
 
 
 

Abstract 

Daily experience teaches us that a situation re-
mains unchanged unless somebody or some-
thing changes it. Leibniz called this experience 
the law of inertia. Early attempts to formalise the 
law of inertia failed because they offered no easy 
way to describe that after a partial change of a 
situation the unaffected rest remains unchanged. 
This so-called frame problem was efficiently 
solved by later approaches, specifically by the 
event calculus and the default logic. Focusing on 
default logic, I will show that it can express the 
law of inertia not only in first-order logic, but 
also quite naturally in Attempto Controlled Eng-
lish. Furthermore, I will use the Attempto rea-
soner RACE to efficiently reason with the law 
of inertia. 

1 The Common Experience of Inertia 

When you return to your office in the morning 
you expect to find the items on your desk in ex-
actly the same order as you left them in the even-
ing before – unless somebody or something 
moved them. This common experience was ex-
pressed by the philosopher Leibniz as the law of 
inertia: "Everything is presumed to remain in the 
state in which it is." (Leibniz, 1679). At about the 
same time Newton published his three laws of 
motion, the first of which expresses the specific 
case of the law of inertia for moving physical bod-
ies (Newton, 1687). 

I will show that Leibniz' law of inertia can be 
formalised in Attempto Controlled English 
(ACE)1and that this formalisation allows us to 
reason with the law. In section 2, I describe early 
attempts to formalise common sense, specifically 

                                                             
1 http://attempto.ifi.uzh.ch/ 

the law of inertia, the encountered frame problem, 
and a variant of the Yale Shooting Problem. Sec-
tion 3 presents two solutions of the frame prob-
lem, the event calculus and the default logic. In 
section 4, I express the default logic in ACE. Sec-
tion 5 describes reasoning with the law of inertia 
using the Attempto reasoner RACE2. Section 6 
shows that incorporating the law of inertia into 
RACE facilitates the reasoning. Section 7 revisits 
the Yale Shooting Problem in ACE/RACE. Sec-
tion 8 summarises the paper and briefly addresses 
the fact that the law of inertia and, specifically, its 
formalisations are asymmetric with respect to 
time. 

2 Formalising Common Sense and the 
Frame Problem 

Beginning in the 1960s researchers began to for-
malise common sense, predominantly in first-or-
der logic. When trying the express the law of in-
ertia they encountered the so-called frame prob-
lem, that is how to effectively and efficiently de-
scribe the unaffected part of a situation after a par-
tial change.  

Initial attempts to solve the frame problem 
failed, mostly because only the changed parame-
ters were taken into account and the unchanged 
parameters ignored.  

The shortcomings were strikingly demon-
strated by the impossibility to adequately solve 
the so-called "Yale Shooting Problem" (Hanks 
and McDermott, 1987). In this paper I replace the 
original problem by a less violent, but "problem-
identical" one. 

2 http://attempto.ifi.uzh.ch/race/ 
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Initially, a wine glass is empty and a wine bot-
tle is not open. Opening the bottle, waiting a mo-
ment to read the label, and then pouring the wine 
should fill the glass. If this situation is formalised 
in first-order logic by only taking the changed pa-
rameters into account and ignoring the unchanged 
ones, it cannot be uniquely proved that the wine 
glass is finally full. In one logical solution the 
wine glass is actually full; in another logical solu-
tion the wine bottle is again not open and the wine 
glass remains empty. 

Here is a simple formalisation3 of my version 
of the Yale Shooting Problem using four time 
points 0, 1, 2, 3 and the two fluents – conditions 
that can change their truth value over time 
– empty and open expressed by the following 
first-order formulas: 

	 𝑒𝑚𝑝𝑡𝑦(0)		 (1)	

	 ¬	𝑜𝑝𝑒𝑛(0)		 (2)	

	 𝑡𝑟𝑢𝑒 → 𝑜𝑝𝑒𝑛(1)		 (3)	

	 𝑜𝑝𝑒𝑛(2) → 	¬	𝑒𝑚𝑝𝑡𝑦(3)		 (4)	

As it turns out, two evaluations of the fluents 
are consistent with the formulas, the first one  

{empty(0),	¬	open	(0)},	{empty(1),	open	(1)},	
{empty(2),	open	(2)},	{¬	empty(3),	open	(3)}	

describing the intended behaviour that the glass is 
not empty at time 3, the second one 

{empty(0),	¬	open	(0)},	{empty(1),	open	(1)},	
{empty(2),¬	open	(2)},	{empty(3),¬	open	(3)}	

describing the non-intended behaviour that the 
bottle strangely is not open again at time 2 and the 
glass is empty at time 3. 

The problem is that the formulas only describe 
the changes and that they do not specify that flu-
ents unaffected by the actions remain unchanged. 
Several so-called frame axioms – e.g. empty(1) = 
empty(0) – would be needed to restrict the solu-
tions to the one with the intended behaviour. 

3 Solutions of the Frame Problem 

In the end, several correct solutions for the frame 
problem and the Yale Shooting Problem were de-
veloped. Among the solutions that express Leib-
niz' law of inertia directly are the Event Calculus 

                                                             
3  adapted from https://en.wikipedia.org/wiki/Yale_shoot-

ing_problem 

(Kowalski and Sergot, 1986) and the Default 
Logic (Reiter, 1980). 

The Event Calculus uses the following concep-
tualisation: linear time, fluents F that hold or do 
not hold at time points, and events E that happen 
at time points and initiate or terminate fluents. 
There is one domain-independent axiom of inertia 

holdsAt(F,	T)	←	happens(E1,	T1)	∧	initiates(E1,	F)	
∧	T1<	T	∧	¬	∃	E2,	T2	[	happens(E2,	T2)	∧	termi-
nates(E2,	F)	∧	T1<	T2	∧	T2<	T	 (5)	

with the meaning "The fluent F holds at a time T 
if an event E1 happens at a time T1 before T and 
E1 initiates F and there is no event E2 and there is 
no time T2 between T1 and T so that E2 happens 
at T2 and E2 terminates F." 

To describe a concrete situation, a set of do-
main-dependent axioms would be needed to spec-
ify the actual fluents and the actual events that in-
itiate and terminate the fluents.  

The Default Logic – which will be used in this 
paper – relies on non-monotonic logic with as-
sumptions and exceptions expressed as default in-
ference rules of the form 

prerequisite	:	justification	
																(6)	

conclusion	

meaning "If the prerequisite is true and the justi-
fication is consistent with the known facts then 
the conclusion can be drawn." 

As a concrete example here is the default infer-
ence rule for the law of inertia 

r(X,S) : r(X, do(A,S))	
																	(7)	

r(X,	do(A,S)) 

paraphrased as "If r(X) is true in a situation S and 
it can be assumed that r(X) remains true after the 
action A is applied to S then r(X) remains true." 

Being inspired by (Erdem et al., 2016), I refor-
mulated (Equation 7) as an implication using log-
ical negation (¬) and negation as failure (not). 

r(X,S)	∧	not	(¬	r(X,	do(A,S)))	→	r(X,	do(A,S))									(8)	

with the paraphrase "If r(X) is true in a situation 
S and it is not provable that r(X) is false after the 
action A is applied to S then r(X) remains true." 



 
 
 

Replacing the situation parameter by time 
points we get 

r(X,T1)	∧	T2>T1	∧	not	(¬	r(X,T2))	→	r(X,	T2))	(9)	

that is "If r(X) is true at a time T1 and there is a 
later time T2 and it is not provable that r(X) is 
false at T2 then r(X) is true at T2." 

4 Default Logic in Attempto Controlled 
English 

Default logic's basic axiom for inertia (Equation 
9) can be paraphrased in Attempto Controlled 
English (ACE) as 

	If	something	X	holds	at	a	time	T1	and	there	is	a	time	
T2	that	is	after	T1	and	it	is	not	provable	that	X	does	
not	hold	at	T2	then	X	holds	at	T2.																											(10)	

Note that I introduced a practically identical 
axiom when briefly discussing the frame problem 
in (Fuchs, 2016). 

As a concrete example let's model the situation 
of a sleeping person that can be expressed in Eng-
lish as "If a person falls asleep and the person does 
not wake then the person continues to sleep.", ig-
noring the duration and nature of human sleep to 
solely focus on the law of inertia. Using verbs of 
the sleep example (fall asleep, wake, sleep) di-
rectly instead of the verb hold we can customise 
(Equation 10) for the sleep example 

If	a	person	falls	asleep	at	a	time	T1	and	a	time	T2	is	
after	T1	and	it	is	not	provable	that	the	person	
wakes	at	T2	then	the	person	sleeps	at	T2.										(11)	

or simply using only the verb sleep 

If	a	person	sleeps	at	a	time	T1	and	a	time	T2	is	af-
ter	T1	and	it	is	not	provable	that	the	person	does	
not	sleep	at	T2	then	the	person	sleeps	at	T2.				(12)	

5 Reasoning with in Attempto Controlled 
English 

Having default logic's basic axiom for inertia ex-
pressed in ACE we may want to reason with it. 
There are several reasoners for ACE of which I 
will use the Attempto reasoner RACE (Fuchs, 
2012; Fuchs, 2016). RACE can 

• determine the (in-) consistency of an 
ACE text 

• deduce one ACE text from another one 
• answer an ACE query from an ACE text 

RACE is supported by about 100 auxiliary ax-
ioms – expressed in Prolog, using ACE's internal 
logical notation – that provide domain-independ-
ent knowledge like the relations between plural 
and singular nouns, the relations between num-
bers, the substitutions for query words, and much 
else. In spite of their large number auxiliary axi-
oms have little impact on RACE's performance 
since they are only called individually and only 
when needed. 

RACE is implemented in Prolog, has a web-
service and a web-interface whose output window 
will be used in the following.  

RACE has a restriction relevant for the prob-
lem at hand: For technical reasons RACE does not 
accept logical negation within the scope of nega-
tion as failure (it is not provable that ... not ...). 
Thus, we will have to replace negated verbs 
within negation as failure by verbs that express 
the intended negation, e.g. does not sleep → 
wakes. 

Reasoning Examples: Continuous Sleep and 
Interrupted Sleep. In the following RACE will 
prove that a person whose sleep is not interrupted 
will continue to sleep, while a person whose sleep 
is interrupted does no longer sleep.  

First the case of continuous sleep. To the axiom 
of the law of inertia of a sleeping person (Equa-
tion 11) two axioms are added to describe a con-
crete situation: one axiom to introduce a person 
sleeping at an initial time and a second axiom to 
introduce a later time. The theorem checks 
whether the person will sleep at the later time. 

If	a	person	sleeps	at	a	time	T1	and	a	time	T2	is	after	
T1	and	it	is	not	provable	that	the	person	wakes	at	
the	time	T2	then	the	person	sleeps	at	the	time	T2.		
A	person	sleeps	at	an	initial	time.	A	later	time	is	af-
ter	the	initial	time.		
⊢		
A	person	sleeps	at	a	later	time.	

Submitting this reasoning example to RACE's 
web-interface we get the expected result (Figure 
1) that RACE proves that the person sleeps at a 
later time. To present the result, I use a screen-
shot of the output window of RACE's web-inter-
face. This window contains the axioms, the theo-
rem, and the minimal subset of the axioms needed 
to prove the theorem. The entry "parameters" is 
used for testing.  



 
 
 

	
Figure 1: Continuous Sleep 

Following is the case of interrupted sleep. To 
the axiom of the law of inertia of a sleeping per-
son (Equation 11) four axioms are added: one ax-
iom relates waking to not sleeping, one axiom in-
troduces a person sleeping at an initial time, one 
axiom introduces a later time, and one axiom 
states that the person wakes at the later time. The 
theorem checks whether the person will sleep at 
the later time. 

If	a	person	sleeps	at	a	time	T1	and	a	time	T2	is	after	
T1	and	it	is	not	provable	that	the	person	wakes	at	
the	time	T2	then	the	person	sleeps	at	the	time	T2.		
If	a	person	wakes	at	a	time	T	then	the	person	does	
not	sleep	at	the	time	T.	
A	person	sleeps	at	an	initial	time.	A	later	time	is	af-
ter	 the	initial	 time.	The	person	wakes	at	 the	 later	
time.	
⊢		
A	person	sleeps	at	a	later	time.	

 

Figure 2: Interrupted Sleep 

Submitting this reasoning example to RACE we 
get the expected result (Figure 2) that RACE can-
not prove that the person sleeps at the later time. 

6 Incorporating the Law of Inertia into 
RACE 

For a complex situation involving many fluents 
we would have to formulate for each fluent a sep-
arate ACE axiom of inertia thus blowing up the 
axiomatisation of the situation. Going back to 
ACE's general axiom of inertia (Equation 10) of-
fers no solution since for each fluent of the con-
crete situation we would have to introduce bridg-
ing axioms – as in the event calculus – thus again 

creating a blow-up. Instead, I decided to incorpo-
rate an abstract version of (Equation 10) as three 
auxiliary Prolog axioms into RACE: one axiom 
for intransitive verbs, one axiom for transitive 
verbs, and one axiom for the copula plus adjec-
tive. This threefold division is necessary since 
these verbs have different internal representa-
tions. There is no axiom for ditransitive verbs be-
cause they do not seem to cause the frame prob-
lem. By abstracting away from the details of the 
fluents – concretely replacing nouns, verbs etc. by 
variables – these three auxiliary axioms can cover 
any fluent. One could say that RACE now 
"knows" the law of inertia in the same way as it 
"knows" the relation between plural and singular 
nouns. 

There is an unexpected bonus: the new auxil-
iary axioms can deal with logical negation within 
the scope of negation as failure (it is not provable 
that ... not ...), eliminating the need to replace ne-
gated verbs by other verbs. 

Let us now return to the previous examples.  

Reasoning Examples: Continuous Sleep and 
Interrupted Sleep Revisited. In the following 
RACE will again prove that a person whose sleep 
is not interrupted will continue to sleep, while a 
person whose sleep is interrupted does no longer 
sleep.  

Note that the verb wake of the initial example 
can now be replaced by not sleep.  

Further note that in both cases the ACE axiom 
expressing inertia (Equation 12), is no longer nec-
essary for the proof. However, it is left crossed out 
as a reminder to the reader.  

Following is the case of the continuous sleep.  

If	a	person	sleeps	at	a	time	T1	and	a	time	T2	is	after	
T1	and	it	is	not	provable	that	the	person	does	not	
sleep	at	the	time	T2	then	the	person	sleeps	at	the	
time	T2.		
A	person	sleeps	at	an	initial	time.	A	later	time	is	af-
ter	the	initial	time.		
⊢		
A	person	sleeps	at	a	later	time.	

We get the expected result (Figure 3) that – us-
ing the (hidden) auxiliary axiom "Frame Axiom 
1: Persistence of intransitive verb." in addition to 
the (visible) axioms describing the concrete situ-
ation – RACE proves that the person sleeps at a 
later time.  



 
 
 

	

Figure 3: Continuous Sleep Revisited 

Now the case of interrupted sleep. Note that 
also the axiom relating waking to not sleeping, 
that I used previously, is no longer needed. 

If	a	person	sleeps	at	a	time	T1	and	a	time	T2	is	after	
T1	and	it	is	not	provable	that	the	person	does	not	
sleep	at	the	time	T2	then	the	person	sleeps	at	the	
time	T2.		
A	person	sleeps	at	an	initial	time.	A	later	time	is	af-
ter	the	initial	time.	The	person	does	not	sleep	at	the	
later	time.	
⊢		
A	person	sleeps	at	a	later	time.	

 

Figure 4: Interrupted Sleep Revisited 

We get the not at all surprising result (Figure 4) 
that RACE cannot prove that the person sleeps at a 
later time. 

7 The Yale Shooting Problem Revisited 

RACE can now correctly and efficiently solve my 
version of the Yale Shooting Problem. Here again 
the version in English 

A wine glass is initially empty and a wine bottle is 
initially not open. Opening the bottle, waiting a 
moment and then pouring the wine should fill the 
glass. 

and here the ACE version 

A	glass	is	empty	at	a	time	T0	and	a	bottle	is	not	open	
at	T0.	A	time	T1	is	after	T0	and	the	bottle	is	open	at	
T1.	An	intermediate	time	T2	is	after	T1.	A	final	time	
T3	is	after	T2.	If	a	glass	is	empty	at	T2	and	a	bottle	
is	open	at	T2	then	the	glass	is	not	empty	at	the	final	
time	T3.	

⊢		

There	is	a	final	time.	A	glass	is	not	empty	at	the	final	
time.	

In addition to the three frame axioms intro-
duced before, a fourth frame axiom is needed to 
relate the state of some fluents to the precondition 
of an implicative axiom, concretely the fluents 
"empty glass" and "open bottle" at the time T2 to 
the precondition of the implicative axiom "If a 
glass is empty …". 

Submitted to RACE we get: 

 
Figure 5: Yale Shooting Problem Revisited 

The Yale Shooting Problem presented in sec-
tion 2 had two solutions, one expected, the other 
one unexpected. RACE – using its built-in inertia 
axioms "Frame Axiom 2: Persistence of copula 
plus adjective." and "Frame Axiom 4: Fluent used 
in the precondition of an implication." – generates 
only the expected one. 

8 Conclusions 

I arrive at the following conclusions 

• default logic effectively formalises the 
omnipresent law of inertia, 

• default logic – originally expressed in 
first-order logic – can be naturally formu-
lated in Attempto Controlled English 
(ACE), 

• the Attempto reasoner RACE can reason 
with the law of inertia, 

• reasoning with the law of inertia can be 
simplified and generalised by expressing 
the basic axioms not in ACE but as auxil-
iary Prolog axioms, quasi incorporating 
the law of inertia into RACE, 

• RACE can correctly solve the Yale 
Shooting Problem. 

Leibniz’ law of inertia connects the present im-
plicitly to the future, it does not make any assump-
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tions about a possible past. This is explicitly re-
flected in the formalisations presented. To reason 
backwards in time, one would need other ap-
proaches, for instance abduction, a simple form of 
which is found in (Fuchs, 2016). 
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