

Abstract

Automatic generation of feedback

messages in a natural-language based

programming for video games is presented.

The input sentences are processed in four

stages. During each stage, context vectors

are aggregated and any violation to a

syntactic or semantic rule is reported to

allow users to debug and fix the text. The

results discuss a list of common errors

detected by the proposed method.

1 Introduction

Programming in the user's native language

attempts to directly convert instructional text to an

executable program. The benefits of such a

programming system are many, including

increased productivity, reduced effort to learn

conventional programming languages and

debugging, etc. Thus, proficiency in a NL-based

platform will help carry over to learning a

conventional object-oriented programming

language later on. However, programming in a NL

faces many hurdles, including the resolution of

ambiguity/imprecision, handling of incomplete

sentences, and propagation of context from one

sentence to the next. Rather than targeting general-

purpose programming with NL, aiming for

domain-specific applications should be the first

goal. With a specific domain, we can narrow the

scope for that target application, and the accepted

language resembles somewhat to a controlled

natural language (CNL), with a finite set of nouns,

verbs, and phrasal structures. However, the

grammatical rules used in this work are not as

constrained as in most CNLs. Instead, the

sentences do not need to conform to rigid

grammatical structures.

Motivating Example: Alice wishes to write a

program involving a rabbit, fox, and carrots. She

writes: "There are 3 foxes, 20 carrots, and a

rabbit. The rabbit moves around. When a rabbit

touches a carrot, it eats the carrot. When the

rabbit sees a fox, it chases it."

Such a programming paradigm is much more

natural to those who have little experience writing

a program, and the users can play the resulting

game, providing a positive feedback. Moreover,

fixing errors in NL offers an early introduction to

debugging. For example, consider the last sentence

in the above example: “When the rabbit sees a fox,

it chases it.” There are multiple possible

interpretations for the phrase “it chases it”, and the

system should be able to offer feedback to the user

about this potential bug.

A platform has been constructed for this purpose

to create video games. The user enters the program

that describes the logic of the game in English. The

text is then translated to an executable, playable

game via a 4-stage compilation process: syntactic

processing, phrasal semantic processing, sentential

semantic processing, and code generation. At each

stage, a context vector is produced and aggregated.

Analyses of the context vectors against syntactic

and semantic rules help to generate error messages

that pinpoint any imprecise, ambiguous, and/or

incorrect expressions. The user can then use these

error messages and suggestions to fine-tune and

debug their NL text. Analysis of the games written

by middle-school students show a list of common

errors captured by the system.

The rest of the paper is organized as follows.

Section 2 provides the preliminaries and

background. Section 3 details the methodology for

generating the context vectors and error messages

based on these vectors. Section 4 discusses the

results and Section 5 concludes the paper.

Multi-Phase Context Vectors for Generating Feedback for Natural-Language Based

Programming

Michael S. Hsiao

Department of Electrical and Computer Engineering

Virginia Tech, Blacksburg, VA USA 24061

2 Preliminaries

Let W be the sequence of words, w0, …, wn, in

a sentence; each word in a valid sentence should be

able to be mapped to a valid token during first step

of parsing. The categories for any valid token is L

= (E, A, T, P, S), where E: the set of entities (or

objects), A: the set of actions, T: the set of

attributes, P: the set of predicates, and finally, S:

the set of optional selectors. Note that all these sets

in L can grow and evolve with time.

For the domain of video games, the set of

entities, E, is the set of characters involved in the

game, such as foxes, rabbits, etc. The set of actions,

A, may include chase, flee, wander, jump, die, etc.

Third, the set of attributes, T, includes the color,

speed, etc. associated with the characters. Note that

the user can add more attributes on the fly. Next,

the set of predicates, P, may include see(), reach(),

touch(), catch(), etc. Finally, the set of selectors, S,

allows the user to say something like “when 35

rabbits are gone”.

Note that new terms can be learned in T. For

example, the sentence “When a fox sees a rabbit, it

becomes happy. When a fox is happy, it ...” The

term ‘happy’ is learned and associated with the

behavior at run-time, as explained in Hsiao (2018).

In Hsiao (2018), error reporting was limited.

Later, in Zhan & Hsiao (2019), an attempt to use

machine learning to categorize types of errors was

made, again with only limited success. Notably, a

small change in a sentence may result in

completely different type of error. Thus, accurately

mapping an erroneous sentence to a specific error

(among a potentially large number of errors) via

machine learning alone is likely infeasible. Instead,

rules can more accurately capture the formal

relations in the context of a sentence that imply an

error. In other words, analyses on the aggregated

context vector against a rule set can generate the

needed error message(s) accurately.

3 Methodology

The four stages for the compilation process is

illustrated in Figure 1. The key to our approach is

that each stage works on a distinct level of abstract

representation of the input text. Context vectors

were custom designed for the game domain.

However, the context vectors can be tailored

according to the needs of a domain. Example fields

of the context will be described within each stage.

Stage 1: Syntactic Analysis

Given the sequence of n words, w0, …, wn, this

stage aims to produce a sequence of m tokens, T,

t0, …, tm, where m ≤ n, and a syntactic context

vector, SC. Every token takes a type as defined in

L explained earlier, such as character, verb,

predicate, attribute, etc. Any typo (no match to any

word in the lexicon) or grammatical error (such as

‘fox chase’ instead of ‘fox chases’) will be output

to the user during this stage as well.

Figure 1: 4-Stage Compilation Process.

Resolution of pronouns is also performed in

Stage 1, that binds the pronouns to the

corresponding character. Moreover, it learns new

words, such as ‘happy’ as discussed in the

preceding section. Such words are not included in

the original lexicon, and do not need to be real

words. For example, the attribute could be ‘xyz’ as

well. These newly learned words will be

Input Text

Syntactic
Analysis

Tokens + Syntactic
Context

Syntactic &
Grammatical
Errors

Phrasal Semantic
Analysis

Phrasal
Semantic
Errors

Semantic +
Expressions

Phrasal
Context

Sentential Semantic
Analysis

Sentential
Semantic
Errors

Intermediate +
Representation

Sentential
Context

Code
Generation

IR
Errors

Final Code

represented as variable attributes in the final code

generation. We note also that the syntactic context,

SC, generated for each sentence is also used to

process the next sentence. This is because there

might exist relations between consecutive

sentences, with words such as “Otherwise” or if the

sentence starts with a pronoun, etc.

The SC includes the tokens themselves and the

statistics of the tokens such as the number of

objects, the number and type of verbs, adjectives,

colors, adverbs, numbers, etc. Some sentences may

contain imprecise verbs, such as ‘get’ in “When the

fox gets the rabbit, …” Likewise, there might be

usage of other verbs that do not mean their

conventional semantics. These instances are also

recorded in SC. Finally, conjunctives such as ‘and’

and ‘or’ are also recorded. The syntactic context,

SC, along with the token stream, are passed to the

next stage to generate the phrasal semantics.

Stage 2: Phrasal Semantic Analysis

In Stage 2, the generated tokens, T, and

syntactic context, SC, from Stage 1 are used to

generate semantic expressions, SE, and the

corresponding phrasal context, PC. Consider a

simple stream of tokens t0, t1, t2: <obj, fox> <verb,

chase> <obj, rabbit> for the text-phrase “fox

chases rabbit”. With frame semantics, the above

token stream can be readily converted into a

semantic expression of “verb(obj, obj).” Likewise,

the phrase “rabbit is chased by the fox” maps to the

semantic expression “verb(obj, obj).” However,

the object identifiers should correctly correspond

to the matching actor and actee.

Consider another more sophisticated phrase of

“the happy fox eats the rabbit that is not yellow”,

the token stream, T, for this phrase produced from

Stage 1 is ti, … ti+4: <adj, happy> <obj, fox> <verb,

eat> <adj, not yellow> <obj, rabbit>. Note that the

final modifier “that is not yellow” is converted to a

token <adj, not yellow> in Stage 1 and placed as

an adjective modifier before the final object. With

this token stream, the semantic expression is

“verb((adj, obj), (adj, obj)).”

This stage also handles conjunctions. For

phrases such as “The foxes and tigers chase the

rabbit,” two semantic expressions are generated

internally, namely for the phrases “the foxes chase

the rabbit” and “the tigers chase the rabbit”.

Any error encountered in the process is also

reported. Consider the phrase “fox chases flees the

rabbit”. The tokens would have been <obj, fox>

<verb, chase> <verb, flee> <obj, rabbit>. In this

case, consecutive verb-tokens are detected, and an

error is reported for violating the rule of

consecutive action verbs. This rule can be

succinctly represented as ti ∈ A → ti+1∉ A, where A
is the set of action tokens. Essentially, this rule
states that if the ith token is an action, the next
token must not be an action token.

Consider another erroneous example, “fox

chases happy”, the dangling adjective, ‘happy’,

without any binding object is a violation and is

reported to the user. Verb-tokens such as ‘chase’

require two objects around it. In this error, there

was only one object, fox, which is insufficient to

properly form the semantic expression.

Finally, when a conjunctive is about verbs, such

as “the foxes chase and eat the rabbits,” the system

will generate an error message noting the user that

such sequences of actions should be split up into

different sentences, and provide potential fixes

such as “The foxes chase the rabbits. When a fox

catches a rabbit, it eats the rabbit.” The above

error violates the rule that prevents conjunction of

action verbs “ti and ti+1”, where both ti , ti+1 ∈ A.

The set of semantic rules is manually designed
based on the valid phrases allowed in the
system. Adding new rules to this set is straight-
forward.

In addition to generating errors and semantic

expressions in Stage 2, a corresponding phrasal

context, PC, is also produced. The PC here refers

to the set of semantic expressions (SE) discussed

above, together with the number and types of

semantic expressions, etc. For example, “fox sees

rabbit” is a relational expression, while “fox

chases rabbit” is an action expression. Other types

of expressions include property expressions, such

as “rabbit is happy”, and variable expressions, such

as “the size of the rabbit equals 3,” etc. The PC,

together with SE generated, are passed to Stage 3

to generate the sentential semantics.

Stage 3: Sentential Semantic Analysis

In Stage 3, the goal is to generate the

intermediate representation (IR) for each sentence

as well as the sentential context, EC. Consider the

sentence, “When a fox sees a rabbit, it chases the

rabbit.” After Stages 1 and 2, the semantic

expressions are SE: se0 = “if see(obj, obj)” and se1

= “chase(obj, obj).” Each of the <obj> has a unique

identifier to bind with the character in question. For

this simple example, the IR for the entire sentence

is “if see(obj, obj), then chase(obj, obj).” Consider

another simple example with SE = “if

property(obj, adj)” and “set_color(obj, col)”. The

resulting IR would be “if property(obj, adj), then

set_color(obj, col).”

The types of errors in this stage include the

following. Consider the sentence “When a fox sees

a rabbit, it sees the rabbit.” Here, we have two

relational semantic expressions involving

predicates without any action expression. Thus, an

error message will be produced for violating the

missing actionable SE. Here, the violated rule is

∃sei ∈ action-SE for every sentence.
Re-writing of the phrases is also performed

during this stage for some sentences. For example,

if the sentence places the consequent before the

antecedent, the system will internally re-write the

sentence to preserve canonicity. Finally, resolution

of conjunctives such as ‘and’ and ‘or’ are

performed in this stage as well. Here, the

conjunction is analyzed to determine if it is about

two separate antecedents or consequents in the

sentence. The set of rules for the sentential context

is also manually derived, based on the sentences

that combine various allowable phrases.

The sentential context, EC, for this stage

includes the set of IR, together with the type of the

IR, as well as the number of antecedents,

consequents, complexity of the antecedent, etc. For

example, the sentence “When 35 rabbits are gone,

…” contains a counter 35, along with the IR for the

sentence that is given to the subsequent code

generation stage.

Stage 4: Code Generation

Finally, with the IR and sentential context, EC,

Stage 4 generates the output game code based on

the EC. If there are no errors in any of the previous

stages, the IR from Stage 3 would be readily

translated to the game code. On the other hand, if

there are errors, the context vectors are used to help

fill the gap(s) when generating the code. For

example, in the first stage, if the number of object

tokens is significantly greater than the number of

verb tokens (or vice versa), we analyze the token

stream further to generate both the code and any

additional error message, if appropriate. For

instance, in the consequent phrase “it chases it”, if

there are two characters in the antecedent, the

system will fill in the two pronouns according to

the characters in the antecedent.

We had briefly touched on variables earlier. In

addition to Boolean variables such as ‘happy’, the

system also handles non-Boolean variables, such

as ‘size’ in “When the size of the fox is less than 5,

…” Here, ‘size’ is a built-in variable available for

every object. The user can also define new

variables, such as “When the num_eaten of the

rabbit is equal to 5, …” The variables can also be

used in modifier clauses as well. The following

sentence is one such example: “When a rabbit

whose size is less than 10 sees a fox, it turns red.”

Here, the phrase “whose size is less than 10”

modifies the rabbit object in the antecedent.

4 Results

The current 4-stage process helps in both the

translation of the input text and error-reporting.

With this platform (Game Changineer), we are able

to produce a wide range of error messages and

offer possible fixes to the error. For example, the

sentence “When a rabbit sees a fox, it chases it” is

ambiguous as discussed earlier. The system

generates an ambiguity error (noting the two

pronouns). Nevertheless, in the presence of such an

error, the system will still produce an approximate

understanding so that a final game code can still be

produced (so that the user can test the game).

Consider another erroneous sentence: “When a

fox sees a rabbit, it chases.” The verb in the

consequent is an action verb (chase), and it is

missing a target object. Thus, an error is reported.

In addition, the engine tries to remedy the semantic

expression by inserting the most suitable missing

object from the former semantic expression(s). In

this case, it would be the fox chasing the rabbit.

This temporary filling of the missing object allows

the code generation to complete its generation of

the game code. Nevertheless, the above error

message is still provided to allow the user to fix the

error.

Consider a third error example: “When the

rabbit shoots the fox, the fox runs away.” This

sentence may seem correct at first glance, but it is

actually ambiguous on the word ‘shoot’. Recall

that the sentence may be sloppily written by a

young user, and as with any NL, the manner in

which a verb is used may be imprecise. In this case,

there are two possible interpretations of the

antecedent clause: (1) ‘when the rabbit fires a

bullet at the fox’ or (2) ‘when a bullet touches the

fox.’ With the first interpretation, we know that not

every bullet fired will hit the fox. In fact, many

bullets might actually miss the fox. This

corresponding error violates the imprecise

antecedent verb.

We believe that a good NL-based programming

platform should provide a helpful debugging

infrastructure to give feedback and guidance to the

user on possible misinterpretations. With the error-

reporting framework, the system has been piloted

at several outreach events to middle school

students in the 2020-2021 school year. To the best

of our knowledge, no other publicly available

system exists that allows users to write video

games in English, generates feedback and

suggestions on how to fix syntactic and logical

errors in the natural language sentences. Because

there is no public dataset available, the results are

tabulated on anonymized input sentences written

by 434 middle school students during the month of

March, 2021. Each student created a number of

games during the month, and each game may

require multiple iterations of debugging. Among

the 47,907 errors collected, the 10 most-frequent-

occurring errors are reported in Table 1. Both the

number of occurrences and type of error are shown.

Table 1: Most frequent-occurring errors

occur Error type

742 Spelling error

604 Imprecise verb (such as ‘get’)

382 Unclear / unsupported phrases

296 Move without direction

294 Incomplete sentence

247 Missing a valid character

245 Ambiguous antecedent

224 Missing a valid verb

223 Imprecise word

178 Logical error on sequencing events

Based on Table 1, it is not surprising that

spelling error ranked highest. It is worth noting that

the system may generate multiple errors for a given

erroneous sentence. For example, a spelling error

may also result in a “missing a valid character” or

“unclear / unsupported phrase” error. The second

most frequent error was the use of imprecise verbs.

These occur with phrases such as “fox gets the

rabbit” or “the bird is hit”. These phrases can have

multiple interpretations, including “touch”,

“eliminates”, or “is shot”. Next, unclear /

unsupported phrases include those facetious

phrases such as “the fox farts”. Next, an example

of “move without direction” is the phrase “the

rabbit moves at 2 pixels per frame”. This can be

interpreted as either “wanders around at 2 pixels

per frame” or “the speed of the rabbit is 2.”

Without clarity, the system chooses the latter.

An example of an incomplete sentence is “When

the rabbit sees a carrot, chase.” Here the objects in

the consequent are missing and need to be filled.

Finally, the logical error on sequencing events is an

interesting type of error. For example, a sentence

“When the rabbit dies, the game is over” is correct

in itself, but will result in such an error if there was

no earlier description on how the rabbit can die

before this sentence. Screen shots of two games

created are illustrated in Figure 2. Many more

games are available on the website.

Figure 2: Breakout and Space Invaders Type Games

5 Conclusions

We have presented a 4-stage process to generate

error messages for English sentences that could not

be processed. At each stage, a context vector is

constructed and propagated to the next stage.

Analysis of the context vectors plays a critical role

in both the generation of game code and any error

messages that pinpoint imprecise, incomplete,

and/or incorrect expressions. These error messages

help guide the user to correct their errors. Results

from games created by Middle-school students

show the potential of such a framework to help

them bring their designs to completion.

References

Game Changineer website: https://gc.ece.vt.edu

Hsiao, M. S. (2018). Automated program synthesis

from object-oriented natural language for

computer games. Proc. Int. Workshop on

Controlled Natural Language.

Zhan. Y., & Hsiao, M. S. (2019). Multi-label

classification on natural language sentences for

video game design. Proc. IEEE Int. Conf. on

Humanized Computing and Communication.

https://gc.ece.vt.edu/

