
The Grammar of PENGASP Explained

Rolf Schwitter
Department of Computing

Macquarie University
Sydney, NSW, 2109, Australia

Rolf.Schwitter@mq.edu.au

Abstract

In this paper we present the controlled lan-
guage and the grammar of the PENGASP sys-
tem and explain how the new version of the
grammar has been implemented in a logic pro-
gramming framework. The grammar is now bi-
directional and can be used to translate a spec-
ification written in controlled language into an
executable answer set program and vice versa.
The grammar is highly configurable for dif-
ferent application scenarios and can be used
for incremental text processing together with a
predictive authoring tool.

1 Introduction

A controlled language is a restricted version of a
natural language which has been engineered by re-
ducing the complexity of its grammar and/or its
vocabulary to meet a particular purpose (Schwitter,
2010; Kittredge, 2003). Human-oriented controlled
languages aim to improve the communication be-
tween humans or the readability of technical doc-
umentation for humans who are often not native
speakers of the language. Machine-oriented con-
trolled languages aim to improve machine trans-
lation of (technical) documentation or to support
automatic reasoning via the translation of the lan-
guage into a knowledge representation language.

PENGASP (Guy and Schwitter, 2017) is a
machine-oriented controlled language and is in
this respect similar to Attempto Controlled En-
glish (Fuchs et al., 2008), Computer-Processable
Language (Clark et al., 2005), and Logical En-
glish (Kowalski, 2020). However, in contrast to
these other three controlled languages, specifica-
tions written in PENGASP are exclusively trans-
lated into executable answer set programs (Gel-
fond and Kahl, 2014; Gelfond and Lifschitz, 1988).
Answer set programming offers a rich declara-
tive knowledge representation language for non-
monotonic reasoning and is supported by high per-
formance reasoning tools (Gebser et al., 2019). In

contrast to the grammar of the PENGASP system
introduced in Guy and Schwitter (2017), the lat-
est version of the grammar is now bi-directional.
This means that the same grammar can be used for
processing a specification and for verbalising an
answer set program.

According to the PENS scheme (Kuhn, 2014),
controlled languages can be classified along four
dimensions: precision (P), expressiveness (E), nat-
uralness (N), and simplicity (S). Each of these di-
mensions is then measured on a scale of 1 to 5.
In addition to these four dimensions, nine proper-
ties are used to identify the type of a controlled
language. Following this scheme, the controlled
language PENGASP can be classified as P5E3N4S3

A,W,F. This means PENGASP is a language with
fixed semantics (P5); offers medium expressive
power (E3); uses natural sentences (N4); and re-
quires a description of more than 10 pages (S3).
Furthermore, PENGASP originated from academia
(A), is intended to be written (W), and to be formally
(F) represented as an answer set program. In other
words, PENGASP is a high-level specification lan-
guage for answer set programs that combines the
readability and understandability of natural lan-
guage with the precision and expressiveness of a
declarative knowledge representation language.

The rest of this paper is structured as follows:
In Section 2, we outline the requirements to the
grammar of PENGASP . In Section 3, we give
a brief introduction to answer set programming,
since PENGASP is closely related to this formal
target language. In Section 4, we introduce a moti-
vating example that illustrates some features of the
language and show how the corresponding answer
set program looks like. In Section 5, we reveal
more details about the design of the controlled lan-
guage with a particular focus on the usage of certain
grammatical constructions. In Section 6, we take
a look at the implementation of the bi-directional
grammar; and in Section 7, we conclude.



2 Requirements to PENGASP

The controlled language PENGASP and its gram-
mar have been designed with a number of require-
ments in mind. Firstly, a controlled language spec-
ification should be translatable into an executable
answer set program. Secondly, the grammar for this
language should be highly configurable for differ-
ent application scenarios, also for scenarios that do
not necessarily require the full power of answer set
programming. Thirdly, the same grammar should
support the processing of a specification and the
verbalisation of an answer set program; therefore,
the grammar should be bi-directional. Fourthly, the
grammar should also be useful to support the writ-
ing process of a specification in an incremental way,
in particular with respect to generating lookahead
information and resolving anaphoric expressions.

A possible processing strategy is to translate a
controlled language specification into a syntax tree
and then transform this tree into an answer set pro-
gram. A better strategy is to generate the answer
set program directly during the parsing process and
design the grammar in such a way that it can serve
as a language processor as well as a language gener-
ator. To achieve this, we start from a definite clause
grammar and specify the grammar rules for the
controlled language PENGASP in this unification-
based notation (Pereira and Warren, 1980), and
then use SWI Prolog (Wielemaker et al., 2012) as
programming language. However, when Prolog
is directly used to evaluate a definite clause gram-
mar in a system like ours that heavily relies on
incremental processing and user interaction, then
Prolog’s backtracking search strategy is not opti-
mal, since it forgets all the previous work that it
has done after a user interaction. To solve this
problem, we use a chart parser in conjunction with
the definite clause grammar to get the effect of
a more complete parsing strategy that remembers
substructures that it has already parsed (Gazdar and
Mellish, 1989). For the processing of a specifica-
tion, we transform the definite clause grammar into
an alternative notation using a logic programming
technique called term expansion (Wielemaker et al.,
2012). The resulting notation is easier to process
by a chart parser and the chart can then be used to
extract the information that is required to support
the writing process on the user interface level. For
the verbalisation of an existing answer set program,
the definite clause grammar can directly be used
and does not need to be transformed into another

format for chart parsing, since verbalisation does
not require any user interaction in our system.

Bi-directionality is a key feature of our grammar
and distinguishes the PENGASP system from other
controlled language processors (Fuchs et al., 2008;
Clark et al., 2005). Bi-directionality requires that
we can (a) feed a specification S as input to the
grammar G and get an answer set program A as
output, and (b) feed the answer set program A’ as
input to the same grammar G and get a semantically
equivalent version S’ of the original specification
as output. Figure 1 illustrates this form of lossless
semantic round-tripping (Schwitter, 2020).

Figure 1: Round-tripping in PENGASP

In order to achieve semantic round-tripping, we
use a Writer module that converts the internal ver-
sion of the answer set program built by the gram-
mar into an executable answer set program. In
the case of verbalisation, a Reader module is used
to read the executable answer set program and to
produce a linguistically processable version of that
answer set program. Since this processable version
may contain certain redundancies, a Planner mod-
ule is used that applies micro-planning tactics to
aggregate redundant information such as subject
aggregation and to deal with the identification of
definite descriptions. The output of the Planner is
a more compact version of the answer set program
that is sent to the grammar and used to verbalise
the answer set program.

3 Answer Set Programming

Answer set programming (ASP) is a declarative
programming paradigm for knowledge representa-
tion and reasoning (Gelfond and Kahl, 2014; Gel-
fond and Lifschitz, 1988). ASP has been devel-
oped in the field of logic programming and non-
monotonic reasoning and has been applied to a



wide range of areas in artificial intelligence (Erdem
et al., 2016). ASP is supported by powerful reason-
ing tools and offers a rich representation language
that allows for recursive definitions, negation, con-
straints, aggregates, optimization statements, and
external functions (Gebser et al., 2019). An ASP
program consists of a set of rules of the following
form:

h1 ;...; hm :- b1 ,..., bn.

Here each hi is a classical atom and bi is a literal
for m ≥ 0 and n ≥ 0. A classical atom hi is either
a positive atom of the form p(t1,...,tk) or its
strong negation of the form -p(t1,...,tk), where
p is a predicate name, t1,...,tk are terms, and k

≥ 0 is the arity of the predicate name. A literal bi is
of the form A or not A, where A is a classical atom
or an atom over a built-in comparison predicate
used to compare terms, and the connective not

denotes weak negation (aka negation as failure or
default negation). Note that a literal of the form
not A is assumed to hold unless the atom A is
derived to be true. In contrast, strong negation of
an atom holds only if it can be derived. The if-
connective ‘:-’ separates the head of a rule from
its body. Intuitively, if all positive literals in the
body of a rule are true and all negative literals are
satisfied, then the head of the rule must be true.
The connective ‘;’ denotes a disjunctive head. A
disjunctive head holds if at least one of its atoms is
true. An ASP rule with an empty body (and without
the if-connective) is called a fact, and an ASP rule
with an empty head (but with the if-connective) is
called an integrity (strong) constraint.

An extension of ASP that is relevant for our work
are choice rules. A choice rule has the form:

l{e1 ;...; em}u :- b1 ,..., bn.

Here ei is a choice element of the form
a:L1,...,Lk, where a is a classical atom, Li are lit-
erals, and l and u are integers which express lower
and upper bounds on the cardinality of elements.
Intuitively, a choice rule means that if the body of
the rule is true, then an arbitrary number of ele-
ments can be chosen as true as long as this number
complies with the upper and lower bounds.

Note also that the input language to the ASP tool
clingo (Gebser et al., 2019) supports double default
negated literals in strong constraints. Furthermore,
the language also supports weak constraints. In
contrast to strong constraints, weak constraints do
not eliminate answer sets but weight and prioritise
them; more about this later.

4 A Motivating Example

The grammar of the PENGASP system translates
a specification written in controlled language into
an executable ASP program. The following exam-
ple is an excerpt of a specification that contains
information about students and their enrolments.

1. COMP3160 and COMP3220 are units.
2. Liam is a student and Olivia is a student.
3. Every student is either enrolled in COMP3160

or is enrolled in COMP3220.
4. If a student withdraws from a unit then the

student is not enrolled in that unit.
5. It is not the case that Liam is enrolled in

COMP3220.
6. Olivia withdraws from COMP3160.
7. Who is enrolled in COMP3220?

This specification consists of class assertions in
(1) and (2); two conditional statements in (3) and
(4); a constraint in (5), an unconditional statement
in (6), and a wh-question in (7).

Listing 1: Answer Set Program
named(1, comp3160). class(1, unit).
named(2, comp3220). class(2, unit).
named(3, liam). class(3, student).
named(4, olivia). class(4, student).
1 { prop(X, 1, enrolled_in) ;

prop(X, 2, enrolled_in) } 1 :-
class(X, student).

-prop(X, Y, enrolled_in) :-
class(X, student),
pred(X, Y, withdraw_from),
class(Y, unit).

:- prop(3, 2, enrolled_in).
pred(4, 1, withdraw_from).
answer(PN) :-
named(X, PN), prop(X, 2, enrolled_in).

As we can see in Listing 1, the translation of the
class assertions in (1) and (2) results in a number
of facts in the ASP program. The two conditional
statements are translated into two ASP rules. The
first one (3) is translated into a choice rule that
implements an exclusive disjunction describing al-
ternative ways to form answer sets. The second one
(4) is translated into a rule that contains a strongly
negated atom as head. This rule eliminates answer
set solutions if the body of the rule is true. The con-
straint in (5) results in a strong constraint in ASP
and weeds out a particular solution from the gener-
ated answer sets. The statement in (6) is translated
into a fact and the wh-question in (7) into an ASP
rule with a specific atom (answer/1) in its head.



The ASP program uses a reified notation with a
small number of predefined predicate atoms (e.g.,
class/2, named/2, pred/3, and prop/3). These
predicate atoms can take variables, constants, pos-
itive numbers, or functional terms as arguments.
Constants represent content words that occur in a
specification and positive numbers replace existen-
tially quantified variables in the program.

5 The Language: PENGASP

PENGASP can be used to make statements, enforce
constraints, ask questions about a specification, and
issue directives. There is not enough space in this
section to cover all grammatical constructions of
the language; therefore, we focus on the most im-
portant ones and provide selected examples. Syn-
tactically, PENGASP distinguishes between simple
and composite sentences. Each sentence consists
of one or more clauses, and each clause has one
main verb. Within a composite sentence, clauses
may be joined via coordination or subordination,
thus forming a compound or a complex sentence,
respectively. The tense of the verb in a clause is
either simple present, present continuous or future
continuous depending on how the clause is used.

It is useful to introduce the concept of a core
clause that forms the building block for simple and
composite sentences in PENGASP . A core clause
has the following canonical structure:

subject + predicator + (complements)

The subject and the predicator are always manda-
tory in a core clause. The subject is realised by a
noun phrase and the predicator by a verb of a verb
phrase. The selection of complements depends on
the verb; dropping a complement either results in
an incomplete core clause or a significant change
in the meaning of the verb. A core clause forms the
predicate-argument structure of a simple sentence.
Adjuncts can follow the complement(s), but they
are always optional, since they are not required to
complete the meaning of a core clause. Phrases
that occur in adjunct position serve exclusively as
verbal modifiers; they add additional information
like spatial or temporal information to the meaning
of a core clause.

5.1 Making Statements

Simple statements can be made with the help of
a simple sentence like (8) that is based on a core
clause. The verb of this sentence can be modified

for instance by a prepositional phrase that occurs
in adjunct position; and this modification can be
expressed as part of a simple sentence like (9). A
positive clause like (9) can be rendered negative by
the insertion of a strong negation (10).

8. Liam arrives.

9. Liam arrives at 09:00.

10. Liam does not arrive at 09:00.

Complex statements can be expressed with the
help of compound sentences like (11), complex sen-
tences like (12), verb phrase coordination like (13),
and noun phrase coordination for class assertions
like (14).

11. Liam studies at Macquarie University and
Liam is enrolled in COMP3160.

12. Liam who studies at Macquarie University is
enrolled in COMP3160.

13. Liam studies at Macquarie University and is
enrolled in COMP3160.

14. Liam, Olivia, and Rona are students.

The compound sentence (11) uses two indepen-
dent clauses that are joined by a coordinating con-
junction (and). The complex sentence (12) consists
of an independent clause and a dependent clause
in the form of an embedded relative clause that
modifies the proper name with the help of a sub-
ordinating conjunction (who). In (13) verb phrase
coordination shares the same subject and in (14)
noun phrase coordination (enumeration) shares the
same complement. Note that the sentences (11-13)
are syntactic variations of each other and result in
the same ASP representation.

5.2 Making Conditional Statements
Like simple statements, simple conditional state-
ments can also be expressed with a simple sentence
that is based on a core clause. But in this case,
the sentence requires a universally quantified noun
phrase in subject position (15).

15. Every student is enrolled in at most 4 units.

Alternatively, a conditional sentence like (16)
consisting of a dependent clause (expressing the
condition) and a main clause (expressing the con-
sequent) can be used to make the same statement.

16. If there is a student then the student is enrolled
in at most 4 units.



Combining weak and strong negation in the same
conditional sentence (17) allows us to express the
closed-world assumption with respect to a given
atom; meaning that all students who are not en-
rolled in a unit are explicitly known after process-
ing the corresponding ASP rule.

17. If a student is not provably enrolled in a unit
then the student is not enrolled in that unit.

18. If a person is holding an object at a time point
and the person delivers that object at the same
time point then the person will no longer be
holding the object afterwards.

The conditional sentence (18) is interesting,
since it describes an effect axiom (Mueller, 2015)
for a temporal PENGASP specification. The con-
dition contains a verb in present continuous tense
that denotes a state and a verb in present tense that
denotes an event. The consequent uses a verb in
future continuous tense that describes the effect of
the axiom.

5.3 Enforcing Constraints

In PENGASP constraints can be used to enforce
conditions in a specification that must not become
true. Syntactically, a constraint like (19) starts with
a keyphrase (in brackets below for illustration pur-
poses), followed by a potentially composite sen-
tence.

19. [It is not the case that] a student who is en-
rolled in COMP3160 arrives at 11:00.

This composite sentence can have the same syn-
tactic form as a sentence that can occur in the con-
dition of a conditional sentence. In our case, the
keyphrase is followed by a complex sentence that
contains an embedded relative clause.

5.4 Asking Questions

PENGASP distinguishes between yes-no questions
and wh-questions. Yes-no questions are formed in
the same way as simple sentences, except that they
have one auxiliary verb that occurs before, rather
than after, the subject noun phrase, for example (20)
and (21). Switching the placement of the auxiliary
verb and the subject is called subject-aux inversion.

20. Is John enrolled in COMP3160?

21. Do most students work?

The formation of wh-questions involves interrog-
ative words (wh-words and how). We distinguish in
PENGASP between subject questions and comple-
ment/adjunct questions. Subject questions such as
(22) and (23) are constructed from a wh-word and a
finite verb phrase. Complement/adjunct questions
such as (24) and (25) are formed from a wh/how-
word that has been moved to the front and acts now
as a filler for a gap in a subject-aux-inverted clause.

22. Who is enrolled in COMP3220?
23. Who is not enrolled in COMP3220?
24. What does Liam study?
25. When does the student arrive?

Note that we can answer question (23) in the
context of our motivating example in Section 4,
after adding the conditional sentence (17) to that
specification, since the corresponding ASP rule for
(17) ensures that all negative atoms for the enroll-
ment property are derived. Answering the yes-no
question in (21) requires a similar mechanism with
an agreed threshold for the quantifier most.

A special case are questions that ask for an
amount like (26) or a quantity like (27). They are
formed with the help of a keyphrase and a noun
that serve as a filler for a complement gap in a
subject-aux inverted clause.

26. [How much] time does Liam spend on the first
assignment?

27. [How many] units does Liam attend?

In the case of (26) the keyphrase is followed by
an uncountable noun and in the case of (27) by a
countable plural noun.

5.5 Issuing Directives
Directives are used in PENGASP to issue weak
constraints in order to prioritise certain solutions.
Syntactically, a directive is expressed with the help
of a keyphrase like in (28) or (29) that starts with a
specific verb in its bar infinitive form, followed by
a priority level expressed as a prepositional phrase
and a relative pronoun.

28. [Minimise with a priority of 3 that] a student
accommodation is noisy.

29. [Maximise with a priority of 2 that] a student
accommodation is central.

The description of the statement that is priori-
tised can have the same syntactic form as the de-
scription of a statement in a strong constraint.



6 Implementation Details

The grammar rules for the PENGASP system are
specified in definite clause grammar notation and
contain feature structures as arguments. These fea-
ture structures have the form of name:value pairs;
names are Prolog atoms and values are Prolog
terms (even compound terms of the form [H|T]-T

are allowed).
The most important feature names in the gram-

mar are: mode for the processing mode; clause
with an incoming and an outgoing list as values
for the assembly of ASP clauses (in the case of
processing) and the disassembly of ASP clauses
(in the case of generation); ante with an incoming
and an outgoing list as values for the recording of
accessible antecedents; ctx with a value (e.g., fact
indicating a factual statement) for the functional
context of a rule; and fcn with a value (e.g., tmod
indicating a temporal modifier) for the structural
function of a rule.

The feature structures for the functional context
and the structural function of rules allow us to tai-
lor the grammar for application scenarios that do
not require the full power of ASP. This means the
grammar is highly configurable and we can easily
exclude certain linguistic constructions from the
grammar if they are not required.

A number of additional syntactic feature names
(e.g., crd, num, vmode, and wform) and semantic
feature names (e.g., def, arg and lit) are used in
the grammar; the meaning of these features should
become clear in the following discussion.

The implementation of the bi-directional gram-
mar can be best explained with the help of a con-
crete example. The grammar rules in Listing 4-10
translate a factual statement with a complex tempo-
ral modifier like:

30. Rona arrives on 2021-04-24 at 09:15.

incrementally into the following internal ASP rep-
resentation:

Listing 2: Internal Answer Set Program
[[’.’,

data_prop(A, 9, 15, time),
data_prop(A, 2021, 4, 24, date),
data_prop(A, B, date_time),
happens(event(C, arrive), B),
named(C, rona)]]

This internal ASP representation is then further
translated by the Writer module of the PENGASP

system into an executable ASP program:

Listing 3: Executable Answer Set Program
named(1, rona).
happens(event(1, arrive), 1619255700).
data_prop(2, 1619255700, date_time).

In the case of verbalising the above-mentioned
ASP program, the Reader module reads this exe-
cutable ASP program and expands it into the in-
ternal ASP representation but now in reverse order
compared to the representation in Listing 2. The
Planner module supports this process, if required,
and decides when two or more literals should be
aggregated and how these literals should be trans-
formed into the aggregated structure.

6.1 Processing a Specification
For the processing of a specification, the s-rule in
Listing 4 is used to split the sentence (30) into a
noun phrase and a verb phrase. The feature struc-
ture mode:M takes care of the mode (either proc
for processing or gen for generating). The feature
structure ctx:fact indicates that this grammar rule
is used to deal with a factual statement. The fea-
ture structure clause:C1-C4 consists of a variable
C1 for the incoming list and a variable C4 for the
outgoing list. Remember that this data structure
is used to collect the literals for the ASP program
during the parsing process. This means the noun
phrase takes a list as input and returns a modified
list as output as indicated by the feature structure
clause:C1-C2. This modified list then serves as
input to the verb phrase as indicated by the feature
structure clause:C2-C3 and its output as input to
the category for the full stop as indicated by the
feature structure clause:C3-C4, since the full stop
is the last element that is added to the front of the
outgoing list (as illustrated in Listing 2). In a simi-
lar way, the feature structure ante:A1-A3 collects
all accessible antecedents with the help of an in-
coming and an outgoing list. The feature with the
name tree takes a list as value and is responsible
for constructing a syntax tree; this is in particular
helpful for developing the grammar. It is important
to note that all the above-mentioned tasks occur in
parallel due to the power of unification.

Let us have a closer look at the noun phrase in
the s-rule: the feature structure crd:’-’ specifies
that this noun phrase cannot be coordinated; the fea-
ture structure fcn:subj states that the noun phrase
occurs in subject position and the feature structure
def: indicates that the definiteness of the noun
phrase is unspecified in our example.



Listing 4: DCG rule for a factual statement
s([mode:M, ctx:fact, clause:C1-C4, ante:A1-A3, tree:[s:17, NP, VP]]) -->
np([mode:M, ctx:fact, crd:’-’, fcn:subj, def:_D, num:N, arg:X, clause:C1-C2,

ante:A1-A2, tree:NP]),
vp([mode:M, ctx:fact, crd:’+’, num:N, arg:X, clause:C2-C3, ante:A2-A3, tree:VP]),
fs([mode:M, clause:C3-C4]).

Listing 5: DCG rule for a noun phrase in subject position
np([mode:M, ctx:fact, crd:’-’, fcn:subj, def:’+’, num:N, arg:X, clause:C1-C3,

ante:A1-A3, tree:[np:72, PN]]) -->
pn([mode:M, wform:_, num:N, arg:X, clause:C1-C2, ante:A1-A2, tree:PN]),
{ anaphora_resolution(pn, [M, ’+’, X, C1, C2, C3, A1, A2, A3]) }.

Listing 6: DCG rules for the lexicon look up of a proper name
pn([mode:proc, wform:WForm, num:N, arg:X, clause:[C1|C2]-[[L|C1]|C2],

ante:[A1|A2]-[[L|A1]|A2], tree:[pn:323, WForm]]) -->
{ lexicon([cat:pn, wform:WForm, num:N, arg:X, lit:L]) }, WForm.

pn([mode:gen, wform:WForm, num:N, arg:X, clause:[[L|C1]|C2]-[C1|C2],
ante:[A1|A2]-[[L|A1]|A2], tree:[pn:324, WForm]]) -->

{ lexicon([cat:pn, wform:WForm, num:N, arg:X, lit:L]) }, WForm.

Listing 7: DCG rule for a verb phrase with a prepositional (temporal) modifier
vp([mode:M, ctx:fact, crd:’-’, num:N, arg:X, clause:C1-C3,

ante:A1-A3, tree:[vp:211, VP, PP]]) -->
vc([mode:M, ctx:fact, num:N, arg:X, hold:[pred(X, PN)]-[happens(event(X, PN), T)],

clause:C1-C2, ante:A1-A2, tree:VP]),
pp([mode:M, ctx:fact, crd:’-’, fcn:tmod, arg:T, clause:C2-C3, ante:A2-A3, tree:PP]).

Listing 8: DCG rule for an intransitive verb
vc([mode:M, ctx:fact, num:N, arg:X, hold:L1-L2, clause:C,

ante:A-A, tree:[vc:217, IV]]) -->
iv([mode:M, wform:_, num:N, vform:fin, arg:X, hold:L1-L2, clause:C, tree:IV]).

Listing 9: DCG rules for the lexicon lookup of an intransitive verb
iv([mode:proc, wform:WForm, num:N, vform:V, arg:X, hold:[L1]-[L2],

clause:[C1|C2]-[[L2|C1]|C2], tree:[iv:325, WForm]]) -->
{ lexicon([cat:iv, wform:WForm, num:N, vform:V, arg:X, lit:L1]) }, WForm.

iv([mode:gen, wform:WForm, num:N, vform:V, arg:X, hold:[L1]-[L2],
clause:[[L2|C1]|C2]-[C1|C2], tree:[iv:326, WForm]]) -->

{ lexicon([cat:iv, wform:WForm, num:N, vform:V, arg:X, lit:L1]) }, WForm.

Listing 10: DCG rule for a prepositional (temporal) modifier
pp([mode:M, ctx:fact, crd:’-’, fcn:tmod, arg:T, clause:C1-C3,

ante:A1-A3, tree:[pp:243, Prep1, Date, Prep2, Time]]) -->
prep([mode:M, wform:[on], tree:Prep1]),
date([mode:M, ctx:fact, arg:X, arg:T, clause:C1-C2, ante:A1-A2, tree:Date]),
prep([mode:M, wform:[at], tree:Prep2]),
time([mode:M, ctx:fact, arg:X, clause:C2-C3, ante:A2-A3, tree:Time]).



The feature structure num:N enforces number agree-
ment between the noun phrase and the verb phrase,
and the feature structure arg:X ensures that the
argument for the noun (or proper name) in the
noun phrase becomes available for the predicate-
argument structure in the verb phrase. In contrast to
the noun phrase that cannot be coordinated, the fea-
ture structure crd:’+’ in the verb phrase indicates
that verb phrase coordination is possible.

The np-rule in Listing 5 first checks whether the
noun phrase that occurs in subject position consists
of a proper name. For this purpose, the first pn-rule
in Listing 6 is used that looks up the word form
for the proper name in the lexicon and unifies the
variable L for the literal with the corresponding
value named(C, rona) that is stored in the lexi-
con for the proper name. The value for the literal
is then added to the outgoing list that is responsi-
ble for clause construction (clause); at the same
time the outgoing list that records all the accessi-
ble antecedents (ante) is updated. Afterwards, the
anaphora resolution algorithm in the np-rule in List-
ing 5 is used to check if the proper name has been
previously introduced and is now used anaphori-
cally or not (both the clause lists and antecedent
lists are then updated accordingly).

Once this has been done, the vp-rule in Listing 7
takes care of the verb phrase. This rule basically
splits a verb phrase into an obligatory part and
an optional part. The obligatory part consists in
our case of an intransitive verb (without a com-
plement) and the optional part consists of a prepo-
sitional phrase that serves as a temporal modifier
for the verb. The important point to note here is
that the vc-rule transforms a literal for an atem-
poral specification pred(X, PN) into a literal for
a temporal specification happens(event(X, PN),

T) with the help of a holding list, once the tem-
poral modifier has been processed. The vc-rule in
Listing 8 calls the first iv-rule in Listing 9 that pro-
cesses the intransitive verb. Note that the variable
L1 that represents the literal for the intransitive verb
is not immediately added to the outgoing list for
the clause in this rule. This variable is first added
to a holding list together with a second variable L2

that serves as a placeholder. This second variable
is added to the outgoing clause list instead of the
first one. This is done because we do not known
at this point of processing if the verb will finally
be temporally modified or not. This information
becomes only available once the pp-rule for the

temporal modifier in Listing 10 has been processed.
This rule adds three literals to the outgoing clause
list (see Listing 2 for details) and completes the
processing of the verb phrase.

6.2 Verbalising an ASP Program

Before an ASP program can be verbalised, it needs
to be transformed into a linguistically processable
version by the Reader module and potentially re-
dundant structures need to be identified and aggre-
gated by the Planner module. The grammar then
takes the representation of the ASP program in
Listing 2 in reverse order as input. The second
pn-rule in Listing 6 removes the literal named(C,
rona) from the incoming clause list and adds this
literal to the outgoing antecedent list, since it may
serve as a potential antecedent later. The same rule
then generates the word form Rona for the removed
literal. The anaphora resolution algorithm of the
np-rule in Listing 5, then checks the status of the
antecedent. Once the noun phrase has been gener-
ated, the second iv-rule in Listing 9 removes the
(reduced) literal for the intransitive verb from the
incoming clause list with the help of the informa-
tion on the holding list and generates the verb form
arrives. In a similar way, the three incoming liter-
als for the temporal modifier are removed from the
incoming clause list and generate the word forms
that describe the temporal modifier. Generating a
full stop terminates this process.

7 Conclusion

PENGASP is a machine-oriented controlled lan-
guage designed to specify ASP programs in a nat-
ural way. The grammar of PENGASP is written
in definite clause grammar notation and is a bi-
directional one. The grammar can be used to trans-
late a specification into an executable ASP program
and to generate a semantically equivalent verbali-
sation of that ASP program. Anaphoric references
can be resolved directly during the parsing process,
since the anaphora resolution algorithm is tightly
integrate with the grammar. The grammar is pa-
rameterised using feature structures so that subsets
of the grammar can be selected in an easy way for
various application scenarios without breaking the
grammar. While this paper focuses on the features
and coverage of the language and the grammar of
PENGASP ; it is important to note that the writing
of a specification in PENGASP is supported by a
smart authoring tool.



References
Peter Clark, Phil Harrison, Tom Jenkins, John Thomp-

son, and Rick Wojcik. 2005. Acquiring and using
world knowledge using a restricted subset of english.
In Proceedings of FLAIRS’05, pages 506–511.

Esra Erdem, Michael Gelfond, and Nicola Leone. 2016.
Applications of answer set programming. AI Maga-
zine, 37(3):53–68.

Norbert E. Fuchs, Kaarel Kaljurand, and Tobias Kuhn.
2008. Attempto Controlled English for knowledge
representation. In Reasoning Web, volume 5224 of
LNCS, pages 104–124. Springer.

Gerald Gazdar and Chris Mellish. 1989. Natural Lan-
guage Processing in PROLOG, An Introduction to
Computational Linguistics. Addison Wesley.

Martin Gebser, Roland Kaminski, Benjamin Kauf-
mann, Marius Lindauer, Max Ostrowski, Javier
Romero, Torsten Schaub, Sven Thiele, and Philipp
Wanko. 2019. Potassco User Guide, Version 2.2.0.

Michael Gelfond and Yulia Kahl. 2014. Knowledge
Representation, Reasoning, and the Design of In-
telligent Agents, The Answer-Set Programming Ap-
proach. Cambridge University Press.

Michael Gelfond and Valdimir Lifschitz. 1988. The
stable model semantics for logic programming. In
Proceedings of the Fifth International Conference
on Logic Programming (ICLP), pages 1070–1080.

Stephen Guy and Rolf Schwitter. 2017. The PENGASP

system: Architecture, language and authoring tool.
Journal of Language Resources and Evaluation,
Controlled Natural Language, 51:67–92.

Richard I. Kittredge. 2003. Sublanguages and con-
trolled languages. In Ruslan Mitkov, editor, The Ox-
ford Handbook of Computational Linguistics., chap-
ter 23, pages 430–447. Oxford University Press, Ox-
ford.

Robert Kowalski. 2020. Logical english. In Proceed-
ings of the 2nd Workshop on Logic and Practice of
Programming (LPOP), pages 33–37.

Tobias Kuhn. 2014. A survey and classification of con-
trolled natural languages. Computational Linguis-
tics, 40(1):121–170.

Erik T. Mueller. 2015. Commonsense Reasoning: An
Event Calculus Based Approach. Morgan Kauf-
mann; Second Edition.

Fernando C.N. Pereira and David H.D. Warren. 1980.
Definite clause grammars for language analysis – a
survey of the formalism and a comparison with aug-
mented transition networks. Artificial Intelligence,
13:231–278.

Rolf Schwitter. 2010. Controlled natural language for
knowledge representation. In Proceedings of COL-
ING 2010, pages 1113–1121. Association for Com-
putational Linguistics.

Rolf Schwitter. 2020. Lossless semantic round-
tripping in PENGASP. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial
Intelligence, IJCAI-20, pages 5291–5293. Interna-
tional Joint Conferences on Artificial Intelligence
Organization. Demos.

Jan Wielemaker, Tom Schrijvers, Markus Triska, and
Torbjörn Lager. 2012. SWI-Prolog. Theory and
Practice of Logic Programming, 12(1-2):67–96.

https://doi.org/https://doi.org/10.1609/aimag.v37i3.2678
https://github.com/potassco/guide/releases/

