns a value to an at-
tribute if the value is not
being determined by a
rule or an input message

Object creation rule Creates a new object
Fact creation rule Creates a new fact

Table 1: Types of RegelSpraak rules

rules. On the contrary, the rule reader is passive,
concerned with reading the rules and constructing a
mental model of the domain based on the informa-
tion contained in the selected rules, RegelSpraak’s
grammatical structure and internalized knowledge
gained from prior experiences.

This dichotomy translates perfectly to the roles
assumed in rule development teams. Typically, they
are made up of tax experts and rule analysts. Tax
experts have highly specialized knowledge on legal
contexts in which the rules are meant to function, as
opposed to rule analysts who have intricate knowl-
edge of RegelSpraak syntax and methods for rule
authoring. Therefore, tax experts are primarily con-
cerned with reviewing what the rule analysts have
created. However, despite the fact that each team
member is likely to operate in a dominant role,
everyone will inevitably have to switch between
the roles occasionally during the process of rule
authoring. It is therefore essential that the quality
assessment framework flexibly accommodates re-
flection on team progress from both the reader and
writer perspectives.

1.3 Evaluating CNL quality

As RegelSpraak is constantly evolving, fast and
targeted quality evaluation during development is

crucial. Interestingly, earlier work on the evalua-
tion of CNLs has focused mostly on the usability
aspects, in particular understandability and learn-
ability (Kuhn, 2009). However, during interpreta-
tion tasks it proved difficult to determine whether
people truly understand the CNL or whether they
follow syntactical patterns to complete the task.
Kuhn (2009) demonstrated that graphical represen-
tations, which prompted people to reason about
the meaning of statements, encouraged understand-
ing. However, RegelSpraak projects may contain
over 1000 rules, in which case graphical represen-
tations would not be suitable. Additionally, basic
knowledge of logic helped to evaluate statements
in which potentially ambiguous constructs such as
an inclusive OR are used. This implies that for the
user, some background knowledge is desirable.

Concerning RegelSpraak itself, a set of rules can
be viewed as a model of legal reality. From this
point of view, conceptual modeling quality crite-
ria can be applied for evaluation. An early quality
framework differentiated between syntactic, seman-
tic and pragmatic quality (Lindland et al., 1994).
This framework has been expanded and revised to
become the SEQUAL (SEmiotic QUALity) frame-
work for model evaluation (Krogstie et al., 2006),
which provides theoretical, qualitative guidelines.
It encompasses the following aspects: physical rep-
resentation and availability, empirical layout and
readability, syntactic requirements, semantic un-
derstandability, pragmatic impact of the activated
model, socially mediated shared understanding and
organizational aspects such as which parts of the
model can be changed.

For our purposes the original three aspects are
leading. Syntactic quality focuses on how to en-
hance the formal syntax, to implement error de-
tection, error prevention and recovery. Semantic
quality refers to the human interpretation of the
model, the relation between one’s knowledge and
the model. Pragmatic quality concerns model acti-
vation; that is, how the models are interpreted by
both social and technical actors. Technical interpre-
tation demands complete models with operational
semantics, whereas social interpretation requires
flexibility and effective abstraction. We use the
aspects from the revised SEQUAL version to guide
the development of the RegelSpraak evaluation cri-
teria.
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2 Methodology

For this exploratory project, we organized our activ-
ities in three phases: 1) an exploration of potential
quality criteria, 2) an investigation of the criteria in
terms of user perspectives and cognitive processes,
and 3) integration into a conceptual framework.

The exploration of quality criteria was done
through a literature review, which included both
scientific and grey literature. The domains of CNL,
software quality and linguistic quality were queried.
Additionally, documentation provided by the DTA
reviewed.

For the exploration of user perspectives, we con-
ducted interviews with five DTA employees who
worked in varying functions. The sample consisted
of one developer and four rule analysts, of whom
one had a legal background and one was responsi-
ble for RegelSpraak training courses. We set up an
interview guide to include the following aspects:
generic linguistic quality aspects, the role of Regel-
Spraak in the daily workflow, difficulties and best
practices when using rules and patterns, incentives
for new pattern development, the documentation
of design decisions and how best to teach it to new
employees.

Interviews were audio-recorded with the partici-
pants’ consent, and analysed directly from the au-
dio files. We denoted timestamps and took elab-
orate notes whenever utterances of the following
types were encountered:

• Decision-making aspects of determining rule
and pattern quality,

• Underlying principles and frameworks which
analysts and developers (unconsciously) use
to test and validate new rules and patterns
during development,

• Explicit mentions of routine actions.

Furthermore, we conducted a semi-structured,
non-participant observation of a rule pattern design
session, in which three rule analysts, one developer
and a project leader took part. This session was
held via Cisco Webex, and the researchers switched
off their audio and cameras to appear as unobtru-
sive as possible. The session was video-recorded
with the participants’ consent. The following struc-
tural framework was used to analyse the video:

• Spontaneous mention of quality criteria (ei-
ther implicit or explicit),

• Differences in interpretation of quality crite-
ria,

• Mention of operational norms for quality cri-
teria,

• Allocation of attention to different quality cri-
teria,

• The use of the human versus the rule engine
perspective in the discussion,

• The process of decision making in the context
of differing opinions,

• Quality aspects which might block further pat-
tern development progress.

The final integration phase took place in short de-
sign cycles in which DTA employees were actively
involved. Significantly recurring quality criteria
were deduced by triangulating the literature review,
interview and observation results. The integration
process focused on formulating operational criteria
for each of the quality criteria, and on designing
a user-friendly procedure for testing rule pattern
quality in daily practice.

It should be noted that the primary scope for this
initial phase of the RegelSpraak evaluation project
is focused on standardizing the best practices to
align understandability for users and formal syntax
as produced by rule analysts. A formal, computa-
tional evaluation of the resulting RegelSpraak rules
is beyond the scope of this paper.

3 Results

Our multi-faceted exploration yielded insights from
literature review, interviews, observations and ac-
tive design cycles. The final set of quality crite-
ria that we selected consisted of the following:
Readability, Recognizability, Explainability, Us-
ability, Completeness, Syntax, Complexity, Effi-
ciency, Compositionality, Domain Independence,
Technical Executability. These criteria were then
differentiated and described from both a fiscal and
a computational perspective. The resulting cate-
gorizations are shown in Section 3.3: the Fiscal
perspective is shown in Table 2, and the Computa-
tional perspective in Table 3.

We continue to describe how the iterative re-
search process resulted in the design of our frame-
work. Firstly, the results of our quality criteria ex-
ploration are discussed, followed by the integration
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with user perspectives and finally the translation to
actual framework development.

3.1 Phase 1: An exploration of quality
criteria

We approached the exploration of quality crite-
ria from four perspectives: linguistics, concep-
tual modeling, software engineering and usabil-
ity. Major themes that emerged were semantic
expressiveness, cognitive usability and the func-
tional and structural aspects associated with formal
languages.

3.1.1 Semantic expressiveness
As described in Section 1.3, syntax, semantics and
pragmatics form the basis for the framework. At
the intersection of linguistics, conceptual modeling
and usability, the ability to express the desired se-
mantics in a rule pattern is one of the most crucial
themes. Ultimately, if the model does not convey
the right message to the stakeholders for whom it
was created, the relevance of all other aspects of
model quality may be questioned. In the case of
RegelSpraak, semantic consensus between fiscal
experts, rule analysts and IT developers must be
achieved.

Legal texts are often formulated with precision
and disambiguation in mind, yet many linguistic
constructs are used to express desired nuances. De-
spite RegelSpraak’s user-centred focus, its main
goal is to automate rules, for which human texts
have to be transformed to fit into a formal syn-
tax. This requires a delicate balance between the
abstraction levels of both rule patterns and rules,
as they must be designed to express as many di-
verse meanings as possible yet not become overly
generic.

Guidelines for how to incorporate maximal ex-
pressive power in a formal rule pattern can be found
in Grice’s maxims (Grice, 1991). In short, Grice’s
maxims dictate that contributions to a conversation
should be maximally informative within minimal
wording, contain no untruths, be precise, unam-
biguous and above all relevant. Whenever there
is a possibility that ambiguity might occur, for in-
stance with ‘can’-patterns, they must be tested ex-
tensively against a diverse sample of concrete rules
until there is no room left for interpretation. This
records how fiscal concepts and norms are inter-
preted and applied. From this test, essential rele-
vance and pattern complexity minimization can be
determined.

Furthermore, automated rule engines can only
deal with a specified vocabulary, which further em-
phasizes the importance of a concise vocabulary.
If patterns are designed to accommodate this vo-
cabulary and structured in such a way that chosen
signalling words allow minimal freedom of inter-
pretation, RegelSpraak forms an excellent basis for
facilitating flexible, or agile, law execution.

3.1.2 Cognitive usability
Cognitive usability requirements featured promi-
nently in the interviews. The concepts of under-
standability, readability and explainability were
considered to have the highest priority, although
the interview results suggest that their precise defi-
nitions and relations to each other are all but clear-
cut.

Understandability is required in different forms.
For one, rule analysts are taught the existing rule
patterns and what they can express. It is therefore
essential that the logic and abstraction associated
with rule patterns are understandable. For another,
in the current situation fiscal experts do not write
rules. They only read what the analysts have writ-
ten, and listen to analysts explaining their creations.
Therefore, readability and explainability may be
seen as critical understandability prerequisites.

When the interviewees were prompted to com-
ment on a rule pattern the researchers considered
poorly understandable, aspects such as sentence
complexity, poor abstraction (“too much detail in
one construct”, “using a summation or a basic
calculation should be coverable with ‘calculation’,
and the context should clarify how the calculation
is to be performed”), structure (“diverse options
have been written out in different places in the pat-
tern”) and clarity of option meanings (“the options
in this pattern raise too many questions. For ex-
ample, why is ‘first/last’ here? Is this variable the
first of a sequence?”) were mentioned. From this,
we deduce that structure and abstraction level are
critical understandability requirements for the rule
pattern. For the terminology used in the rule pat-
tern, unambiguous interpretation is most important.

One of the interviewees suggested the following:
“it would be good to provide such generic patterns
with instantiated examples, but because of a combi-
nation of priority and time this unfortunately does
not happen well enough”. Research confirms that
modelers use abstraction skills to actively connect
generic concepts to concrete activities and objects
through generalization and instantiation (Theodor-
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akis et al., 1999). This is therefore another critical
aspect contributing to understandability to be in-
cluded in the quality evaluation framework.

3.1.3 Functional and structural evaluation
RegelSpraak has many parallels with programming
languages. For functional and structural assess-
ment, inspiration may thus be taken from exist-
ing software quality criteria, such as the ISO/IEC
25010 (International Organization for Standardiza-
tion, 2017). Two perspectives are relevant: func-
tional quality, which measures the extent to which
the software satisfies the functional requirements
for its intended use, and structural quality, which
measures the extent to which the software satis-
fies non-functional requirements such as robust-
ness, usability, maintainability, compositionality or
complexity. Functional assessment must be con-
sidered during creation of rule patterns, whereas
structural assessment must be performed immedi-
ately after creation. It is thereby important to assess
the current state of a rule or rule pattern against the
desired target state, using both objective data and
user perceptions, and describe the results both in
terms of qualitative descriptions and hard numbers
(Paroubek et al., 2007). Examples should be used
to the point of saturation to ensure the stability of
the rule patterns in terms of grammar and expres-
siveness (Veizaga et al., 2020).

One interviewee made it particularly clear that
the principle of compositionality is essential for
linking the structure of a rule pattern to the way
it is to be implemented in the rule engine. In the
linguistic sense, it concerns the building blocks of
sentences and the relations between them, and in
the computational sense that a system should be
designed by linking smaller, independent subsys-
tems so that recursive reasoning about the meaning
and workings of the system is possible. The rule
pattern - implementation connection is made by
relating the modular, atomic building blocks of a
law as simple and consistently as possible to derive
equally modular rule patterns from them, which
can thereafter be implemented as such.

3.2 Phase 2: User perspectives and cognitive
processes

In order to be able to design quality criteria, in-
sights in the current way of rule pattern use and
development are necessary. Additionally, clarity
on the prospective users is needed. From the inter-
views and observations we gained some insights in

how people think they use rule patterns, how they
are being used in a collaborative design session and
which future users they envision.

3.2.1 Prospective users
Concerning prospective users, the way in which
these opinions were expressed was very much di-
versified. Whereas one interviewee idealized that
“John Doe must be able to understand it”, other
interviewees were more conservative: “It is still
a domain-specific language, so it is of particular
importance that the ‘inhabitants’ of the domain,
namely the rule analysts and the fiscal experts, are
being served.”

In the current system, rule analysts are being
trained in what can be expressed with existing rule
patterns. There are no fiscal experts who design
rules independently. Fiscal experts are only en-
gaged as ‘rule readers’. Note that this concerns
only the concrete, implementable rules, not rule
patterns. Therefore, the emphasis of quality criteria
for fiscal experts focuses only around understand-
ability and readability. There thus exists a rather
large divide between the rule analyst and the fiscal
expert in the way they work with rules and rule
patterns.

3.2.2 Rule pattern development best
practices

For the way of working when designing rule pat-
terns, best practices have already been formulated.
Rule pattern design is always done in a multidis-
ciplinary team, which undergoes a design cycle
consisting of the following phases: Analysis, Spec-
ification of rule pattern, Review with designated
team, Implementation, Create documentation and
Use pattern in practice. The activities of explaining
ideas for patterns to colleagues and paying spe-
cial attention to understandability are emphasized.
However, all interviewees agreed that more struc-
ture for evaluation is desired. “We don’t really have
a good framework for testing pattern development,
so many people contribute ideas from their own
backgrounds and perspectives, we miss a common
framework that states what is important and why.
We must all work from the same framework.”

The most important insights emerging from the
work session observation was that several quality
criteria such as relevance, consistency, uniformity,
flexibility and non-ambiguity were already spon-
taneously mentioned, and participants also men-
tioned afterwards that these were not consciously
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planned or organized. The human usability per-
spective featured most prominently, although some
operational criteria are discussed. The questions
a rule pattern design raises leads the discussion
rather than criteria. Additionally, the explicit dif-
ferentiation between rules and rule pattern was not
made, they were being used interchangeably which
sometimes led to confusion. Finally, this observa-
tion also gives valuable insights in the dynamic,
flexible workflow of daily practice, which is an im-
portant criterion to keep in mind when designing
the evaluation framework to keep it usable.

3.3 Phase 3: Developing a quality assessment
framework

Based on the input from the literature review, in-
terviews and observations we have been able to
deduce a set of quality criteria for the evaluation
of RegelSpraak rules and rule patterns. The main
challenge that remains is to operationalize them to
the extent that they are precise yet workable.

3.3.1 Differentiating perspectives
As mentioned above, our set of quality criteria con-
sists of the following: Readability, Recognizability,
Explainability, Usability, Completeness, Syntax,
Complexity, Efficiency, Compositionality, Domain
Independence, Technical Executability.

1. Human - Machine After reviewing the set
of quality criteria, we came to the conclusion that
most can be interpreted from two perspectives: the
human and the machine. The human perspective
encompasses how fiscal experts and rule analysts
work with the rules and patterns, whereas the ma-
chine perspective embodies the computational im-
plementation and execution of rules. Readability,
Recognizability and Explainability are uniquely hu-
man, but the other criteria can be operationalized
from multiple perspectives.

2. Read - Write On top of the human - machine
differentiation, we included the read - write distinc-
tion within each perspective, as mentioned in Sec-
tion 1.2. From the human perspective, fiscal experts
read rules and rule analysts write rules. From the
computational perspective, the rule engine reads
the rules as input and writes them to executable
RegelSpraak rules as output.

3. Rule - Rule Pattern The next critical step was
to differentiate explicitly between the two abstrac-
tion levels of concrete, implementable rules, and

abstract rule patterns still to be instantiated. We
had previously observed that the two were being
used interchangeably in practice, but for precise
operationalization a clear distinction is necessary.

Revision: Fiscal - Computational However,
during the consecutive iteration it became clear
that simply distinguishing between a human and
a computational perspective was too simple. For
example, when defining a criterion such as Com-
plexity, even from a computational perspective hu-
man developers are responsible for delivering the
right level of complexity to the machine. Therefore,
what was initially the ‘Human’ perspective became
the ‘Fiscal’ perspective, and ‘Machine’ changed to
‘Computational’.

Additionally, it became clear that applying the
Read - Write and the Rule - Rule Pattern distinc-
tions to the computational perspective resulted in
an artificial description that did not correspond with
what could be tested in practice. In particular, the
implementation and execution of instantiated rules
could be seen as a result of successful rule pat-
tern instantiation, and therefore not truly relevant.
Therefore, we unified the Computational perspec-
tive to focus on the Rule pattern level and drop
the Read - Write distinction. The core focus then
becomes the implementability of the rule pattern,
whereby ‘implementable’ is viewed from the us-
ability perspective of the UX designer as creating a
usable interface for the rule engine, and from the
perspective of the developer as delivering efficient
and complete code.

The final differentiation of perspectives and cat-
egorization of criteria within the Fiscal perspective
is shown in Table 2, and the Computational per-
spective in Table 3.

3.3.2 Operationalizing qualitative norms
Tables 2 and 3 show that certain criteria are unique
to a perspective, whereas others are needed from
different perspectives. The most pervasive one is
Complexity. One could argue that within the Fiscal
- Read perspective, complexity is integrated in all
criteria, since an overload of complexity hinders
readability, recognizability and understandability.
For the Fiscal - Write and Computational perspec-
tives, however, complexity needs to be specifically
defined. We began the operationalization with qual-
itatively formulated norms, touching on core vari-
ables. From the Fiscal perspective, Complexity of a
rule or rule pattern encompasses the following four
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Fiscal - Rule
Pattern

Fiscal - Rule

Read Recognizability Recognizability
Readability Readability
Explainability Explainability

Write Complexity Complexity
Completeness Completeness
Usability Usability
Syntax Syntax
Compositionality
Domain Indepen-
dence

Table 2: The Fiscal perspective.

Computational - Rule Pattern
Complexity
Completeness
Usability
Compositionality
Efficiency

Table 3: The Computational perspective.

elements: Number of variables, Number of vari-
able types, Number of relations between variables,
and Order. In case of an instantiated rule, it can be
made up of several pieces of rule pattern. Therefore
it is important to minimize for each rule the scope
and thereby the number of rule patterns or pattern
parts that have to be used to express the meaning
of the rule. From the Computational perspective,
however, the non-functional requirements of Per-
formance efficiency and Maintainability were the
critical variables. The three qualitative definitions
of Complexity are as follows:

Complexity ‘Fiscal - Write - Rule Pattern’ A
rule pattern must be divided into sub-patterns if the
following complexity conditions cannot be met:

1. Is the number of variables minimized?

2. Is the number of operators minimized?

3. Are the types of values a variable can take
minimized?

4. Is the number of relations between variables
minimized?

5. Is the scope of the pattern minimized?

6. Are the variables presented in a logical order
in which consecutive variables build on prior

variables to maximize readability, usability
and domain independence?

Complexity ‘Fiscal - Write - Rule’ A rule must
be divided into sub-rules or enumerations if the
following complexity conditions cannot be met:

1. Does the number of legal concepts represented
in the rule remain such that connected sen-
tence parts remain readable, recognizable and
understandable?

2. Is the number of operators in the rule mini-
mized?

3. Is the number of legal concepts in the rule
minimized?

4. Is the number of relations between legal con-
cepts and (parts of) rule patterns minimized?

5. Is the scope of the rule minimized?

6. Have the legal concepts been defined on the
highest possible level of abstraction such that
the semantics are still representative of the
law?

7. Is legal maintenance of rules easy to perform?

Complexity ‘Computational’ Verify whether
the complexity of the code to be implemented is
such that performance efficiency and maintainabil-
ity are guaranteed:

1. Is the number of functions needed to imple-
ment the rule pattern minimized?

2. Is the number of steps needed to go from
the first to the final step in the function mini-
mized?

3. Do the functions have a modular structure in
relation to each other?

4. Is there legacy code that is no longer func-
tional?

5. Which critical consequences may happen if a
rule pattern fails? How many steps are needed
to deduce this?

6. Which non-critical consequences may happen
if a rule pattern fails? How many steps are
needed to deduce this?

7. How does error handling in the rule pattern
implementations take place?
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8. Can rule pattern maintenance be efficiently
and accurately performed?

4 Discussion and future work

Given the current framework for relevant quality
criteria and the positioning of these within clearly
delineated perspectives, a rough standard has been
created to improve insights in the quality of Regel-
Spraak rule patterns and stimulating critical discus-
sions.

As the study progressed, the question arose to
which extent rule pattern quality could be studied
separately from the process of rule creation in prac-
tice. One of the best ways to test the meaning of a
rule pattern remains to instantiate it with existing
legal procedures. This led us to further emphasize
the importance of making the Rule - Rule pattern
distinction, and the Read - Write distinction on
top of it. A usable framework with impact will
therefore always have to combine analytic evalu-
ation based on abstract quality criteria with user
evaluation based on actual implementation tests,
preferably in an iterative, flexible fashion.

We have not yet been able to test the criteria in
the practice of rule pattern design. However, an ini-
tial qualitative review of the criteria suggested that
the content indeed touches on relevant variables.
The most important next steps are to further refine
the best practice cycle the DTA team has already
set up to incorporate the evaluative criteria, to focus
specifically on how to implement them so that they
are usable within the flexible dynamic of design
sessions, and to determine the level of quantitative
operationalization needed. All these factors need to
be incorporated in practical usability testing. Fur-
ther quantitative validation of our design choices
to demonstrate that they are representative of legal
constructs need be performed, for example using
text mining or surveying a large population of legal
professionals.

For usability in practice, the core procedure boils
down to awareness of within which predefined per-
spective a task at hand can be classified, to take note
of the criteria defined within that perspective, and
to use the operational qualitative criteria to evalu-
ate the result, within the dynamic team discussion.
A trade-off will have to be made between the pur-
poses of stimulating critical discussion about rule
pattern proposals, and actually measuring quality in
a more quantitative sense in relation to a predefined
quality standard. It will be interesting to study what

numerical constraints on understandability may be
useful, such as incorporating the known limits of
human working memory (3-5 items) (McCutchen,
1996; Ricker et al., 2010) to constrain the number
of nested elements, operators and parameters.
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Abstract

We present a CNL, which is a component of
L4, a domain-specific programming language
for drafting laws and contracts. Along with for-
mal verification, L4’s core functionalities in-
clude natural language generation. We present
the NLG pipeline and an interactive process
for ambiguity resolution.

1 Introduction

We introduce L4, a prototype1 domain-specific lan-
guage (DSL) for drafting laws and contracts. L4’s
applied focus places it within the “Rules as Code”
movement (e.g. OpenFisca, Catala (Merigoux
et al., 2021)) that itself draws on early compu-
tational law thinking (Sergot et al., 1986; Love
and Genesereth, 2005). But rather than focusing
on encoding laws into existing programming lan-
guages, we devise an external DSL designed for
legal specification. From this specification, we gen-
erate a range of output formats. Key augmentations
include IDE support, formal verification engines,
transpilation to operational rule engines, and natu-
ral language generation (NLG). The latter is done
via a CNL implemented in Grammatical Frame-
work (GF, Ranta 2004), and will be the focus of
this paper.

Motivation for a DSL The intended user of L4
is not a law firm, but rather an organization or a
person who wants to bypass law firms. As a pos-
sible early adopter profile, we envision a technol-
ogy startup drafting their initial agreements in L4.
Drafting rules as code enables the owners to keep
track of dependencies and detect potential conflicts,
without needing a lawyer.

More generally, a formal encoding of rules al-
lows the creation of different end-user applications.

1L4 is a work in progress, and this article presents a snap-
shot of the project as of June 2021. Any concrete examples of
L4 code or the CNL may change in a few months.

When the specification changes, it is only neces-
sary to implement the change in the L4 source, and
regenerate the applications.

Motivation for NLG In order to communicate
with the rest of the world, the L4 encoding needs to
be translated into non-technical end-user products,
such as natural language documents and interactive
web applications. We present two NLG applica-
tions in this paper.

• An expert system, which generates interview
questions from L4 code, uses the user input to
query an automated reasoner, and presents the
reasoner’s answers in natural language (Sec-
tion 3.1).

• In the future we aim to support the generation
of an isomorphic natural language version of
L4 code (Section 3.2).

In the remainder of the paper, we present a small
example of L4 code in Section 2, a brief introduc-
tion to the NLG pipeline in Section 3, the CNL
in Sections 4 and 5, and finally, future work in
Section 6.

2 L4 example

We demonstrate L4 with the following scenario,
simplified from an experiment to draft existing reg-
ulations in L4 (Morris, 2021). There are certain
rules for whether a legal practitioner may accept
an appointment in a business. For instance, if the
business would share the legal practitioner’s fees
with unauthorized persons, the legal practitioner is
not allowed to accept the appointment.

In Figure 1, we model this rule in L4 (in
its current syntax). First, we declare the data
types for Business and LegalPractitioner,
and two predicates, MayAcceptAppointment and
UnauthorizedSharingFees. Then, we formulate
a rule to say that a legal practitioner may not accept
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# types and predicates
class

Business
LegalPractitioner

decl
MayAcceptAppointment

: LegalPractitioner ->
Business -> Bool

UnauthorizedSharingFees
: Business -> Bool

# rules
rule <no_sharing_fees>
for b : Business,

l : LegalPractitioner
if UnauthorizedSharingFees b

then not MayAcceptAppointment l b

Figure 1: L4 code for a rule "legal practitioner may
not accept an appointment in a business that involves
sharing fees with unauthorized persons"

an appointment in a business which involves shar-
ing fees with unauthorized persons. The current
syntax of L4 is adopted from functional program-
ming languages. For example, the type signature
for F : A → B → Bool means “the function F
takes an A and a B, and returns a Boolean”.

In the simplest case, we can look up the
names of the classes and predicates from any
large lexicon: Business is just a single noun,
and LegalPractitioner is either a compositional
noun phrase of legal (adjective) and practitioner
(noun), or a multi-word expression in a domain-
specific lexicon. The two predicates are more com-
plex, since they involve a full verb phrase. Figure 2
shows an optional lexicon, where the user can write
a CNL description of the predicates.

A predicate name like UnauthorizedSharing-

Fees is used throughout the program code, and
the NLG engine will use the description involves
sharing fees with unauthorized persons—not as an
immutable string, but parsed with a GF grammar
into a deep syntax tree. The placeholders, shown in
the description of MayAcceptAppointment, are op-
tional, if the arguments appear predictably: subject
for a unary predicate, and subject and object for a
binary predicate. Any CNL description of the form
predicate is treated as {Arg1} predicate {Arg2}.
However, if we wanted to have an argument in an-

# optional CNL descriptions
lexicon

UnauthorizedSharingFees
@ "involves sharing fees with

unauthorized persons"
MayAcceptAppointment
@ "{LegalPractitioner} may

accept an appointment
in {Business}"

Figure 2: Optional lexicon with CNL description of
predicates

other role, then the placeholders are obligatory, as
shown in Figure 3.

3 NLG from L4

L4 is implemented using Alex (Dornan and Jones,
2003) and Happy (Marlow and Gill, 1997).

First, an L4 program is parsed into an L4 abstract
syntax tree (AST). That tree is used as an input to
all of the output formats named in Section 1. The
L4 abstract syntax and the CNL descriptions are
used in two NLG applications, which are presented
in the remainder of this section.

3.1 Expert system

Listenmaa et al. (2021) presents the expert system
in more detail. In this paper, we only introduce
what is necessary to set the context for the CNL.

Interview questions The first output target for
the expert system is a set of interview ques-
tions. Suppose we want to ask a user interactively
whether their business may employ a legal practi-
tioner: then we transform every predicate that is
a precondition to MayAcceptAppointment into a
question.

decl
UnauthorizedSharingFees
: Business

-> LegalPractitioner
-> Bool

@ "{Business} involves sharing
{LegalPractitioner}'s fees
with unauthorized persons"

Figure 3: Alternative example, where Unauthorized-
SharingFees is a binary predicate
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1. Is your business incompatible with
the dignity of the legal profession?

2. Does your business involve sharing
fees with unauthorized persons?

3. . . .

The questions are embedded in a Docassemble
interview. Docassemble is an open-source legal ex-
pert system, where users answer a set of questions
through a browser interface. Their responses are
then compiled together into a document, or pro-
cessed further in other applications. In our system,
we use the answers to query an automated reasoner.

Reasoner output in natural language The sec-
ond output target is a verbalization of answers that
we get from an automated reasoner. Previously
we posed questions to the user—suppose they an-
swered “yes” to question 2. The user input is sent
to an automated reasoner, in order to query whether
the user may employ a legal practitioner in their
company. The reasoner’s answer to the query is
then rendered in natural language.

Your business may not employ a legal
practitioner, because

• it involves sharing fees with unau-
thorized persons, and

• a legal practitioner may not accept
an appointment in a business that
shares fees with unauthorized per-
sons.

The reasoner we use is s(CASP) (Arias et al.,
2018): a logic programming language for Con-
straint Answer Set Programming. The parameters
defined in an L4 source file are used for produc-
ing the Docassemble interview and s(CASP) code.
Using the user inputs to the interview questions to
execute the s(CASP) code, a solution satisfying all
the constraints is generated. The solution is then
restructured in natural language and becomes the
conclusion the user receives.

As the NLG process involves restructuring, this
necessitates disambiguation at the input phase. For
instance, the transformation of involves sharing
fees to a business that shares fees is only possible
if we know that sharing is a gerund form of the verb
share, and not just a noun. The disambiguation is
discussed further in Section 5.

Our work differs from approaches such as
Schwitter (2012) in that we don’t use CNL to for-
mulate a specification or query—we use CNL as

means to thoroughly understand the user predicates,
so that we can verbalize answers. Our approach is
more similar to De Vos et al. (2012), who annotate
answer-set programs for verbalization, except that
we are not limited to ASP.

3.2 Isomorphic natural language
representation

Our future work includes an isomorphic representa-
tion of the L4 rules in a natural language as an out-
put target. Suppose our previous rule about unau-
thorized fee sharing is just one rule among many
that dictate whether or not a lawyer is allowed to
accept an appointment. Then the isomorphic rep-
resentation would print out a comprehensive guide
on employing legal practitioners—for instance, in
a form of a contract to be signed, or as a set of
regulations to be published on a web page. If the
underlying rules change, then a new document can
be generated from an updated L4 source.

On the level of individual rules, we follow
Ranta’s (2011) translation from logic to natural
language: the first step is a literal translation from
the programming language abstract syntax to GF
abstract syntax, followed by internal transforma-
tion of the GF trees to achieve more natural output.
However, this work is only in the absolute begin-
ning, and we haven’t solved the difficult questions
of generating a full NLG pipeline (Reiter and Dale,
2000) to output a complete document from the L4
code.

4 CNL

All of the NLG depends on correct understanding
of whatever entities the user defines. Therefore
we are using a CNL to restrict user input. In this
section, we explain the general principles of the
design and implementation, and in Section 5, we
explain how ambiguous user input is transformed
into CNL variants, with concrete examples.

4.1 Goal of the CNL

Note that the CNL does not have formal
semantics—L4 as an actual programming language,
with its formal verification and transpilation to op-
erational engines, is better suited for that. The CNL
is primarily a tool for getting a syntactically precise
source for NLG. The default mode of the NLG is
a natural-looking, potentially imprecise language.
But we envision an option to output syntactically
precise CNL as well, if the user so wishes.
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4.2 CNL design
The CNL itself is a subset of English language,
with disambiguation techniques à la Attempto
Controlled English (Fuchs and Schwitter, 1996),
ClearTalk (Skuce, 2003) and other CNLs with an
unambiguous syntax—see Kuhn (2014) for a sur-
vey. The current language features include

• Hyphens for compound nouns: parking-fee

• Brackets and word order to show attachment:
[saw with a telescope] the astronomer
any [(business, trade or calling) in Bali]

• Disambiguation for past tense. If the fragment
has no disambiguating context, we assume:
did prohibit is past tense, prohibited is past
participle.

Ambiguity between transitive and intransitive is
resolved based on the arity of the predicate. Note
that a predicate can be any part of speech, and
any part of speech can be transitive or intransitive.
Take a word like clear, which can be a noun, verb
or an adjective. If no CNL description is given, we
assume the following:

• Clear : X → Y → Bool is a transitive verb,
X clears Y, and

• Clear : X → Bool is an intransitive adjec-
tive, X is clear.

If we want to use another part of speech or arity,
we need to provide a CNL description.

• Clear : X → Bool

Clear @ "{X} clears"

is an intransitive verb (e.g. “the clouds clear”),

• Clear : X → Bool

Clear @ "{X} is in the clear"

is an adverbial where clear is a noun, and

• Clear : X → Y → Bool

Clear @ "{X} is clear to {Y}"

is a transitive adjective, which takes its com-
plement with the preposition to.

As the project is still in an early stage, the details
of the CNL are likely to change. Furthermore, we
expect that the CNL features have to be adjusted for
every new language. For example, Malay does not
differentiate between past tense or past participle,
in this case did prohibit and prohibited both trans-
late as dilarangkan. We may opt for a compulsory
adverbial like already to make a past tense explicit.

4.3 Implementation

Our CNL is implemented in Grammatical Frame-
work (GF, Ranta, 2004), a programming language
for multilingual grammar applications. A grammar
specification in GF consists of an abstract syntax,
with one or more concrete syntaxes that contain
linearization rules for the ASTs. The mapping is
bidirectional: a GF AST is linearized to various
strings admitted by different concrete syntaxes, and
a string is parsed into all the ASTs that generate it.

Inspired by Ranta (2014), the base of our CNL
is the GF Resource Grammar Library (RGL, Ranta
et al., 2009), a wide-coverage syntactic library for
over 30 languages. We presented modifications
that make the CNL unambiguous in Section 4.2. In
addition to those, the CNL contains other custom
extensions, some of which are explained below.

• Accept predicates with placeholders:
{Business] provides {Service} ;
{Business}’s jurisdiction is {Country} .

• Accept predicates without arguments:
held as representative of is treated as
{X} is held as representative of {Y}.

• Accept predicates that require a copula with-
out one: prohibited, is prohibited and {X} is
prohibited produce identical results.

• Valency is determined by the predicate’s arity,
as explained in Section 4.2. In a GF lexicon,
each word has its own valency, so V and V2
are different categories and can’t be used in-
terchangeably; the same applies for the pairs
N–N2 and A–A2. In our CNL grammar, we
relax the subcategory rules when parsing: this
leads to many redundant parses, but we filter
them out based on the predicate’s arity.

• Ad hoc constructions on top of the grammar
to accommodate for legal language.

The CNL has two concrete syntaxes for English:
one with the features listed in Section 4.2, and one
without. Thus, if we parse business or trade in Bali
in the imprecise concrete syntax, we get two trees,
which are linearized unambiguously in the precise
concrete syntax: [(business or trade) in Bali] and
(business or [trade in Bali]). We will use this to our
advantage: let the user type imprecise description,
and then transform it into a precise CNL version
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1. Sharing is noun:

1a [involves with u.p.] sharing-fees
1b involves [sharing-fees with u.p.]

2. Sharing is verb:

2a [involves with u.p.] sharing fees
2b involves [sharing with u.p.] fees
2c involves sharing [fees with u.p.]

Figure 4: All different parses for involves sharing fees
with unauthorized persons in precise CNL

for interactive disambiguation, similarly to meth-
ods used in discriminant-based treebanking (Carter,
1997), but aimed at non-linguists.

5 Parsing user input

Let us return to Figure 2, with the L4 predicate
UnauthorizedSharingFees. As a first step, we
parse the description "involves sharing fees with
unauthorized persons". For now, we assume that it
parses—robust fall-back is future work.

The description is ambiguous in two orthogonal
ways: part-of-speech for sharing and attachment
of the adverbial. These two ambiguities result in
five different parses, shown in Figure 4. We disam-
biguate the description interactively, and verify the
answer by rendering the result in the precise CNL.

Top-level ambiguity The first step in disam-
biguation is to temporarily remove all postmod-
ifier adjuncts (see Table 1) from the initial trees,
thereby reducing the tree depth until the heads with
light modifiers remain. The goal is to sieve out the
main structure, and make it easier for the user to
disambiguate one feature at a time.

In our example "involves sharing fees with unau-
thorized persons", removing the postmodifier ad-
junct "with unauthorized persons" reduces the five
trees to two: compound noun (sharing-fees) vs.
verbal complement (involves sharing). We trans-
form the trees into disambiguation alternatives and
show the user:

1. the business involves sharing-fees

2. the business shares fees

To get these disambiguation alternatives, we
have hand-crafted a large number of very specific
transformation functions, which manipulate the

Figure 5: Future editor support (mockup)

sentence directly at the GF abstract syntax tree.
For example, the following transformation applies
to any sentence with the same structure.

• Match a finite transitive verb (involves) with a
gerund complement (sharing fees).

• Remove the original finite verb, and transform
the gerund verb phrase into finite verb phrase
(shares fees).

In addition, we apply a subject to all of the alter-
natives. As seen in the examples, we use the noun
business, which we get from the type signature of
the predicate, Business → Bool.

Disambiguate adjuncts internally After the
top-level disambiguation, we check whether the
temporarily excluded adjuncts have something to
disambiguate internally.

Suppose, for the sake of example, that the orig-
inal predicate was, instead involves sharing fees
with any business or trade in Bali. In such a case,
we first disambiguate the internal structure of the
adverbial (with any business or. . . ), using the same
method as before: apply another set of transfor-
mation functions to the adjuncts to produce disam-
biguation alternatives, and ask the user which one
they meant.

Sometimes, the difference in adjuncts is linked
to the difference in the main tree, in which case,
we’re done after picking the correct adjunct. But
in our example case, the ambiguity is orthogonal
to the adverbial attachment, so we need one more
step.

Disambiguate adjunct attachment Once we
have disambigated everything else—in the main
tree or recursively in the subtrees—the remaining
ambiguities (if any) should be related to attachment.
If the user chose sharing to be a verb, we present
the following alternatives.

a) involves with unauthorized persons

b) shares with unauthorized persons

c) fees with unauthorized persons
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an old astronomer with a telescope Adverbial with a telescope removed. Determiner and ad-
jective are kept, because they are premodifiers.

sleeps on a soft mattress on introduces an adjunct. The whole adjunct is removed.
depends on legal work performed
by a legal practitioner

on introduces an obligatory complement. The complement
on legal work is kept, but internally reduced.

Table 1: Examples of postmodifier adjuncts that are temporarily removed for the first stage of disambiguation

Verifying the answer After the interactive dis-
amgibuation, we show the result: involves [sharing
with unauthorized persons] fees. If the user is un-
happy with the result, they may revert the disam-
biguation and start over.

Once a user is familiar with the precise CNL,
they may write the initial description with it, and
hence skip the interactive process. The IDE tries to
parse the input as both variants.

6 Future work

At present, we have worked on the CNL only inside
the project, occasionally consulting an expert le-
gal knowledge engineer, who is a part of our team.
Next steps are to find a real-life use case with a
more diverse team of users and conduct an evalua-
tion. We expect that we need to change the CNL, as
it goes from our hands to the hands of non-experts.
It will be interesting to see whether it also needs
to change from domain to domain: aside from dif-
ferent lexicon, would two unrelated fields, such as
insurance and construction site regulations, need
any changes in the core CNL?

In order to make L4 and the CNL easier to use,
we will add editor support and robust fall-back
options. We will also create a specification and
resources for user guidance for the CNL, and add
languages other than English.

IDE support L4 has a plugin for Visual Studio
Code, and we plan to integrate editor support for
the CNL as well. Figure 5 shows a sketch of a
potential user interaction. We may also experiment
with hovering over single words to provide infor-
mation about part-of-speech, or show dependency
structure—for instance, an arrow from with unau-
thorized persons to all of its possible heads.

Robust fall-back options First, suppose that the
natural language description is parsed in the host
grammar, the GF RGL, but there are no transfor-
mation functions that spell out the ambiguities (as
explained in Section 5), nor is it covered by the
precise CNL. We will experiment with alternative

methods of disambiguation, such as choosing a part
of speech for individual words and showing depen-
dency relations between words. These require more
knowledge about grammar, but they work for any
tree that is successfully parsed, and are thus more
robust.

Currently lexicon entries are generated from a
WordNet lexicon in GF (Angelov, 2020), and a few
words that we have added after finding them in the
sources of our small experiments. Where a word or
phrase cannot be parsed from a pre-existing lexicon,
the user will be prompted to define every out-of-
vocabulary word, and include it in a user-defined
lexicon. We will use GF’s smart paradigms (Détrez
and Ranta, 2012) to make an initial guess from a
limited number of word forms, with a possibility
to correct any wrong guesses.

In the case that parsing still fails, the sentence is
syntactically out of scope from the CNL. Already
now, the parser could try to break the sentence
down into phrases that can be parsed, but we would
need to guide the user how to reconstruct the whole
sentence to be within the scope. We recognize the
limits of the GF parser in handling ungrammati-
cal output, and may look into more robust parsing
pipelines, such as dependency trees to GF abstract
syntax (Kolachina and Ranta, 2016).

Multilingual support So far, we support the
translation of L4 to English, with a view to sup-
port multiple languages in the near future. With
multilingual output, we need to also support word
sense disambiguation and multi-word expressions.
For instance, a term like sole proprietor will be
wrong in many languages, if translated composi-
tionally: “lonely proprietor” instead of the correct
multi-word term. As we work on a use case in a
specific domain, it will be more realistic to have a
good coverage for a lexicon.

As for word sense disambiguation, our short-
term plan is to use WordNet (Fellbaum, 1998)
glosses to ask the correct sense for each word.
Longer-term, we may look into statistical methods
for guessing the most likely word senses.
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Abstract
Competency questions (CQs) are used in
ontology development to demarcate the
scope, provide insights into their content,
and verification. Their use has been im-
peded by problems with authoring good
CQs. This may be assisted by a con-
trolled natural language (CNL), but its de-
velopment is time-consuming when car-
ried out manually. A recent study on data-
driven CNL design to learn templates
from a set of CQs, resulting in CLaRO,
had somewhat better coverage and some
noise due to grammar errors in the source
CQs. In this paper, we aim to investigate
such a bottom-up approach to CNL de-
velopment for CQs regarding the effects
of 1) improving the quality of the source
data 2) whether more CQs from other do-
mains induce more templates and 3) if
the structure of knowledge in subject do-
mains has a role to play in the match-
ing of patterns to templates; therewith
might indicate that possibly a structure of
knowledge in a subject domain may con-
tinue to affect bottom-up CNL creation.
The CQ cleaning increased the number
of templates from 93 to 120 main tem-
plates and an additional 12 variants. The
new CQ dataset of 92 CQs generated 27
new templates and 7 more variants. Thus,
increasing the domain coverage had the
most effect on the CNL. The CLaRO v2
with all generated templates has 147 tem-
plates and 59 variants thereof and showed
94.1% coverage.

1 Introduction

Competency questions (CQs) are natural lan-
guage expressions which are used among oth-

ers in the design, development and verification
of ontologies (Suárez-Figueroa et al., 2012).
CQs have attracted research interest in on-
tology engineering since the mid 1990s and
are noted as a key requirement for ontology
development by methodologies such as the
NeON methodology (Suárez-Figueroa et al.,
2012). They have been shown to serve differ-
ent purposes in the engineering of ontologies,
including demarcating their scope, providing
insights into their contents, and ensuring their
answerability (Ren et al., 2014). However,
there is limited acceptance and use of CQs.
Several reasons have been proposed for that.
There is limited support for authoring CQs
(Keet et al., 2019; Ren et al., 2014) and their
translatability into queries over the ontology
or candidate axioms. Also, CQs developed for
one ontology or subject domain often cannot
be reused for another related ontology or do-
main, which impedes the re-usability of CQs
(Fernández-López et al., 2019). This spurred
the inquiry into controlled natural language
(CNL)-assisted CQ authoring as a holistic solu-
tion to these issues, including archetypes (Ren
et al., 2014), patterns (Bezerra et al., 2014),
and the template-based Competency question
Language for specifying Requirements for an
Ontology, model, or specification (CLaRO)
(Keet et al., 2019) that has been shown to have
broader coverage than the former two.

CLaRO was developed in a bottom-up
method using a dataset of 234 CQs for five
ontologies as-is together with NLP-based
sentences analyses (Potoniec et al., 2020;
Wiśniewski et al., 2019). However, as is well-
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known for other data-driven tasks, the qual-
ity of the output is dependent on the cover-
age and quality of the data and the quality of
the algorithms. In this case, manual inspec-
tion of the CQs indicated grammar issues, the
CQs were for only five ontologies, and the sen-
tence chunking was not closely investigated.
Since methods for data-driven template cre-
ation from ‘small data’ for specialised tasks
still can be useful to be able to do, we aim to
investigate this in more detail. To this end, this
paper seeks to answer the following research
questions:

1. What is the effect of ‘cleaning’ (cor-
recting) CQs to the set of templates in
CLaRO?

2. What are the effects of increasing the
number and diversity of CQs to the tem-
plate development?

3. What role does the structure of knowl-
edge in subject domains play in the
matching of patterns to templates, if any;
and if so, how?

Correcting CQs has been carried out manually,
whereas for the second question, we collected
70 new CQs related to ontologies in differ-
ent domains and added 22 newly formed CQs
inspired by some CQs in the initial CQs set.
They all went through the template design pro-
cess. Unlike the manual only evaluation in
the initial CLaRO, our evaluations have been
automated with the same chunking algorithm,
intended as a step toward increased automa-
tion of CQ authoring and use and automation
of CNL evaluation.

CQ correction applied to 9% of the original
dataset and 17.8% of the new CQ set (the 70
CQs for different ontologies), of which the
effects on the number of templates are 10 and
8 templates, respectively. The new CQs for
the Cleaned CLaRO had a coverage of 40%
and upon adding those 52 new templates and
19 variants generated from them, reaching 147
templates and 59 variants in total, its coverage
reached 94%, compared to 88% for just ClaRO.
Increasing domain coverage further thus had
a bigger impact on CNL design than better
source data.

The remaining sections of the paper are
structured as follows: related work is de-
scribed in Section 2; the methodology in Sec-
tion 3; results and discussion in Sections 4;
and conclusions in Section 5.

2 Related Work

The importance of CQs in ontology engineer-
ing has been documented with a focus on their
use as part of the requirement specification in
ontology development (Bezerra and Freitas,
2017; Keet and Lawrynowicz, 2016; Suárez-
Figueroa et al., 2012), as noted in Section 1.
There is limited evidence of uptake of CQs,
however, and a substantial number of CQs
have a range of issues (Potoniec et al., 2020),
such as being unanswerable by an ontology
and grammar. Since CQs are typically devel-
oped for specific ontologies and no guidelines
exist for authoring, this continues to affect the
quality of CQs and hamper the uptake by on-
tology engineers.

To address the lack of authoring support, a
set of 12 core and 7 variant archetypes from
150 CQs for the Pizza and SWO ontologies
has been proposed (Ren et al., 2014). The vari-
ables in their “archetypes” (templates) are on-
tology elements (OWL class and object prop-
erty), rather nouns and verbs, therewith nar-
rowing the use to OWL and having a 1:1 map-
ping to the ontology that dictates axiomatisa-
tion. Bezera et al. identified 14 patterns and 3
CQs types, also for use in only OWL ontolo-
gies ontology elements for variables. Their
set omits the ‘Who, Where’ question types in
their identification, even though these question
types exist within their source data CQs used
(also for the Pizza ontology), further limiting
the coverage (Bezerra et al., 2014).

Other studies include (Malheiros et al.,
2013), who use of grammatical tags with a set
of rules for the CQs, which is limited to three
predefined types (is-a, yes/no, and existence
question) and also contain a 1:1 mappings to
the ontology. Wisniewski et al. created 106
patterns through a process where the linguistic
structures of 234 CQs from 5 different ontolo-
gies (Dem@care, Stuff, AWO, OntoDT and
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SWO) were chunked using NLP methods, re-
placing the nouns and verbs with the terms en-
tity chunks and predicate chunks (Wiśniewski
et al., 2019; Potoniec et al., 2020). These
106 patterns were used to develop the initial
CLaRO CNL templates (Keet et al., 2019).
The patterns from (Wiśniewski et al., 2019;
Potoniec et al., 2020) and CLaRO and tem-
plates do not have 1:1 mappings or CQs type
restriction and are thus not only for OWL on-
tologies. With more CQs, it showed to have
better coverage (Keet et al., 2019), suggesting
that an even larger set of CQs may increase
coverage further.

3 Methodology

To begin this section, we provide an overview
of how the initial CLaRO was created which
also forms part of the method in this study.
Note that the CQs used in CLaRO and for this
study were only in the English Language.

3.1 Preliminaries: CLaRO development
The CLaRO templates of (Keet et al., 2019)
were developed using patterns obtained from
234 CQs drawn from 5 different ontologies
through a semi-automated process in a pre-
vious study conducted by (Wiśniewski et al.,
2019; Potoniec et al., 2020). The authors of
the patterns employed a linguistic approach in
understanding the structure of CQs in order to
create an abstract identification of each CQs
since most of them were different from one
another in their natural language form. Two
main text chunks were used to represent the
linguistic structures. They were called entity
chunk (for a noun or noun phrase), and pred-
icate chunk (which represents a verb phrase).
By doing so, CQs with identical structures
were grouped together and considered as pat-
terns. The patterns used were identified and
implemented in the following manner:

1. CQs were manually checked to ensure
that they were T-BOX questions.

2. CQs were divided into two types: materi-
alised (were the entities are embedded in
the CQs) and dematerialised (were the en-
tities are replaced by a placeholder such

as task X , it, datatype Y , gene X .
3. After CQs are chunked into patterns, if

the same structures occurs in more than
one CQs, be it within or across the on-
tologies, they are selected as patterns. In-
dividual CQs chunks are referred to as
“candidate patterns”.

4. Text chunks from dematerialised CQs
(i.e., CQs with placeholders) are consid-
ered as patterns even if they are observed
only once.

5. Text chunks from materialised CQs (i.e.,
CQs without placeholders) can only be
considered as patterns if they are ob-
served more than once in the entire CQs.

This resulted in 106 patterns (Wiśniewski
et al., 2019), which were used in the develop-
ment of the templates of CLaRO. The design
for that CLaRO also included tackling issues
such as redundant words and pronouns in tem-
plates, generating additional templates to cater
for negation, handling of plural/singular forms
as well as synonym usage (Keet et al., 2019).
There were 93 templates and 40 variants in
CLaRO before this study was conducted.

3.2 Current Design and Evaluation
Process

Following the same semi-automated, data-
driven bottom-up approach on which the initial
CLaRO (referred to as CLaRO v1 from now
on) was designed (Keet et al., 2019), a series
of activities were designed to assess grammar
quality of base CQs dataset for CLaRO v1 and
the effect of this, possible increase in the num-
ber of templates created as a result of increases
number and diversity of CQs. These activities
are presented as three steps carried out in the
design. Fig. 1 gives a pictorial representation
of the processes described below.

3.2.1 Step1: Cleaning and Verification
We begin by assessing the CQs dataset used
in pattern development stage for the CLaRO
v1 templates (Potoniec et al., 2020; Keet et al.,
2019). The first task thus was centered around
cleaning the CQs set. The original CQs dataset
was sent to a linguist for analysis, who re-
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Figure 1: Cleaned CLaRO and CLaRO v2 devel-
opment procedure

viewed them and provided suggestions for cor-
rections. This grammar analysis step of the
cleaning process was carried out manually.
The incorrect questions were removed from
the dataset while the corrected form of the
CQs and any new CQs which arose from ques-
tion splits were added to the dataset (e.g., due
to splitting up a long sentence). Subsequently,
this new CQs dataset were then automatically
chunked and verified automatically with the
algorithm used. Afterwards, a manual veri-
fication was done by checking the candidate
patterns generated against the CQs from which
they were generated. For 5 patterns, manual
corrections were made; for example: What
PC1 EC1 PC2 EC1 PC2? had the original
chunking failing to pick up ’algorithms’ as an
EC (What PC1 algorithms PC2 EC1 PC2?).
Another example is: How well [PC1] is [EC1]
for [EC2]? where the original chunk failed to

pick up documented as a PC (How well docu-
mented is [EC1] for [EC2]?). With cleaning
and verification of patterns completed, new
templates were developed and then compared
with the existing CLaRO v1 templates. Sim-
ilar occurrences were also observed with the
newly sourced Evaluation CQs discussed in
step2. Templates found in the new set that
were also found in CLaRO v1 were removed,
the remaining were added to the CLaRO v1
templates to make up what called the Cleaned
CLaRO v1 templates.

3.2.2 Step2: Template Evaluation

The next step was to test the Cleaned CLaRO
v1 using a new set of CQs. To select CQs,
we searched widely to find ontologies with ac-
companying research papers that listed their
CQs. Some of them were found within the
papers while others pointed to Github repos-
itories where the CQs could be found. It is
unknown if the CQs were carefully reviewed.
They did have some grammar-related correc-
tions and most of them were CQs that could be
answered by an ontology were publicly avail-
able. These CQs were collected as our set of
new CQs. All of the new CQs were not part
of any previous CQs used in CLaRO v1. The
larger portion of the CQs were set aside for
the first test and labeled as test-set1. These
CQs come from 4 ontologies which include
xAPI ontology (CQs=6) (Vidal et al., 2018),
MEMON ontology (CQs=2) (Masmoudi et al.,
2018), EM-KPI ontology (CQs=10) (Li et al.,
2019) and INHD ontology (CQs=52) (Stucky
et al., 2019). Another set of 22 new CQs
inspired by a part of the initial CQs dataset
in the CLaRO v1 CQs processing phase were
authored in line with recommendations form
the linguist. These 22 additional CQs were
added because they were semantically simi-
lar to the original CQs in the dataset and they
serve to address CQs authoring preferences
i.e., bring flexibility to authoring styles of ask-
ing questions which produce the same answers
in the ontology. They were added to the test-
set1 CQs bringing the total to 92 CQs. These
CQs were chunked to obtain patterns (note:
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such chunked sentences are called ‘candidate
patterns’ in (Wiśniewski et al., 2019)), which
were manually verified, and then automatically
checked against the set of templates to see if
they matched any of the Cleaned CLaRO tem-
plates. For this test purpose, we set an ade-
quacy benchmark of 80%. If it is lower, then
the test-set1 CQs should be used as a dataset
to create additional templates.

3.2.3 Step3: Final Curation

This step has two processes: further template
creation and template evaluation. If the evalu-
ation carried out in step2 shows the coverage
to be adequate (i.e., up to or more than the
benchmark set), then the step3 template evalu-
ation process is carried out immediately after.
However, if the it shows the coverage to be
less than the desired benchmark, the additional
template creation process will take place be-
fore the template evaluation process in done.
On carrying out the step2 evaluation (see re-
sults below), the coverage was less than re-
quired and thus, further template enhancement
was needed. We repeat the procedure in step1,
however, this time we make use of the test-set1
CQs as our dataset. The template comparison
was done between the newly created templates
and Cleaned CLaRO v1 templates. The com-
bination of any new templates found in this
process and the Cleaned CLaRO v1 templates
form what we shall call CLaRO v2 templates.
Finally, the step3 template evaluation process
is carried out and then we ascertain the cover-
age in relation to our benchmark. It is worth
nothing that the domain knowledge areas of
the ontologies used for creation of CLaRO v2
ranges from software, stuff, to dementia as
part of the initial set of CQs in CLaRO v1 to
knowledge domains of the ontologies for the
test-set1 CQs that included energy manage-
ment, environmental analytics, insects natural
history, object oriented code, depression care
and biomedical. To evaluate CLaRO v2, a sec-
ond test was carried out using a combination
of test-set1 CQs and test-set2 CQs (which con-
sist of the remaining part of the newly sourced
CQs) obtained from (Jung et al., 2017; Azzi

et al., 2019; de Aguiar et al., 2019) ontologies.
Using the same benchmark and partially auto-
mated test process as in step 2, we check for
the percentage coverage of our results.

The data, code, and results are available
from https://github.com/mkeet/CLaRO.

4 Results and Discussion

To start with step1 of the method section, 22
out of the 234 CQs were identified with ei-
ther grammar related issues or could not be
answered in an ontology in its current state
and so were reformulated from the 234 CQs
set used in creating the patterns in the CLaRO
v1 study; see samples in Table 1. Another
example of a problematic question (an open-
ended question) encountered was: To what
extent does [the software] support appropri-
ate open standards? which is reformulated
as: Does [the software] support open stan-
dards?. These CQs as stated in the method
section, were reformulated or split were nec-
essary and added to the dataset; their original
formats were removed from the dataset.

The number of patterns identified were 145
(which gives an additional 39 patterns to the
previous 106 patterns in the previous study).
As with the original study, after some man-
ual cleaning of the patterns were necessary,
all the patterns found that met the design deci-
sions were included as templates, no new nega-
tion templates were added. Having obtained
the patterns and proceeded to create new tem-
plates, on comparing the new templates with
CLaRO v1, we found that most of the resulting
templates were present. When the templates
are put together, an added 27 templates and
12 variant to bring the total to 120 templates
and 52 variants, now referred to as Cleaned
CLaRO v1 templates.

In Step2, a new set of CQs were used to
carry out a first test on the Cleaned CLaRO v1
templates. After chunking and cleaning, their
patterns were compared with the templates in
a bid to find a match. Of the 92 CQs in test-
set1, 38 patterns were found not to present
in Cleaned CLaRO v1. Given our benchmark
percentage set at the beginning of the study, a
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40% coverage was inadequate to declare that
Cleaned CLaRO v1 was sufficient for most un-
seen CQs. Thus, the test-set1 CQs were used
as a dataset for the creation of another set of
templates. Following the procedure outlines in
the preliminary section above and applied in
step1 of the method section, 35 patterns were
found to have fulfilled the design decisions
and were included as templates. When the
new templates were compared with Cleaned
CLaRO v1, four were found to be present.The
rest 34 templates when split into actual tem-
plates and variants, are 27 templates and 7
variants. We then combined them to Cleaned
CLaRO v1, making the total number of 147
templates and 59 variants. This new total of
templates were now called CLaRO v2.

For the evaluation of CLaRO v2, test-set2
CQs (n = 26) from (Jung et al., 2017; Azzi
et al., 2019; de Aguiar et al., 2019) ontologies
as well as test-set1 CQs were used. CQs that
were removed include How are classes logi-
cally organized in an OO source code?, since
no ontology will be able to answer this due to
its descriptive nature. One duplicate question
was removed: What are the signs and symp-
toms of adolescent depression? and What are
the physical symptoms of adolescent depres-
sion?. The overall results show that 111 of
the 118 CQs had their patterns present in the
CLaRO v2 templates on first try, i.e., 94.1%,
with a few of the matching templates coming
from CLaRO v1 and the rest templates found
in the greater CLaRO v2. With this result sur-
passing our 80 percent benchmark set in step 2
of the method section, we accept CLaRO v2 as
being adequate for most unseen CQs. Table 2
shows the results from the first test on Cleaned
CLaRO v1 as well as the results of the second
test on CLaRO v2.

4.1 Discussion

We attempt to answer the first research ques-
tion which addresses the role of cleaning in
the identification of templates, we saw from
the results that having reformulated and split-
ting problematic CQs, some of their patterns
resulted into templates in Cleaned CLaRO v1.

Table 1: Sampling of reformulated CQs.

Grammaticality
1. What are the values of a rain properties (unit,
location, date, etc.)?
Comment: Incorrect English, illustration
Reformulated CQ and pattern:
Where are the property values of a rainfall?
What are EC1 of EC2?
(new template: Yes)
2. Is [it] open source or not?
Comment: Informal writing
Reformulated CQ:
Is [it] open source? Is EC1 EC2?
(new template: No)
Answerability
1. How do I get help with [it]?
Comment: A descriptive question
Reformulated CQs and pattern:
What are the sources of support for [it]?
What are EC1 of EC2 for EC3?
(new template: No)
2. How can I get problems with [it] fixed?
Comment: A descriptive question
Reformulated CQ and pattern:
Who can fix problems with [it]?
Who PC1 EC1 with EC2?
(new template: No)
Two-in-one question
1. Do I know anyone who has used [this software]
or processed [this type of data]?
Comment: A personalized question
(also two questions in one)
Reformulated CQs and pattern:
a. Who has used [this software] in the past
successfully?
Who PC1 PC1 EC1?
(new template: Yes)
b. Who has processed [this type of data]?
Who PC1 PC1 EC1 in EC2 EC3?
(new template: Yes)

The second research question which aims at
assessing if there are identifiable linguistic pat-
terns to knowledge structures in different sub-
ject domains and if these patterns influenced
the matching of CQs patterns to CLaRO v2
templates. We looked at our results in terms of
their distribution according to the domains of
the ontologies in the CLaRO v2, this is to deter-
mine how much of the test CQs patterns were
matched within the templates that made up
Cleaned CLaRO v1. The results showed that
most of the patterns where matched in CLaRO
v2, leaving only a few in Cleaned CLaRO v1
alone. For the third research question which
aims at assessing how the increased number
and diversity of CQs from more ontologies
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Table 2: Evaluation results of Cleaned CLaRO v1
versus CLaRO v2 using generated patterns from
test CQs

Cleaned CLaRO v1 Count Coverage%

Absent 57 60%
Present 38 40%
CLaRO v2 Count Coverage%

Absent 7 5.9%
Present 111 94.1%

impacts the template creation. A total of ad-
ditional of 54 templates and 19 variants were
created and added to the CLaRO v1’s 93 tem-
plates and 40 variants to form the 147 tem-
plates and. Consequently, a wider coverage
was achieved for CQs from many different on-
tologies as seen in the test results.

Also worth reporting in our findings is the
distribution of templates in terms of knowl-
edge domains; we analysed CLaRO v2 re-
sults using the test-set2 CQs which only came
into use as part of the second test in our
study, we found that majority of the templates
matched in this group were found to be specif-
ically in Cleaned CLaRO v1 templates. On
further observation, we also found the tem-
plates matched patterns from the SWO and
Dem@care CQs. This observation may be
linked to the fact that the Knowledge domains
of the test-set 2 CQs were from adolescent
depression, object oriented code and biomedi-
cal (which had very few CQs compared to the
other two), and these domains are some-what
related in knowledge to the knowledge found
software and Dementia. For instance What
are [EC1] for [EC2]? from SWO number 19,
What [PC1] [EC1]? from Dem@care num-
ber 146 and What [EC1] [PC1] [EC2]? from
SWO number 12 patterns can be observed in
the test-set2 patterns. With the test-set2 CQs
alone, CLaRO v2 templates all patterns from
the depression care CQs were present; object
oriented code CQs and the biomedical knowl-
edge domains also most of their CQs patterns
present. The results can be seen in Table 3.

There were some situations where the limi-
tation of the algorithm produced some strange
pattern outputs like Who else [PC1] [PC1]
[EC1] [PC1]? for Who else has used [tool x]
today? which would clearly give a different
pattern when it is generated manually. Another
example is the presence of past tense in CQs
which not handled properly, as seen with Has
[species X] been collected at lights? which
produces [PC1] [EC1] been [PC1] [EC2]?.
With the breakdown of the final results in this
study showing over 90% coverage for CLaRO
v2 and the diversity of the domains which the
CQs/ontologies were drawn from, we assume
that although the knowledge structure in do-
mains may play a role in the matching of tem-
plates to CQs patterns, that role is minimal in
our study.

Ontologies are known to represent real
world complexities using the knowledge struc-
tures they contain (Litovkin et al., 2018;
Hnatkowska et al., 2020). The use of CQs
as a functional requirement for ontology de-
velopment makes it possible for ontologies
to capture holistically, the knowledge in the
given domain or sub domain. With the very
general nature of the CLaRO v2 templates, it
is expected that they serve as a guide for ontol-
ogy developers as they author their own CQs
developed across different domains. Given
the coverage obtained in this study, there may
be an increase of the willingness to make use
of CQs, and also a reduction in the frustra-
tions that have characterised developers’ expe-
riences in authoring good quality CQs. Also,
these templates potentially move us closer to
achieving re-usability of CQs.

The results of this study will also enable on-
tology developers construct CQs that can pro-
vide users adequate information on the content
of the ontology and at the same time provide
the ontology with a quality verification tool.
This study also shows the feasibility of bottom-
up approaches to CNL design with better in-
sight derived from these methods. CLaRO
v2 will enable subject experts and ontology
developers develop CQs that are suitable for
ontologies to answer and possibly give ideas of
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Table 3: Results of Cleaned CLaRO v1 compared with CLaRO v2 on matched test-set2’s chunked CQs
representation, separated by domain.

CLaRO Depression Biomedical OO code

Cleaned CLaRO v1 7 of 9 (78%) 2 of 7 (28.6%) 4 of 6 (66.7%)

CLaRO v2 9 of 9 (100%) 5 of 7 (71.4%) 5 of 6 (83.3%)
Absent 0 2 of 7 (28.6%) 1 of 6 (16.7%)

what other forms of CQs could still be derived
for the ontology that may not have been con-
sidered. Although not the focus of this study,
domain knowledge structures have become im-
portant to the advancement of CNL for CQs.
With CLaRO v2 now containing several new
templates which has base CQs drawn from a
range ontologies from different knowledge do-
mains, we can expect that CQs patterns from
more knowledge domains will be sufficiently
catered for with the templates in CLaRO v2
increasing the possibility of that it indeed has
the potential of representing templates across
many different domains.

5 Conclusion

In cleaning the source data and extending the
CLaRO v1 templates, we have been able to
show that there is sufficient reason to assume
that CQ templates can be reused across ontolo-
gies. Increasing domain coverage of the source
CQs has a larger effect on the quality and
number of templates than correcting erroneous
CQs. The extended CLaRO v2 templates cre-
ated on the basis of the CQs patterns derived
from a total of 329 CQs for SWO AWO, Stuff,
Dem@care, OntoDT, xAPI, EM-KPI, inhd and
memon ontologies, and has recorded a 94.1%
accuracy.

The templates can assist CQ authors in writ-
ing good CQ that should be answerable by an
ontology. Future work includes investigating
further the role that domain knowledge struc-
tures play in the matching of CQs patterns and
the possibility of identifying more templates.
To achieve this would mean being intentional
on seeking to identify the representation of
CQs from a wide range of knowledge domains

that are clearly unrelated to the those present in
CLaRO v2. We also plan to update the CLaRO
CQ editor tool with the new templates.
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Pérez, and Mariano Fernández-López. 2012.
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Abstract
HESIP is a hybrid machine learning system in
which a sub-symbolic machine learning com-
ponent makes a prediction for an image clas-
sification and afterwards a symbolic machine
learning component learns probabilistic rules
that are used to explain that prediction. In this
paper, we present an extension to HESIP that
generates human-understandable and machine-
processable explanations in a controlled natu-
ral language for the learned probabilistic rules.
In order to achieve this, the literals of the
probabilistic rules are first reordered, and then
aggregated and disambiguated according to
linguistic principles so that the rules can be
verbalised with a bi-directional grammar. A
human-in-the-loop can modify incorrect expla-
nations and the same bi-directional grammar
can be used to process these explanations to
improve the decision process of the machine.

1 Introduction

The recent success of machine learning (ML) mod-
els is remarkable, especially the success of sub-
symbolic ML models in problem domains that are
computationally expensive, such as natural lan-
guage processing and image processing (Zhang
et al., 2020; LeCun et al., 2015). Sub-symbolic
ML models mostly learn functions that map the
input data to the output data to find the correlations
between them (Ilkou and Koutraki, 2020). When
a ML model selects one or more class labels as an
output for a given input, the output is known as a
prediction of the model. These sub-symbolic mod-
els are used in intelligent systems to make better
decisions based on their predictions. Since most
of these sub-symbolic ML models are black-box
models that are not immediately interpretable, it is
difficult to explain to a user of an intelligent sys-
tem how the machine learning algorithm came to
a particular decision. This is why eXplainable AI
(XAI) has recently gained momentum, since this
discipline aims to produce explainable models that

humans can understand, manage and trust (Gun-
ning, 2017).

Most systems that can explain a prediction, such
as Lime (Ribeiro et al., 2016) and Anchor (Ribeiro
et al., 2018), explain the prediction based on fea-
tures that exist in the dataset. For example, Lime
selects super-pixels to explain an image predic-
tion. This explanation may be helpful for a do-
main expert, but it may be difficult to understand
for a non-expert user. Alternatively, researchers
have tried to employ symbolic ML models to ex-
plain predictions, since these models are directly
interpretable (Rabold et al., 2019). Symbolic ML
models learn symbolic rules which are then pre-
sented to the user as an explanation for a prediction.
Although these symbolic rules are easier to inter-
pret as shown in several studies (Muggleton et al.,
2018), they are sometimes difficult to understand
by a user who does not have a background in for-
mal methods. Therefore, it is important to study
alternative ways of generating explanations that are
human-understandable (and as we will argue later
at the same time machine-processable).

In this paper, we present a linguistic extension
to HESIP, a hybrid explanation system for image
prediction. The extended implementation of the
system uses a bi-directional grammar to generate
explanations in a controlled natural language.

2 HESIP: System Description

HESIP combines sub-symbolic and symbolic rep-
resentations in two separate components of the sys-
tem to construct symbolic explanations for image
predictions. According to Kautz’s classification,
HESIP is a hybrid system of Type-3 where a sub-
symbolic component is used to work on a task, and
then a symbolic component is used to finalise that
task (Garcez and Lamb, 2020). HESIP is moti-
vated by LIME-Aleph (Rabold et al., 2019) that is
an explanation system where an image prediction
is explained from the learned rules. The LIME-
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Aleph system relies on two datasets that contain
synthetic images. HESIP extends the architecture
of the LIME-Aleph system and uses a more gen-
eralised approach so that it can be applied to real-
world datasets. The architecture of the HESIP sys-
tem is illustrated in Figure 1.

Figure 1: Architecture of HESIP

2.1 The Sub-symbolic Component
HESIP takes an image as input and makes a pre-
diction with a probability using an artificial neural
network (ANN) (Krizhevsky et al., 2012) as a sub-
symbolic ML model. Based on the similarity to
the input image, HESIP selects positive and nega-
tive instances of sample images. The probability
of each of these sample images is predicted by
the ANN. If the prediction probability of a sam-
ple image is greater than or equal to the prediction
probability of the input image, then the sample im-
age is a positive instance; otherwise, it is a negative
instance. HESIP extracts the image information for
all the positive and negative image instances. This
image information is then used as observed data
in the symbolic component of HESIP for learning
probabilistic rules that explain a prediction.

Let us illustrate these steps in more detail using
a motivating example from our own dataset that
contains images of a particular shape. The task is
then to determine if an image represents the con-
cept of a house. Each image consists of two objects
and each object has either the shape of a square
or a triangle. The colour of these objects is either
green or blue. We say that an image represents
the concept of a house, if the image contains an
object of type triangle that is located on the top of
an (adjacent) object of type square. In any other
case, the image does not represent the concept of a
house (see Figure 2).

Figure 2: Examples of house concept learning. (a) rep-
resents the concept of a house, while (b) and (c) do not.

HESIP extracts the information from the image
that will be used for the explanation; for example,

information about the location of objects (e.g., po-
sition), about their properties (e.g., colour), and the
relation between the objects, (e.g., on top of or left
of). HESIP employs Detectron2 (Wu et al., 2019),
a PyTorch-based object detection library that sup-
ports the Mask R-CNN method (He et al., 2017)
to detect objects and their location information in
an image. The location information is then used to
extract the colour of the objects and to determine
the relations between two objects in an image.

In our case, two objects can stand in the follow-
ing relations: left of, right of, top of, bottom of,
on, under and contain. Note that the relation on
holds if an object is on the top of another object
and these two objects are adjacent; similarly, the
relation under holds if an object is beneath another
object and these two objects are adjacent.

2.2 The Symbolic Component

HESIP employs a probabilistic logic programming
framework called cplint (Riguzzi and Azzolini,
2020) as the symbolic component to learn prob-
abilistic rules from data about positive and negative
instances of sample images. The decision about
whether an image is a positive or negative instance
is provided by the sub-symbolic component. The
probabilistic rules are then used to explain the pre-
diction of an input image. These probabilistic rules
have the following abstract form (Vennekens et al.,
2004):

h1:a1 ;...; hn:an :- b1,..., bm.

where hi are atoms, bi are literals (incl. negation
as failure), and ai is the probability, a real number
between 0 and 1. The set of elements hi:ai forms
the head of a rule and the set of elements bi the
body; the head and the body are separated by an
if-symbol (:-). A disjunction in the head of a rule
is represented with a semicolon (;) and atoms are
separated by a colon (:) from probabilities.

Once the sample image information is available,
HESIP represents the image using a simple ontol-
ogy so that we can also generate explanations for
other application domains using the same method.
The ontology employed in HESIP consists of four
predicates: (1) object/1 represents an object; (2)
type/2 represents an object type; (3) property/3
represents an object property; and (4) relation/3
represents a relation between two objects. The
probabilistic rules in HESIP contain only those
predicates (atoms and literals) that are available in
the ontology. In our case, the head of a rule may
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contain the predicate relation/3 or type/2 and
the body may contain any predicate of the ontology.

In our context, HESIP generates a probabilistic
rule as shown in Listing 1 which states that an ob-
ject A is of type house if all the conditions in the
body of the rule are satisfied and the probability
is 1. Once a probabilistic rule is available, HESIP
verbalises that rule in a controlled natural language
(CNL) (Kuhn, 2014) and displays it together with
the corresponding probability to explain the predic-
tion of an input image.

Listing 1: A sample rule for house concept learning
type(A, house) : 1.0 :-

type(B, triangle),
object(B),
type(C, square),
object(C),
relation(B, C, on),
property(C, green, colour),
property(B, blue, colour),
relation(A, C, contain),
relation(A, B, contain),
object(A).

3 Generating Explanations

The rule in Listing 1 cannot be immediately ver-
balised, since the literals are not in an order that
follows a linguistically motivated pattern. Our goal
is to generate an explanation of the following form:

If an object contains a blue object of type
triangle and contains a green object of
type square and the blue object is located
on the green object then the object is of
type house.

In order to achieve this, we use a bi-directional
definite clause grammar similar to the one proposed
by Schwitter (2018) that takes a set of reconstructed
rules as input and generates explanations in a CNL
as output. The same bi-directional grammar can
be used to process a (modified) explanation and
translate it into a rule as long as we stick to the
syntax of the CNL. That means the CNL serves as a
high-level interface language to the HESIP system
and the user can modify and refine explanations
and feed them back to the system.

3.1 Order of Content

Before we can verbalise the content of a rule, we
need to identify those literals that introduce new
content and distinguish them from literals that link
to previously introduced content, and then reorder

these literals according to a linguistic pattern. This
process leads to a reconstruction of the rule where
some literals are repeated so that they correspond to
the underlying linguistic pattern. After reordering,
the reconstructed rule looks as shown in Listing 2:

Listing 2: A sample rule after reconstruction
class(A, object), type(A, house) :-

class(A, object),
relation(A, B, contain),
property(B, blue, colour),
class(B, object),
type(B, triangle),

class(A, object),
relation(A, C, contain),
property(C, green, colour),
class(C, object),
type(C, square),

property(B, blue, colour),
class(B, object),
type(B, triangle),
relation(B, C, on),
property(C, green, colour),
class(C, object),
type(C, square).

The body of this rule consists of three implicit
linguistic patterns. The reordered literals in these
patterns follow now a subject-verb-complement
structure. The first two patterns use the same se-
quence of literal types and introduce new content;
the subject position is occupied by a class, the verb
position by a relation, and the complement posi-
tion by a property, followed by a class and a type.
The third pattern only uses new content in the verb
position but previously introduced content in the
subject and complement positions. The head of the
rule consists of a pattern with a similar structure
of the form subject-copula-complement where the
subject position holds a class, the copula position
is not filled, and the complement position holds
a type. For this reconstructed rule, our grammar
generates the following verbalisation:

If an object contains a blue object of type
triangle and the object contains a green
object of type square and the blue object
of type triangle is located on the green
object of type square then the object is of
type house.

This verbalisation is very explicit and can be
improved using a number of micro-planning strate-
gies (Reiter and Dale, 2000). However, since our
goal is to generate explanations that are human-
understandable as well as machine-processable, we
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need to make sure that we do not introduce any
ambiguities during micro-planning.

3.2 Aggregation of Content

Aggregation is the process of removing redun-
dant information in a sentence (Dalianis and Hovy,
1993). In our case, we can use subject grouping
to combine clauses and drop type information that
has already been introduced to reduce redundancy
(see Listing 3).

Listing 3: A sample rule after performing aggregation
class(A, object), type(A, house) :-

class(A, object),
relation(A, B, contain),
property(B, blue, colour),
class(B, object),
type(B, triangle),
relation(A, C, contain),
property(C, green, colour),
class(C, object),
type(C, square),

property(B, blue, colour),
class(B, object),
relation(B, C, on),
property(C, green, colour),
class(C, object).

Subject grouping results in verb phrase coordi-
nation and removing type information results in
more compact definite descriptions as shown in our
target explanation at the beginning of Section 3.
Note that reprocessing of this explanation by our
bi-directional grammar results in a semantically
equivalent rule.

3.3 Generating Definite Descriptions

During generation, the bi-directional grammar
stores all the accessible antecedents and generates
minimal definite descriptions on the fly. However,
the grammar would generate an ambiguous verbali-
sation if we had a rule where the object in the head
does not have a unique object in the body to link
to after reconstruction and aggregation. To avoid
this kind of an ambiguity, we add a variable to such
an underspecified rule that allows us to distinguish
between objects in an explicit way on the surface
level of an explanation. For the learning of a house
concept, this kind of an ambiguity occurs if we do
not use type information for objects. Therefore,
we add a variable to resolve the ambiguity (see
Listing 4).

Now the following unambiguous verbalisation
can be generated that introduces an indefinite noun
phrase with a variable an object A as antecedent for

the definite description the object A that occurs in
the consequent of the sentence:

If an object A contains a blue object and
contains a green object and the blue ob-
ject is located on the green object then
the object A is of type house.

Listing 4: A sample rule after adding variables
class(A, object), variable(A, 'A'),
type(A, house) :-

class(A, object),
variable(A, 'A'), ...

4 Evaluation

We evaluate our explanation generation method in
two ways: (1) we check if a generated explana-
tion corresponds to a minimal and correct descrip-
tion of the image information, and (2) we check
if the bi-directional grammar correctly works in
both directions. For the first evaluation, we check
whether an explanation is minimal or not by test-
ing if the explanation meets our aggregation cri-
teria. We check the correctness of an explanation
by matching the literals used for the verbalisation
with the corresponding literals for the image. For
the second evaluation, we check the bi-directional
grammar via a technique that is known as seman-
tic round-tripping (Hossain and Schwitter, 2020);
basically, we keep the formal representation R1 for
an explanation, feed that explanation again to the
bi-directional grammar, generate a formal repre-
sentation R2, and then compare if R1 and R2 are
semantically equivalent.

In addition to our house concept dataset, we have
employed the tower concept dataset and used sin-
gle relation learning to evaluate our explanation
generation method. This additional dataset is also
used in the LIME-Aleph system to illustrate their
method. For the learning of a tower concept, an
image consists of three square objects of differ-
ent colours and we say that the image represents
a tower concept if one square is on the top of an-
other square without the repetition of objects with
the same colour. For single relation learning, we
say that an image represents the left of relation if
a green square is on the left side of a blue square.
We used 1000 images from each dataset for the
evaluation. For each image, the explanation is gen-
erated and evaluated using the above-mentioned
technique. We have found that all the explanations
for tower concept and for single relation learning
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are correct while for house concept learning 999
explanations are correct. This gives us an accuracy
of 100%, 100% and 99.9%, respectively.

5 Conclusion

In this paper, we have introduced a linguistic exten-
sion to HESIP, a hybrid explanation system, that
combines sub-symbolic and symbolic representa-
tions for image predictions. This linguistic exten-
sion uses a bi-directional logic grammar to generate
explanations in a CNL. The sub-symbolic compo-
nent of HESIP makes a prediction that results in a
probabilistic rule in the symbolic component of the
system. The resulting rule is reordered according
to linguistic principles, redundant information is
aggregated, and possible ambiguities are resolved,
before the rule is processed by the grammar. The
output of the grammar is an unambiguous expla-
nation of the prediction. If this explanation is not
correct, then the user can modify the explanation
and feed it back to HESIP.

The advantage of HESIP over the LIME-Aleph
system is that it employs an object detection model
to find objects in the images and uses an ontology
to represent image information. The novelty of
our hybrid approach to machine learning is that it
allows us to generate explanations that are human-
understandable as well as machine-processable;
and it can be customised for other prediction tasks.
HESIP can be used in any real-world application of
image prediction where the images in the dataset
have relations between objects. These relations can
then be used in the probabilistic rules to explain
the image predictions. Currently, we are investigat-
ing how HESIP can be extended and used to learn
concepts from different parts of objects using the
PASCAL-Part (Chen et al., 2014) dataset.
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Abstract

We present an initial reference architecture for
traceability in SBVR-based systems. It facili-
tates rule-based development that lets end users
trace interface behavior back to the human de-
cision points that lead to it. This closes a feed-
back loop, which facilitates agile development.
The architecture is based on Web standards to
generalize comparison and implementation.

It begins with the human process of linking doc-
ument excerpts to the SBVR code that defines
them. The next step transforms SBVR into
computer code that implements it. Reasoners
then form conclusions by applying the rules to
data. They can also provide rudimentary expla-
nations for these conclusions. The system then
provides an end-user interface to all this rule-
derived information. The core challenge here
is maintaining the data needed to trace back
through these layers, so end-user feedback can
improve the entire development process.

1 Introduction

Semantics of Business Vocabulary and Business
Rules (SBVR) provides a controlled natural lan-
guage (CNL) for data models and business rules
(Group, 2006). It can be mapped to more
easily readable equivalents such as RuleSpeak
(Spreeuwenberg and Healy, 2010). Such CNLs
provide a step between stakeholders and program-
mers that helps designers communicate with both.

Rule-based systems constrain users to follow
rules but often cannot explain where the rules come
from or why they exist. This is because develop-
ment of such systems often follows a sequential, or
waterfall, approach. Analysis of legal text or policy
documents leads to descriptions in SBVR. Other
people then write program code for this SBVR.
However, nothing in the code, and thus nothing
in the resulting system interface, necessarily leads
back to its source in SBVR or further back to the
source documentation. The original motivation for

the rules becomes effectively forgotten. End users
end up several layers of one-way traffic away from
understanding or potentially influencing change in
the documents and discussions that form the rules
they must follow.

Traceability in rapid prototypes of rule-based
systems adds resilience to the process of forming
laws and implementing them (Ausems et al., 2021).
However, the mapping from human-readable busi-
ness rules to computer-processed logic on the Se-
mantic Web is complex (Spreeuwenberg and Ger-
rits, 2006). A reference architecture could help
implement traceability in this complex mapping.

We propose forming a reference architecture in
which this software development for business rule
systems is less waterfall and more agile. It pro-
vides end users with transparency to the origins
of rules in their systems so they can take part in
their longer-term maintenance. In addition, de-
velopment can then more easily include end-user
representatives who provide short-term feedback
over the effectiveness of both the documented rules
and how the SBVR rules and resulting business
systems implement them. Problems involving mis-
matches between high-level agreements and how
well end-users of the system can appreciate and
execute them can then be detected and addressed
earlier and more often.

2 Reference Architecture

Fig. 1 illustrates our reference architecture. It has
three broader components. First is the development
of the specifications and code by people. Then
comes the automation, which compiles the code
into the business system. Finally, automation pro-
vides the system interface that the end user inter-
acts with. The first step in development is discus-
sion between human stakeholders, which results
in documents, such as legislation or contracts, that
define agreements reached. An analysis of the doc-
uments provides annotation of it, which shows the
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Figure 1: Our reference architecture for traceability in
SBVR-based systems.

phrases for primary components in the system’s
data model and rules. The next process is the de-
sign of SBVR code for the model and rules.

With the SBVR code established, the automation
of it is ready to start. The transformation of human-
readable SBVR to machine-processable code can
be human, automated or a combination of both.
The resulting logic code defines the model and rules
in a format a computer can process. The reasoning
process applies the logic to the data in the system
to generate conclusions. Conclusions can infer
additional data, or find violations that the given
data triggers. Core to traceability is automatically
justifying these conclusions to provide explanation
of them to the end-user.

The results of this automated processing need,
of course, to be presented to the end user. The
transformation of SBVR into system code includes
not just the logic for data processing but also the
style of this presentation. The rendering step pro-
cesses this style code to determining how the data,
conclusions and explanations should appear in the
interface. This interface should not only let the user
see all this information, but also trace back from it
to the SBVR code and fragments of the documents
from which the information originates.

3 Related Work

The software Cognitatie supports annotation of doc-
uments for conversion into knowledge models, in-
cluding rules, placing it in the development block
of our architecture (PNA Group). The tool RuleX-
press processes business rules against a data set,
functioning as the automation block (RuleArts).
The Web service s2o1 is a converter from SBVR
to the Semantic Web ontology language OWL-2,
thus automating the transformation process (Kar-
povic et al., 2014). Also on the Semantic Web,
the ontology editor Protégé provides all automa-
tion processes, from reasoning on logic and data, to
providing explanations (Musen and Protégé, 2015).

The Fresnel vocabulary for Semantic Web
browsers is a format for style sheets mapping
Semantic Web data to end-user interfaces to it
(Pietriga et al., 2006). In earlier work, we devel-
oped software for generating Fresnel code for any
given ontology (Rutledge et al., 2016).

HTML provides, perhaps obviously, a well ap-
plicable standard for source document descriptions
of rules. We propose also having HTML browsers
in the end user interface of our architecture pro-
vide direct user access to these source documents.
For the system between rule documents and end
users, the Semantic Web provides standards for
data, its structure and rule-based logic applied to
it. HTML and the Semantic Web both use URLs,
which allows processing source document excerpts
like any other Semantic Web concepts. Davis gives
an overview of different ways to annotate HTML
documents in the context of CNLs (Davis, 2013).
Some techniques do not require editing of the an-
notated documents. The text to be annotated can
be both CNL and the source document text they
encode.

The RACE Reasoner for Attempto Controlled
English processes input CNL logic and facts and
outputs conclusions and reasoning explanations in
CNL as well (Fuchs et al., 2008). The reference
architecture we propose here models much of this
processing, including processing CNL text to form
conclusions. One difference is that our architecture
does not explicitly account for generating explana-
tions of conclusions in CNL. What the architecture
does do here is provide links to the source CNL and
document texts that defines the rules involved in
a reasoning. As such, either the user can navigate
to those document sources, or a natural language

1https://s2o.isd.ktu.lt/
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generator can use these links to get the information
needed to provide a readable explanation.

The course Rule-based Design that we teach at
the Open University in the Netherlands uses the
business rule reasoner Ampersand, which special-
izes in legal reasoning (Joosten, 2017). While Am-
persand has no automatic generation of explana-
tions behind its reasoning as RACE does, the Am-
persand syntax provides the human editor some
constructs for traceability (AmpersandTarski Git-
Book project). One is the RULE construct, which
provides template-based explanation text, which
the interface shows the user when the given rule
is violated. This template text has placeholders
for labels of specified components of the rule. In
addition, the PURPOSE construct offers a human-
readable citation of the document source for a rule
or component of the data model. We propose here
a PURPOSE-like citation for ontology components,
but one that is machine-readable, and can link to
source CNL chunks as well as document fragments.

Much real-world data exists on the Semantic
Web, which matters for both practical application
and academic validation of research results. For ex-
ample, in earlier work, we created large amounts of
data for applying Semantic Web logic to in order to
generate statistics about the efficiency of that logic
(Italiaander, 2019). Including the Semantic Web
in our rule-based system development architecture
facilitates testing and analysis with large amounts
of existing or synthetic data.

4 Illustrative Scenario

We illustrate our reference architecture by applying
it in an example scenario. This scenario derives
from the fictional business EU-Rent, with its text
descriptions and SBVR code (Object Management
Group, 2016). In particular, we use a rule in EU-
Rent’s section G.6.7 “Car Movements”. This EU-
Rent section starts with the text “Car movements
meet the business requirement that a car of a given
group has to be moved between branches”. We
treat this as source text in our reference architecture.
EU-Rent then provides the following SBVR rule
it derives from that text: “Necessity: Each car
movement includes exactly one receiving branch”.

We convert this SBVR rule into machine-
processable logic standard OWL with the tool
s2o (Karpovic et al., 2014). Its equivalent in
s2o’s SBVR dialect that this scenario puts in s2o’s
rules field is “It is necessary that car_movement

has_receiving_branch exactly 1 branch”. The
conversion’s output is OWL code that makes
car movements a subclass of the class of things
with exactly one assignment for the property
has_receiving_branch. The OWL constructs it uses
are restrictions and qualified cardinality. This code
corresponds to the logic code in the architecture.

A trigger for this rule is a car movement that is as-
signed to more than one different branch, resulting
in an OWL inconsistency. In OWL, an inconsis-
tency is a collection of facts and rules that cannot
all be true. Fig. 2 shows a display from Protégé
for such an inconsistency in our scenario. The top
right of this display shows these two conflicting re-
ceiving branch assignments in red lettering, which
in Protégé indicates an inconsistency. In the refer-
ence architecture, this shows a conclusion resulting
from Protégé’s OWL-defined reasoning.

When recognizing such an inconsistency, Pro-
tégé announces it to the user and then lets the user
request an explanation for it. The explanation that
Protégé then provides for our scenario appears in
the lower part of Fig. 2. In this display under “Ex-
planation 1”, the first line shows the OWL code
for the rule that is triggered. The other lines show
the data that collectively triggers this rule. What
traceability demands here is that the end-user be
able to browse from the top line back to the SBVR
code that derived it, and then back further to the
document text that SBVR code defines.

5 Traceability

The solid arrows in the reference architecture dia-
gram in Fig. 1 show the traditional view without
traceability: we generate systems from rules, but
can then easily forget the rules we generated the
systems from. The dotted arrows show the pri-
mary places where traceability needs implementing.
Each has a label describing which layer of trace-
ability it provides. We describe them here in the
order in which tracing happens here: from lower to
higher in the diagram.

User explanations are the presentation of the ex-
planations behind logical conclusions that appear
in the interface for the end user. First, we should
note that the process of justifying conclusions to
provide explanations for them provides a layer of
traceability. Logic systems such as Protégé imple-
mented justification later than the simple display
of conclusions, as it is a substantial technical chal-
lenge beyond generating the conclusions. Fig. 2
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Figure 2: Protégé display of an inconsistency with its explanation.

shows how, in our scenario, Protégé informs the
user that an inconsistency has occurred and which
data it involves. Protégé shows an explanation only
when and if the user requests it.

As this demo shows, this aspect of traceability
is substantially implemented in Semantic Web sys-
tems. However, most end users cannot understand
it, as it is an unstructured collection of all the data
involved in forming the logical conclusion. It does
have all the relevant information for an explana-
tion, and software could process it for a CNL ex-
planation, such as RACE does for its internal logic.
However, the focus in this reference architecture is
on how to access this information instead of how to
present it understandably. In addition, our architec-
ture focuses more on traceability as accessing the
documented origins behind the logical rule applied
in a situation.

The next dotted arrow, “triggering rule”, in the
architecture diagram goes from explanations back
up to logic program code. This is where our ar-
chitecture focuses on human-accessible traceabil-
ity instead of the automated generation of human-
understandable text, as other research does. Instead
of processing all of the triples of an explanation
into text, we propose focusing on the information
regarding the rule that is triggered. That rule can

then, in turn, lead to the CNL text and original doc-
ument text that people wrote earlier to describe that
rule. The other triples in the explanation data de-
scribe mainly the data that triggers the rule, instead
of the triggered rule itself. The challenge here is
to find the code for the triggered rule from all the
data for an explanation.

In Fig. 2’s scenario, the rule triggered is in the
first line of the explanation, especially where it
says “exactly 1”. This line refers to the code for an
OWL restriction, which has Semantic Web-defined
properties that define the restriction. One property
assignment declares the type of cardinality as ex-
actly one. Another assigns it to the property "has
receiving branch". This restriction resource is then
assigned as a superclass of car movements. This
is how the restriction defines that all movements
much have exactly one receiving branch.

The question is then: where does this OWL-code
come from? The “SBVR for logic” dotted arrow
leads from the machine-processed logic code back
up to that rule’s definition in layperson-readable
SBVR text. A platform providing this function
would need to support links from chunks of logic
code, such as OWL, to fragments of SBVR text.
HTML could encode these fragments of SBVR
text as anchors, giving each a URL. Then in the au-
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tomation layer, Semantic Web code can associate
these SBVR fragment URLs with the Semantic
Web-defined logical constructions that implement
them. What the end user then sees in the interface
is navigable web browser links from the display
of the triggered rule in the explanation to the cor-
responding piece of SBVR. In our example, this
would be an additional property linking the restric-
tion to the fragment of SBVR code defining it. The
value would simply be a URL with a fragment iden-
tifier linked to the relevant portion of SBVR code
in its online document.

The next step, “document for SBVR”, lets the
user go from such a segment of SBVR code to the
extract of documentation that is its source. Again,
this could be a URL leading from that SBVR frag-
ment to the fragment of the other document pro-
viding its original definition. If the SBVR is in
HTML in order to link it to the Semantic Web,
then this HTML can also give the user a hyperlink
from SBVR to the corresponding portions of the
HTML-defined source document. The end user can
then browse from reasoned conclusions through the
triggered rule in an explanation, back to the rule’s
SBVR source, and then to the document text. This
enables the final step in rule traceability: discussing
the document text with those who formed it, per-
haps in order to improve it, which in turn improves
how well system end users can understand and
carry out those rules. With such a reference archi-
tecture for traceability, we aim to help developers
of software for this architecture’s processes craft
exchange formats that let all components of the
broader platform exchange all information needed
to provide a traceable whole.
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Abstract

Communication protocols allow to standard-
ize communication. They are typically imple-
mented to standardize the exchange of mes-
sages in the area of information systems. Nev-
ertheless, by applying Controlled Natural Lan-
guage (CNL), it is possible to implement com-
munication protocols that allow both; partici-
pation by humans, while still enabling infor-
mation systems to accurately and efficiently
process the very same messages. Thus allow-
ing computers and humans to communicate in
unison. Here an artifact that allows applying
formal CNLs for communication in the domain
of logistics is presented.

1 Introduction

It is a truism: communication plays an important
role in logistics. Delays, production schedules,
missing spare parts ... and the information thereof
has to be communicated. Although communication
plays such an important role, it is surprisingly
neither always standardized, nor is it - partly result
of that missing standardization - always automated
and misunderstandings are commonplace. This
contribution aims to mitigate that situation by
promoting the application of Controlled Natural
Languages (CNLs) in logistics communication
introducing an artifact.

To assess this artifact some observations on the
logistics industry and some observation on, more
or less, typical communication situations in that
industry are presented. Part of those observations
are based on interviews conducted with some
arbitrarily chosen experts in the field. In addition
some casual conversations with industry veterans
do influence that picture: logistics is an highly
competitive market, profit margins are low, and the
fear for competition is commonplace. Logistics
business arrangements are often only short term
and the small organizations forming a large part of

that market are rarely big enough to allow for an
“automation” department. The average employee
is typically non-academic and the environment is
multi-lingual and multi-cultural. In addition the
following observations on communication in the
domain of logistics have been made: communica-
tion may either be scheduled or non-scheduled,
it may often be granular, it might often reoccur
regularly, and the variance between occurrences
may often be rather low.

Some reasons identified by the experts why
communication is typically not yet fully automated
have been: 1) the incompatibility of information
systems, 2) the sizes of participating organizations,
3) the mentality towards information transparency,
4) the mentality towards digitalization, and 5) the
cost of implementation. As a result opportunities
for digitalization are missed.

Standardizing communication in the domain of
logistics applying CNLs may potentially improve
that situation. Kuhn mentions that there is no gen-
erally agreed-upon definition of CNL and describes
the insight that “CNLs can be conceptually located
somewhere in the gray area between natural lan-
guages on the one end and formal languages on the
other”(cf. Kuhn, 2014). Here we work with CNLs
that are on the formal language end. ISO/IEC/IEEE
24765:2017(E) defines a formal language rather
conversational as "language whose rules are ex-
plicitly established prior to its use"(24765, 2017
p. 188). Mateescu defined formal languages less
conversational applying S and S* (cf. Mateescu
and Salomaa, 1997 pp. 10-11). The alphabet S
is a finite nonempty set of which the elements are
called letters or symbols and S* is a set of all
words or strings consisting of zero or more let-
ters of S. Subsets, finite or infinite, of S* are re-
ferred to as formal languages overS. We work with
CNLs that are formal languages that apply words

102



or strings from one specific natural language - the
base language - in such a way, that the essence
of texts written in that CNL may be understood
by the average employee that understands the base
language from which the words or strings origi-
nate. In formal language theory a grammar of a
language is a mechanism that allows the produc-
tion of sets of strings in that language (cf. Harri-
son, 1978 p. 13). Essentially, formal languages
are described by their syntax. The semantics of
a formal language is, at least in computer science
textbooks, rarely discussed. The semantics of a
formal CNL is here taken from the base language
that provided the words or the strings to that CNL.
Extended Backus–Naur form (EBNF), an exten-
sion of Backus–Naur form (BNF), allows to ex-
press the grammar of the formal languages in mind.
A Restricted English for Constructing Ontologies
(RECON) is actually an example of a CNL that has
been expressed by BNF (Barkmeyer and Mattas,
2012). Standardizing communication applying a
CNL of which the grammar is e.g. expressed ap-
plying EBNF would allow the automation of that
communication, while at the same time allowing
“participation” of a non-academic workforce speak-
ing the base language of the CNL. Nevertheless, as
of today, standardizing communication applying
CNLs is rarely discussed in both the logistics scien-
tific community as well as in the logistics industry.
Here an attempt resulting in an artifact that may
lead to a more often application of CNLs in logis-
tics is presented. This attempt is conducted from
the viewpoint of a software engineer. The goal is
to present an artifact that allows simple and flexi-
ble application while being rather maintainable and
independent of other systems.

2 A limited literature review

A limited search was conducted in three research
databases: A) Business Source Complete (via
EBSCO Host), B) Web of Science Core Collection,
and C) IEEE Xplore Digital Library during the
summer of 2021. The following search string has
been applied: (“controlled natural language” OR

“cnl” OR “domain specific language” OR “dsl” OR
“formalized language” OR “processable language”)
AND (“logistics” OR “scm” OR “supply chain”
OR “operations management”). By taking that
approach 58 results in A), 5 results in B), and 32
results in C) have been identified. After filtering
for duplicates, non-scientific publications, and

publications that have been considered off-topic,
19 publications remained. Of those 19 publications,
17 mentioned DSL, 1 mentioned CNL, and
1 mentioned both, DSL and CNL. Following
Deursen a DSL is "a programming language
or executable specification language that offers,
through appropriate notations and abstractions,
expressive power focused on, and usually restricted
to, a particular problem domain"(Van Deursen
et al., 2000). From the viewpoint taken here 1)
a CNL may be also classified as a DSL, if the
CNL is a formal language, and 2) a DSL may be
also classified as CNL, if the DSL incorporates
natural language and is expressive enough to
allow usage by anybody fluent in that natural
language. Thus some languages may be classified
as both, CNL and DSL. Of the 17 contributions
mentioning DSLs, 1 contribution introduces a
DSL which at least from our perspective may
also be classified as CNL. That language is called
Logistics Task Language and it allows “to describe
intra-logistics material flow processes” (Detzner
et al., 2019). The identified contribution that
mentions CNL, specifically does mention CNL as
part of a system that supports manual assembly
planning (Manns et al., 2018). Nevertheless, from
the perspective taken here, both do not introduce a
generalized system for logistics communication.
The contribution which mentions both DSL and
CNL does this, by discussing a use case related to
logistics in the context of ProjectIT, an approach
and tool for requirements engineering (Da Silva
et al., 2007). Nevertheless, from the perspective
taken here, this approach does not seem suitable to
generalize communication in logistics as described
before. The earlier mentioned language RECON
was not found by applying the aforementioned
search strings showing the limit reach of the
literature review. Nevertheless RECON may still
be applicable in logistics. At the end of this short
overview, it might be important to point out, that
there may be more CNLs applied in the actual
field that are not subject to scientific publications.
One example coming to mind are Pick-By-Voice
systems that are most likely implemented applying
CNLs, but nevertheless no publication discussing
how to implement such a system was found within
the limited search here.
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3 Applying CNL to standardize
communication in logistics

To simplify the task at hand this work builds
on a flexible and comprehensible model of a
communication protocol out of the domain of
computer science presented by Holzmann. The
advantage of that model is, that it allows a rather
flexible approach to implement standardization
without going into as much detail as many other
technical standards in the field do; e.g. for
application in logistics it suffices to specify that
messages are transmitted by (e-)mail including
an (e-)mail address instead of specifying the
communication down to the bit level over the wire.
Another benefit of that approach is it’s ability
to just describe the exchange of one message
as part of one protocol. A complete message
exchange may be described applying multiple
instances of one protocol. Following Holzmann a
protocol is the sum of all rules, all formats, and all
procedures that have been agreed upon, between at
least two computers in order to communicate (cf.
Holzmann, 1991 pp. 19-21). Here, that definition
is slightly extended, to also cover communication
between either two humans or an human and a
computer. A message that contains the content of
the communication may be created by applying
the rules, formats, and procedures specified as part
of that protocol. Following Holzmann a protocol
specification consists out of five distinct parts:
1) the service to be provided by the protocol, 2)
the assumptions about the environment in which
the protocol is executed, 3) the vocabulary of
messages used to implement the protocol, 4)
the encoding (format) of each message in the
vocabulary, and 5) the procedure rules guarding
the consistency of message exchanges.

The Design Science Research Process Model
(DSRPM) as introduced by Vaishnavi and Kuechler
(cf. Vaishnavi and Kuechler, 2015 pp. 14-18) has
been applied to develop the artifact. This model
comprises five process steps which are frequently
iteratively performed: awareness of problem,
suggestion, development, evaluation, and conclu-
sion. The awareness of the problem described
before originated from casual conversations with
industry professionals. As an initial solution, a
system that allows end user development of simple
problem specific programming languages for com-
munication that are designed applying everyday

language and that thus may be understood by
the average employee, has been first suggested
in a casual setting to an industry professional
during the summer of 2020. Since then, multiple
DSRPM iterations have been conducted. The
artifact version discussed here was subject of more
extensive and structured interviews with industry
experts during the spring of 2021. For those
interviews 9 experts have been reached out to, 7
responded, and 5 confirmed, that they were willing
to allocate the necessary time. The conducted
interviews took up to two hours and had 3 stages:
1) explanation of the theory, 2) presentation of
tangible examples from logistics, and 3) a detailed
discussion. In order to receive comparable results
such a discussion was guided by a pre-prepared
presentation containing questions and discussion
points that dealt with the applicability of the
artifact in logistics, communication in logistics,
and the technical implementation of the artifact.
A more extensive discussion of the conducted
interviews will be published in a more extensive
contribution. 1 expert is the CEO of an automotive
supplier, 2 experts have a leadership role in
departments that are responsible for business
innovations; 1 at a global logistics service provider
and 1 at a global manufacturing cooperation. 1
expert is a consultant currently working on a
communication automation project in logistics,
and the final expert is a purchasing agent at a
pharmaceutical trading company. This diverse field
was approached to gain rather diverse feedbacks.

The artifact is supposed to be applicable for the
standardization of communication on the opera-
tional level, the ‘day-to-day’ communication, be-
tween organizational dyads in logistics. Thus here,
we are neither dealing with communication within
one organization, nor with communication within
a higher level polyad. Following the psychologist
Tomasello, the three cooperative social motivations
for communication among humans requesting, in-
forming, and sharing do exist (Tomasello, 2008 pp.
82-88). The motivation for communication that
may be standardized applying the artifact should
be requesting or informing. Finally to allow for
standardization the communication should be ei-
ther scheduled or non-scheduled and in addition, it
should be granular, it should reoccur regularly, and
it should have a low variance between occurrences.
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The artifact builds on the previously discussed
model by Holzmann. The experts were asked if
that model seems applicable to logistics and the
tendency of the experts has been, that the model
is plausible. Protocols that originate applying this
artifact may be easily modified due to the limited
number of partners. A new version of the protocol
is created when it is modified. The information
that is needed for each one of the five distinct parts
of a protocol for the domain of logistics has been
worked out during the iterations of the DSRPM.
For each distinct part the experts have been asked
to provide feedback. Eventually the following in-
formation requirements have been identified for 1)
service, 2) assumptions, and 5) procedure rules: 1)
service: a) the version and name of the protocol,
b) the motivation for the communication, c) the re-
sponsible contact persons at each organization and
the two participating organizations, d) a reference
to the base language of the applied CNL, and, if
applicable, a list of equivalent protocols that apply
different CNLs, and e) some keywords allowing to
identify and find the protocol in a protocol manage-
ment system or database; 2) assumptions: a) how
messages applying the protocol are communicated,
b) the encoding technologies of the CNL (how the
grammar is defined, e.g. (E)BNF, Grammatical
Framework, ...) c) how messages applying the pro-
tocol are created (by human/ by machine and the
solution for the writability problem), and d) how
messages applying the protocol are processed; 5)
procedure rules: a) when, which organization ini-
tiates the communication, and b) if there is a follow
up to the communication. The 3) Vocabulary is a
plain language area for: comments, feedback, and
explanations. According to the International Plain
Language Federation, communication is in plain
language “if its wording, structure, and design are
so clear that the intended readers can easily find
what they need, understand what they find, and use
that information”(Onl). The vocabulary is writ-
ten for a neither technical nor academical audience
containing all the information deemed necessary
to apply the protocol in the field, helping to pre-
vent errors and misunderstandings. The semantics
of a formal CNL is here taken from the base lan-
guage. Thus, due to e.g. homonyms or jargon
misunderstandings are still possible. It is important
that as part of the vocabulary semantics of such
cases may be explained. During the specification
of the protocol it is important to determine what

needs to be part of the vocabulary. Nevertheless,
should an error or misunderstanding occur, a new
protocol version preventing such an occurrence in
the future may be simply created. The vocabulary
should aim to be as compact as possible and it
shouldn’t deter by seemingly looking to complex,
e.g. by containing anything but plain language, or
by looking to extensive, e.g. by being some kind
of lexicon. The 4) Encoding has to describe the
syntax of the messages exchanged. Either a new
case specific CNL may be expressed or an exist-
ing CNL, e.g. RECON, may be applied. If a new
CNL is expressed the grammar of the CNL needs
to be expressed; e.g. a syntax diagram may be de-
picted. If an existing CNL is applied an external
link to the specification may be provided or the ap-
plied aspect of that CNL may be cited. The syntax
should ensure that created messages allow identi-
fication of the applied protocol. Similarly to the
vocabulary, the encoding should aim to be as com-
pact as possible and it shouldn’t deter by seemingly
looking to complex or to extensive. More complex
communication may be broken down into multiple
smaller communication units, for which separate
protocols with more case specific CNLs may be
created. In addition a process chain diagram from
the domain of logistics as depicted in Fig. 1 may
be specified as part of the protocol specification if
the communication is scheduled communication.
Finally a diagram called ‘stakeholder communica-
tion diagram’ depicted in Fig. 2, developed, based
on feedback provided during the interviews and
inspired by so-called ‘dialogue trees’ ( see Adams,
2010 p. 186), may also be part of the specification.
The example diagram is part of the specification of
protocol B (indicated by the red arrow). The Initial
Stakeholder is able to communicate with Stake-
holder 1 applying Protocol A and with Stakeholder
2 applying Protocol B. Stakeholder 2 is optionally -
as indicated by the dashed arrow - able to respond
back to the Initial Stakeholder applying Protocol C.
Stakeholder 2 is also able to communicate to Stake-
holder 3 - ‘forwarding’ the information - applying
Protocol D.

4 Conclusion

The tendency of the expert opinion was, that
there is a place for the presented artifact in logis-
tics. Nevertheless, the tenor was, that adequate
information systems are necessary to allow the
application by an average employee. Such a
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Figure 1: A process chain diagram depicting a com-
munication process and the processes surrounding this
process. Own depiction based on Baumgarten and Inga-
Lena, 2000

Figure 2: A stakeholder communication diagram.

system requires a protocol creation and versioning
component. Protocols implemented applying
the artifact should be integratable into systems
that allow integration. Due to the limitation -
only communication between dyads - and the
flexibility of the encoding, modifications are easily
implemented. The participating organizations
are in charge of which information they share
due to the same reason. Communication in a
multi-lingual and multi-cultural environment
should also be possible by creating equivalent
protocols applying CNLs applying different base
languages. To summarize, the artifact promotes
the application of formal CNL in the domain of
logistics.

There are multiple possible future research
directions. More research into the application of
the presented artifact in the field is required. This
type of protocol discussed, may also be applicable
in different domains. Additionally, research
towards information systems, that would allow the
application by the average employee, is needed.
During the interviews multiple experts remarked,
that it would be helpful, if the protocols are able
to apply machine learning to further develop
themselves. Thus dynamic protocols, that apply
machine learning to further develop themselves,
may also be an interesting topic for future research.
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Abstract

Negation detection is a key feature to the pro-
cessing of biomedical text, and it involves two
steps: identifying a medical term of interest
in text and identifying that that medical term
is mentioned as absent. However, processing
biomedical text is made complex by the pres-
ence of medical jargon that typically requires
custom systems, and detecting negation is com-
plicated further because the representation of
negation in natural language varies according to
the grammar used. We investigated the use of a
CNL with a general-purpose semantic parser to
detect negation. Our CNL was created by rep-
resenting medical terms as their semantic types
and restricting the definition of the expression
of negation. Through this method, we identi-
fied three kinds of negation–explicit negation,
implicit negation, and explicit implicit negation.
A pilot evaluation of our method on a sample
of radiology reports achieved an F1 score of
0.99 on the sentences that could be parsed.

1 Introduction

Natural language (also referred to as free text or
narrative) is the most wide-spread, comprehensive,
and convenient medium for healthcare personnel
to present medical information, for example, in
patient progress notes, radiology and pathology re-
ports, and discharge summaries (Wang et al., 2018).
Narrative patient reports contain several medical
concepts (naming entities such as body parts, drugs,
symptoms, diseases, medical tests, and treatments)
and the relations between the concepts (Wang et al.,
2018). Identifying and distinguishing among differ-
ent entities is the basis of biomedical NLP tools for
text classification, named entity recognition, and
text summarization, section detection, and negation
detection, among others. In this paper, we focus
on the task of disease negation detection, an impor-
tant aspect in biomedical NLP, which involves two
steps: identifying a medical term of interest in text
and identifying that that medical term is mentioned

as absent (Chapman et al., 2001). Both these tasks
are complicated by the nature of medical jargon
and the variation in the representation of negation
in natural language.

Current approaches taken to solve the problem
of identifying negated medical terms can be cat-
egorized as syntactic-based, ontology-based, and
corpus-based. Syntactic-based systems typically
rely on the use of custom regular expressions for
pattern matching and to combine grammar pars-
ing with standard expression matching (Huang and
Lowe, 2007). Ontology-based systems, such as
(Elkin et al., 2005), apply the knowledge from
an ontology to standardize the representation of
medical terms, thus enabling their automatic in-
terpretation during negation detection. Corpus-
based systems use machine learning algorithms
to learn the scope of negation and treat negation de-
tection as a classification task (Slater et al., 2021).
The limitations of these approaches include: for
syntactic-based systems, limited coverage due to
being restricted to the syntax defined in a regular
expression, offering little or no contextualization
of the syntax to the semantics in the text, and te-
dious maintenance; for ontology-based systems,
the level of semantic contextualization provided is
limited and lacks broader coverage of the entire
text; and for corpus-based systems, they require
large amounts of data that are not readily available
in the healthcare domain; and the black-box nature
of machine learning algorithms makes it impos-
sible to assess what aspects of negation they are
learning.

On the other hand, there exist very efficient and
highly accurate general-purpose semantic parsers
that can be used to detect negation. The problem
here is that the presence of medical jargon in natu-
ral language text increases the complexity and am-
biguity already inherent in natural language, and
renders attempts at using general-purpose parsers
unreliable, as they result in inaccurate semantic
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representations. For example, parsing sentences
with medical jargon using the ACE parser (Packard,
2013) produces results with semantic categories
identified as ‘unknown’. As the source of the com-
plexity is the presence of medical jargon, we hy-
pothesized that reducing this complexity to a vocab-
ulary that can be parsed by general-purpose seman-
tic parsers can reduce the negation detection prob-
lem to that present in a domain-independent vocab-
ulary, and enable the use of a general-purpose se-
mantic parser to perform negation detection of dis-
ease entities. Our work contributes: (1) a method of
defining a CNL by first looking at natural language
and then restricting its lexicon and expression of
negation; and (2) a pilot method, still to be evalu-
ated comprehensively, for negation detection in a
medical domain using a general-purpose English
parser.

2 CNL-based Negation Detection

For the task of negation detection, we sought to
limit the impact of medical jargon by converting
medical text into a restricted version that can be
parsed deterministically, CNL, using a general-
purpose English parser. We used an efficient lin-
guistic processor for Head-driven Phrase Structure
Grammars (HPSGs), the Answer Constrained En-
gine (ACE) (Packard, 2013), which supports most
modern computational linguistic features. A broad-
coverage symbolic grammar of English–the En-
glish Resource Grammar (ERG) (Copestake and
Flickinger, 2000), was used to parse the CNL and
analyzed the Minimal recursion semantics (MRS)
(Copestake et al., 2005) representations for sig-
nals of the negation of mentioned entities. The
following sections present details on the materials,
methods, and results of this work.

2.1 Materials

The data used in this investigation was obtained
from the corpus of radiology reports from the
Mimic CXR dataset (Johnson et al., 2019). We
used a sample of 100 reports and considered only
the sentences associated with the sections in a re-
port which contain conclusions about the findings
in a report. These sections are labeled as FIND-
INGS, IMPRESSIONS, or CONCLUSIONS, or their
singular forms. Some reports do not have these
sections, while others have at least one of these
sections. From our sample of 100 reports, 92 were
found to possess at least one of these sections, and

from these reports, 345 sentences were obtained.
These sentences were examined manually to re-
move any sentence that contained the after effects
of report deidentification (such as ‘___ at ___ on
___.’ and ‘Analysis is performed in direct compari-
son with the next preceding similar study of ___.’).
These were removed, resulting in a final dataset of
316 sentences.

A ground-truth dataset was created manually for
these sentences. The criterion used when labeling
the dataset was that, if there is at least one indicator
of disease which is mentioned as present, then that
sentence is labeled as N for ‘not negated’, other-
wise, it is labeled as Y. The rationale behind this
labeling scheme is that the purpose of negation
detection is to identify patients who have at least
one disease indicator as opposed to patients who
have none. Therefore, sentences such as, ‘Bilateral
pleural effusions, severe pulmonary edema, cannot
exclude pneumonia.’ and ‘The heart size is nor-
mal, but the pulmonary vasculature is still mildly
engorged.’ are labeled as N (not negated); while
a sentence such as ‘Heart size is enlarged but sta-
ble.’ is labeled as Y (negation present). Of the 316
sentences in the dataset, 136 sentences were anno-
tated as negating the mentioned disease indicators,
while 180 were annotated as possessing at least one
present disease indicator.

Our CNL was created by representing medical
terms as their semantic types and restricting the
definition of the expression of negation. Though
simple, we ensured that the result possessed all
the four properties by which a language can be re-
garded as a CNL: (1) it is based on exactly one
natural language, its base language; (2) the more
restrictive lexicon is the most important difference
between it and its base language, and we restrict fur-
ther its expression of negation; (3) it preserves most
of the natural properties of its base language; and
(4) it is explicitly and consciously defined (Kuhn,
2014). When constructing our CNL, we selected
two semantic types–Anatomy and Disease–because
we are focusing on detecting the negation of dis-
eases. The Anatomy semantic type is required in
order to contextualize disease mentions that are
expressed through an anatomical region where a
disease occurs. Creating the CNL requires identi-
fying a medical term in text and then determining
its semantic type. We relied on the knowledge in
the Unified Medical Language System (UMLS)
to determine whether a medical term represents a
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disease or an anatomy, and we selected six termi-
nologies in the 2020 release of the UMLS metathe-
saurus purposively so as to have a broad coverage
with which to identify diseases and anatomies. For
parsing with ACE (Packard, 2013), we used the
English Resource Grammar (ERG) (Copestake and
Flickinger, 2000) and selected MRS (Copestake
et al., 2005) as the representations with which to
analyze the results.

2.2 Methods

First, QuickUMLS (Soldaini and Goharian, 2016)
was used on each sentence to extract medical con-
cepts and their corresponding Concept Unique ID
(CUI). 392 medical terms and their CUIs were ex-
tracted from 316 sentences. Next, the semantic type
of an entity was determined by mapping a CUI to
each of the five selected terminologies, which is
possible because the UMLS Facilitates conceptual
mappings among terminologies. If a mapping from
a source terminology to a target terminology pro-
duces concept(s), then it implies that that concept is
found in the target terminology, and is, therefore, of
the semantic type represented by that terminology.
Based on this criterion, of the 392 medical entities
extracted, 62 entities representing anatomies and
64 entities representing diseases were found.

After this, creating a CNL of each sentence was
done by replacing a medical term with the semantic
type associated with it. For example, ‘right rotator
cuff’ becomes Anatomy and ‘interstitial edema’ be-
comes Disease. Additionally, where multiples of
the same semantic type are present in a sentence,
they are numbered so as to differentiate them to
the parser and maintain the semantics in a sentence.
For example, ‘There is no evidence of pneumoth-
orax, pleural effusion, pulmonary edema, or pneu-
monia.’ becomes, ‘There is no evidence of Dis-
ease1, Disease2, Disease3, or Disease4.’. Through
this process, medical jargon is reduced to represen-
tations of proper nouns that can be parsed using
ACE. Finally, we applied two types of negation:
explicit negation and implicit negation. Explicit
negation is detected through the presence of nega-
tion markers and qualifiers in the MRS output. In
MRS, explicit negation is represented with ‘neg’.
Additionally, the quantifier for a noun, if found
to be ‘no’, semantically signifies that an entity is
present zero times, hence, negation. For exam-
ple, in the sentence ‘There is no evidence of pneu-
mothorax, pleural effusion, pulmonary edema, or

pneumonia.’, ‘no’ is a quantifier signifying zero
‘evidence’; as opposed to, say, ‘some evidence of’
or ‘only evidence of’. In our CNL, we restrict im-
plicit negation as detected through a limited vocab-
ulary. We extracted adjectives, nouns, and verbs
from the MRS representations and identified se-
mantic constructions that indicate the presence or
absence of a disease. For the former, construc-
tions such as ‘present_a_1’, ‘indication_n_of’, and
‘worsen_v_cause’ point to the presence of a disease;
for the latter, constructions such as ‘clear_a_of’,
‘normal_n_1’, and ‘rule_v_out’ point to the ab-
sence of a disease.

2.3 Results

Of the 316 sentences with ground-truth negation
values, 267 were parsed successfully with ACE,
while 49 (15.51%) could not be parsed and had
no MRS representations. We, therefore, present
results obtained from the 267 sentences. 89 sen-
tences (33.33%) were found to contain a conjunc-
tion, while 28 (10.49%) contained the explicit nega-
tion construct ‘neg’ and 70 (26.22%) contained ‘no’
as a quantifier of diseases. Therefore, the total num-
ber of sentences with constructs associated with
explicit negation was 98 (36.7%).

Of the 115 sentences annotated as negated in the
ground-truth, 81 were identified correctly through
explicit negation. The false negatives from using
explicit negation only comprise sentences that ei-
ther express a disease by referring to an anatomical
region instead of a disease directly; or describe the
absence of a disease without negating its presence
explicitly, rather implicitly. Examples of sentences
where a disease is negated by describing the af-
fected anatomy are, ‘The heart size remains normal
as well as the thoracic aorta which follows the sco-
liotic curvature in its descending portion remains
within normal limits.’, and ‘The cardiac, mediasti-
nal and hilar contours appear stable.’. Cases where
the presence of a disease is negated implicitly are,
‘Since the prior exam, the lung volumes have im-
proved.’, and ‘The right perihilar opacification and
bilateral pleural effusions have resolved.’.

For implicit negation, we catered for two cases:
(1) implicit negation either anatomically or through
disease; and (2) negation of implicit negation.
When investigating this, the following parts-of-
speech were extracted: 155 adjectives, 166 nouns,
and 91 verbs. Of these, 5 adjectives, 5 nouns, and
5 verbs were included in a vocabulary as signify-
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ing the absence of a disease; while 3 adjectives, 9
nouns, and 7 verbs were included in a vocabulary
as signifying the presence of a disease. Implicit
negation considers two kinds of semantics–those
that signify the presence of a disease and those that
signify the absence of a disease. The vocabulary
required to identify implicit negation is very small
when compared to the parts-of-speech extracted,
that is, 8 out of 155 adjectives, 14 out of 166 nouns,
and 12 out of 91 verbs were necessary. Explicit
implicit negation presents a situation of a double
negative, and it, therefore, reverses the negation
semantics of the parts-of-speech used to indicate
the presence or absence of a disease. For exam-
ple, in the sentence, ‘The presence of a minimal
left pleural effusion cannot be excluded.’, the word
‘exclude’ that would have indicated the absence of
a disease now indicates the presence of a disease
because it is negated.

Our method detected negation implicitly and
also checked for explicit implicit negation. Of the
115 sentences annotated as negated in the ground-
truth, an extra 33 were identified correctly through
implicit and explicit implicit negation; while 93
out of the 152 unnegated sentences were identified
correctly through this method. The presence of
conjunctions was used to identify 17 non-negated
sentences correctly, and another 41 sentences were
identified correctly as unnegated because they con-
tained the terms signifying the presence of a dis-
ease. When considering the number of sentences
that could be parsed by the ACE parser, then an F1
score of 0.99 is obtained. However, when consider-
ing the entire ground-truth, including the sentences
that could not be parsed, then the F1 score is 0.84.

3 Conclusion

In this paper, we have presented a method of defin-
ing a CNL from natural language by restricting the
lexicon of the CNL and restricting the definition of
the expression of negation. The lexicon is restricted
by representing disease and anatomical medical
terms as their semantic types, allowing for the pro-
cessing of medical text using general-purpose se-
mantic parsers. The second restriction of our CNL
is that negation can be expressed through explicit
negation, implicit negation, and explicit implicit
negation. We conducted a pilot study that shows
that a high F1 score (0.99) can be achieved; but also
shows the limitations as a lower F1 score (0.84) re-
sults from sentences that could not be parsed. Our

future work will comprise a more comprehensive
evaluation of our approach, as well as seeking a
solution to the problem of unparsed sentences.
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Abstract 

Automatic generation of feedback 

messages in a natural-language based 

programming for video games is presented. 

The input sentences are processed in four 

stages. During each stage, context vectors 

are aggregated and any violation to a 

syntactic or semantic rule is reported to 

allow users to debug and fix the text. The 

results discuss a list of common errors 

detected by the proposed method. 

1 Introduction 

Programming in the user's native language 

attempts to directly convert instructional text to an 

executable program. The benefits of such a 

programming system are many, including 

increased productivity, reduced effort to learn 

conventional programming languages and 

debugging, etc. Thus, proficiency in a NL-based 

platform will help carry over to learning a 

conventional object-oriented programming 

language later on. However, programming in a NL 

faces many hurdles, including the resolution of 

ambiguity/imprecision, handling of incomplete 

sentences, and propagation of context from one 

sentence to the next. Rather than targeting general-

purpose programming with NL, aiming for 

domain-specific applications should be the first 

goal. With a specific domain, we can narrow the 

scope for that target application, and the accepted 

language resembles somewhat to a controlled 

natural language (CNL), with a finite set of nouns, 

verbs, and phrasal structures. However, the 

grammatical rules used in this work are not as 

constrained as in most CNLs. Instead, the 

sentences do not need to conform to rigid 

grammatical structures.  

 

Motivating Example: Alice wishes to write a 

program involving a rabbit, fox, and carrots.  She 

writes: "There are 3 foxes, 20 carrots, and a 

rabbit. The rabbit moves around. When a rabbit 

touches a carrot, it eats the carrot.  When the 

rabbit sees a fox, it chases it." 

 

Such a programming paradigm is much more 

natural to those who have little experience writing 

a program, and the users can play the resulting 

game, providing a positive feedback. Moreover, 

fixing errors in NL offers an early introduction to 

debugging. For example, consider the last sentence 

in the above example: “When the rabbit sees a fox, 

it chases it.” There are multiple possible 

interpretations for the phrase “it chases it”, and the 

system should be able to offer feedback to the user 

about this potential bug. 

A platform has been constructed for this purpose 

to create video games.  The user enters the program 

that describes the logic of the game in English. The 

text is then translated to an executable, playable 

game via a 4-stage compilation process: syntactic 

processing, phrasal semantic processing, sentential 

semantic processing, and code generation.  At each 

stage, a context vector is produced and aggregated. 

Analyses of the context vectors against syntactic 

and semantic rules help to generate error messages 

that pinpoint any imprecise, ambiguous, and/or 

incorrect expressions. The user can then use these 

error messages and suggestions to fine-tune and 

debug their NL text. Analysis of the games written 

by middle-school students show a list of common 

errors captured by the system. 

The rest of the paper is organized as follows. 

Section 2 provides the preliminaries and 

background. Section 3 details the methodology for 

generating the context vectors and error messages 

based on these vectors. Section 4 discusses the 

results and Section 5 concludes the paper. 

Multi-Phase Context Vectors for Generating Feedback for Natural-Language Based 

Programming 
 

Michael S. Hsiao 

Department of Electrical and Computer Engineering 

Virginia Tech, Blacksburg, VA USA 24061 
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2 Preliminaries 

Let W be the sequence of words, w0, …, wn, in 

a sentence; each word in a valid sentence should be 

able to be mapped to a valid token during first step 

of parsing. The categories for any valid token is L 

= (E, A, T, P, S), where E: the set of entities (or 

objects), A: the set of actions, T: the set of 

attributes, P: the set of predicates, and finally, S: 

the set of optional selectors. Note that all these sets 

in L can grow and evolve with time.  

For the domain of video games, the set of 

entities, E, is the set of characters involved in the 

game, such as foxes, rabbits, etc. The set of actions, 

A, may include chase, flee, wander, jump, die, etc.  

Third, the set of attributes, T, includes the color, 

speed, etc. associated with the characters. Note that 

the user can add more attributes on the fly.  Next, 

the set of predicates, P, may include see(), reach(), 

touch(), catch(), etc.  Finally, the set of selectors, S, 

allows the user to say something like “when 35 

rabbits are gone”. 

Note that new terms can be learned in T. For 

example, the sentence “When a fox sees a rabbit, it 

becomes happy.  When a fox is happy, it ...” The 

term ‘happy’ is learned and associated with the 

behavior at run-time, as explained in Hsiao (2018).  

In Hsiao (2018), error reporting was limited. 

Later, in Zhan & Hsiao (2019), an attempt to use 

machine learning to categorize types of errors was 

made, again with only limited success. Notably, a 

small change in a sentence may result in 

completely different type of error. Thus, accurately 

mapping an erroneous sentence to a specific error 

(among a potentially large number of errors) via 

machine learning alone is likely infeasible. Instead, 

rules can more accurately capture the formal 

relations in the context of a sentence that imply an 

error. In other words, analyses on the aggregated 

context vector against a rule set can generate the 

needed error message(s) accurately.  

3 Methodology 

The four stages for the compilation process is 

illustrated in Figure 1.  The key to our approach is 

that each stage works on a distinct level of abstract 

representation of the input text. Context vectors 

were custom designed for the game domain. 

However, the context vectors can be tailored 

according to the needs of a domain. Example fields 

of the context will be described within each stage. 

 

Stage 1: Syntactic Analysis 

Given the sequence of n words, w0, …, wn, this 

stage aims to produce a sequence of m tokens, T, 

t0, …, tm, where m ≤ n, and a syntactic context 

vector, SC. Every token takes a type as defined in 

L explained earlier, such as character, verb, 

predicate, attribute, etc. Any typo (no match to any 

word in the lexicon) or grammatical error (such as 

‘fox chase’ instead of ‘fox chases’) will be output 

to the user during this stage as well.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: 4-Stage Compilation Process. 

 

Resolution of pronouns is also performed in 

Stage 1, that binds the pronouns to the 

corresponding character. Moreover, it learns new 

words, such as ‘happy’ as discussed in the 

preceding section. Such words are not included in 

the original lexicon, and do not need to be real 

words. For example, the attribute could be ‘xyz’ as 

well. These newly learned words will be 
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represented as variable attributes in the final code 

generation. We note also that the syntactic context, 

SC, generated for each sentence is also used to 

process the next sentence. This is because there 

might exist relations between consecutive 

sentences, with words such as “Otherwise” or if the 

sentence starts with a pronoun, etc. 

The SC includes the tokens themselves and the 

statistics of the tokens such as the number of 

objects, the number and type of verbs, adjectives, 

colors, adverbs, numbers, etc. Some sentences may 

contain imprecise verbs, such as ‘get’ in “When the 

fox gets the rabbit, …” Likewise, there might be 

usage of other verbs that do not mean their 

conventional semantics. These instances are also 

recorded in SC. Finally, conjunctives such as ‘and’ 

and ‘or’ are also recorded. The syntactic context, 

SC, along with the token stream, are passed to the 

next stage to generate the phrasal semantics. 

 

Stage 2: Phrasal Semantic Analysis 

In Stage 2, the generated tokens, T, and 

syntactic context, SC, from Stage 1 are used to 

generate semantic expressions, SE, and the 

corresponding phrasal context, PC. Consider a 

simple stream of tokens t0, t1, t2: <obj, fox> <verb, 

chase> <obj, rabbit> for the text-phrase “fox 

chases rabbit”. With frame semantics, the above 

token stream can be readily converted into a 

semantic expression of “verb(obj, obj).” Likewise, 

the phrase “rabbit is chased by the fox” maps to the 

semantic expression “verb(obj, obj).” However, 

the object identifiers should correctly correspond 

to the matching actor and actee.  

Consider another more sophisticated phrase of 

“the happy fox eats the rabbit that is not yellow”, 

the token stream, T, for this phrase produced from 

Stage 1 is ti, … ti+4: <adj, happy> <obj, fox> <verb, 

eat> <adj, not yellow> <obj, rabbit>. Note that the 

final modifier “that is not yellow” is converted to a 

token <adj, not yellow> in Stage 1 and placed as 

an adjective modifier before the final object. With 

this token stream, the semantic expression is 

“verb((adj, obj), (adj, obj)).” 

This stage also handles conjunctions. For 

phrases such as “The foxes and tigers chase the 

rabbit,” two semantic expressions are generated 

internally, namely for the phrases “the foxes chase 

the rabbit” and “the tigers chase the rabbit”. 

Any error encountered in the process is also 

reported. Consider the phrase “fox chases flees the 

rabbit”. The tokens would have been <obj, fox> 

<verb, chase> <verb, flee> <obj, rabbit>. In this 

case, consecutive verb-tokens are detected, and an 

error is reported for violating the rule of 

consecutive action verbs. This rule can be 

succinctly represented as ti ∈ A → ti+1∉ A, where A 
is the set of action tokens. Essentially, this rule 
states that if the ith token is an action, the next 
token must not be an action token. 

Consider another erroneous example, “fox 

chases happy”, the dangling adjective, ‘happy’, 

without any binding object is a violation and is 

reported to the user. Verb-tokens such as ‘chase’ 

require two objects around it. In this error, there 

was only one object, fox, which is insufficient to 

properly form the semantic expression.  

Finally, when a conjunctive is about verbs, such 

as “the foxes chase and eat the rabbits,” the system 

will generate an error message noting the user that 

such sequences of actions should be split up into 

different sentences, and provide potential fixes 

such as “The foxes chase the rabbits. When a fox 

catches a rabbit, it eats the rabbit.” The above 

error violates the rule that prevents conjunction of 

action verbs “ti and ti+1”, where both ti , ti+1 ∈  A. 

The set of semantic rules is manually designed 
based on the valid phrases allowed in the 
system. Adding new rules to this set is straight-
forward. 

In addition to generating errors and semantic 

expressions in Stage 2, a corresponding phrasal 

context, PC, is also produced. The PC here refers 

to the set of semantic expressions (SE) discussed 

above, together with the number and types of 

semantic expressions, etc. For example, “fox sees 

rabbit” is a relational expression, while “fox 

chases rabbit” is an action expression. Other types 

of expressions include property expressions, such 

as “rabbit is happy”, and variable expressions, such 

as “the size of the rabbit equals 3,” etc. The PC, 

together with SE generated, are passed to Stage 3 

to generate the sentential semantics. 

 

Stage 3: Sentential Semantic Analysis 

In Stage 3, the goal is to generate the 

intermediate representation (IR) for each sentence 

as well as the sentential context, EC. Consider the 

sentence, “When a fox sees a rabbit, it chases the 

rabbit.” After Stages 1 and 2, the semantic 

expressions are SE: se0 = “if see(obj, obj)” and se1 

= “chase(obj, obj).” Each of the <obj> has a unique 

identifier to bind with the character in question. For 

this simple example, the IR for the entire sentence 
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is “if see(obj, obj), then chase(obj, obj).” Consider 

another simple example with SE = “if 

property(obj, adj)” and “set_color(obj, col)”. The 

resulting IR would be “if property(obj, adj), then 

set_color(obj, col).” 

The types of errors in this stage include the 

following. Consider the sentence “When a fox sees 

a rabbit, it sees the rabbit.” Here, we have two 

relational semantic expressions involving 

predicates without any action expression. Thus, an 

error message will be produced for violating the 

missing actionable SE. Here, the violated rule is 

∃sei ∈ action-SE for every sentence. 
Re-writing of the phrases is also performed 

during this stage for some sentences. For example, 

if the sentence places the consequent before the 

antecedent, the system will internally re-write the 

sentence to preserve canonicity. Finally, resolution 

of conjunctives such as ‘and’ and ‘or’ are 

performed in this stage as well. Here, the 

conjunction is analyzed to determine if it is about 

two separate antecedents or consequents in the 

sentence. The set of rules for the sentential context 

is also manually derived, based on the sentences 

that combine various allowable phrases. 

The sentential context, EC, for this stage 

includes the set of IR, together with the type of the 

IR, as well as the number of antecedents, 

consequents, complexity of the antecedent, etc. For 

example, the sentence “When 35 rabbits are gone, 

…” contains a counter 35, along with the IR for the 

sentence that is given to the subsequent code 

generation stage. 

 

Stage 4: Code Generation 

Finally, with the IR and sentential context, EC, 

Stage 4 generates the output game code based on 

the EC. If there are no errors in any of the previous 

stages, the IR from Stage 3 would be readily 

translated to the game code. On the other hand, if 

there are errors, the context vectors are used to help 

fill the gap(s) when generating the code. For 

example, in the first stage, if the number of object 

tokens is significantly greater than the number of 

verb tokens (or vice versa), we analyze the token 

stream further to generate both the code and any 

additional error message, if appropriate. For 

instance, in the consequent phrase “it chases it”, if 

there are two characters in the antecedent, the 

system will fill in the two pronouns according to 

the characters in the antecedent. 

We had briefly touched on variables earlier. In 

addition to Boolean variables such as ‘happy’, the 

system also handles non-Boolean variables, such 

as ‘size’ in “When the size of the fox is less than 5, 

…” Here, ‘size’ is a built-in variable available for 

every object. The user can also define new 

variables, such as “When the num_eaten of the 

rabbit is equal to 5, …” The variables can also be 

used in modifier clauses as well. The following 

sentence is one such example: “When a rabbit 

whose size is less than 10 sees a fox, it turns red.” 

Here, the phrase “whose size is less than 10” 

modifies the rabbit object in the antecedent. 

4 Results 

The current 4-stage process helps in both the 

translation of the input text and error-reporting. 

With this platform (Game Changineer), we are able 

to produce a wide range of error messages and 

offer possible fixes to the error. For example, the 

sentence “When a rabbit sees a fox, it chases it” is 

ambiguous as discussed earlier. The system 

generates an ambiguity error (noting the two 

pronouns). Nevertheless, in the presence of such an 

error, the system will still produce an approximate 

understanding so that a final game code can still be 

produced (so that the user can test the game). 

Consider another erroneous sentence: “When a 

fox sees a rabbit, it chases.” The verb in the 

consequent is an action verb (chase), and it is 

missing a target object. Thus, an error is reported. 

In addition, the engine tries to remedy the semantic 

expression by inserting the most suitable missing 

object from the former semantic expression(s). In 

this case, it would be the fox chasing the rabbit. 

This temporary filling of the missing object allows 

the code generation to complete its generation of 

the game code. Nevertheless, the above error 

message is still provided to allow the user to fix the 

error. 

Consider a third error example: “When the 

rabbit shoots the fox, the fox runs away.”  This 

sentence may seem correct at first glance, but it is 

actually ambiguous on the word ‘shoot’. Recall 

that the sentence may be sloppily written by a 

young user, and as with any NL, the manner in 

which a verb is used may be imprecise. In this case, 

there are two possible interpretations of the 

antecedent clause: (1) ‘when the rabbit fires a 

bullet at the fox’ or (2) ‘when a bullet touches the 

fox.’ With the first interpretation, we know that not 

every bullet fired will hit the fox. In fact, many 
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bullets might actually miss the fox. This 

corresponding error violates the imprecise 

antecedent verb.  

We believe that a good NL-based programming 

platform should provide a helpful debugging 

infrastructure to give feedback and guidance to the 

user on possible misinterpretations. With the error-

reporting framework, the system has been piloted 

at several outreach events to middle school 

students in the 2020-2021 school year. To the best 

of our knowledge, no other publicly available 

system exists that allows users to write video 

games in English, generates feedback and 

suggestions on how to fix syntactic and logical 

errors in the natural language sentences. Because 

there is no public dataset available, the results are 

tabulated on anonymized input sentences written 

by 434 middle school students during the month of 

March, 2021. Each student created a number of 

games during the month, and each game may 

require multiple iterations of debugging. Among 

the 47,907 errors collected, the 10 most-frequent-

occurring errors are reported in Table 1. Both the 

number of occurrences and type of error are shown. 

 

Table 1: Most frequent-occurring errors 

# occur Error type 

742 Spelling error 

604 Imprecise verb (such as ‘get’) 

382 Unclear / unsupported phrases 

296 Move without direction 

294 Incomplete sentence 

247 Missing a valid character 

245 Ambiguous antecedent 

224 Missing a valid verb 

223 Imprecise word 

178 Logical error on sequencing events 

 

Based on Table 1, it is not surprising that 

spelling error ranked highest. It is worth noting that 

the system may generate multiple errors for a given 

erroneous sentence. For example, a spelling error 

may also result in a “missing a valid character” or 

“unclear / unsupported phrase” error. The second 

most frequent error was the use of imprecise verbs. 

These occur with phrases such as “fox gets the 

rabbit” or “the bird is hit”. These phrases can have 

multiple interpretations, including “touch”, 

“eliminates”, or “is shot”. Next, unclear / 

unsupported phrases include those facetious 

phrases such as “the fox farts”. Next, an example 

of “move without direction” is the phrase “the 

rabbit moves at 2 pixels per frame”. This can be 

interpreted as either “wanders around at 2 pixels 

per frame” or “the speed of the rabbit is 2.” 

Without clarity, the system chooses the latter. 

An example of an incomplete sentence is “When 

the rabbit sees a carrot, chase.” Here the objects in 

the consequent are missing and need to be filled. 

Finally, the logical error on sequencing events is an 

interesting type of error. For example, a sentence 

“When the rabbit dies, the game is over” is correct 

in itself, but will result in such an error if there was 

no earlier description on how the rabbit can die 

before this sentence. Screen shots of two games 

created are illustrated in Figure 2. Many more 

games are available on the website. 
 

  
Figure 2: Breakout and Space Invaders Type Games 

5 Conclusions 

We have presented a 4-stage process to generate 

error messages for English sentences that could not 

be processed. At each stage, a context vector is 

constructed and propagated to the next stage. 

Analysis of the context vectors plays a critical role 

in both the generation of game code and any error 

messages that pinpoint imprecise, incomplete, 

and/or incorrect expressions. These error messages 

help guide the user to correct their errors. Results 

from games created by Middle-school students 

show the potential of such a framework to help 

them bring their designs to completion.  
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