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Abstract
Neural network language models have the abil-
ity to capture the contextualised meanings of
words in a sentence by dynamically evolving
a representation of the linguistic input in a
manner evocative of human language compre-
hension. While researchers have been able
to analyse whether key linguistic regularities
are adequately characterised by these evolving
representations, determining whether they ac-
tivate lexico-semantic knowledge similarly to
humans remains challenging. In this paper, we
perform a systematic analysis of how closely
the intermediate layers from LSTM and trans-
former language models correspond to human
semantic knowledge. Furthermore, in order
to make more meaningful comparisons with
theories of human language comprehension in
psycholinguistics, we focus on two key stages
where the meaning of a particular target word
may arise: immediately before the word’s pre-
sentation to the model (comparable to forward
inferencing), and immediately after the word
token has been input into the network. Our re-
sults indicate that the transformer models are
better at capturing semantic knowledge relat-
ing to lexical concepts, both during word pre-
diction and when retention is required.

1 Introduction

A wide variety of Natural Language Processing
(NLP) tasks have been improved dramatically by
the introduction of LSTM (Hochreiter and Schmid-
huber, 1997) and transformer-based (Vaswani et al.,
2017) neural language models, which can encode
the meanings of sentences in such a way that facili-
tates a range of language tasks (Bengio et al., 2003;
Peters et al., 2018; Radford et al., 2018; Dai et al.,
2019). Furthermore, both recurrent and transformer
networks have been shown to capture a broad range
of semantic phenomena and syntactic structure
(Dyer et al., 2016; Linzen et al., 2016; Bernardy
and Lappin, 2017; Gulordava et al., 2018; Marvin
and Linzen, 2018; Lin et al., 2019; Liu et al., 2019;

Hewitt and Manning, 2019; Tenney et al., 2019a).
Although such models clearly learn aspects of lexi-
cal semantics, it remains unclear whether and how
these networks capture semantic features associ-
ated with conceptual meaning. Some work has
demonstrated that word embeddings do reflect con-
ceptual knowledge captured by property norming
studies (Rubinstein et al., 2015; Collell and Moens,
2016; Lucy and Gauthier, 2017; Derby et al., 2018),
in which human participants produce verbalisable
properties for concepts, such as is green or is an am-
phibian for concepts such as FROG (McRae et al.,
2005; Devereux et al., 2014). Such features cor-
respond to stereotypic tacit assumptions (Prince,
1978); common-sense knowledge we have about
the real world. There is some evidence that lan-
guage models implicitly encode such knowledge
(Da and Kusai, 2019; Weir et al., 2020); however,
coverage of different types of knowledge may be in-
consistent, with evidence to suggest that these mod-
els fail to capture some types of semantic knowl-
edge such as visual perceptual information (Som-
merauer and Fokkens, 2018; Sommerauer, 2020),
as well as questions about the completeness of such
empirical studies (Fagarasan et al., 2015; Bulat
et al., 2016; Silberer, 2017; Derby et al., 2019).
In general, there has been only limited work that
attempts to investigate whether these neural lan-
guage models activate lexico-semantic knowledge
similarly to humans, further restricted by the fact
that such knowledge probing is only performed on
latent representations that have received the target
concept, ignoring theories of language comprehen-
sion and acquisition that emphasise the importance
of prediction (Graesser et al., 1994; Dell and Chang,
2014; Kuperberg and Jaeger, 2016).

In this paper, we contribute to the analysis of
neural language models by evaluating latent se-
mantic knowledge present in the activation patterns
extracted from their intermediate layers. By per-
forming a layer-by-layer analysis, we can uncover
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how the network composes such meaning as the
information propagates through the network, even-
tually emerging as a rich representation of semantic
features that facilitates conditional next word pre-
diction, which is directly dependent on the past
knowledge. We perform our layer probing analysis
at two temporal modalities. That is, we investi-
gate the hidden layer activations of the NNLMs
both before the concept word occurs (which facili-
tates next word prediction), and after the concept
word has been explicitly given to the model. In this
way, we determine how richly these latent repre-
sentations capture real-world perceptual and ency-
clopaedic knowledge commonly associated with
human conceptual meaning.

2 Related Work

The recent popularity of interpretability in NLP has
resulted in strong progress on understanding both
recurrent (Alishahi et al., 2019) and transformer-
based networks (Rogers et al., 2020). A number
of these studies rely on probing techniques, where
supervised models are trained to predict specific
linguistic phenomena from model activations (Adi
et al., 2016; Wallace et al., 2019; Tenney et al.,
2019b; Hewitt and Liang, 2019).

There exists some work that analyses semantic
knowledge in such networks, though to date this
has been more limited than investigations of syn-
tax. Koppula et al. (2018) focused on the recurrent
layers of LSTM and GRU networks and attempted
to interpret their semantic content by using a set
of decoders to predict the previous network inputs.
Ettinger (2020) devised a set of psycholinguistic
diagnostic tasks to evaluate language understand-
ing in BERT, demonstrating that some phenomena
such as semantic role labelling and event knowl-
edge are well-inferred, though others such as nega-
tion are less so. Similar to our work, Ethayarajh
(2019) mined sentences with words in context to
demonstrate that context representations are highly
anisotropic, while Bommasani et al. (2020) built
static word embeddings from contextual represen-
tations using pooling methods, analysing their per-
formance on semantic similarity benchmarks.

Language models have also been successfully
employed for predicting activation patterns in the
brain during human language comprehension (Jain
and Huth, 2018; Toneva and Wehbe, 2019). Such
work is particularly relevant from the perspective of
predictive coding theories of human language com-

prehension (Kuperberg and Jaeger, 2016), which
posits that high-level representations of an unfold-
ing utterance facilitate active prediction of subse-
quent lexical content in the sentence. Neurolinguis-
tic studies provide evidence that such predictions
can be of wordform identity (DeLong et al., 2005),
or of the semantic features that are expected for the
upcoming word (for example, whether the upcom-
ing word is animate or not; Wang et al., 2020).

3 Neural Language Models

Due to the compatibility issues, we limit our inves-
tigation to left-to-right language models that are
trained to perform conditional next word predic-
tion, as other SOTA models such as Bert (Devlin
et al., 2018) fail to capture the desired criterion that
facilities similar mechanisms in language compre-
hension. For the LSTM-based network, we make
use of a very large-scale and influential neural lan-
guage model developed by Jozefowicz et al. (Joze-
fowicz et al., 2016), which we refer to as JLM1.
The model’s architecture consists of character-level
embeddings with CNNs, followed by a two-layer
LSTM with projection layers to reduce dimension-
ality and a final linear layer with softmax activa-
tion. The vocabulary of the output layer consists
of 800000 words, and the model is trained using
the One Billion Word corpus (Chelba et al., 2013).
For the transformer-based model, we make use of
the GPT-2 (345M) model (Radford et al., 2019),
which consists of 24 multi-head attention layers.

3.1 De-Contextualising Representations

There are several problems that emerge when look-
ing to compare concrete conceptual representations
of meaning with these neural layer activations. The
first is that representations from these latent lay-
ers are highly contextualised, which may make it
difficult to recover semantic information about a
particular concept. The second problem is that
recovering a pre-target representation is challeng-
ing since it requires contextual information to be
supplied to the network before the target word oc-
curs. For our work, we follow a similar approach
to Bommasani et al. (2020), and mine a number
of sentences from a corpus of text where each tar-
get word occurs and then extract representations
from each layer of the network before and after
the words are presented. For this, we choose a

1https://github.com/tensorflow/models/
tree/archive/research/lm_1b

https://github.com/tensorflow/models/tree/archive/research/lm_1b
https://github.com/tensorflow/models/tree/archive/research/lm_1b
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predefined set of target words which are based on
the overlap of words in the JLM vocabulary and
several intrinsic evaluation benchmarks which are
employed in the analyses below. We then sam-
ple the training corpus for up to 500 sentences for
each target, selecting sentences in which the target
word occurred in any position except the start of
the sentence. By analysing how the representations
perform on the semantic benchmarks, we can infer
how these language models compose meaning over
the layers of the network.

3.2 Feature Pooling
To construct these decontextualized representa-
tions, we first compute a hidden state from each
of our sentences, and then aggregate them into a
single static vector, both at the position of the target
word and immediately before. More formally, for
each word w ∈ W , where W is our lexicon, we
retrieve a set of K sentences {S1, S2, . . . Sk} from
the corpus with corresponding timepoints T =
{t1, t2 . . . tk} denoting the position of the word
w in the sentences, such that Si[ti] = w for 1 ≤
i ≤ K. Let fL be the function that maps each sen-
tence fragment to a contextual representation from
the model f for each layer L in the network. We
construct our word-level representation before and
after the word w occurs at layer L as follows:

before[w]L =
1

K

K∑
i=1

fL(S)[ti−1]

after[w]L =
1

K

K∑
i=1

fL(S)[ti]

This gives us two sets of word embedding vectors
for each layer in each network, one set built from
activations immediately before the target words
and one built from activations immediately after
the target words. Since the context differs depend-
ing on the sentence, the aggregation performed in
the calculations above should preserve only the in-
formation associated with the target word. As the
model is tasked with predicting the word w, the
vectors from the before timestep should contain
some semantic information relevant to the target
word, even if the word has not been explicitly given
to the network.

In the case of GPT-2, input tokens are deter-
mined using byte pair encodings, and a given word
will correspond to several input units in this en-
coding. For target words that consist of a number

of smaller units that combine into the word, we
average the representation over all these positions
for the after representations. For the before repre-
sentations, we take the token immediately before
the target word. In the results that follow, we refer
to the two sets of embedding vectors for language
model M and layer L using the naming conven-
tion M[L]-before and M[L]-after. For example,
for GPT-2, the word vectors for the fifth multi-head
attention layer just before the target word is pre-
sented to the network would be GPT2[5]-before.

Note that while LSTMs accumulate a representa-
tion of the unfolding utterance at each timestep, this
is not entirely true for transformers, which directly
combine information from all previous words in the
sequence at every layer of the network, guided by
attention. In our work, we only care about how the
semantic information of the network evolves when
it must predict the target word and immediately
after.

4 Evaluation Tasks

For our empirical analysis, we first analyse these
layers on classic intrinsic benchmarks that deter-
mine their ability to explain human semantic judg-
ments scores on word association, to first determine
how well these networks capture the semantic con-
tent of the word. We then probe these layers to
determine whether they capture a rich set of se-
mantic features related to upcoming concepts and
whether such representations are retained by the
network for functional use on the prediction task.

4.1 Semantic Similarity Benchmarks

Semantic similarity benchmarks, where a set of
word pairs are scored by human annotators based
on how similar they are, can be used to determine
how correlated word pair distances from a set of
embedding vectors are with human judgements of
similarity for the same words. For the embedding
vectors (from each network and network layer), co-
sine similarity can be used to determine how similar
the word vectors are, and these cosine similarities
can then be compared with the human judgements
using Spearman correlation. Of course, the no-
tion of similarity that informs human judgements
is highly dependent on a number of factors such
as context, the stimulus set of word pairs, and the
instructions given to the human raters (Batchkarov
et al., 2016). For this reason, we make use of a
number of benchmarks which can be partitioned
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into two types of relationships, known as semantic
similarity and semantic relatedness. For seman-
tic relatedness, we use WordSim353-rel (Agirre
et al., 2009) and MEN (Bruni et al., 2012), where
a high score between word pairs indicates a greater
chance of occurring in the same sentence with some
syntactic relation (for example “coffee" and “cup").
For semantic similarity, we use WordSim353-sim
(Agirre et al., 2009) and SimLex999 (Hill et al.,
2015), where a high score between word pairs in-
dicates a high overlap in semantic attributes or re-
placeability in a sentence (for example “coffee" and
“tea"). Though it does not clearly fall into either the
similarity or relatedness categories, we also include
the original version of the WordSim judgements,
WordSim353 (Finkelstein et al., 2001). Evalua-
tions were performed using the Vecto-ai python
package (Rogers et al., 2018).

4.2 Neural Activation Similarity
As an extension to these results, we also evaluate
how reliable the vector representations from each
layer of the networks are in terms of their ability
to predict brain imaging data gathered from par-
ticipants viewing a set of concept words. In this
analysis, we use BrainBench (Xu et al., 2016)2, a
semantic evaluation platform that includes fMRI
and MEG neuroimaging data from humans for 60
concept words. This benchmark evaluates how
well the semantic models can make predictions
about the patterns of neural activations observed in
the human participants. For a set of words V , we
calculate two pairwise word correlation matrices
MD,MB ∈ R|V |×|V | for a distributional semantic
model (D) and the brain imaging data (B). We
then perform a 2 vs. 2 test between MD and MB ,
where, for all pairs of words w1, w2 ∈ V , we count
how often the similarity structure observed for D
agrees with B, i.e. how often

r(MD(w1),MB(w1)) + r(MD(w2),MB(w2))

> r(MD(w1),MB(w2)) + r(MD(w2),MB(w1))

where r is Pearson’s correlation and M(w1) and
M(w2) denote the rows of values corresponding
to the concepts w1 and w2, omitting the columns
that correspond to the correlation between w1 and
w2. The final score is the proportion of positive
cases across all word pairs, with 0.5 indicating
chance. Intuitively, this is a measure of how well

2http://www.langlearnlab.cs.uvic.ca/
brainbench/

the similarity profile of the semantic model matches
the similarity profile of the brain data.

4.3 Human Property Knowledge
Next, we determine how well the embedding vec-
tors for each network and layer capture common-
sense aspects of meaning reflected in conceptual
models from cognitive psychology. We achieve
this by using probes to determine whether explicit
lexico-semantic knowledge from human-derived
property norms can be reliably decoded from these
embeddings. For example, for the concept APPLE,
can we predict from the embedding vector whether
human-elicited properties of that concept such as
is-round or grows-on-trees are true? For this anal-
ysis, we make use of a dataset of human-elicited
property knowledge (the CSLB norms; Devereux
et al., 2014)3, which lists semantic properties for
638 concept words. These semantic properties are
partitioned into five distinct categories, which char-
acterise the different types of information they rep-
resent: visual (e.g. is-green; is-round), functional
(e.g. is-eaten; used-for-cutting), taxonomic (e.g. is-
a-fruit; is-a-tool), encyclopedic (e.g. has-vitamins;
uses-fuel), and other-perceptual (e.g. is-tasty; is-
loud). While property norming studies provide an
insight into the types of information characterised
by human conceptual representations, supported by
human agreement on feature attributes, it should
be noted that they are not a literal description of
human lexical-semantic representation (Barsalou,
2003).

4.3.1 Probing methodology
For the probing analysis, we fit a number of L2-
regularised logistic regression models, in order to
predict whether or not a semantic feature is decod-
able from our embedding vectors, largely following
previous work (Collell and Moens, 2016; Lucy and
Gauthier, 2017; Derby et al., 2018). Due to the
small sample size, each model uses class weight
balancing and decodability is scored using the F1
score over 5 cross-validation folds. More specifi-
cally, we preprocess the CSLB dataset to exclude
features occurring for fewer than five words. For
each feature, we then partition the concepts into
five folds using stratified sampling and perform
5-fold cross-validation on each feature.

Due to the high likelihood of overfitting, we
also regularise each logistic regression by adding λ

3https://cslb.psychol.cam.ac.uk/
propnorms

https://vecto.readthedocs.io
http://www.langlearnlab.cs.uvic.ca/brainbench/
http://www.langlearnlab.cs.uvic.ca/brainbench/
https://cslb.psychol.cam.ac.uk/propnorms
https://cslb.psychol.cam.ac.uk/propnorms
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Figure 1: Results (Spearman correlations) for the before (on the left) and after word embedding vectors across all
24 GPT-2 layers.

Model WS353-Rel WS353-Sim WS353 SimLex999 MEN fMRI MEG

LSTM-based Representations

JLM[1]-before 0.198 0.496 0.338 0.151 0.353 0.636 0.625
JLM[2]-before 0.314 0.549 0.428 0.115 0.423 0.650 0.638
JLM[1]-after 0.444 0.709 0.557 0.409 0.644 0.681 0.701
JLM[2]-after 0.280 0.580 0.414 0.423 0.544 0.669 0.692

Transformer-based Representations

GPT2[Best]-before 0.251 [23] 0.439 [23] 0.334 [23] 0.124 [ 3] 0.409 [23] 0.627 [23] 0.648 [23]
GPT2[Best]-after 0.544 [ 2] 0.749 [ 8] 0.612 [ 2] 0.561 [ 3] 0.730 [ 6] 0.673 [14] 0.696 [16]

Table 1: Results (Spearman correlations) for each embedding model on the word similarity benchmarks, along
with BrainBench results (accuracy) for the fMRI and MEG data. For GPT-2, we include the best performance
across all 24 layers from the before and after representations (best layer number given in [brackets]).

times the L2 norm of the coefficient weights to the
loss, where λ is a scaling parameter. Since we want
to predict each individual property, we determine
what value of λ to use by first performing 5-fold
cross-validation for each property over a range of
potential values, and choosing the best for each
feature.

To calculate a decodability score for each fea-
ture, we run 5-fold cross-validation using the best
λ value for each feature, for which we obtain the
final F1 score on the predictions from the test folds.
Furthermore, we repeat this cross-validation pro-
cess three times and take the average score over
each run. We note that just because a linear model
does not predict the presence of a property does not
mean that it is not encoded in the representation
(Collell and Moens, 2016). Nevertheless, linear
read-out from model activation patterns (and brain
activation patterns) remains a useful tool for de-
termining the presence of high-level information

such as linguistic structure in those representations
(Hewitt and Liang, 2019).

5 Results

5.1 Semantic Similarity Benchmarks
The similarity benchmark results are displayed in
Table 1 and Figure 1. For both JLM and GPT-2,
the word vector representations computed after the
target word has been presented as an input token
to the model perform better in comparison to when
the network must predict the target word (the be-
fore representations). This result is not surprising,
since in the after scenario the models have access
to the target word itself. Nevertheless, we still see
high correlations for the before representations for
most models and layers, indicating that the repre-
sentational state of the language models immedi-
ately before the target word reflect semantic content
of the to-be-predicted word. GPT-2 produces the
strongest correlations with human similarity judge-



216

Figure 2: Results (accuracy %) on BrainBench for the MEG and fMRI data for each before (on the left) and after
(on the right) word embedding models for each of the 24 layer of GPT-2. Scores are measured using accuracy
from a 2vs. 2 test, with a score of 0.5 indicating random chance (see text).

ments overall (particularly in earlier layers of the
after representations; Fig. 1B). Interestingly, JLM
outperforms GPT-2 in how accurately it predicts
the brain data, perhaps due to a more cognitively
plausible neural architecture that incrementally in-
tegrates information over the course of a sentence.

Focusing on the before representations, we see
that the JLM-before semantic representations tend
to perform better than the GPT2-before represen-
tations. This is likely because the LSTM is directly
trained on the sampled sentences, which produces
a lower perplexity measure than the transformer
network, and thus it yields more accurate predic-
tions about the target word. Comparing the before
representations from different layers in each model,
we see that JLM better represents semantic infor-
mation in the second of its two layers, while for
GPT-2 the results are more complex, though later
layers are generally better, with the second last
layer (23) being best for most evaluations. For both
models, then, the upper layers tend to have the best
overall semantic representations of the upcoming
target word, which follows from the fact that the
upper layers directly feed into predictions about
the upcoming word in the language modelling task,
with the models reflecting the predicted semantic
content of that word.

When the target word is available to the model
(the after representations), we would expect the
network to represent meaningful information about
the concept, which is why this approach is the most
common method for building contextual represen-
tations. Our results support this notion, since the

after representations consistently outperform the
before representations, on both the word similarity
and brain imaging data (see Fig. 2 for the GPT-2
BrainBench results). Notably, JLM[1]-after out-
performs JLM[2]-after, since the activation pat-
terns from the second layer should aim to predict
the next word in the sequence (i.e. the word fol-
lowing the target word). Similarly, the GPT2-after
representations retain semantic information of the
word quite well for all but the final layer, with early
layers performing well in the semantic similarity
evaluations (Fig. 1B and Fig. 2B). GPT2[24]-after
experiences a dramatic loss in performance, similar
to what is observed for the JLM[2]-after represen-
tations.

Overall, this pattern or results supports the hy-
pothesis that later layers of the language models
best reflect semantic information about the to-be-
predicted word, whilst earlier layers best reflect se-
mantic information about the just-presented word,
though all layers in both models reflect this infor-
mation to some extent. In the next section, we
investigate in more detail the specific kinds of se-
mantic knowledge that is available in different lay-
ers of the models.

5.2 Semantic Feature Decoding

The results on the property decoding task are pre-
sented in Table 2 and Figure 3. Overall, we see that
the GPT-2 layers encode more information about
common sense property knowledge than the JLM
layers, particularly in the after representations.

Focusing on the before representations we see
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Figure 3: Graph which displays the average cross-validation F1 scores×100 for each before (on the left) and after
(on the right) transformer-based representations from each layer of GPT-2.

Model Encyclo. Functional Taxonomic Visual Other Perceptual Overall

LSTM-based Representations

JLM[1]-before 21.74 24.92 42.31 29.48 28.91 28.56
JLM[2]-before 26.41 30.22 47.75 32.66 33.39 32.85
JLM[1]-after 33.21 38.29 60.71 38.44 36.83 40.01
JLM[2]-after 33.86 39.06 62.82 39.32 40.01 41.14

Transformer-based Representations

GPT2[Best]-before 30.94 [23] 35.25 [23] 51.95 [23] 36.25 [23] 38.12 [23] 38.35 [23]
GPT2[Best]-after 37.69 [23] 42.74 [21] 62.79 [23] 42.47 [23] 43.98 [23] 45.72 [21]

Table 2: Average cross-validation F1 scores ×100 for each model and for each of the five property classes. For
GPT-2, we include the best performance for each property type across all layers.

that GPT-2 tends to capture more knowledge about
conceptual properties than JLM. Most notably,
compared to JLM, the GPT-2 model does better
at encoding knowledge related to attributive prop-
erties (i.e. non-taxonomic properties), which tend
to be much more difficult to capture (Rubinstein
et al., 2015). Both models show better property
decoding performance in the later before layers.
As these properties are related to conceptual knowl-
edge plausibly associated with the upcoming word,
it makes sense that the embedding vectors converge
on some particular space related to the semantic
restrictions on the upcoming word, which is partic-
ularly reflected in the case of taxonomic properties.

Turning to the after representations, we see that
property knowledge seems to be best reflected in
the upper layers of both language models. This is a
particularly interesting result, as previous work has
demonstrated that the lower layers contain more
explicit information relating to the target word such

as part-of-speech (Peters et al., 2018) and word as-
sociation (see Section 5.1). Furthermore, while the
JLM-after and GPT2-after representations per-
form similarly when predicting taxonomic features,
GPT-2 does much better at capturing perceptual,
functional, and encyclopedic knowledge. The re-
sults indicate that the GPT-2 representation appear
to narrow the gap between taxonomic and attribu-
tive properties, which distributional models have
historically struggled to accomplish. Finally, the
network seems to retain and improve performance
as we move through the layers.

6 Discussion

6.1 Last Layer Performance

First, we wish to discuss why there is a consistent
loss in performance from the representations con-
structed from the final layer of the network, which
is notable given the widespread use of the final
layer for transfer learning. To better understand
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the results for the GPT2-before embedding vec-
tors on our evaluation tasks, consider the work of
Ethayarajh (2019), who demonstrated that the lay-
ers of GPT-2 become more context-specific as we
move through the network, more so than LSTM-
based networks such as Elmo. In particular, Etha-
yarajh (2019) investigated intra-sentence similar-
ity, which measures the average cosine distance
between the individual word representations and
the sentence representation. In their work, sentence
representations were constructed by averaging over
the hidden states from all time steps in the sentence,
which is similar to the before representations (aver-
aging the vectors across sentences given the target
word’s position). They showed that, when adjusted
for anisotropy, the intra-sentence similarity of GPT-
2 tends to decrease until layer 4, before uniformly
increasing again through the rest of layers. Hence,
word representations from different time steps tend
to be highly dissimilar from one another by the
nature of the network, which demonstrates one lim-
itation of feature pooling. While a limitation, we
also note that this approach works well in general
for building static word embeddings, supported by
previous work (Bommasani et al., 2020)

6.2 Semantic Knowledge

From our initial results on the human judgement
benchmarks, we can infer at what layers of the net-
work semantic information about the concept is
most representative. When the network must per-
form next word prediction on the concept, we see
that the final layer is most representative, whilst
after the word has been given to the network, we
see that the semantic information about the concept
decreases through as we move through the network.
Such a result is not surprising as the network must
gradually accumulate information that may be re-
lated to the next possible word, focusing less on
the previous concept. Generally, the transformer
outperforms the LSTM model after the network has
received the concept in the lower layers, though the
LSTM contained more representative information
about the concept during next word prediction.

When probing for human conceptual knowledge,
we see that the transformers perform better than
the LSTMs, with the transformers performing quite
well at predicting attributive features in compari-
son to taxonomic properties, for which there has
historically been a large gap in performance (Ru-
binstein et al., 2015). These results may indicate

that context, for which transformers produce highly
contextualised representations (Ethayarajh, 2019),
plays an important role in representing conceptual
knowledge such as that reflected in semantic prop-
erty norms. The most interesting result from our
investigation is that the semantic knowledge is not
forgotten in the later layers of both LSTM and
transformer-based networks after receiving the con-
cept, unlike the previous results. These findings
may indicate that these networks gradually accumu-
late such knowledge as the sentence is processed in
order to facilitate anticipation of the future. Such
ideas have recently been proposed by Ferreira and
Chantavarin (2018) who suggested that, in order
to reconcile the differences between earlier models
of integration (building associations between new
concepts and previous information (Kintsch and
Van Dijk, 1978; Gernsbacher, 1991)) with more
recent theories of prediction, we should replace the
notion of Prediction with Preparedness. Instead
of considering direct prediction of future lexical
items, which is usually rare (Luke and Christian-
son, 2016), the authors suggest that given some
new information which is processed along with
the past information with appropriate background
knowledge, a new rich semantic representation is
produced containing informative semantic features
that facilitate anticipation. Our results indicate that
these language models may similarly build and
retain rich semantic representations that aid the
network in its learning objective (conditional next
word prediction).

7 Conclusion

In this paper, we present a novel approach to gain-
ing a better understanding of the kinds of seman-
tic information encoded within the layers of large-
scale language models. Our analysis allows us
to peer inside the hidden state representations of
neural language models, and examine how semanti-
cally relevant information is encoded in each layer
of the networks. We examine the language models
on their ability to capture semantic meaning from
two perspectives, when the network is predicting
the target word, and when the target word is the
most recent input. The results demonstrate that
the transformer model is much better at capturing
attributive features than the LSTM model, whilst
both models are able to retain rich semantic repre-
sentations of the concept after the concept has been
given to the network.
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