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Abstract

Expectation-based theories of sentence pro-
cessing posit that processing difficulty is deter-
mined by predictability in context. While pre-
dictability quantified via surprisal has gained
empirical support, this representation-agnostic
measure leaves open the question of how to
best approximate the human comprehender’s
latent probability model. This work presents
an incremental left-corner parser that incor-
porates information about both propositional
content and syntactic categories into a sin-
gle probability model. This parser can be
trained to make parsing decisions condition-
ing on only one source of information, thus
allowing a clean ablation of the relative con-
tribution of propositional content and syntac-
tic category information. Regression analy-
ses show that surprisal estimates calculated
from the full parser make a significant contri-
bution to predicting self-paced reading times
over those from the parser without syntactic
category information, as well as a significant
contribution to predicting eye-gaze durations
over those from the parser without proposi-
tional content information. Taken together,
these results suggest a role for propositional
content and syntactic category information in
incremental sentence processing.

1 Introduction

Much work in sentence processing has been dedi-
cated to studying differential patterns of processing
difficulty in order to shed light on the latent mecha-
nism behind online processing. As it is now well-
established that processing difficulty can be ob-
served in behavioral responses (e.g. reading times,
eye movements, and event-related potentials), re-
cent psycholinguistic work has tried to account for
these variables by regressing various predictors of
interest. Most notably, in support of expectation-
based theories of sentence processing (Hale, 2001;
Levy, 2008), predictability in context has been

quantified through the information-theoretical mea-
sure of surprisal (Shannon, 1948). Although there
has been empirical support for n-gram, PCFG, and
LSTM surprisal in the literature (Goodkind and
Bicknell, 2018; Hale, 2001; Levy, 2008; Shain,
2019; Smith and Levy, 2013), as surprisal makes
minimal assumptions about linguistic representa-
tions that are built during processing, this leaves
open the question of how to best estimate the hu-
man language comprehender’s latent probability
model.

One factor related to memory usage that has re-
ceived less attention in psycholinguistic modeling
is the influence of propositional content, or mean-
ing that is conveyed by the sentence. Early psy-
cholinguistic experiments have demonstrated that
the propositional content of utterances tends to be
retained in memory, whereas the exact surface form
and syntactic structure are forgotten (Bransford
and Franks, 1971; Jarvella, 1971). This suggests
that memory costs related to incrementally con-
structing a representation of propositional content
might manifest themselves in behavioral responses
during online sentence processing. In addition,
there is evidence suggesting that parsing decisions
are informed by the ongoing interpretation of the
sentence (Brown-Schmidt et al., 2002; Tanenhaus
et al., 1995).

Based on this insight, prior cognitive modeling
research has sought to incorporate propositional
content information into various complexity met-
rics. A prominent approach in this line of re-
search has been to quantify complexity based on
the compatibility between a predicate and its argu-
ments (i.e. thematic fit, Baroni and Lenci 2010,
Chersoni et al. 2016, Padó et al. 2009). How-
ever, these complexity metrics can only be eval-
uated at a coarse per-sentence level or at critical
regions of constructed stimuli where predicates and
arguments are revealed, making them less suitable
for studying online processing. A more distribu-
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Figure 1: Left-corner parser operations: a) lexical match (m`t =1) and no-match (m`t =0) operations, creating new
apex a`t , and b) grammatical match (mgt =1) and no-match (mgt =0) operations, creating new apex agt and base bgt .

tional approach has also been explored that relies
on word co-occurrence to calculate the semantic
coherence between each word and its preceding
context (Mitchell et al., 2010; Sayeed et al., 2015).
Although these models allow more fine-grained per-
word metrics to be calculated, their dependence on
an aggregate context vector makes it difficult to
distinguish ‘gist’ or topic information from propo-
sitional content.

Unlike these models, our approach seeks to in-
corporate propositional content by augmenting a
generative and incremental parser to build an on-
going representation of predicate context vectors,
which is based on a categorial grammar formalism
that captures both local and non-local predicate-
argument structure. This processing model can be
used to estimate per-word surprisal predictors that
capture the influence of propositional content dif-
ferentially with that of syntactic categories, which
are devoid of propositional content.1 Our experi-
ments demonstrate that the incorporation of both
propositional content and syntactic category infor-
mation into the processing model significantly im-
proves fit to self-paced reading times and eye-gaze
durations over corresponding ablated models, sug-
gesting their role in online sentence processing.
In addition, we present exploratory work showing
how our processing model can be utilized to exam-
ine differential effects of propositional content in
memory-intensive filler-gap constructions.

1Note that this distinction of propositional content as re-
tained information about the meaning of a sentence and syn-
tactic categories as unretained information about the form of
a sentence may differ somewhat from notions of semantics
and syntax that are familiar to computational linguists – in
particular, predicates corresponding to lemmatized words fall
on the content side of this division here because they are re-
tained after processing, even though it may be common in
NLP applications to use them in syntactic parsing.

2 Background

The experiments presented in this paper use sur-
prisal predictors calculated by an incremental pro-
cessing model based on a probabilistic left-corner
parser (Johnson-Laird, 1983; van Schijndel et al.,
2013). This incremental processing model provides
a probabilistic account of sentence processing by
making a single lexical attachment decision and a
single grammatical attachment decision for each
input word.2

Surprisal can be defined as the negative log of a
conditional probability of a word wt and a state qt

at some time step t given a sequence of preceding
words w1..t−1, marginalized over these states:

S(wt)
def
= − log

∑
qt

P(wt qt | w1..t−1) (1)

These conditional probabilities can in turn be de-
fined recursively using a transition model:

P(wt qt | w1..t−1) def
=
∑
qt−1

P(wt qt | qt−1)·

P(wt−1 qt−1 | w1..t−2) (2)

A probabilistic left-corner parser defines its tran-
sition model over possible working memory store
states qt = a1

t /b
1
t , . . . , a

D
t /b

D
t , each of which con-

sists of a bounded number D of nested derivation
fragments ad

t /b
d
t . Each derivation fragment spans a

part of a derivation tree below some apex node ad
t ,

lacking a base node bd
t yet to come.

At each time step, the parser generates a lexical
attachment decision `t, a word wt, a grammatical at-

2Johnson-Laird (1983) refers to lexical and grammatical
attachment decisions as ‘shift’ and ‘predict’ respectively.
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many (λx1 some (λe1 person e1 x1)

(λe1 true))

(λx1 some (λx3 some (λe3 pasta e3 x3)

(λe3 true))

(λx3 some (λe2 eat e2 x1 x3)

(λe2 true)))

Figure 2: Lambda calculus expression for the proposi-
tional content of the sentence Many people eat pasta,
using generalized quantifiers over discourse entities
and eventualities.

tachment decision gt, and a resulting store state qt:

P(wt qt | qt−1) =
∑
`t ,gt

P(`t | qt−1) ·

P(wt | qt−1 `t) ·

P(gt | qt−1 `t wt) ·

P(qt | qt−1 `t wt gt) (3)

As shown in Figure 1, the lexical attachment de-
cision `t generates a new complete node a`t based
on (m`t ) whether the word matches the base of the
most recent derivation fragment; and the grammati-
cal attachment decision gt generates a new deriva-
tion fragment agt/bgt based on (mgt ) whether the
parent of a grammar rule with this new complete
node as a left child matches the base of the most
recent remaining derivation fragment.

The semantic processing model described in this
paper extends the above left-corner parser to incor-
porate propositional content by conditioning lexi-
cal and grammatical decisions on sparse vectors of
predicate contexts had

t
and hbd

t
in addition to cate-

gory labels cad
t

and cbd
t

in apex and base nodes ad
t

and bd
t . These predicate context vectors for nodes

in a derivation tree of a sentence can be defined in
terms of argument positions of variables signified
by these nodes in predicates of a logical form trans-
lation of that sentence. For example, in Figure 2,
the variable e2 (signified by the word eat) would
have the predicate context EAT0 because it is the
zeroth (initial) participant of the predication (eat
e2 x1 x3).3 Similarly, the variable x3 would have
both the predicate context PASTA1, because it is the
first participant (counting from zero) of the predica-
tion (pasta e3 x3), and the predicate context EAT2,
because it is the second participant (counting from

3Participants of predications are numbered starting with
zero so as to align loosely with syntactic arguments in canoni-
cal form.
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VP
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VT
EAT0

Figure 3: Derivation fragments resulting from example
lexical decisions made at the word eat in the sentence
People eat pasta. Note that the predicate contexts in-
stead of predicate context vectors are displayed here for
clarity. The predicate context PERSON1,−1 represents an
eventuality that takes the first argument of a PERSON
predicate as its first argument.

zero) of the predication (eat e2 x1 x3). These predi-
cate contexts are obtained by reannotating the train-
ing corpus using a generalized categorial grammar
of English (Nguyen et al., 2012), which is sensitive
to syntactic valence and non-local dependencies.

Lexical attachment probabilities. The proba-
bility of each lexical decision `t in this parser is
therefore decomposed into one term for generating
a match decision m`t and a predicate context vec-
tor h`t , and another term for generating a syntactic
category label c`t for the new complete node a`t :

P(`t | qt−1) =

P(m`t h`t | qt−1) · P(c`t | qt−1 m`t h`t ) (4)

The probability of generating the match decision
and the predicate context vector depends on the
base node bd

t−1 of the previous derivation fragment:

P(m`t h`t | qt−1) =

SOFTMAX
m`t h`t

( FFθL[δd
>, [δ>cbd

t−1

,h>
bd

t−1
] EL] ) (5)

where FF is a feedforward neural network, δi

is a Kronecker delta vector consisting of a one
at element i and zeros elsewhere, depth d =

argmaxd′{a
d′
t−1,⊥} is the number of non-null deriva-

tion fragments at the previous time step, and EL is
a matrix of jointly trained dense embeddings for
each syntactic category and predicate context. The
probabilities of category labels are calculated us-
ing relative frequency estimation on training data
based on the base node of the previous derivation
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fragment. The new complete node a`t then depends
on the match decision m`t (see Figure 3):

a`t

def
=

ad
t−1 if m`t = 1

c`t ,h`t if m`t = 0
(6)

Word probabilities. Probabilities for generat-
ing words are estimated as the probability of gener-
ating their character sequence using a recurrent neu-
ral network implementation of a character model.

Grammatical attachment probabilities. The
probability of each grammatical decision gt in this
parser is similarly decomposed into a term for gen-
erating a match decision mgt and a composition
operator for a grammar rule ogt ,

4 and terms for cat-
egory labels cgt and c′gt

at the apex and base nodes
of the new derivation fragment:

P(gt | qt−1 `t wt) = P(mgt ogt | qt−1 `t wt) ·

P(cgt | qt−1 `t wt mgt ogt ) ·

P(c′gt
| qt−1 `t wt mgt ogt cgt )

(7)

The probability of generating the match decision
and the composition operator depends on the base
node of the previous derivation fragment and the
new complete node a`t :

P(mgt ogt | qt−1 `t wt) =

SOFTMAX
mgt ogt

( FFθG[δd
>, [δ>c

b
d−m`t
t−1

,h>
b

d−m`t
t−1

, δ>ca`t
,h>a`t ] EG] )

(8)

where EG is a matrix of jointly trained dense em-
beddings for each syntactic category and predicate
context. The probabilities of category labels cgt

and c′gt
in Equation 7 are calculated using relative

frequency estimation on training data based on the
base node of the previous derivation fragment. The
composition operator ogt in Equations 7 and 8 is
associated with sparse composition matrices Aogt

,
which can be used to compose predicate context
vectors associated with the apex node agt of the
new derivation fragment,

agt

def
=

ad−mgt
t−1 if mgt = 1

cgt ,Aogt
ha`t if mgt = 0

(9)

and sparse composition matrices Bogt
, which can

be used to compose predicate context vectors asso-
ciated with the base node bgt of the new derivation

4Examples of composition operators include using the
predicate context of the left child as a modifier or an argument,
as well as introducing or discharging filler-gap dependencies.
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EAT2

Figure 4: Derivation fragments resulting from example
grammatical decisions made at the word eat in the sen-
tence People eat pasta.

fragment (see Figure 4):

bgt

def
=

c
′
gt
,Bogt

[h
b

d−m`t
t−1

>,ha`t
>]> if mgt=1

c′gt
,Bogt

[0>,ha`t
>]> if mgt=0

(10)

These composition matrices allow predicate con-
texts to propagate appropriately through the tree
to allow parsing decisions to depend on predicates
that may be several words away.

Resulting store state probabilities. In order
to update the store state based on the lexical and
grammatical decisions, derivation fragments above
the most recent nonterminal node are carried for-
ward, and derivation fragments below it are set to
null (⊥),

P(qt | . . .)
def
=

D∏
d=1


Jad

t, b
d
t = ad

t−1, b
d
t−1K if d < d′

Jad
t, b

d
t = agt , bgtK if d = d′

Jad
t, b

d
t = ⊥,⊥K if d > d′

(11)
where the indicator function JϕK = 1 if ϕ is true
and 0 otherwise, and d′ = argmaxd{a

d
t−1,⊥} + 1 −

m`t − mgt . Together, these probabilistic decisions
generate the n unary branches and n − 1 binary
branches of a parse tree in Chomsky normal form
for an n-word sentence.

3 Isolating Content and Category
Contributions

In order to examine the contribution of proposi-
tional content on the content-sensitive processing
model, the model is modified to allow it to be
trained to make lexical and grammatical decisions
without conditioning on the predicate context vec-
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tors,

P(m`t h`t | qt−1) =

SOFTMAX
m`t h`t

( FFθL[δd
>, [δ>cbd

t−1

, 0>] EL] ) (12)

P(mgt ogt | qt−1 `t wt) =

SOFTMAX
mgt ogt

( FFθG[δd
>, [δ>cbd

t−1

, 0>, δ>cpt
, 0>] EG] ) (13)

where 0 is a vector of 0s.
Likewise, to examine the contribution of syntac-

tic category information on the content-sensitive
processing model, the model is modified to allow it
to be trained to make decisions without condition-
ing on the syntactic category labels:

P(m`t h`t | qt−1) =

SOFTMAX
m`t h`t

( FFθL[δd
>, [0>,h>

bd
t−1

] EL] ) (14)

P(mgt ogt | qt−1 `t wt) =

SOFTMAX
mgt ogt

( FFθG[δd
>, [0>,h>

bd
t−1
, 0>,h>pt

] EG] ) (15)

These two ablated models will respectively be
referred to as the content- and category-ablated
models in the following experiments.

4 Experiment 1: Linguistic Accuracy

4.1 In-domain Linguistic Accuracy

In order to assess the parsing performance of the
content-sensitive processing model outlined in Sec-
tion 2, a linguistic accuracy evaluation was con-
ducted on the development set and test set (i.e. sec-
tions 22 and 23 respectively) of the Wall Street
Journal (WSJ) corpus of the English Penn Tree-
bank (Marcus et al., 1993). The performance of the
content-sensitive processing model is compared to
the incremental left-corner parser of van Schijndel
et al. (2013), which is based on a PCFG with sub-
categorized syntactic categories from the Berkeley
latent variable inducer (Petrov et al., 2006).

The content-sensitive processing model was
trained on a generalized categorial grammar
(Nguyen et al., 2012) reannotation of sections 02
to 21 of the WSJ corpus. Choices regarding hy-
perparameters were made based on the parsing
performance on the development set of the WSJ
corpus. In order to account for sensitivity to initial

Parsing model WSJ22 WSJ23 NS

vS et al. (2013) 85.20 84.08 69.60
Full model (avg.) 84.60 82.45 71.64

Con-ablated (avg.) 81.64 79.86 69.88
Cat-ablated (avg.) 75.63 74.45 64.19

Table 1: Bracketing F1 scores on sentences with 40 or
fewer words for the incremental parsing models. WSJ:
Wall Street Journal, NS: Natural Stories.

parameters, the average performance of the content-
sensitive processing model trained using three dif-
ferent random seeds is reported. Likewise, the
left-corner parser of van Schijndel et al. (2013) was
trained on the same generalized categorial grammar
reannotation of sections 02 to 21 of the WSJ cor-
pus, using four iterations of the split-merge-smooth
algorithm (Petrov et al., 2006). Both parsers used
beam search decoding with a beam width of 5,000
to return the most likely sequence of parsing deci-
sions.

The unlabeled WSJ bracketing F1 scores from
both parsers are presented in the WSJ22 and
WSJ23 columns of the vS et al. and Full model
rows of Table 1.5 The results show that the
two parsers achieve comparable performance on
WSJ22 and WSJ23, indicating that the current pro-
cessing model is a reasonable model of syntactic
parsing.

4.2 Cross-Domain Linguistic Accuracy

The two parsers were also evaluated on the Natural
Stories Corpus (Futrell et al., 2018). This corpus
consists of 10 naturalistic stories (10,245 tokens)
adapted from existing texts such as fairy tales and
short stories. As can be seen in the NS column of
the vS et al. and Full model rows of Table 1, parsing
accuracy on this corpus is substantially lower. This
is likely due to the “deceptively naturalistic” na-
ture of the Natural Stories Corpus; this corpus was
designed to over-represent rare words and syntac-
tic constructions, therefore representing a different
“syntactic domain” from the WSJ corpus. Inter-
estingly, the content-sensitive processing model
seems to generalize better to the Natural Stories do-
main than the model based on the Berkeley latent

5It should be noted that the performance of the van Schi-
jndel et al. (2013) parser here is lower than their reported
performance because they trained their parser on data with
PTB-style annotation, which has substantially fewer syntactic
categories than the GCG annotation scheme.
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variable inducer. This could be the result of the
latent-variable subcategorized syntactic categories
overfitting to the WSJ domain.

4.3 Linguistic Accuracy of Ablated Models

To determine the differential effect of propositional
content and syntactic categories, models with each
of the propositional content and syntactic category
components ablated (i.e. the content- and category-
ablated models) were evaluated against the full pro-
cessing model.6 As with the full model, the ablated
models were trained using three different random
seeds to account for sensitivity to initial parameters.
The results in the Con-ablated and Cat-ablated rows
of Table 1 show substantial contributions of both
components to parsing accuracy in all domains.
On Natural Stories, bootstrap significance tests re-
vealed that seven out of nine (3 × 3) pairwise com-
parisons between the full model and the content-
ablated model, and all nine pairwise comparisons
between the full model and the category-ablated
model were statistically significant at the p < 0.05
level, which are both highly significant overall by
a binomial test.

5 Experiment 2: Self-paced Reading

In order to evaluate the contribution of proposi-
tional content and syntactic categories to predict-
ing behavioral responses, surprisal predictors were
calculated from the content-sensitive processing
model and its two ablated versions, which are out-
lined in Section 3. Subsequently, linear mixed-
effects models containing common baseline predic-
tors and one or more surprisal predictors were fitted
to self-paced reading times. Finally, a series of like-
lihood ratio tests (LRTs) were conducted in order
to evaluate the contribution of the surprisal predic-
tor from the full processing model to regression
model fit.

5.1 Response Data

Experiments described in this paper used the Nat-
ural Stories Corpus (Futrell et al., 2018), which
contains self-paced reading times from 181 sub-
jects that read 10 naturalistic stories consisting of
10,245 tokens. The data were filtered to exclude
observations corresponding to sentence-initial and
sentence-final words, observations from subjects

6Source code is available at https://github.com/
modelblocks/modelblocks-release.

who answered fewer than four comprehension ques-
tions correctly, and observations with durations
shorter than 100 ms or longer than 3000 ms. This
resulted in a total of 768,584 observations, which
were subsequently partitioned into an exploratory
set of 383,906 observations and a held-out set
of 384,678 observations. The partitioning allows
model selection to be conducted on the exploratory
set and a single hypothesis test to be conducted
on the held-out set, thus eliminating the need for
multiple trials correction. All observations were
log-transformed prior to model fitting.

5.2 Predictors

The baseline predictors commonly included in all
regression models are word length measured in
characters, index of word position within each
sentence, and 5-gram surprisal. The 5-gram sur-
prisal predictor is calculated from a 5-gram lan-
guage model estimated using the KenLM toolkit
(Heafield et al., 2013) trained on the Gigaword 4
corpus (Parker et al., 2009).7

In addition to the baseline predictors, surprisal
predictors were calculated from the full content-
sensitive processing model, the content-ablated
model, and the category-ablated model trained as
part of Experiment 1 (FullSurp, NoConSurp, and
NoCatSurp). To account for the time the brain
takes to process and respond to linguistic input, it
is standard practice in psycholinguistic modeling to
include ‘spillover’ variants of predictors from pre-
ceding words (Rayner et al., 1983; Vasishth, 2006).
However, as including multiple spillover variants of
predictors leads to identifiability issues in mixed-
effects modeling (Shain and Schuler, 2019), the
FullSurp, NoConSurp, and NoCatSurp predictors
were all spilled over by one position. Moreover,
preliminary analysis showed that the surprisal pre-
dictors are highly collinear, which may result in
identifiability issues for the regression model if in-
cluded together as predictors. In order to mitigate
this problem, the difference between the surprisal
predictors from the ablated model and those from
the full model (∆ConSurp, ∆CatSurp) were also
calculated as predictors that represent the contribu-
tion of the full model over an ablated model. All

7Although word frequency is also often included as a base-
line predictor in the form of unigram surprisal, it was excluded
in the current study in light of results showing no significant
effect of unigram surprisal over and above 5-gram surprisal
when predicting reading times from the Natural Stories Corpus
(Shain, 2019).

https://github.com/modelblocks/modelblocks-release
https://github.com/modelblocks/modelblocks-release
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predictors were centered and scaled prior to model
fitting.

5.3 Likelihood Ratio Testing

Two sets of nested linear mixed-effects models
were fitted to reading times in the held-out set us-
ing using lme4 (Bates et al., 2015). The first set
manipulated the contribution of propositional con-
tent by including ∆ConSurp in the full regression
model over the base model that contains the base-
line predictors and NoConSurp. Similarly, the sec-
ond set manipulated the contribution of syntactic
categories by including ∆CatSurp in the full re-
gression model over a base model that contains the
baseline predictors and NoCatSurp. All regression
models included by-subject random slopes for all
fixed effects and random intercepts for each word
and subject-sentence interaction. Subsequently, a
series of LRTs were conducted between nested
regression models in order to assess the contribu-
tion of surprisal predictors from the full processing
model to regression model fit. As there were three
variants of each surprisal predictor, a total of nine
(3 × 3) LRTs were performed for each ablated sur-
prisal predictor.8

5.4 Results

The results show that the ∆CatSurp predictor made
a statistically significant contribution to model fit
over NoCatSurp in eight out of nine LRTs,9 which
is highly significant according to a binomial test
(p < 0.001). In contrast, no significant contribution
of ∆ConSurp over NoConSurp was observed, with
none of the nine LRTs indicating significantly im-
proved model fit.10 This demonstrates that the full
processing model captures the influence of propo-
sitional content and syntactic category information
differentially, the latter of which contributed to pre-
dicting self-paced reading times.

8Despite the risk of convergence issues, the LRTs were
also replicated with full regression models that include raw
FullSurp in addition to the baseline predictors and either No-
CatSurp or NoCatSurp.

9Any LRT in which either the base or full regression model
failed to converge was considered as a null result. Regression
models in one LRT failed to converge. In the replication
using raw FullSurp, regression models in five LRTs failed to
converge. However, the remaining four LRTs were statistically
significant, which is highly significant according to a binomial
test (p < 0.001).

10Regression models in one LRT failed to converge. In the
replication using raw FullSurp, regression models in five LRTs
failed to converge, with the remaining four LRTs indicating
non-significance. Additionally, removing 5-gram surprisal
from the baseline did not change the pattern of significance.

6 Experiment 3: Eye-tracking Data

In order to examine whether the results observed
in Experiment 2 generalize to other latency-based
measures, linear-mixed effects models were fitted
on the Dundee eye-tracking corpus (Kennedy et al.,
2003). Following similar procedures to Experi-
ment 2, a series of LRTs were conducted to test the
contribution of propositional content and syntactic
category information.

6.1 Procedures
The set of go-past durations from the Dundee Cor-
pus (Kennedy et al., 2003) provided the response
variable for the regression models. The Dundee
Corpus contains gaze durations from 10 subjects
that read 20 newspaper editorials consisting of
51,502 tokens. The data were filtered to exclude
unfixated words, words following saccades longer
than four words, and words at starts and ends of sen-
tences, screens, documents, and lines. This resulted
in the full set with a total of 195,296 observations,
which were subsequently partitioned into an ex-
ploratory set of 97,391 observations and a held-out
set of 97,905 observations. In the base regression
models, word length in characters, index of word
position in each sentence, and saccade length were
included. Additionally, either NoConSurp or No-
CatSurp spilled over by one position was included
as a baseline predictor. Similarly to Experiment
2, the first set of LRTs examined the contribution
of propositional content by including ∆ConSurp,
and the second set of LRTs examined the contribu-
tion of syntactic category information by including
∆CatSurp in the full regression models.

6.2 Results
The results show that the ∆ConSurp predictor made
a statistically significant contribution to model fit
over NoConSurp in all nine LRTs.11 A significant
contribution of ∆CatSurp over NoCatSurp was ob-
served as well, with three of the nine LRTs indi-
cating significantly improved model fit (p = .008
according to a binomial test).12 Interestingly, con-
trary to Experiment 2 that showed only a robust
contribution of syntactic category information to

11In the replication using raw FullSurp, regression models
in five LRTs failed to converge. However, the remaining four
LRTs were statistically significant, which is highly significant
according to a binomial test (p < 0.001).

12Regression models in all LRTs converged. In the replica-
tion using raw FullSurp, regression models in five LRTs failed
to converge, with two out of four remaining LRTs indicating
statistical significance (p = .071 according to a binomial test).
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predicting self-paced reading times, a strong influ-
ence of propositional content in predicting eye-gaze
durations is observed. This corroborates the finding
that the full processing model captures the distinct
influence of propositional content and syntactic cat-
egory information, the ablation of which results
in qualitatively different predictions. In addition,
this differential contribution of ∆ConSurp across
self-paced reading and eye-tracking data suggests
that these self-paced reading times and eye-gaze
durations may capture different aspects of online
processing difficulty.

7 Experiment 4: Filler-gap
Constructions

Observing that surprisal from the full processing
model did not contribute significantly to predict-
ing broad-coverage self-paced reading times on top
of its content-ablated counterpart in Experiment
2, we focus on filler-gap constructions,13 in which
information about the extracted object is thought
to strongly influence the processing of the verb.
In order to explore the extent to which integra-
tion costs associated with filler-gap constructions
could be explained by the influence of proposi-
tional content, a series of LRTs were conducted to
assess the contribution of surprisal from the full
processing model to predicting reading times of
object-extracted verbs.

7.1 Procedures

The subset of self-paced reading times from the
Natural Stories Corpus corresponding to object-
extracted verbs provided the response variable for
the regression models. The object-extracted verbs
were identified using a version of the Natural Sto-
ries Corpus that had been reannotated using a deep
syntactic annotation scheme (Shain et al., 2018).
Applying the same data exclusion criteria as Ex-
periment 2 resulted in an exploratory set of 1,537
observations and a held-out set of 1,523 observa-
tions. As the number of data points for regression
model fitting was substantially smaller in compar-
ison to the full set used in Experiment 2, the re-
gression models had to be simplified for reliable
convergence. First, the 5-gram surprisal predictor
was excluded as its effect estimate was not stable

13For example, in the sentence It was a match that the girl
rubbed _ on the wall, the extracted object a match has to be
retrieved from memory and integrated to the transitive verb
rubbed.

on the exploratory set. In addition, the random ef-
fects structure was simplified to include only the
by-subject random intercept.

In the base regression models, word length in
characters, index of word position within each
sentence, and NoConSurp were fitted to the log-
transformed reading times in the held-out set. The
contribution of propositional content was incorpo-
rated by including FullSurp in the full regression
models. NoConSurp and FullSurp were spilled
over by one position, and all predictors were cen-
tered and scaled. The same three variants of each
surprisal predictor were used, which resulted in a
total of nine LRTs testing the contribution of Full-
Surp.

7.2 Results

The results showed that the FullSurp predictor
made a statistically significant contribution to
model fit over NoConSurp in all nine LRTs. The
inclusion of FullSurp consistently improved model
fit, indicating that integration costs associated with
object-extracted filler-gap constructions can be par-
tially explained by the influence of propositional
content.

8 Conclusion

This paper presents a generative and incremental
content-sensitive processing model which factors
the contribution of propositional content and syn-
tactic category information. This model can be
cleanly ablated to calculate surprisal predictors that
differentially isolate the influence of the two com-
ponents. Subsequent experiments demonstrate the
utility of both components in predicting human be-
havioral responses; the inclusion of propositional
content resulted in significantly better fits to broad-
coverage eye-gaze durations and self-paced reading
times of object-extracted verbs. Additionally, the
inclusion of syntactic category information signif-
icantly improved fits to both broad-coverage self-
paced reading times and eye-gaze durations. Taken
together, these results suggest a role for proposi-
tional content and syntactic category information
in incremental sentence processing.
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