
Abstractive Text Summarization: Enhancing
Sequence-to-Sequence Models Using Word
Sense Disambiguation and Semantic
Content Generalization

Panagiotis Kouris
School of Electrical and Computer
Engineering, National Technical
University of Athens, Greece
pkouris@islab.ntua.gr

Georgios Alexandridis
School of Electrical and Computer
Engineering, National Technical
University of Athens, Greece
gealexandri@islab.ntua.gr

Andreas Stafylopatis
School of Electrical and Computer
Engineering, National Technical
University of Athens, Greece
andreas@cs.ntua.gr

Nowadays, most research conducted in the field of abstractive text summarization focuses on
neural-based models alone, without considering their combination with knowledge-based ap-
proaches that could further enhance their efficiency. In this direction, this work presents a novel
framework that combines sequence-to-sequence neural-based text summarization along with
structure and semantic-based methodologies. The proposed framework is capable of dealing with
the problem of out-of-vocabulary or rare words, improving the performance of the deep learning
models. The overall methodology is based on a well-defined theoretical model of knowledge-based
content generalization and deep learning predictions for generating abstractive summaries. The
framework is composed of three key elements: (i) a pre-processing task, (ii) a machine learning
methodology, and (iii) a post-processing task. The pre-processing task is a knowledge-based
approach, based on ontological knowledge resources, word sense disambiguation, and named
entity recognition, along with content generalization, that transforms ordinary text into a
generalized form. A deep learning model of attentive encoder-decoder architecture, which is

Submission received: 30 April 2020; revised version received: 15 July 2021; accepted for publication:
28 July 2021.

https://doi.org/10.1162/COLI a 00417

© 2021 Association for Computational Linguistics
Published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
(CC BY-NC-ND 4.0) license

mailto:pkouris@islab.ntua.gr
mailto:gealexandri@islab.ntua.gr
mailto:andreas@cs.ntua.gr
https://doi.org/10.1162/COLI_a_00417

Computational Linguistics Volume 47, Number 4

expanded to enable a coping and coverage mechanism, as well as reinforcement learning and
transformer-based architectures, is trained on a generalized version of text-summary pairs,
learning to predict summaries in a generalized form. The post-processing task utilizes knowledge
resources, word embeddings, word sense disambiguation, and heuristic algorithms based on text
similarity methods in order to transform the generalized version of a predicted summary to a
final, human-readable form. An extensive experimental procedure on three popular data sets
evaluates key aspects of the proposed framework, while the obtained results exhibit promising
performance, validating the robustness of the proposed approach.

1. Introduction

The vast and constantly growing amount of textual information available online has
rendered its access a challenging task and, as a consequence, it has increased the neces-
sity for its ingestion in an automated manner. One of the principal ways of achieving this
goal is through data reduction techniques that transform a piece of text into a succinct
summary. Text summarization (TS), as this process is more formally known, has been
an active research field for over half a century (Gambhir and Gupta 2017). The primary
objective of automatic TS is to produce informative and human-readable summaries of
documents, retaining their salient content. Since the advent of early work in the field of
automatic TS (Luhn 1958; Edmundson 1969), several approaches and systems have been
proposed, divided mainly into single-document TS (e.g., articles, news, stories, books,
scientific papers, or weather forecast), multi-document TS (e.g., user reviews, news from
several sources, or e-mails), and query-based TS (i.e., focusing on specific information
from a text) (Nenkova and McKeown 2012).

Additionally, automatic TS techniques are further classified broadly into two
groups; (i) Extractive TS and (ii) Abstractive TS (Yao, Wan, and Xiao 2017; Allahyari et al.
2017). The former aim at creating a summary by extracting a subset of sentences from
the original text that include important informational aspects, minimizing redundancy.
The latter aim at composing an abstract representation of the original text, using natural
language generation to produce the summaries. In other words, an abstractive TS
system generates new text, consisting of expressions, sentences, or words that might
not have appeared originally, while at the same time incorporating the overall meaning
of the initial document. Abstractive TS aims at generating high quality summaries in
terms of cohesion, readability, and redundancy. Consequently, this is a challenging task,
as it produces summaries that resemble or approximate human-written ones.

In general, abstractive TS approaches exhibit poor performance when compared
with extractive TS (Gambhir and Gupta 2017; Joshi, Fernández, and Alegre 2018). Nev-
ertheless and despite their weaknesses, abstractive TS systems are continually improv-
ing. Their main advantage is that of coping with the problems of cohesion, redundancy,
and dangling anaphora, which are challenging to be tackled with extractive techniques.
Furthermore, abstractive TS approaches produce concise summaries, reducing the size
of the original sentences (i.e., applying sentence compression or sentence merging)
and simultaneously generate coherent, grammatically correct, and readable summaries.
One issue that affects abstractive TS are out-of-vocabulary (OOV) or rare words. This
problem has a strong negative effect, especially on machine learning systems, which
require training sets of sufficient usage examples for efficient predictions. Also, deep
learning systems that achieve state-of-the-art performance in abstractive TS (Gupta
and Gupta 2019) almost always fail to make accurate predictions when receiving new

814

Kouris, Alexandridis, and Stafylopatis Abstractive Text Summarization

instances with rare or unseen words (i.e., words with few occurrences or words that are
not included in the training set). In this sense, our work aims at providing a solution
that deals with this category of words, aiding neural-based abstractive TS.

Particularly, this work focuses on abstractive TS of single documents, proposing
a novel framework that utilizes knowledge-based word sense disambiguation (WSD)
and semantic content generalization in order to enhance the performance of sequence-
to-sequence (seq2seq) neural-based TS. The main contribution of this framework is the
combination of the characteristics of three dominant aspects of abstractive TS and, more
specifically, of structure, semantic, and neural-based approaches (Gupta and Gupta
2019) that are predominately treated as separate methodologies in the relevant literature
(Section 2), especially in deep learning approaches. The presented framework, on the
other hand, tries to unify them through the combined use of machine learning and
knowledge-based techniques.

In this direction, the proposed methodology is composed of three distinct steps
for producing the final summary; (i) the pre-processing task, (ii) the machine learning
methodology, and (iii) the post-processing task. The first step achieves text generaliza-
tion through the utilization of knowledge-based semantic ontologies and named entity
recognition (NER) in order to extract named entities, concepts, and senses from the
original document. Subsequently, the generalized text is provided to a seq2seq deep
learning model of an attentive encoder-decoder architecture, which learns to predict a
generalized version of the summary. In particular, five variants of the deep learn-
ing model are examined: (i) a seq2seq model with an attention mechanism, (ii) a
pointer-generator network, (iii) a reinforcement learning model, (iv) a transformer
approach, and (v) a pretrained encoder transformer architecture (Section 5). Lastly,
the post-processing task creates the final summary, based on heuristic algorithms and
text similarity metrics that match the concepts of the generalized summary to specific
ones. The extensive experimental procedure conducted on three widely used data
sets (Gigaword [Napoles, Gormley, and Van Durme 2012], Duc 2004 [Over, Dang, and
Harman 2007], and CNN/DailyMail [Hermann et al. 2015]) yields promising results,
alleviating the problem of rare and OOV words and outperforming state-of-the-art
seq2seq deep learning techniques.

The rest of this paper is organized as follows: Section 2 overviews the relevant
literature. Section 3 outlines the proposed framework, which is further analyzed in
Section 4 (the pre-processing task), Section 5 (the machine-learning methodology),
and Section 6 (the post-processing task). Section 7 describes the experimental proce-
dure, and Section 8 presents the obtained results, which are discussed in Section 9.
Finally, Section 10 concludes this work, with some final remarks and future work
directions.

2. Related Work

Early approaches to abstractive TS included sentence compression (Knight and
Marcu 2002; Cohn and Lapata 2008) and fusion (Barzilay and McKeown 2005; Marsi
and Krahmer 2005; Filippova and Strube 2008; Filippova 2010), which combine sim-
ilar phrases of the input sentences, generating a concise version of them. Most cur-
rent approaches, however, are either structure- or semantic-based (Moratanch and
Chitrakala 2016), and in recent years, a third category has emerged; that of neural-based
abstractive TS (Gupta and Gupta 2019). In particular, structure-based methods exploit

815

Computational Linguistics Volume 47, Number 4

predefined structures, like trees, ontologies, graphs, rules, and templates in order to
create an abstractive summary. Semantic-based approaches, on the other hand, use
natural language generation systems, based on semantic-graphs, predicate-arguments,
and information items for summary generation, utilizing the semantic representation of
input text. Finally, neural-based approaches utilize deep learning networks to predict
abstractive summaries and have become dominant in abstractive TS, as they achieve
state-of-the-art performance (Lin and Ng 2019; Gupta and Gupta 2019).

Structure-based methods commonly rely on hierarchical ontologies as knowledge
sources, which can be used for the semantic representation of a document, resolving
ambiguity issues (Mohan et al. 2016). In ontology-based approaches, knowledge re-
sources such as WordNet (Miller 1995; Fellbaum 1998), DBPedia (Bizer et al. 2009), or
other domain-specific ontologies are used to create abstractive summaries (Mohan et al.
2016). Several ontology-based abstractive systems have been developed that extract
concepts or key phrases from a text, creating a summary (Lee, Jian, and Huang 2005;
Hennig, Umbrath, and Wetzker 2008; Baralis et al. 2013; Hı́pola et al. 2014). In this
work, a pre-defined ontology of concepts is utilized for content generalization in the
pre-processing phase and for concept matching in the post-processing phase, as it is
going to be described in the following sections.

Semantic-based approaches utilize a (semantic) representation of text, which cap-
tures the relations between entities in order to identify significant sentences, phrases,
or expressions that are accordingly combined to create the summary. In particular, se-
mantic graph-based methods convert the text to a graph representation, which captures
semantic and syntactical relations (Khan et al. 2018; Joshi, Wang, and McClean 2018).
Usually, the summary is generated by finding significant concepts, either utilizing graph
relationships or reducing the size of the graph by eliminating redundancy or rejecting
non-significant entities (Moawad and Aref 2012). Furthermore, item-based methods use
information items (e.g., triplets of subject, verb, and object) to generate sentences. The
summary is shaped by ranking the sentences according to the information items they
contain (Genest and Lapalme 2011). Moreover, predicate-argument-based solutions ob-
tain similar structures of predicate-arguments (i.e., subjects, verbs, and objects), merging
them semantically to create the summary (Alshaina, John, and Nath 2017; Zhang, Zhou,
and Zong 2016). Because the approaches of this category cannot reach the level of
performance of deep learning techniques in abstractive TS (Gupta and Gupta 2019), the
present work combines semantic and neural-based methodologies in order to improve
the efficiency of the former. On a semantic basis, the proposed framework utilizes an
ontology that transforms text into a generalized version by identifying concepts and
their relationships.

In contrast to the methods described above, which require challenging subtasks
such as information extraction, content selection, and natural language generation (Lin
and Ng 2019), neural-based approaches are capable of producing abstractive sum-
maries, using only an appropriate neural network model, without other complicated
natural language processing. Such techniques are often based on seq2seq models of
encoder-decoder architecture (Sutskever, Vinyals, and Le 2014); they are deep learn-
ing models, where the encoder takes an input sequence of words and the decoder
emits an output sequence of words that constitutes the summary. The said networks
are trained end-to-end on a large corpus of text-summary pairs, learning to predict
abstractive summaries of input text. The deep learning models are mainly based on
recurrent neural networks (RNN), and, primarily, on long short-term memory (LSTM),
gated recurrent units (GRU), and transformer-based architectures that accomplish
state-of-the-art performance in abstractive TS (Chopra, Auli, and Rush 2016; Nallapati

816

Kouris, Alexandridis, and Stafylopatis Abstractive Text Summarization

et al. 2016; See, Liu, and Manning 2017; Song, Huang, and Ruan 2018; Gao et al. 2020;
Lin and Ng 2019; Vaswani et al. 2017; Liu and Lapata 2019; You et al. 2019; Xu et al. 2020;
Wolf et al. 2020).

The basic seq2seq model may be further improved through the introduction
of an attention mechanism (Bahdanau, Cho, and Bengio 2014), thereby making the
attentive encoder-decoder models a standard architecture for seq2seq neural networks
(Luong, Pham, and Manning 2015) and especially for neural-based abstractive TS
(Nallapati et al. 2016; See, Liu, and Manning 2017; Cohan et al. 2018; Lin and Ng
2019). The attention mechanism focuses on important words; given the encoder input
sequence, the decoder is fed with a context vector that quantifies their importance.
Moreover, encoder-decoder models with attention mechanisms have been used to
face the problem of OOV words through the addition of a pointer generator network
(Nallapati et al. 2016; See, Liu, and Manning 2017). Also, See, Liu, and Manning (2017)
support attention with a coverage mechanism, avoiding repetition of the same words
in the summary. Additionally, Lin et al. (2018) present a global encoding model for
solving the problem of repetition. Furthermore, Song, Huang, and Ruan (2018) propose
a model of extracting phrases from text to generate summaries, which is based on deep
LSTM units and convolutional neural networks (CNN). An abstractive TS framework,
based on an transformer-based encoder-decoder architecture with a focus-attention
mechanism and a model for selecting important aspects to distinguish salient infor-
mation creating summaries, is presented in You et al. (2019). Finally, the transformer-
based models and their pretrained variants constitute the dominant approaches in TS,
which are based in simple models that incorporate self-attention in order to reduce the
computational load, parallelizing the computations in the training process (Vaswani
et al. 2017; Zhang, Xu, and Wang 2019; Liu and Lapata 2019; You et al. 2019; Xu et al.
2020; Pilault et al. 2020; Wolf et al. 2020).

The main weakness of the above-described encoder-decoder architectures is that
they minimize a maximum-likelihood loss function, while TS evaluation is based on
a different metric (i.e., ROUGE scores). To address this problem, recent approaches
utilize reinforcement learning (RL) (Li 2018; Keneshloo et al. 2020) to maximize a
reward based on the employed evaluation metric. In particular, Paulus, Xiong, and
Socher (2018) propose a RL seq2seq model that optimizes a specific evaluation met-
ric (e.g., ROUGE-L score) and a mixed training objective model, which combines the
optimization of the maximum-likelihood loss and the evaluation metric in question.
Celikyilmaz et al. (2018) present a RL model for long documents that uses multiple
collaborating encoder agents for encoding different sections (e.g., sentences or para-
graphs) of the text, where the communication between agents improves summarization.
Pasunuru and Bansal (2018) introduce a multiaward approach to improve the saliency
and directed logical entailment in abstractive TS. In the current work, the approach
of Paulus, Xiong, and Socher (2018) is adopted in introducing a RL model to our
framework.

As can be seen above, the majority of neural-based approaches try to improve
the deep learning models without taking advantage of semantic or structure-based
techniques. Instead, this work, significantly extending an earlier approach (Kouris,
Alexandridis, and Stafylopatis 2019), proposes a novel knowledge-based framework
that enhances neural-based abstractive TS, by combining characteristics of structure
and semantic-based methodologies. In particular, in the current work, the content
generalization methodology has been redesigned through the inclusion of WSD for
more accurate concept generalization, assuming new generalization strategies. More-
over, the proposed deep learning model has been extended to include a coping and

817

Computational Linguistics Volume 47, Number 4

coverage mechanism, as well as reinforcement learning to improve performance and,
simultaneously, to examine the versatility of our framework in different seq2seq models.
Additionally, the post-processing task, which is equipped with an improved greedy
and a new optimal solution, is based on WSD and the employed ontology to perform
concept matching for generating the final summary. The basic unit of the said frame-
work is an appropriate sequence-to-sequence deep learning neural network, aided by a
knowledge-based methodology, as is described in detail below.

3. Framework Overview

The overall framework is illustrated in Figure 1. The input comprises a single-document
text, along with a taxonomy of concepts T, while the output is a human-readable sum-
mary. Its main components are five, starting with WSD, whose purpose is to generalize
ambiguous words. This is an important step for increasing the accuracy of content
generalization that follows next and deals with OOV or rare words. Both of the afore-
mentioned steps constitute the pre-processing phase, which is discussed in more detail
in Section 4.

The generalized text is subsequently mapped to a continuous vector space, using
neural language processing techniques. The said vectors are then provided to a deep
seq2seq model of encoder-decoder architecture, which additionally incorporates an
attention mechanism. The model, having been trained on a corpus of text-summary
pairs, predicts a generalized summary for the new input it has been given. Both the
vector-mapping and deep learning prediction steps are components of the machine
learning phase and are further analyzed in Section 5.

Lastly, the produced, generalized summary of the previous steps is post-processed
in order to obtain its final text in human-readable form. This involves a number
of individual steps like identifying potentially new generalized concepts introduced
in the resulting summary and how these are optimally matched to concepts in the
original document. The intuition behind this final phase is further reasoned upon
in Section 6.

Text

Taxonomy
of Concepts Word Sense

Disambiguation
Content

Generalization
Generalized
text

Word
Embeddings

Deep Learning
Prediction

Generalized
summary

Post Prosessing
of Predicted

Summary
Summary

Figure 1
The workflow of the proposed framework.

818

Kouris, Alexandridis, and Stafylopatis Abstractive Text Summarization

4. Pre-processing Phase

As outlined above, the pre-processing phase consists of two components: WSD, dis-
cussed in Section 4.1 below, and content generalization, presented in Section 4.2. In
particular, content generalization strategies are examined in more detail in Section 4.3.

4.1 Word Sense Disambiguation

WSD is the process of determining the exact sense of a word in a particular con-
text, thereby assessing the different senses the same words might have (Navigli 2009;
Borah, Talukdar, and Baruah 2014). The purpose of including this task in the presented
framework is twofold; first, to generalize a particular sense of a word to a more general
concept (Section 4.2) and second, to exploit this technique in order to transform a
text into its disambiguated version. Additionally, WSD is expected to improve the
performance of the seq2seq model (Section 5), limiting the search space of candidate
sequences of words for the final summary. More specifically, a set of disambiguated
text-summary pairs are used in the training phase of the seq2seq model and the latter
learns to predict disambiguated summaries of input text.

Sense representation is accomplished in WordNet (Miller 1995; Fellbaum 1998)
through the use of a WSD identifier like, for example, in book.n.01, book.n.02, watch.v.02,
or watch.v.06. The same notation is also adopted in this work, consisting of three parts
separated by dots; (i) a word, (ii) a part of speech (i.e., n for nouns and v for verbs),
and (iii) a sense number (e.g., 01, 02, 06). For instance, the word “bank” has more
than one sense, such as bank.n.01, bank.n.02, or bank.v.01, where the first two are nouns
with different meanings (since their sense numbers are different), while the third one
represents a verb. To disambiguate a document, its words are transformed into their
respective WSD identifiers (e.g., table into table.n.01), according to their sense.

Because the overall framework is a knowledge-based system, a WSD technique
based on knowledge resources for deciding the particular senses of words (Navigli
2012; Chaplot and Salakhutdinov 2018) is the most natural choice. Nevertheless, other
approaches might also be considered, such as supervised WSD (Raganato, Camacho-
Collados, and Navigli 2017), provided that there exist sufficient WSD learning corpora.
In the experimental part of this work (Section 7), the effect of WSD in the utilized
seq2seq model is further investigated.

4.2 The Theoretical Model of Content Generalization

Content (or text) generalization constitutes the main effort this framework puts in
improving the performance of machine learning predictions. Its main purpose is to
deal with OOV or rare words; in particular, a word not existing in the trained system’s
vocabulary can be generalized to a more general one, with a sufficient presence in the
training set. In a similar manner, rare words, with a small frequency in the training set,
can be generalized to more frequent ones.

Prior to discussing the specifics of the achieved content generalization, a theoretical
model must be defined and have its properties studied and reasoned upon. In principle,
the process of content generalization requires a taxonomy of concepts (like, for example,
those appearing in Figure 2), as described in Definition 1. A taxonomy of concepts
is based on a knowledge resource (e.g., WordNet) and consists of words or concepts
and their semantic relationship in a hierarchical structure. More specifically, the studied

819

Computational Linguistics Volume 47, Number 4

c0: entity.n.01

c1: physical entity.n.01

c2: geological formation.n.01

c3: slope.n.01

c4: bank.n.01

c5: waterside.n.01

c6: artifact.n.01

c7: facility.n.01

c8: depository.n.01

c9: bank.n.09

c10: craft.n.02

c11: vessel.n.02

c12: boat.n.01

c13: abstraction.n.06

c14: possession.n.02

c15: assets.n.01

c16: accumulation.n.04

c17: bank.n.05

Figure 2
An example of a taxonomy of concepts.

taxonomy is comprised of disambiguated senses that represent a unique meaning of a
word that is alternatively called a concept.

Definition 1 (Taxonomy of Concepts)
A taxonomy of concepts consists of a hierarchical structure of semantically disam-
biguated concepts that are related to their subordinate or superordinate concepts with
an is-a type of relationship.

The relations among concepts are described with the use of the terms hyponym
(Definition 2) and hypernym (Definition 3). A hyponym, or a subordinate of a word,
entails a more specific semantic field of the given word (e.g., the horse is a hyponym of
animals). On the other hand, a hypernym or a superordinate of a word, has a broader
semantic field than the given word (e.g., the vehicle is a hypernym of bus). The root
of the taxonomy corresponds to the word of the broadest or the most general semantic
field (e.g., entity), while the leaves contain the most specific concepts.

Definition 2 (Hyponym)
Given a taxonomy of concepts, a concept cb is a hyponym of a concept ca iff cb semanti-
cally entails ca (cb |= ca).

Definition 3 (Hypernym)
Given a taxonomy of concepts, a concept ca is a hypernym of a concept cb iff cb semanti-
cally entails ca (cb |= ca).

Furthermore, the hyponym and hypernym path of concepts are introduced in
Definitions 4 and 5, respectively. Because the taxonomy of concepts is assumed to
have a hierarchical structure (i.e., a tree form), a hyponym path of concepts represents
the taxonomy path from a particular concept to the leaf of the taxonomy, whereas a

820

Kouris, Alexandridis, and Stafylopatis Abstractive Text Summarization

hypernym path of concepts includes the concepts from a specific concept to the root of
the taxonomy.

Definition 4 (Taxonomy Path of Hyponyms)
Given a taxonomy of concepts, a taxonomy path of hyponyms of a concept ca is an
ordered sequence of concepts {ca, ca+1, ...ci, ci+1, ...cn−1, cn}, where concept ci+1 se-
mantically entails concept ci and cn is a leaf concept of the taxonomy.

Definition 5 (Taxonomy Path of Hypernyms)
Given a taxonomy of concepts, a taxonomy path of hypernyms of a concept ca is an
ordered sequence of concepts {ca, ca−1, ... ci+1, ci, ci−1, ... cr+1, cr}, where ci+1 semanti-
cally entails ci and cr is the root concept of the taxonomy.

Once the concepts have been extracted from text, their hypernym taxonomy path is
used for generalization, while the taxonomy paths of hyponyms are used to make the
extracted terms more specific. Both a path of hypernyms and of hyponyms may be used
to move from a specific concept to a general one and from a general concept to a specific
one, respectively (i.e., generalizing or specifying text).

Example 1 (Taxonomy of Concepts)
Figure 2 illustrates a sample taxonomy of 18 concepts, capturing the relations between
them. Each node contains a WSD identifier (e.g., facility.n.01) and the word “bank”
appears in three different senses; bank.n.01 (sloping land), bank.n.05 (a supply or stock
for future use), and bank.n.09 (a building in which the respective business is located).
The taxonomy path of the hyponyms of concept c3 (slope.n.01) is {c3, c4, c5}, while
the taxonomy path of the hypernyms of the same concept is {c3, c2, c1, c0}. The most
general concept, with the broadest semantic field, of this taxonomy is that of entity.n.01,
which is called the root concept. This taxonomy contains nouns exclusively; a different
one, for example, might have contained verbs.

Definitions 6 and 7 below define when a concept is assumed to be generalizable
and when a piece of text is generalizable, respectively. A concept ci with a taxonomy
path of hypernyms Phci is generalizable when ci semantically entails a concept cj ∈ Phci

with a smaller taxonomy depth than ci (i.e., ci can be exchanged with cj). Also, a text is
generalizable when one or more of its concepts are generalizable.

Definition 6 (Generalizable Concept)
A concept ci is generalizable when its taxonomy path of hypernyms Phci contains at
least one concept cj ∈ Phci such that the concept ci semantically entails cj.

Definition 7 (Generalizable Text)
A piece of text is generalizable when at least one concept it contains is generalizable.

A taxonomy may contain concepts of a very general meaning, like entity or object.
To avoid generalizing to such general concepts, a level of generalization needs to be
defined, which sets limits on the degree of generalization. Definition 8 specifies that

821

Computational Linguistics Volume 47, Number 4

a concept may be generalized to a minimum taxonomy depth, according to the given
level of generalization.

Definition 8 (Level of Generalization)
The level of generalization of a text is equal to the minimum taxonomy depth that a
concept can be generalized.

4.3 Generalization Strategies

Based on the theoretical model presented above, six distinct generalization strategies are
being studied, as a pre-processing step for the machine learning model (Section 5). In
particular, the methods outlined herein investigate how each strategy enhances machine
learning-based TS and whether WSD provides additional improvement or not. The
examined strategies follow two different directions: (i) generalizing concepts to their
hypernyms, using a semantic ontology of concepts, and (ii) generalizing concepts to
their named entities, using NER. Additionally, the combination of the aforementioned
approaches is also considered and the generalization strategies are applied to disam-
biguated text using WSD.

The examined techniques also take into account the frequency of each term (θf)
in the source text. The intuition behind this choice is the fact that supervised machine
learning systems require sufficient numbers of usage examples for efficient training. In
this sense, generalizing OOV or rare words to more frequent ones may result in more
accurate summaries, thereby improving the predictions of the machine learning system.
Of course, the determination of θf is a hyperparameter of the overall approach and in
the experiments (Section 7) its optimum value is ascertained with respect to the utilized
data sets.

A second hyperparameter that affects the operation of the examined strategies is the
level of generalization θd (Definition 8), which prohibits concepts from being general-
ized to very broad meanings. Over-generalization is not expected to have any positive
effect on supervised machine learning, as the system will not be able to discriminate
between the different meanings of the same very general concepts, failing to predict an
appropriate summary.

4.3.1 Level-Driven Generalization (LG). This strategy generalizes concepts according to
(i) the threshold θf , under which concepts should be generalized and (ii) the given
level of generalization θd. Example 2 describes the LG strategy, where the concepts
of a sentence are generalized to their hypernyms according to their frequency in the
training set.

Example 2 (LG)
Given

1. the sentence “he is sitting on the bank of the river watching a boat”

2. its disambiguated version: “he is sitting on the bank.n.01 of the river.n.01
watching a boat.n.01”

3. the taxonomy of concepts T of Figure 2

822

Kouris, Alexandridis, and Stafylopatis Abstractive Text Summarization

4. a set of concepts with their frequency in the overall training set (not just
the sentence)

F = {(“bank.n.01”, 58), (“slope.n.01”, 120), (“boat.n.01”, 45),

(“vessel.n.02”, 98), (“craft.n.02”, 160), (“river.n.01”, 220)}

5. thresholds θd = 3,θf = 100

Then the candidate concepts for generalization are bank.n.01 and boat.n.01, as their
frequency in the data set is less than θf and their taxonomy depth in T is greater
than θd.

The hypernym paths of these concepts are extracted from taxonomy T as follows:

Pbank.n.01 = {“bank.n.01”, “slope.n.01”, “geological formation.n.01”,

“physical entity.n.01”, “entity.n.01”}

Pboat.n.01 = {“boat.n.01”, “vessel.n.02”, “craft.n.02”, “artifact.n.01”,

“physical entity.n.01”, “entity.n.01”}

Thus, the sentence is generalized to: “he is sitting on the slope.n.01 of the river watch-
ing a craft.n.01”, satisfying the given thresholds. It should also be noted that the
generalized concepts are represented by WSD identifiers for easier recognition in the
post-processing phase, as it shall be described next.

Algorithm 1 outlines the steps of the LG content generalization strategy. It requires
an input text, its disambiguated version wsdText, a set of concept frequencies F, and
the thresholds θd,θf discussed above. In the for-loop (lines 2–20), all tokens of input
text are accessed, with those having frequency less than θf becoming candidate for
generalization (line 4). In this case, the disambiguated version c of token is retrieved,
along with its path of hypernyms Pc, its taxonomy depth dc, and its frequency c
(lines 5–8). As long as the frequency and the taxonomy depth of the currently se-
lected concept c do not meet the threshold requirements, it is updated by the next
hypernym in the path (lines 9–13). If the previous loop has resulted in the retrieval
of a generalized concept c (line 14), then token is replaced by c (line 15) and the fre-
quencies of token and c are updated (lines 16–17). Once this procedure is executed for
all tokens in text, the algorithm terminates, returning the generalized version of text
(genText, line 21).

The computational complexity of Algorithm 1 is O(k · n) because, in the worst
case, all n input tokens will be examined (i.e., ftoken ≤ θf ∀ token ∈ text). For each input
token, the while loop of lines 9–13 examines all concepts of the longest taxonomy path
(k = |Ptoken|). In practice, k << n (especially for long texts), therefore the computational
complexity of Algorithm 1 approaches O(n); a linear complexity that allows the algo-
rithm to perform at low running times.

4.3.2 WSD-Based Level-Driven Generalization (W-LG). This strategy is a modification of
LG, as the input text is first disambiguated prior to being provided as input to

823

Computational Linguistics Volume 47, Number 4

Algorithm 1 Level-driven text generalization (LG)
Require: text, wsdText, F, T, θd, θf

1: genText← text
2: for all token ∈ text do
3: ftoken ← Frequency of token from F
4: if ftoken ≤ θf then
5: c←WSD of token form wsdText
6: Pc ← Path of hypernyms of c from T
7: dc ← taxonomy depth of concept c
8: fc ← Frequency of c from F
9: while fc < θf and dc > θd do

10: c← hypernym of c from Ptoken
11: dc ← taxonomy depth of c
12: fc ← Frequency of c from F
13: end while
14: if (word of c) 6= token then
15: genText← generalize token of genText to c
16: F← (F \ {(token, ftoken)}) ∪ {(token, ftoken − 1)}
17: F← (F \ {(c, fc)}) ∪ {(c, fc + 1)}
18: end if
19: end if
20: end for
21: return genText

Algorithm 1. Similar to LG, infrequent concepts (not satisfying threshold θf) are being
generalized. W-LG is further illustrated in Example 3, which is based on Example 2.

Example 3 (W-LG)
Based on the input text and the other parameters of Example 2, the disambiguated
sentence “he is sitting on the bank.n.01 of the river.n.01 watching a boat.n.01” is provided
to Algorithm 1 and is subsequently generalized to “he is sitting on the slope.n.01 of the
river.n.01 watching a craft.n.01”.

The output also retains the WSD identifiers of those concepts that are not general-
ized, like river.n.01.

4.3.3 Named Entity-Driven Generalization (NEG). This strategy generalizes concepts ac-
cording to (i) particular named entities (e.g., location, person, organization) that they
represent and (ii) a minimum frequency θf , under which they become candidate for
generalization. NEG is presented in more detail in Example 4, where the concepts in
a sentence are generalized to their named entities, according to their frequency in the
training set.

Example 4 (NEG)
Given:

1. the sentence “Elizabeth works at an antique shop in New York City”

2. a set of named entities E = {LOCATION, PERSON, ORGANIZATION}

824

Kouris, Alexandridis, and Stafylopatis Abstractive Text Summarization

3. a set of concepts with frequencies in the training set
F = {(“Elizabeth”, 58), (“antique shop”, 22), (“New York City”, 140)}

4. θf = 100

the recognized named entities are the following: (i) “Elizabeth” (PERSON), (ii) “an-
tique shop” (ORGANIZATION) and (iii) “New York City” (LOCATION). The candidate
concepts for generalization are “Elizabeth” and “antique shop”, as their frequency in
the training set is below the given threshold θf . Thus, the sentence is generalized to
“PERSON works at an ORGANIZATION in New York City”.

Algorithm 2 Named entities-driven text generalization (NEG)
Require: text, E, F, θf

1: genText← text
2: tokenNamedEntities← named entinties of text from E
3: for all (token, namedEntity) ∈ tokenNamedEntities do
4: ftoken ← Frequency of token from F
5: if ftoken < θf then
6: genText← generalize token of genText to namedEntity
7: end if
8: end for
9: return genText

Algorithm 2 describes the steps of the NEG strategy in more detail. The inputs are
the candidate text for generalization, a set of named entities E, a set of concepts F, and
the frequency threshold θf . Initially, the generalized text genText is set to be identical
to the original (line 1) and, subsequently, the task of NER is applied to text, which
results in the determination of tuples of type (token, named entity) in the input text
(tokenNamedEntity, line 2). Then, all of the aforementioned tuples in tokenNamedEntity
are accessed (lines 3–8) and the frequency ftoken of each token is retrieved (line 4). If the
said frequency is below threshold θf (line 5), then the examined token is generalized to
its respective name-entity in the (generalized version) genText of text (line 6). The algo-
rithm terminates when all tokenNamedEntity pairs have been examined, returning the
generalized version genText of input text. The computational complexity of Algorithm 2
is linear (O(n)) because, in the worst case, the NEG generalization strategy examines all
n input tuples (token, namedEntity).

4.3.4 WSD-Based Named Entity-Driven Generalization (W-NEG). This strategy is a modifi-
cation of NEG, in the same way that W-LG is a modification of LG; instead of providing
the original text as input to Algorithm 2, it is exchanged by its disambiguated version.
This is better illustrated in Example 5, which is an adaptation of Example 4 for this
strategy.

Example 5 (W-NEG)
Based on the input text and the other parameters of Example 4, the disambiguated sen-
tence “Elizabeth works at an antique.n.02 shop.n.01 in New York City.n.01” is generalized
to “PERSON works at an ORGANIZATION in New York City.n.01”.

The named entities correspond to words or phrases identified by NER in the
original text that have replaced the original concepts in the text generalization phase.

825

Computational Linguistics Volume 47, Number 4

Also, the generalized text may retain the WSD identifiers of those concepts that are not
generalized, like New York City.n.01 in the above sentence.

4.3.5 Combination of NEG and LG (NEG-LG). This strategy performs content generaliza-
tion in two steps, first applying NEG and then LG. Example 6 showcases the application
of the NEG-LG strategy.

Example 6 (NEG-LG)
Let’s assume we are given the sentence “Elizabeth, who works at an antique shop in New
York City, is sitting on the bank of the river watching a boat”, along with the other parameters
of Examples 4 and 2, with the exception of adding in F the term “who”, which has 520
occurrences in the training set.

The named entities of this sentence, as determined by NER, are the following:
(i) “Elizabeth” (PERSON), (ii) “who” (PERSON), (iii) “antique shop” (ORGANIZATION),
and (iv) “New York City” (LOCATION).

Because the NEG strategy is applied first, the candidate concepts for generalization
are “Elizabeth” and “antique shop”, as their frequency in the training set is below the
given threshold θf . Therefore, the disambiguated version or the sentence becomes:
“PERSON, who works at an ORGANIZATION in New York City, is sitting on the bank.n.01
of the river.n.01 watching the boat.n.01”.

Next, the LG strategy generalizes concepts bank.n.01 and boat.n.01 because their
individual frequencies in the training set are below threshold θf . As a result and after
the application of both techniques, the sentence is generalized to “PERSON, who works
at an ORGANIZATION in New York City, is sitting on the slope.n.01 of the river watching the
craft.n.01”.

4.3.6 WSD-Based Combination of NEG and LG (W-NEG-LG). The final generalization
strategy to be examined combines NEG and W-LG. It is described in Example 7.

Example 7
[W-NEG-LG] Given the sentence “Elizabeth, who works at an antique shop in New York
City, is sitting on the bank of the river watching a boat” and its disambiguated version
“Elizabeth, who.n.01 works at an antique.n.02 shop.n.01 in New York city.n.01, is sitting on the
bank.n.01 of the river.n.01 watching a boat.n.01” and the parameters of Example 6, then it is
generalized to “PERSON, who.n.01 works at an ORGANIZATION in New York city.n.01, is
sitting on the slope.n.01 of the river.n.01 watching the craft.n.01”, according to W-NEG-LG.

The generalized sentence retains the WSD identifiers of those words that are not
generalized.

5. Machine Learning

The machine learning phase of the proposed framework comprises two distinct steps.
First, the generalized text, obtained from the previous phase, is mapped to a con-
tinuous vector space, using NLP techniques (Section 5.1). Then, the retrieved vectors
are provided as input to the deep seq2seq model that learns to predict the summary
(Section 5.2).

826

Kouris, Alexandridis, and Stafylopatis Abstractive Text Summarization

5.1 Word Representation

In principle, word representation techniques based on neural language processing map
each token to a vector of real values of dimensionality D, formally known as a word
embedding (Li and Yang 2018; Mikolov et al. 2013; Pennington, Socher, and Manning
2014; Bojanowski et al. 2017). The main difference of word embeddings from other
vector-based representations of text is that the former retain the semantic relationship
between words, in the sense that words with similar meanings are mapped closer in the
embedding space.

The proposed framework makes use of word embeddings in model training
(Section 5.2), where the text-summary pairs of a particular generalization strategy
are mapped to their respective vectors, and in the post-processing phase (Section 6).
The framework itself is neural language processing-agnostic, in the sense that any word
embedding methodology may be used like word2vec, GloVe, or fastText (Pennington,
Socher, and Manning 2014; Mikolov et al. 2017), as long as it retains the semantic rela-
tionships of words in the vector space. In the experimental part of this work (Section 7),
word2vec has been used and, more specifically, the continuous bag-of-word model
(Mikolov et al. 2013; Rong 2014).

Even though the proposed framework is agnostic with respect to the chosen neural
language processing technique, it cannot use pretrained word representation vectors,
because such word embeddings with WSD tokens do not exist. Instead, it requires
training word embeddings from scratch, based on the corpus of available documents.
The reason is that the generalization strategies discussed before (Section 4.3) produce a
vocabulary that contains WSD identifiers (e.g., bank.n.02) and named entities (e.g., LOC,
GPE, or ORG) and terms of this form are not typically included in the vocabularies of
pretrained models.

5.2 Deep Learning Model

Summary creation is performed by a deep seq2seq model, based on RNNs (Lipton,
Berkowitz, and Elkan 2015). More specifically, this model predicts an output sequence
of tokens Y′ = (y′1, y′2, . . .) (the summary), given an input sequence of tokens X =
(x1, x2, . . .) (the text to be summarized).

In this work, we use five seq2seq models: (i) attentive, (ii) pointer-generator,
(iii) reinforcement learning, (iv) transformer, and (v) pretrained encoder transformer.
The particular neural networks are described in detail below.

5.2.1 Attentive Sequence-to-Sequence Model. Figure 3 illustrates the overall network, which
is a seq2seq model of encoder-decoder architecture, along with an attention mechanism
(See, Liu, and Manning 2017). The encoder takes the word embeddings of the original
text, and the decoder learns to predict the respective summary. The specific components
of the network are described in more detail below.

Embedding Layer: The embedding layer receives a word from the source text, maps
it to the embedding space (vector representation) and subsequently forwards it to the
next encoding layer. Word embeddings are formed from text-summary pairs during
training, prior to becoming available to the embedding layer.

Bidirectional LSTM Layer (Encoder): The second layer of the encoder consists of
bidirectional LSTM units (Graves, Jaitly, and Mohamed 2013; Lipton, Berkowitz, and
Elkan 2015), which are provided with the word embeddings of a sequence of tokens
of the source text X = (x1, x2, . . . , xn) (one word-vector for each time step) in forward

827

Computational Linguistics Volume 47, Number 4

Input text the team has ... </S>

Embedding layer x1 x2 x3 ... xn

Bidirectional
LSTM layer(s) LSTM LSTM LSTM ... LSTM

Attention layer
...

+

LSTM layer(s) LSTM LSTM LSTM ... LSTM

Softmax layer ...
y1 y2 y3 ym

Summary <S> the team ... won

C
Encoder
Decoder

...

Figure 3
The deep learning model.

and reverse order (hence the bidirectional structure), producing a hidden state He,t at
their output. This hidden state is actually the concatenation of the hidden state vectors
of both directions of the bidirectional LSTM.

Attention Layer: The last layer of the encoder consists of an attention mechanism
(Bahdanau, Cho, and Bengio 2014; See, Liu, and Manning 2017) that focuses on relevant
words of the input text, enhancing the accuracy of output predictions. This mechanism
computes the context vector ct, which is the weighted sum of the encoder hidden
states He,t.

LSTM Layer (Decoder): The first layer of the decoder is comprised of unidirectional
LSTM units. Their purpose is to predict the next word yt in the summary, based on their
hidden state Hd,t at time t, the context vector ct, and the previous hidden state Hd,t−1 of
the decoder. During training, the target sequence of word vectors Y = (y1, y2, . . . , ym)
is also made available to the decoder (one-by-one word embedding of a reference
summary, at each time step t) and the decoder learns to predict the next one, shaping
the final summary.

Softmax Layer: The last layer of the decoder is the softmax layer, which gener-
ates the probability distribution of the next word over the set of candidate words.
In particular, at each time step t, the softmax layer computes the probability of each
candidate word yi of the vocabulary Y for the predicted summary. Naturally, the sum of
probabilities over the set of candidate words is equal to one.

The deep learning model outlined above is trained end-to-end via supervised
learning on a corpus of text-summary pairs, using stochastic gradient descent and
minimizing the negative log-likelihood of the target word yt Equation (1):

Loss = −
T∑

t = 1

logP(yt|X) (1)

where here P(yt|X) is the likelihood of the target word at time step t (of a set of T time
steps which correspond to T words in the summary), given an input sequence of text X.

828

Kouris, Alexandridis, and Stafylopatis Abstractive Text Summarization

Additionally, and in order to avoid over-fitting, dropout is also used (Srivastava
et al. 2014; Zaremba, Sutskever, and Vinyals 2014; Watt and du Plessis 2018)—this
randomly drops connections of units from the neural network during training. Finally,
the prediction of an optimal summary is further assessed through beam search (Graves
2012; Boulanger-Lewandowski, Bengio, and Vincent 2013). More specifically, at each
time step of the beam search based decoder, the w candidate tokens of the highest log-
probability are kept, in order for the beam search algorithm to determine the best output
summary, where w is the beam-width parameter.

5.2.2 Pointer-Generator seq2seq Model. The pointer-generator (PG) network (See, Liu, and
Manning 2017) extends the attentive seq2seq model of Section 5.2.1, by allowing OOV
words to be copied from the source text to create the summary. This network generates
words by either sampling them from a fixed vocabulary (i.e., the vocabulary of the
training set) or from the words that appear in the source document. In other words, at
each timestep, the network samples a word either from the vocabulary distribution of
the training set or from the attention distribution. Therefore, the vocabulary is extended
to include the OOV words of the source text for every document. It should be noted
that the context vector of the attention mechanism is computed in a similar manner to
the model of Section 5.2.1. Additionally, the PG seq2seq model incorporates a coverage
mechanism that overcomes the problem of word repetition.

5.2.3 Reinforcement-Learning Model. In contrast to the models of sections 5.2.1 and 5.2.2
that minimize a maximum-likelihood loss, which is not used as an evaluation measure
in TS, a reinforcement learning (RL) approach learns a policy that maximizes a particu-
lar metric, such as the ROUGE-L score. The utilized model extends a seq2seq point-
generator network, by following the approach of Paulus, Xiong, and Socher (2018),
incorporating the self-critical sequence training algorithm of Rennie et al. (2017). In
particular, an encoder-decoder architecture (e.g., the PG model described above) is
used as an agent, which learns to interact with a given environment, maximizing a
reward. In our implementation, the reward function of the RL objective compares the
target sequence with the respective ground truth sequence, in terms of the ROUGE-L
metric. Additionally, the model incorporates pointer generation for dealing with the
OOV words (e.g., words that remain OOV after the process of text generalization) and
a coverage mechanism for avoiding the repetition problem.

5.2.4 Transformer-Based Models. Because transformer-based models (Vaswani et al. 2017;
Zhang, Xu, and Wang 2019; You et al. 2019; Liu and Lapata 2019; Pilault et al. 2020;
Xu et al. 2020) are the dominant approach in natural language understanding processes
(Wolf et al. 2020), we have combined the proposed methodology with such architectures
in an effort to investigate the effect of the present framework in transformer-based
language models. In this direction, we follow the methodology of Liu and Lapata
(2019) for abstractive text summarization, using two transformer-based approaches; (i) a
transformer (TR) network and (ii) a pretrained encoder transformer (PETR) model. The
TR model is a basic transformer language approach that uses self-attention layers in an
encoder-decoder architecture, as presented by Vaswani et al. (2017). The second model
uses a pretrained BERT (Bidirectional Encoder Representations from Transformers)
(Devlin et al. 2018) encoder with a transformer decoder, as described in Liu and Lapata
(2019). The first model is trained from scratch, while the second model’s weights are
fine-tuned on the training sets of the employed data sets.

829

Computational Linguistics Volume 47, Number 4

6. Post Processing

As has already been discussed (Sections 3 and 5), the machine learning methodology
is applied on a generalized version of the input text and consequently the predicted
summaries are also in a generalized form. This means that they contain general concepts
such as hypernyms or named entities of the original terms. Therefore, a post-processing
phase is necessary in order to replace the generalized concepts of the predicted sum-
mary with specific ones, shaping, in this way, the final summary in human-readable
form. Algorithm 3 below performs this task, as it transforms a generalized summary to
the final one, matching and replacing the general concepts of the predicted summary
with the respective, specific, concepts of the original text.

Algorithm 3 Transforming the predicted summary (predSum) to its final, human-
readable version
Require: predSum, text, T

1: cr← {} . candidate replacements of generalized concepts
2: gc← {} . generalized concepts
3: for all tokens ∈ predSum do
4: if tokens is generalized then
5: gc← gc ∪ {tokens}
6: ws ←window text around tokens
7: for all tokent ∈ text do
8: wt ←window text around tokent
9: sim← Similarity between ws and wt (Algorithm 4 or 5)

10: cr← cr ∪ {(tokens, tokent, sim)}
11: end for
12: end if
13: end for
14: summary←matching the generalized concepts of predSum to specific ones (optimal

matching of Subsection 6.2.1 or greedy matching of Subsection 6.2.2)
15: return summary

The inputs to Algorithm 3 are the predicted summary predSum, the respective
original text, and a taxonomy of concepts T. In the beginning, the set of candidate
replacements of generalized concepts cr and the set of generalized concepts gc are
initialized to empty sets (lines 1–2). Then, each token of the summary (tokens) is accessed
(lines 3–13) and if it is in a generalized form (lines 4–12), then it is added to gc and
the window of text around the tokens is assigned to ws (lines 5–6). Subsequently, each
token of the original text (tokent) is accessed (lines 7–11), the text window around a
tokent is assigned to wt (line 8), and the similarity sim between ws and wt is estimated,
according to either Algorithm 4 or 5 (line 9), with the tuple of (tokens, tokent, sim) being
added to cr. Finally, and prior to returning the human-readable summary (line 15),
Algorithm 3 matches the generalized concepts in perdSum to specific ones, using
optimal concept matching (Section 6.2.1) or the greedy approach of Algorithm 7
(Section 6.2.2).

Identifying Generalized Concepts. At line 4 of Algorithm 3, it is determined
whether a token of the input summary is generalized or not, by identifying those
concepts that carry a relative identifier. For example, in NEG, the generalized words
are named entities (of the form PERSON, LOC, ORG, etc.), whereas in LG-based

830

Kouris, Alexandridis, and Stafylopatis Abstractive Text Summarization

approaches, they have been changed to the respective WSD identifier (e.g., tree.n.01,
bank.n.02). Additionally, in cases of combined approaches like NEG-LG, the generalized
concepts are identified accordingly.

6.1 Text Similarity

Text similarity between excerpts of the generalized summary and the original text
(line 9, Algorithm 4) is an integral part of the post-processing phase, because it deter-
mines which specific concept fits best to a general one. For this task, Algorithms 4 and
5 are proposed for LG-based models (LG or W-LG) and NEG, respectively.

Algorithm 4 Text similarity based on LG
Require: tokens, tokent, tokeng, ws, wt, T, a1, a2, a3

1: hyponyms← hyponyms of tokens
2: hypernyms← hypernyms of tokens
3: sim← similarity ((tokens, ws), (tokent, wt))
4: if tokens ≡ tokeng then
5: sim = a1 · sim
6: else if tokent ∈ hyponyms then
7: sim = a2 · sim
8: else if tokeng ∈ hypernyms then
9: sim = a3 · sim

10: end if
11: return sim

LG-Based Similarity. Algorithm 4 estimates the similarity between concepts for
LG-based models (LG or W-LG). Its input includes a token of the generalized summary
(tokens), a token of the generalized text (tokeng), a text window for the generalized
summary (ws), a text window for the original text (wt), a taxonomy of concepts T,
and three hyperparameters a1, a2, a3, which regulate the significance of the similarity
between ws and wt and whose optimal values are determined experimentally. Initially,
the taxonomy paths of hyponyms and hypernyms of tokens are retrieved (lines 1–2).
Then, the similarity between tokens and tokeng is computed and stored in sim (line 3),
for text windows of sizes ws and wt, respectively, according to the selected similarity
function (e.g. cosine similarity or word-mover-distance-based similarity). In case tokens
is equal to the tokeng (line 4), that is, when the generalized token of genSum is equal to
the token of the generalized text, sim is further amplified by a factor a1; otherwise, if
tokeng is in the hyponym or hypernym path of tokens, sim is enhanced by coefficients a2
or a3, respectively (lines 6–10). Finally, the algorithm returns the similarity sim between
the two text excerpts (line 11).

NEG-Based Similarity. Algorithm 5 estimates text similarity for NEG. Its input is
a token (tokens) and a window (ws) of the generalized summary, a token (tokent) and a
window (wt) of the original text, a token of the generalized text (tokeng), a taxonomy
of concepts T, and hyperparameter b. In the beginning, the similarity between text
windows ws, wt of tokens, tokena is computed (line 1) according to the utilized similarity
function (which can be any of those discussed in the previous case). If tokens is equal
to the token of the generalized article tokeng, the initial similarity is multiplied by
b (line 3). Finally, the algorithm returns the similarity sim between the two excerpts
(line 5).

831

Computational Linguistics Volume 47, Number 4

Algorithm 5 Text similarity based on NEG
Require: tokens, tokent, tokeng, ws, wt, T, b

1: sim← similarity ((tokens, ws), (tokent, wt))
2: if tokens ≡ tokeng then
3: sim = b · sim
4: end if
5: return sim

Similarity in W-NEG, NEG-LG, and W-NEG-LG. In these cases, the final sum-
mary is produced after applying Algorithm 3 twice; firstly, the generalized summary
is transformed into a mid-summary using Algorithm 4 at the similarity step. Then,
the produced mid-summary is once again provided as input to Algorithm 3, using
Algorithm 5 as the similarity function this time, in order to produce the final summary.

6.2 Concept Matching

Algorithm 3 also requires a procedure to replace the generalized concepts of the pre-
dicted summary with specific ones, in order to produce the final summary in human-
readable form (line 14). This task is formulated in a graph-theoretical context, as a
bipartite matching problem among general concepts (first set of nodes) and their specific
counterparts (second set of nodes). To this end, two techniques are described below; the
optimal (Section 6.2.1) and the greedy (Section 6.2.2).

6.2.1 Optimal Concept Matching. This approach reduces optimal bipartite matching to
a minimum cost flow problem (Hansen and Klopfer 2006; Dasgupta, Papadimitriou,
and Vazirani 2008; Brunsch et al. 2013). More specifically, the minimum cost flow graph
G (as, for example, in Figure 4) consists of a source node Src, the set of nodes of the
general concepts NG (i.e., concepts of the generalized summary), the set of nodes of the
candidate concepts NC (i.e., concepts which are included in the original document), and
a terminal node Trm. Also, the nodes are connected with edges carrying the information

S

cg1

cg2

cc1

cc2

cc3

T

1, 1, 0

1, 1, 0

0, 1, 0.8

0, 1, 0.2

0, 1, 0.7

0, 1, 0.4

0, 1, 0.1

0, 1, 0.6

0, 1, 0

0, 1, 0

0, 1, 0

2, 2, 0

Figure 4
A simple example of a minimum cost flow graph for optimal matching among general concepts
cgi and candidate concepts ccj, with edges carrying minf , maxf , and cost.

832

Kouris, Alexandridis, and Stafylopatis Abstractive Text Summarization

of a minimum (minf) and a maximum (maxf) flow, along with a flow costi,j value, given
in Equation (2):

costij =

{
M− similarity(i, j), i ∈ NG and j ∈ NC

0, i = Src or j = Trm
(2)

where M denotes the maximum similarity score and similarity(i, j) is the similarity
between a text-window around the general concept of node i ∈ NG (i.e., text-window
of the generalized summary) and a text-window around the candidate concept of node
j ∈ NC (i.e., text-window of the original text).

The constraints minf , maxf between nodes i, j are expressed in the form of a tuple
Equation (3). The flow among Src and NG is equal to 1, as all the generalized concepts
need to be matched with candidate ones. Additionally, the flow among nodes in NG
and nodes in NC and, in turn, the flow among nodes in NC and Trm is equal to 0 or 1, in
order to express the restriction that each general concept can be matched with only one
candidate concept. Finally, the flow from Src to Trm is equal to the number of general
concepts |NG| that need to be matched with candidate ones in NC.

(minfij , maxfij) =

(1, 1), i = Src, j ∈ NG

(0, 1), i ∈ NG, j ∈ NC

(0, 1), i ∈ NC, j = Trm
(|NG|, |NG|), i = Src, j = Trm

(3)

In the general case, the minimum cost flow problem may be re-formulated in terms
of integer linear programming (Bertsekas 1998), as expressed in Equation (4), where
V = NC ∪NG ∪ {Src, Trc} is the overall set of nodes.

minimize:
∑

i,j∈V, i 6=j

costij · fij

subject to: minfij ≤ fij ≤ maxfij ,∀i, j ∈ V, i 6= j∑
j∈V, i 6=j

fij = 0, ∀i ∈ V

fij ∈ Z≥0

(4)

Optimal concept matching is further illustrated in Algorithm 6 and Example 8.
Algorithm 6 describes the procedure of performing the optimal concept match-

ing among the generalized concepts cg of the predicted summary and the candidate
concepts cc of the original text. The input to the algorithm is a generalized summary
genSum and a set of candidate replacements cr, which contains tuples of a general
concept, a candidate concept, and their similarity. First, the flow graph is created
(line 1) and the minimum cost flow in the graph is determined (line 2; e.g., by lin-
ear programming). Then, edges with flow fij > 0 correspond to concepts that match
(line 3), and the tuples of these concepts are assigned to the set of replacements (line 4).
Then, summary is initialized to the generalized summary (line 5) and for each tuple in

833

Computational Linguistics Volume 47, Number 4

Algorithm 6 Optimal concept matching
Require: genSum, cr

1: The flow graph is created according to cr
2: The minimum cost flow problem is solved
3: The edges with flow fij > 0 correspond to concept that matches
4: replacements← tuples of concepts that matches
5: summary← genSum
6: for all (cgi, ccj) ∈ replacements do
7: summary← replace cgi with ccj
8: end for
9: return summary

the replacements set, the generalized concepts of the summary are replaced with candidate
ones (lines 6–8). In the end, the algorithm returns the final summary (line 9).

Example 8 (Optimal Concept Matching)

Let us assume that a predicted summary includes general concepts that need to be
matched with specific ones in the original text. In the post-processing phase, after
measuring the similarity among concepts, the set of candidate replacements cr of Al-
gorithm 3 is as follows

cr = {(cg1, cc1, 0.2), (cg1, cc2, 0.8), (cg1, cc3, 0.3),

(cg2, cc1, 0.6), (cg2, cc2, 0.9), (cg2, cc3, 0.4), }

where two generalized concepts cgi ∈ NG, i = {1, 2} and three candidate concepts ccj ∈
NC, j = {1, 2, 3} exist. Figure 4 depicts the corresponding flow graph, where the edges
carry the constraints of minimum/maximum flow and the cost (minf , maxf , and cost).
The similarity score is assumed to take values in [0, 1] and it is transformed into cost,
according to Equation (2), with M = 1.

The optimal matching in this case is that of the pairs of concepts cg1 − cc2 and
cg2 − cc1, which minimize the flow cost, obtaining a minimum cost of 0.6 (i.e., 0.2 + 0.4).
Therefore, concepts cg1, cg2 of the generalized summary will be replaced by cc2, cc1,
respectively.

6.2.2 Greedy Concept Matching. The optimal concept matching approach discussed above
exhibits high computational complexity (Hansen and Klopfer 2006; Kovács 2015) and
requires an efficient linear programming solver. For this reason, a greedy algorithm is
also proposed, which has lower computational complexity. Algorithm 7, which matches
the generalized concepts of the predicted summary to the candidate concepts of the
original text, requires a generalized summary genSum, a list of candidate replacements
cr, and a list of generalized concepts gc. Initially, cr, is sorted in descending order
according to similarity sim (line 1) and the generalized summary genSum is assigned to
the final summary (line 2). Then, the tuples of cr (line 3), which contain a generalized
word (tokens) of the general summary, a word (tokent) of the original text and their
similarity score sim, are examined in descending (similarity) order (lines 3–11). If tokens
belongs to gc (line 4), it is replaced in the summary by tokent (line 5) and is subsequently

834

Kouris, Alexandridis, and Stafylopatis Abstractive Text Summarization

removed from gc (line 6). Once all generalized concepts in gc have been replaced by
specific ones, or all candidate replacements in cr have been examined, the algorithm
terminates, returning the final summary (line 12).

Algorithm 7 Greedy concept matching
Require: genSum, cr, gc

1: sort cr in descending order of sim
2: summary← genSum
3: for all (tokens, tokent, sim) ∈ cr do
4: if tokens ∈ gc then
5: summary← replace tokens with tokent
6: gc← gc \ tokens
7: end if
8: if gc ≡ {} then
9: break for-loop

10: end if
11: end for
12: return summary

Example 9 (Greedy Concept Matching)
Given the same set of candidate replacements cr of Example 8, the greedy algorithm,
after sorting the tuples cr in descending order according to their similarity sore, matches
the pairs of concepts as follows: cg2 − cc2 and cg1 − cc3, as the first pair has a higher
similarity score than the second.

From Examples 8 and 9 presented above, it is evident the greedy matching might be
different from the optimal, as the former is based on an approximate algorithm. Despite
their differences, both approaches exhibit similar performance because their efficiency
is primarily dependent on the chosen similarity function, as it is going to be analyzed
in the forthcoming sections.

6.3 Computational Complexity

The computational complexity of Algorithm 3 is greatly influenced by the concept
matching step on line 14. If optimal concept matching is used (Section 6.2.1), which
is expressed in terms of integer linear programming, then it becomes a NP-complete
problem [Matousek and Gärtner 2007]. Nevertheless, in the examined setting, where
the number of generalized and candidate concepts are limited, it is feasible to find an
optimal solution in reasonable time.

Instead of using optimal concept matching, the greedy solution (Algorithm 7, which
is further described in Section 6.2.2) constitutes a viable alternative. In particular, as-
suming that the number of elements of the set of candidate replacements cr is equal to n
(i.e., n = |cr|), the computational complexity, in the worst case, of sorting cr is O(n log n)
(e.g., using heap sort) [Mishra and Garg 2008] and the complexity of the for-loop (lines
3–11) is linear (O(n)). Therefore, the overall computational complexity of Algorithm 7 is
O(n log n).

Having defined the computational complexity of both concept matching methods
(optimal and greedy), we may proceed in determining the complexity of the overall
post-processing task (Algorithm 3). The nested for-loop of lines 7–11 has an O(n2)

835

Computational Linguistics Volume 47, Number 4

complexity, when all n input tokens of the predicted summary are examined. Regarding
the concept matching step on line 14, if the optimal solution is used, then Algorithm 3
becomes NP-complete. Otherwise, if the greedy approach is chosen, Algorithm 3 runs
in O(n2) time. In practice, the impact of the post-processing task on system performance
becomes apparent only in cases of too many instances.

7. Experiments

The experiments presented in this section aim at investigating various aspects of the
proposed methodology and at evaluating the overall framework, following experimen-
tal procedures that have been extensively adopted in similar works (Rush, Chopra, and
Weston 2015; Nallapati et al. 2016; Chopra, Auli, and Rush 2016; See, Liu, and Manning
2017; Gao et al. 2020). Section 7.1 provides an overview of the used data sets, Section 7.2
contains a brief description of the evaluation metrics, Section 7.3 discusses the exper-
imental procedure and hyperparameter tuning, and finally Section 7.4 examines the
performance of other approaches in the literature, both baseline and state-of-the-art, on
the same data sets.

7.1 Data Sets

The proposed framework has been evaluated on three popular summarization data sets;
the annotated Gigaword (Napoles, Gormley, and Van Durme 2012), the DUC 2004 (Over,
Dang, and Harman 2007), and the CNN/DailyMail (Hermann et al. 2015). The specific
version of the Gigaword data set used is that of Rush, Chopra, and Weston (2015), which
has been widely adopted in the relevant literature (Joshi, Fernández, and Alegre 2018);
it contains about 3.8 million article-summary pairs and a total of 123 million tokens,
which form a vocabulary of 119 distinct tokens. The average length of an article is 31.4
tokens and the average length of a summary is 8.3 tokens. Out of the whole data set,
2,000 pairs have been randomly sampled to form the test set and another 2,000 have
been similarly selected for the creation of the validation set; a common practice when
this data set is used in the experiments (Rush, Chopra, and Weston 2015; Nallapati et al.
2016; See, Liu, and Manning 2017).

The second data set, DUC 2004, contains 500 news articles along with four human-
generated reference summaries for each of them. It has also been pre-processed, retain-
ing only the first sentence of the articles and reducing the summaries to a maximum
length of 75 characters, as in Rush, Chopra, and Weston (2015), Chopra, Auli, and Rush
(2016), and Gao et al. (2020). Because DUC contains very few instances for training a deep
learning model, it is solely used for evaluation purposes (Gao et al. 2020; Chopra, Auli,
and Rush 2016).

The last data set, CNN/DailyMail, is also widely used in document-level abstrac-
tive TS and it is composed of articles/stories and their multi-sentence summaries. A
non-anonymized version has been obtained, after following the preprocessing steps
proposed by the data set creators (Nallapati et al. 2016). After preprocessing, the data
set contains 287,227 training article-summary pairs, 11,490 testing instances, and 13,368
validation samples. The articles have been limited to 400 tokens and the summaries to
100 tokens, following the typical procedure when this data set is used in deep learning
models (See, Liu, and Manning 2017; Shi et al. 2018; Cohan et al. 2018). After limiting
the source and target text, the average input and output lengths are 386.42 and 61.08
tokens, respectively.

836

Kouris, Alexandridis, and Stafylopatis Abstractive Text Summarization

Table 1
Distribution of nouns and verbs in data sets.

Nouns Verbs

Gigaword (train set) 46,989,593 69.77% 20,362,923 30.23%
Gigaword (test set) 24,936 69.70% 10,840 30.30%
Gigaword (validation set) 24,883 70.23% 10,548 29.77%
DUC 2004 11,023 65.57% 5,787 34.43%
CNN/DailyMail (train set) 29,165,327 59.73% 19,665,826 40.27%
CNN/DailyMail (test set) 960,193 62.39% 578,803 37.61%
CNN/DailyMail (validation set) 1,121,401 62.54% 671,765 37.46%

Table 1 presents the noun and verb distributions on data sets, according to the
utilized part-of-speech (POS) tagging process, because the proposed framework gen-
eralizes these specific lexical categories. It is evident that the majority of the detected
POS are nouns.

Finally, it should be noted that, unlike our earlier work (Kouris, Alexandridis, and
Stafylopatis 2019) described in Section 2, which further pre-processed the data sets in
an effort to improve system performance (by removing duplicate entries, punctuation,
too-long summaries, etc.), the present work retains the form of data sets as they are used
by the competitive approaches (Tables 3 and 4). Therefore, a direct comparison among
the experimental results of this framework and of other approaches is possible.

7.2 Evaluation Metrics

The evaluation of the proposed framework is based on the official ROUGE package (Lin
2004) and, more specifically, on the average score of ROUGE-1 (word overlap), ROUGE-2
(bigram overlap), and ROUGE-L (longest common sequence - LCS). In particular, the
F-1 score of all three ROUGE metrics is calculated on the Gigaword and CNN/DailyMail

data set, whereas in the case of DUC 2004, the Recall of the same metrics is reported, as
is the practice in evaluating those data sets in literature (Nallapati et al. 2016; Chopra,
Auli, and Rush 2016; Gao et al. 2020).

Additionally, to evaluate the factual consistency (Kryściński et al. 2019; Goodrich
et al. 2019) of generated text, we follow the approach of Goodrich et al. (2019). In
particular, facts, represented as (subset, relation, object) triplets, are retrieved from text.
The factual accuracy factacc is defined as the precision between the retrieved facts from
the generated summary and those of the source text Equation (5):

factacc =
|Ft ∩ Fg|
|Fg|

(5)

where Ft is a set of facts from the source text and Fg is a set of facts of generated text. The
fact triplets have been retrieved according to the open information extraction (OpenIE)
approach (Angeli, Premkumar, and Manning 2015; Goodrich et al. 2019). Factual consis-
tency is assessed by determining the extend to which facts of the generated summaries
cover the facts of the source text.

837

Computational Linguistics Volume 47, Number 4

Table 2
NER tags used in NEG-based strategies.

PERSON (people) LAW (Named documents made into law)
NORP (nationalities, religious, groups, etc.) LANGUAGE (named languages)
FAC (facilities, buildings, airports, etc.) DATE (dates or periods)
ORG (organizations, companies, etc.) TIME (times smaller than a day)
GPE (countries, cities, states) PERCENT (percentage)
LOC (non GPE locations) MONEY (monetary values, including unit)
PRODUCT (objects, vehicles, foods, etc.) QUANTITY (weight, distance, etc.)
EVENT (named hurricanes, sport events, etc.) ORDINAL (first, second, etc.)
WORK OF ART (books, films, etc.) CARDINAL (numerals, none of other types)

7.3 Experimental Procedure and Parameter Tuning

Data Pre-processing. The generalization methodology of Section 4.2 is applied to the
training data, in order to examine its effect on the proposed methodology. In particular,
the LG, NEG, and NEG-LG strategies are considered (Section 4.3), along with their
WSD-based versions (W-LG, W-NEG, and W-NEG-LG). For each of these strategies,
thresholds θf ,θd are set to various levels, in order to study their influence on the
obtained results. Finally, the taxonomy of concepts used is that of WordNet (Miller 1995;
Fellbaum 1998).

Content generalization is applied to (i) nouns and (ii) both nouns and verbs using
POS tagging.1 Additionally, NER2 is invoked by the NEG-based strategies. Table 2 out-
lines the entity types of the NER task, which uses a pretrained model on the OntoNotes

5.0 data set (Weischedel et al. 2013). Natural language processing on the POS and NER
tags is based on modern algorithms of proven performance (Honnibal and Johnson
2015; Choi, Tetreault, and Stent 2015; Andor et al. 2016). Additionally, the knowledge-
based WSD used is in line with the utilized taxonomy of concepts (WordNet). The
WSD identifiers specify the sense of its synsets (e.g., play.n.01), using the adaptive Lesk
algorithm (Banerjee and Pedersen 2002, 2003).

As a result of the process described above, several versions of text-summary pairs
are created, to be used in training and evaluation. The particular generalization schemes
and the performance of the corresponding models are further discussed in Section 7.

Word Embeddings. The word2vec vector-based representation is used to obtain
word embeddings of dimensionality 300. More specifically, a word2vec model of con-
tinuous bag-of-words architecture (Mikolov et al. 2013) is trained for each version of the
training data. The window size has been set to 5 and each model has been trained for
10 epochs with a decaying learning rate from 0.025 to 0.001.

Training the Attentive seq2seq Model. For the different versions of the training
data, an equal number of deep learning models has been trained (Section 5.2), with their
parameters having been optimized on the validation set of Gigaword. The bidirectional
LSTM layer of the encoder consists of two layers of equal size each (200), which is also
the size of the LSTM layer of the decoder. The batch size is set to 64 for the Gigaword

and 32 for the CNN/DailyMail data sets, while the training data for each epoch are

1 Spacy POS tagger implementation: https://spacy.io/usage/linguistic-features#pos-tagging.
2 Spacy NER implementation: https://spacy.io/usage/linguistic-features#namedentities.

838

https://spacy.io/usage/linguistic-features#pos-tagging
https://spacy.io/usage/linguistic-features#named entities

Kouris, Alexandridis, and Stafylopatis Abstractive Text Summarization

randomly shuffled. The learning rate is initially set to 0.002, decaying by a factor of 25%
on each training epoch. Additionally, the Adam optimization method (Kingma and Ba
2014) is used, with gradient norm clipping (Pascanu, Mikolov, and Bengio 2013) and
negative conditional log-likelihood as the loss function (Golik, Doetsch, and Ney 2013).
Finally, dropout with p = 0.2 is also used. In the case of the CNN/DailyMail data sets, the
vocabulary is limited to 150,000 words (i.e., using the most frequent tokens of training
set) while the Gigaword data set is used without limitations. Model training took place
on NVidia K40 GPUs and the models converged sufficiently after 15 epochs.

Training the PG Model. The differences between the PG model (presented in
Section 5.2.2) and the attentive seq2seq model described above is that the encoder
consists of two layers of bidirectional LSTMs of 256 dimensions, while the decoder uses
one LSTM of dimensionality 512.

Training the RL Model (Section 5.2.3). The learning rate is fixed to 10−4 and the
batch size is equal to 32 and 16 for the Gigaword and CNN/DailyMail data sets, re-
spectively. The dimensionality of the LSTM layer is similar to the PG model mentioned
above. For the rest of the training parameters, the same assumptions with the above-
described architectures are made.

Training the TR Model (Section 5.2.4). The encoder and decoder consist of a
stack of 6 layers each. The model dimensionality is equal to 512 and the inner-layer
dimensionality has been set to 2,048. We assume 8 heads (i.e., 8 parallel attention layers,
which reduces the model dimensionality of each attention layer to 512/8 = 64). The
Adam optimizer is used with parameters β1 = 0.9 and β2 = 0.99. The learning rate is
adjusted during training according to Equation (6) (i.e., increasing the learning rate for
the first warmupSteps training steps and then decreasing it), where warmupSteps = 5,000
and a = 0.05.

lr = a ·min{step−0.5, step · warmupSteps−1.5} (6)

Dropout is applied with probability p = 0.1 and batch size is set to 64 and 16 for the
Gigaword and CNN/DailyMail data sets, respectively.

Training the PETR Model (Section 5.2.4). The difference between the TR and PETR
models is that the latter uses a pretrained BERT encoder and a transformer decoder of
6 layers, which are initialized randomly. Moreover, for a stable fine-tuning, two Adam
optimizers are used, separately for the encoder and the decoder. Each optimizer (with
parameters β1 = 0.9 and β2 = 0.99) assumes different learning rates according to Equa-
tion (6), where aenc = 10−3, adec = 0.1, warmupStepsenc = 10,000, and warmupStepsdec =
5, 000. The different learning rates aim at a stable model hyperparameter tuning, where
the pretrained encoder will be fine-tuned with a smaller learning rate and smoother de-
cay compared to the decoder (i.e., avoiding encoder/decoder overfitting/underfitting)
(Liu and Lapata 2019).

Generating System Summaries. Beam search of size 4 has been used at evaluation,
to optimize the output summary.

Post-processing. Post-processing has been extensively described in Section 6. For
the Gigaword data set, the optimal value of coefficients a1, a2, and a3 of Algorithm 4
have been determined to be 2.0, 1.5, and 1.5, respectively, after thorough experimen-
tation, while coefficient b of Algorithm 5 has been similarly set to 2.0. Additionally, a
range of text similarity metrics for Algorithms 4 and 5 has been considered, like cosine
similarity (CS), Jaccard coefficient (JC), word mover distance (WMD) (Kusner et al. 2015),
and the Levenshtein edit distance (LED) (Yujian and Bo 2007). WMD, which utilizes word
embeddings, taking into account syntactic and semantic aspects of the text, obtained

839

Computational Linguistics Volume 47, Number 4

Figure 5
ROUGE-L F1 scores for the various text similarity metrics (WMD, LED, CS, JC) considered in the
post-processing phase for concept matching.

the best results (after converting the distance to similarity). In particular, the optimal
performance has been achieved when the context windows around the candidate and
the generalized concepts were set to 10 and 6, respectively. More specifically, the optimal
values of the post-processing parameters have been determined through exhaustive
grid search (maximizing the ROUGE-L F1 score) on the Gigaword validation set. The
same hyperparameter values have been retained in DUC and CNN/DailyMail data sets.
Figure 5 illustrates the ROUGE-L F1 scores for the aforementioned text similarity met-
rics on the LG and NEG strategies; WMD tends to outperform the other approaches, es-
pecially in the DUC data set. Finally, both approaches, optimal and greedy (sections 6.2.1
and 6.2.2), have been used for concept matching, exhibiting almost the same perfor-
mance in terms of the ROUGE scores. For this reason, the optimal concept matching
technique has been selected in the final experiments, in an effort to validate whether the
reported ROUGE scores are the maximum to be obtained. Additionally, to indicate the
differences between the greedy and optimal concept matching methods, the results of
the greedy matching algorithm are reported in Section 8.1.

7.4 Baseline Approaches

The baseline approach is composed of the proposed deep learning models (Section 5.2),
with the optimized hyperparameter values presented in the previous subsection, but
without applying any generalization strategy or post-processing task on the training
data. Additionally, Tables 3 and 4 summarize the performance of other, state-of-the-art,
approaches on the same data sets, as reported by their respective authors (dashes in
Table 3 indicate that they did not consider the specific data set and/or metric in their
experiments). Because the authors of the other approaches have obtained evaluation
and test sets of the same size as ours and with the same methodology (random sampling
with replacement) on the Gigaword and CNN/DailyMail data set and have also used the
DUC 2004 data set for evaluation purposes only, the performance results are directly
comparable. An extra metric reported for some models on the Gigaword data set (5th

840

Kouris, Alexandridis, and Stafylopatis Abstractive Text Summarization

Table 3
ROUGE and NTR scores on Gigaword and DUC 2004 data sets of other, state-of-the-art
approaches.

Approach Gigaword DUC 2004
ROUGE-1 ROUGE-2 ROUGE-L NTR % ROUGE-1 ROUGE-2 ROUGE-L

ABS+ (Rush, Chopra, and Weston 2015) 31.00 12.65 28.34 8.50 28.18 8.49 23.81
RAS-Elman (Chopra, Auli, and Rush 2016) 33.78 15.97 31.15 – 28.97 8.26 24.06
Words-lvt2k-1sent (Nallapati et al. 2016) 34.97 17.17 32.70 24.15 28.35 9.46 24.59
Words-lvt5k-1sent (Nallapati et al. 2016) 35.30 16.64 32.62 – 28.61 9.42 25.24
Model #8 (Nallapati, Xiang, and Zhou 2016) 35.30 17.58 32.88 22.89 – – –
+CGU (Lin et al. 2018) 36.30 18.00 33.80 – – – –
GLEAM (Gao et al. 2020) 36.51 16.80 33.92 – 29.51 9.78 25.60
Beam+BPNorm (Song et al. 2020) 39.19 20.38 36.69 – – – –
Prophnet (Yan et al. 2020) 39.55 20.27 36.57 – – – –
SAGCopy-Indegree-1 (Xu et al. 2020) 38.84 20.39 36.27 – – – –

Table 4
ROUGE scores on CNN/DailyMail data set of other, state-of-the-art approaches.

Approach ROUGE-1 ROUGE-2 ROUGE-L

words-lvt2k-temp-att (Nallapati et al. 2016) 35.46 13.30 32.65
ML, with intra-attention (Paulus, Xiong, and Socher 2018) 38.30 14.81 35.49
RL, with intra-attention (Paulus, Xiong, and Socher 2018) 41.16 15.75 39.08
pointer-generator + coverage (See, Liu, and Manning 2017) 39.53 17.28 36.38
rnn-ext+abs+RL+rerank (Chen and Bansal 2018) 40.88 17.80 38.54
Bottom-Up Summarization (Gehrmann, Deng, and Rush 2018) 41.22 18.68 38.34
ROUGESal+Ent (Pasunuru and Bansal 2018) 40.43 18.00 37.10
SENECA (Sharma et al. 2019) 41.52 18.36 38.09
BertSumAbs (Liu and Lapata 2019) 41.72 19.39 38.76
ETADS (You et al. 2019) 41.75 19.01 38.89
Two-Stage+RL (Zhang, Xu, and Wang 2019) 41.71 19.49 38.79
ProphetNet (Yan et al. 2020) 43.68 20.64 40.72
SAGCopy-Outdegree (Xu et al. 2020) 42.53 19.92 39.44

column of Table 3) is that of New Tokens Rate (NTR), which is the percentage of tokens
appearing in the generated summary, but not included in the input text.

8. Results

Initially, the effect of the level of generalization on the performance of TS is investi-
gated. Figure 6 depicts ROUGE-1, ROUGE-2, and ROUGE-L scores on the Gigaword

(Figures 6a, 6d, 6g), DUC 2004 (Figures 6b, 6e, 6h), and CNN/DailyMail (Figures 6c, 6f,
6i) data sets and for various levels of generalization, as controlled by threshold θd of the
LG strategy (θd = {3, 4, 5, 6, 7}). The word frequency threshold of candidate concepts
for generalization has been kept constant at θf = 100. Because the efficiency (in terms of
ROUGE score) is maximized for θd = 5 for two of three data sets, it is fixed to this value
for the rest of the experiments.

Table 5 illustrates the ROUGE scores on data sets for LG, NEG, and NEG-LG
and for varying thresholds of minimum word frequency for generalization (θf =
{100, 200, 500, 1,000}). The last row of this table outlines the performance of the baseline
model (Section 7.4). In this set of experiments, noun generalization is assumed with the

841

Computational Linguistics Volume 47, Number 4

Figure 6
ROUGE scores on data sets for varying levels of generalization (θd) for the LG strategy
(θf = 100).

minimum taxonomy depth fixed to 5, as described above. Additionally, NTR percentage
is reported for the Gigaword data set. All examined models outperform the baseline and
the majority of them achieve higher ROUGE scores than the state-of-the-art approaches
(Table 3).

The statistical significance of the ROUGE scores, reported for the various strategies,
is assessed by Welch’s t-test (Sakai 2016). Using the ROUGE scores for each sample
of the test set (for every data set), the t-test is performed on each pair of models for
every ROUGE metric. The obtained significance values are reported in the captions of
Tables 5–10 and prove that the differences in ROUGE scores are statistically significant
in all of the examined cases.

Table 6 summarizes the same metrics for the WSD-based noun generalization for
varying θf . In particular, the utilized strategies are those of W-LG, W-NEG, and W-NEG-
LG, which apply LG, NEG, and NEG-LG on a disambiguated version of the original
text. Again, the last row of this table exhibits the performance of WSD-n, which is
assumed to be the baseline model in this case. WSD-n is based on a WSD version of

842

Kouris, Alexandridis, and Stafylopatis Abstractive Text Summarization

Table 5
ROUGE and NTR scores for: (i) LG, NEG, and NEG-LG strategies, (ii) varying θf (θd = 5), and
(iii) nouns only (pvalue < 0.012 for ROUGE-1, pvalue < 0.02 for ROUGE-2 and ROUGE-L).
Model θf Gigaword DUC 2004 CNN/DailyMail

R-1 R-2 R-L NTR % R-1 R-2 R-L R-1 R-2 R-L
LG-f100-d5-n 100 39.09 17.63 36.63 24.97 29.30 9.59 26.68 38.77 16.79 29.87
LG-f200-d5-n 200 38.23 17.29 35.94 26.36 29.02 10.06 26.75 38.36 16.24 29.62
LG-f500-d5-n 500 37.99 17.37 35.80 24.39 28.65 9.55 26.45 38.02 16.34 29.80
LG-f1000-d5-n 1,000 37.60 16.52 35.21 26.51 27.94 8.78 25.09 37.34 15.82 29.26
NEG-f100 100 37.64 16.80 35.26 24.50 27.73 8.86 25.24 37.38 15.77 28.84
NEG-f200 200 38.31 17.14 35.94 24.94 28.41 8.63 25.62 37.64 15.76 28.85
NEG-f500 500 38.56 17.56 36.15 24.97 29.27 9.87 26.61 37.89 16.00 29.09
NEG-f1000 1,000 37.74 17.04 35.48 24.69 27.90 8.82 24.95 37.91 15.86 28.89
NEG-LG-f100-d5-n 100 37.24 16.39 34.95 25.72 29.21 9.94 26.66 37.31 15.19 28.90
NEG-LG-f200-d5-n 200 37.33 16.26 34.92 26.75 29.38 9.27 26.46 37.51 14.91 28.84
NEG-LG-f500-d5-n 500 38.36 16.80 35.77 24.14 28.77 9.26 25.83 36.89 14.74 28.43
NEG-LG-f1000-d5-n 1,000 37.60 16.73 35.26 24.49 28.41 9.58 25.57 36.33 14.08 27.98
Baseline – 36.12 15.36 33.96 28.09 26.72 8.16 24.36 36.88 15.53 29.14

Table 6
ROUGE and NTR scores for: (i) W-LG, W-NEG, and W-NEG-LG strategies, (ii) varying θf
(θd = 5), and (iii) nouns only (pvalue < 0.01).
Model θf Gigaword DUC 2004 CNN/DailyMail

R-1 R-2 R-L NTR % R-1 R-2 R-L R-1 R-2 R-L
W-LG-f100-d5-n 100 37.00 15.21 34.30 18.77 28.35 8.66 25.78 37.69 15.69 29.15
W-LG-f200-d5-n 200 36.27 15.73 33.69 18.91 28.79 8.56 26.36 37.40 15.51 29.05
W-LG-f500-d5-n 500 36.09 15.45 33.90 17.67 27.99 9.42 25.59 37.23 15.27 29.04
W-LG-f1000-d5-n 1,000 35.53 14.23 32.97 18.71 27.28 8.12 24.52 37.19 15.02 28.75
W-NEG-f100 100 35.43 14.34 33.00 19.27 27.18 8.34 24.31 34.50 11.52 26.45
W-NEG-f200 200 34.71 13.89 32.19 19.38 27.75 8.12 24.84 34.39 11.34 26.38
W-NEG-f500 500 34.33 14.00 32.17 19.58 26.77 8.15 24.57 32.17 9.30 20.93
W-NEG-f1000 1,000 33.55 13.89 31.46 19.90 26.11 7.68 23.57 32.90 9.74 20.88
W-NEG-LG-f100-d5-n 100 35.10 14.21 32.63 19.89 27.89 8.15 25.50 34.37 11.40 26.47
W-NEG-LG-f200-d5-n 200 35.14 14.04 32.71 19.22 27.88 8.23 25.43 34.28 11.18 26.50
W-NEG-LG-f500-d5-n 500 34.54 13.63 32.37 19.65 27.15 8.51 24.40 33.75 11.03 26.43
W-NEG-LG-f1000-d5-n 1,000 33.74 13.51 31.66 20.17 26.65 7.85 24.27 33.56 10.79 25.90
WSD-n (Baseline) – 35.69 14.71 33.39 18.47 27.63 9.15 25.21 36.40 14.67 28.29

the original text, upon which the deep learning model is trained. During evaluation,
the WSD-n model generates summaries of a disambiguated version of the input text.
Even though no generalization strategy is applied to WSD-n, the WSD identifiers of the
generated summary still need to be converted to appropriate words. This is achieved
through LG-based post-processing (Section 6) that matches concepts of the original text
to the predicted concepts of the generated summary.

In general, WSD-based approaches achieve decreased ROUGE and NTR scores,
when compared with non-WSD based ones (Table 5). Additionally, W-NEG and W-
NEG-LG exhibit poorer performance when compared to the baseline (WSD-n), with
W-LG being an exception, as it performs better.

Table 7 displays the results for both noun and verb generalization for LG and NEG-
LG. NEG is not considered in this case, because it is only capable of generalizing nouns.
Nevertheless, the performance of the mixed NEG-LG model is presented, because
it consists of an LG module that is capable of generalizing both lexical categories.
Hyperparameters θd, θf are set as before (Tables 5 and 6) and the addition of verbs

843

Computational Linguistics Volume 47, Number 4

Table 7
ROUGE and NTR scores for: (i) LG, NEG, and NEG-LG strategies, (ii) varying θf (θd = 5), and
(iii) nouns and verbs (pvalue < 0.01).
Model θf Gigaword DUC 2004 CNN/DailyMail

R-1 R-2 R-L NTR % R-1 R-2 R-L R-1 R-2 R-L
LG-f100-d5-nv 100 39.18 17.41 36.62 24.05 29.17 8.87 26.34 38.66 16.74 30.00
LG-f200-d5-nv 200 39.32 17.71 36.73 25.02 29.07 9.41 26.61 38.56 16.61 29.90
LG-f500-d5-nv 500 38.81 17.32 36.31 24.70 28.46 8.20 26.71 37.91 16.05 29.51
LG-f1000-d5-nv 1,000 37.91 17.59 35.69 25.38 28.46 8.20 25.79 37.89 16.05 29.42
NEG-LG-f100-d5-nv 100 37.56 17.39 35.41 27.86 29.47 9.32 26.41 37.46 15.17 28.59
NEG-LG-f200-d5-nv 200 38.49 16.88 35.89 24.30 29.51 9.85 26.80 36.85 14.52 28.36
NEG-LG-f500-d5-nv 500 38.24 16.99 35.74 24.64 28.74 9.36 26.16 36.47 14.49 28.21
NEG-LG-f1000-d5-nv 1,000 37.43 16.33 34.97 26.14 28.67 9.5 25.94 35.99 13.97 27.85

Table 8
ROUGE and NTR scores for: (i) W-LG, W-NEG, and W-NEG-LG strategies, (ii) varying θf
(θd = 5), and (iii) nouns and verbs (pvalue < 0.01).
Model θf Gigaword DUC 2004 CNN/DailyMail

R-1 R-2 R-L NTR % R-1 R-2 R-L R-1 R-2 R-L
W-LG-f100-d5-nv 100 34.00 12.82 31.94 22.73 26.87 7.14 24.39 34.97 13.13 27.08
W-LG-f200-d5-nv 200 33.43 12.18 31.30 22.52 26.82 7.80 24.41 34.07 12.66 26.55
W-LG-f500-d5-nv 500 33.47 11.93 31.29 23.20 26.38 7.29 24.08 34.06 12.50 26.54
W-LG-f1000-d5-nv 1,000 33.06 12.06 30.90 23.67 26.29 7.51 23.78 33.83 12.60 26.43
W-NEG-LG-f100-d5-nv 100 31.73 11.90 29.71 23.26 25.22 7.37 22.87 31.46 9.36 24.60
W-NEG-LG-f200-d5-nv 200 32.21 11.50 30.14 23.43 25.44 7.65 23.40 31.44 9.20 24.59
W-NEG-LG-f500-d5-nv 500 32.59 11.66 30.41 23.60 25.66 6.64 23.45 30.77 8.88 23.94
W-NEG-LG-f1000-d5-nv 1,000 31.52 11.24 29.55 23.98 24.86 6.44 22.55 30.68 8.66 23.90
WSD-nv (baseline) – 33.18 12.28 31.02 22.84 25.75 6.93 23.48 33.41 12.01 26.24

as candidate concepts for generalization results in a further improvement, in terms of
the ROUGE scores.

Finally, Table 8 reports the performance of W-LG and W-NEG-LG for noun and verb
generalization. Similar assumptions to the previous cases regarding hyperparameters,
pre-processing, and post-processing are made in this case, as well. WSD-nv serves as the
baseline, in a similar fashion to WSD-n being the baseline on Table 6. Even though most
of the W-LG models outperform the baseline, overall, they exhibit poor performance,
when compared to the models appearing on the other result tables or the state-of-the-
art approaches.

8.1 Greedy Concept Matching ROUGE Scores

The results reported above have been obtained using optimal concept matching. Nev-
ertheless, the experiments have been repeated, using greedy concept matching the
second time, prior to concluding that they are essentially the same. In particular, in
the Gigaword and DUC data sets (TS of short documents) differences are reported in
the third decimal digit, while in the CNN/DailyMail data set (document level TS),
differences are reported in the second decimal digit. Consequently, we conclude that
in short TS, the optimal and greedy concept matching produce the same summaries
and therefore we do not report separate results for these two matching methods. In the
case of the CNN/Dailymail data set, to indicate the degree of differentiation between
the two methods, in Table 9, we report the ROUGE scores of LG and NEG strategies

844

Kouris, Alexandridis, and Stafylopatis Abstractive Text Summarization

Table 9
ROUGE scores of using greedy concept matching and the differences from the optimal matching
in CNN/DailyMail data set for: (i) LG and NEG strategies, (ii) varying θf (θd = 5), and (iii)
nouns (pvalue < 0.01).

Model ROUGE-1 ROUGE-2 ROUGE-L

LG-f100-d5-n 38.77 0.00 16.78 −0.01 29.87 0.00
LG-f200-d5-n 38.33 −0.03 16.24 0.00 29.60 −0.02
LG-f500-d5-n 37.93 −0.09 16.16 −0.18 29.69 −0.11
LG-f1000-d5-n 37.34 0.00 15.68 −0.14 29.21 −0.05

NEG-f100 37.38 0.00 15.67 −0.10 28.78 −0.06
NEG-f200 37.63 −0.01 15.71 −0.05 28.77 −0.08
NEG-f500 37.83 −0.06 15.91 −0.09 29.03 −0.06
NEG-f1000 37.84 −0.07 15.84 −0.02 28.81 −0.08

for greedy concept matching. Comparing them with the optimal one (Table 5), next to
each ROUGE score of Table 9, we provide its difference from the respective score of the
optimal solution.

8.2 Results on the PG, RL, TR, and PETR models

Table 10 illustrates the performance of the PG, RL, TR, and PETR models on the ROUGE
metrics for the LG strategy, for varying thresholds of minimum word frequency for
generalization (θf = {100, 200, 500, 1,000}). The last four rows report the performance
of the baseline models, where no generalization strategy has been applied (Section 7.4).
It is evident that our proposed framework outperforms the baselines and the respective
models of the attentive seq2seq network (Table 5). Finally, the combination of the LG
strategy with the PG, RL, TR, or PETR model achieves promising results, comparable to
the most recent competitive approaches of Tables 3 and 4, for the respective data sets.

8.3 Factual Accuracy Results

Because factual consistency is related to the field of automatic TS (Kryściński et al. 2019;
Zhang 2019; Goodrich et al. 2019), Table 11 summarizes the factual accuracy (Section 7.2)
of the LG, NEG, NEG-LG, W-LG, W-NEG, and W-NEG-LG generalization strategies. The
reported values represent the average factual accuracy of the instances of the test set
for each data set, for the attentive seq2seq model. Additionally, the same table outlines
the performance of the baseline (Section 7.4) and WSD-n models, which (the latter)
also constitutes a baseline for the WSD-based models, as it has also been mentioned
above. Moreover, the last row of this table reports the factual accuracy of the reference
summary, where, in the case of the DUC data set, the value corresponds to the average
factual accuracy of the four reference summaries that are provided for each instance.

In the same manner, Table 12 reports factual accuracy assuming noun and verb
generalization. The NEG models are also absent from this table because the NEG strat-
egy generalizes only noun entities, while here both noun and verb generalization is
required. Moreover, the table outlines the performance of the baseline (Section 7.4)
and WSD-nv models, which (the latter) also constitutes a baseline for the WSD-based
models.

845

Computational Linguistics Volume 47, Number 4

Table 10
ROUGE scores of pointer-generator (PG), reinforcement learning (RL), transformer (TR), and
pretrained encoder transformer (PETR) networks for: (i) LG strategy, (ii) varying θf (θd = 5), and
(iii) noun generalization (pvalue < 0.01).
Model Gigaword DUC 2004 CNN/DailyMail

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 R-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L
LG-f100-d5-n (PG) 40.94 19.65 38.52 29.66 10.49 27.09 43.04 20.65 30.93
LG-f200-d5-n (PG) 40.26 19.25 37.99 29.47 09.78 26.59 42.15 20.19 30.23
LG-f500-d5-n (PG) 40.23 19.42 37.90 28.83 09.53 25.94 41.89 19.30 30.23
LG-f1000-d5-n (PG) 39.85 19.02 37.78 28.51 10.34 25.86 41.18 18.79 29.22
LG-f100-d5-n (RL) 41.72 20.57 39.31 29.97 10.35 27.17 43.63 20.87 31.46
LG-f200-d5-n (RL) 41.57 20.37 39.18 29.84 10.36 26.45 43.33 20.60 31.45
LG-f500-d5-n (RL) 41.11 20.05 38.83 28.92 10.23 26.20 42.36 20.01 30.48
LG-f1000-d5-n (RL) 40.67 19.64 38.44 28.80 10.18 26.09 41.60 19.40 29.87
LG-f100-d5-n (TR) 41.35 20.09 38.89 29.87 10.45 27.11 43.33 20.78 34.16
LG-f200-d5-n (TR) 40.91 19.84 38.49 29.59 10.08 26.50 42.70 20.38 33.81
LG-f500-d5-n (TR) 40.71 19.70 38.36 28.91 10.02 26.14 42.16 19.65 33.44
LG-f1000-d5-n (TR) 40.28 19.43 38.10 28.59 10.27 26.01 41.38 19.42 32.57
LG-f100-d5-n (PETR) 42.12 20.76 39.50 29.91 10.34 27.32 43.93 21.07 35.96
LG-f200-d5-n (PETR) 41.86 20.42 39.21 29.93 10.31 26.55 43.64 20.58 34.72
LG-f500-d5-n (PETR) 41.32 20.25 38.77 29.12 10.20 26.39 42.52 20.31 33.75
LG-f1000-d5-n (PETR) 40.59 19.68 38.12 28.60 10.09 26.14 41.72 19.54 33.71
Baseline (PG) 39.33 18.31 37.10 27.45 09.72 25.60 41.40 19.26 29.56
Baseline (RL) 40.57 19.72 38.36 27.82 09.79 25.75 41.67 19.34 29.42
Baseline (TR) 40.18 18.96 37.26 27.43 09.75 25.65 41.08 18.12 33.37
Baseline (PETR) 40.95 19.78 38.61 27.91 09.85 26.05 41.79 19.38 35.62

Table 11
Factual accuracy for: (i) LG, NEG, NEG-LG, W-LG, W-NEG, and W-NEG-LG strategies, (ii)
varying θf = {100, 200, 500, 1,000}, θd = 5, and (iii) nouns.

Model Gigaword DUC CNN/DM Model Gigaword DUC CNN/DM
factacc % factacc %

LG-f100-d5-n 47.21 41.31 69.48 W-LG-f100-d5-n 49.82 38.48 68.55
LG-f200-d5-n 43.14 36.01 67.76 W-LG-f200-d5-n 45.35 39.61 64.94
LG-f500-d5-n 45.28 39.40 67.98 W-LG-f500-d5-n 45.83 45.07 66.95
LG-f1000-d5-n 42.20 40.30 62.24 W-LG-f1000-d5-n 44.87 42.68 62.87
NEG-f100-n 45.74 41.42 65.34 W-NEG-100-d5-n 47.18 36.64 35.55
NEG-f200-n 46.39 37.60 67.12 W-NEG-f200-n 43.24 38.31 37.28
NEG-f500-n 43.84 39.16 66.85 W-NEG-f500-n 42.94 41.25 54.02
NEG-f1000-n 44.96 40.56 70.70 W-NEG-f1000-n 43.02 37.05 54.42
NEG-LG-f100-d5-n 45.56 37.13 61.74 W-NEG-LG-f100-d5-n 45.93 39.70 37.22
NEG-LG-f200-d5-n 45.66 40.83 61.73 W-NEG-LG-f200-d5-n 45.15 37.03 27.84
NEG-LG-f500-d5-n 45.83 37.20 63.80 W-NEG-LG-f500-d5-n 45.32 35.79 25.47
NEG-LG-f1000-d5-n 46.42 41.83 59.36 W-NEG-LG-f1000-d5-n 46.95 43.61 34.17
Baseline 41.98 39.55 54.47 WSD-n (baseline) 45.70 48.27 60.75

Reference 32.71 17.36 32.56 – – – –

8.4 Case Study

To further illustrate the workflow and the main aspects of the framework for generating
the final summaries, Tables 13 and 14 present examples of generated summaries using
the LG, NEG, and NEG-LG strategies for noun generalization. In particular, in the case
of LG strategy, during the pre-processing task (Section 4), some words that have an
insufficient number of usage examples in the data set have been generalized, using the
WordNet (Miller 1995; Fellbaum 1998) sense identifiers (e.g., produce.n.01). The utilized

846

Kouris, Alexandridis, and Stafylopatis Abstractive Text Summarization

Table 12
Factual accuracy for: (i) LG, NEG-LG, W-LG, and W-NEG-LG strategies, (ii) varying
θf = {100, 200, 500, 1,000}, θd = 5, and (iii) nouns and verbs.

Model Gigaword DUC CNN/DM Model Gigaword DUC CNN/DM
factacc % factacc %

LG-f100-d5-nv 46.86 41.92 70.42 W-LG-f100-d5-nv 43.76 32.29 24.81
LG-f200-d5-nv 44.85 35.20 68.18 W-LG-f200-d5-nv 42.82 33.00 26.87
LG-f500-d5-nv 43.89 40.04 65.29 W-LG-f500-d5-nv 45.82 39.08 23.97
LG-f1000-d5-nv 43.06 39.26 67.68 W-LG-f1000-d5-nv 46.54 38.16 22.39
NEG-LG-f100-d5-nv 43.23 37.80 63.72 W-NEG-LG-f100-d5-nv 42.59 38.60 9.05
NEG-LG-f200-d5-nv 46.11 38.80 59.03 W-NEG-LG-f200-d5-nv 45.25 35.85 8.09
NEG-LG-f500-d5-nv 45.82 39.08 58.14 W-NEG-LG-f500-d5-nv 43.49 35.64 6.61
NEG-LG-f1000-d5-nv 45.39 37.98 57.02 W-NEG-LG-f1000-d5-nv 43.04 37.31 8.14
– – – – WSD-nv (baseline) 45.90 40.38 17.82

machine learning model (here the attentive seq2seq architecture of Section 5.2.1 has
been used) is trained to predict the system summary. Then, the post-processing task
(Section 6) generates the final summary. In the example of short TS in Table 13, we
can see that the system summary based on the LG strategy contains the generalized
sense produce.n.01 (“fresh fruits and vegetable grown for the market”, according to WordNet
sense). In post-processing, this generalized token is replaced by the word tomatoes from
the input text, which is a hyponym of the sense produce.n.01, forming the final summary.
In this example of the LG strategy, all tokens of the final summary are included in the
input text, and also, the phrases “to close out” and “of summer” exist in the input text.
Similarly, in the example of document-level TS (Table 14), in the generalized text of
the LG strategy, we have the generalized sense copycat.n.01 that also appears in the
predicted summary. In the final summary, this sense has been replaced by the word
parrot. Also, the final summary of this example contains phrases of the original text and
new words such as oregon that do not appear in the original text.

Table 13
Examples of short TS from the input text to the output summary for the LG, NEG, and NEG-LG
strategies of noun generalization.

Input text: plump, juicy, bright red tomatoes that hang heavy on the vine; basil that grows profusely,
and so many cucumbers that you run out of ideas for using them: these are just the foods to close
out the hot days of summer, and to provide a final note for this column, which will cease this week .

LG

Generalized Text: plump, juicy, bright red produce.n.01 that hang heavy on the plant.n.02; flavorer.n.01 that
grows profusely, and so many produce.n.01 that you run out of ideas for using them: these are just the foods
to close out the hot days of summer, and to provide a final note for this column, which will cease this week .
System Summary: produce.n.01 to close out of summer
Final Summary tomatoes to close out of summer

NEG

Generalized Text: plump, juicy, bright red tomatoes that hang heavy on the vine; basil that grows
profusely, and so many cucumbers that you run out of ideas for using them: these are just the foods
to close out DATE, and to provide a final note for this column, which will cease this week .
System Summary: vegetables to close this DATE
Final Summary vegetables to close this summer

NEG-LG

Generalized Text: plump, juicy, bright red produce.n.01 that hang heavy on the plant.n.02; flavorer.n.01
that grows profusely, and so many produce.n.01 that you run out of ideas for using them: these are just the
foods to close out DATE, and to provide a final note for this column, which will cease this week .
System Summary: vegetable.n.01 to close this DATE
Final Summary: foods to close this summer

Reference summary: hail to summer ’s end and farewell

847

Computational Linguistics Volume 47, Number 4

Table 14
Examples of document-level TS from the input text to the output summary for the LG, NEG, and
NEG-LG strategies of noun generalization.

Input Text: firefighters responded to cries for help - from two parrots . the crew scoured a burning home
in boise, idaho, searching for people shouting ‘ help ! ’ and ‘ fire ! ’ eventually, to their surprise, they
found a pair of squawking birds . scroll down for video . cry for help ! this is one of the two parrots who
were found in a burning home after calling for help . the tropical creatures appeared to have been alone
when flames began to sweep the property . but they seemed to know what to do . both were pulled from
the home and given oxygen . they are expected to survive . the fire crew in boise, idaho, thought
they were chasing human voices when the found the birds . treatment: the officials treated the birds
with oxygen masks and survive . according to kboi, the cause of the officers managed to contain the
fire to just one room . it is being both are expected to investigated and no people were found inside .
officials have yet to track down the birds ’ owners .

LG

Generalized Text: firefighters responded to cries for help - from two copycat.n.01 . the crew scoured a
burning home in boise, idaho, searching for people shouting ‘ help ! ’ and ‘ fire ! ’ eventually, to
their astonishment.n.01, they found a pair of squawking birds . scroll down for video . cry for help !
this is one of the two copycat.n.01 who were found in a burning home after calling for help . [...]
yet to track down the birds ’ owners .
System Summary: the two copycat.n.01 were found in a burning home in oregon, idaho . they were
pulled from the home and given oxygen . they are expected to survive .
Final Summary: the two parrot were found in a burning home in oregon, idaho . they were pulled
from the home and given oxygen . they are expected to survive .

NEG

Generalized Text: firefighters responded to [...] a burning home in GPE, GPE, searching for people
shouting [...] according to ORG, the cause of the officers managed to contain [...] the birds ’ owners .
System Summary: the fire crew in GPE, GPE, thought they were chasing human voices . they were
found in a burning home in GPE, GPE . it is being investigated and no people were found inside .
Final Summary: the fire crew in boise, idaho, thought they were chasing human voices . they were
found in a burning home in boise, idaho . it is being investigated and no people were found inside .

NEG-LG

Generalized Text: firefighters responded to cries for help - from two copycat.n.01 . the crew scoured
a burning home in GPE, GPE, searching for people shouting ‘ help ! ’ and ‘ fire ! ’ eventually, to their
astonishment.n.01, they found a pair of squawking birds . scroll down for video . cry for help ! this is
one of the two copycat.n.01 who were found in a burning home [...]. the fire crew in GPE, GPE,
thought they were chasing human voices [...] to survive . according to ORG, the cause of the officers
managed to [...] to track down the birds ’ owners .
System Summary: the crew scoured a burning home in GPE, GPE, searching for people shouting
‘ help ! ’ and ‘ fire ! ’ they found the copycat.n.01 with oxygen masks and both are expected to survive .
Final Summary: the crew scoured a burning home in boise, idaho, searching for people shouting
‘ help ! ’ and ‘ fire ! ’ they found the parrots with oxygen masks and both are expected to survive .

Reference summary: two parrots were home alone when a fire erupted in boise, idaho . started
calling ‘ help ! ’ and ‘ fire ! ’ , crew thought they were human voices . both were pulled from
the wreckage and treated with oxygen masks .

In the example of the NEG strategy (Table 13), the generalized named entity DATE,
which appears in the predicted summary, has been replaced by the word summer (from
the input text) in the post-processing phase that generates the final summary. Moreover,
in the same example, the word vegetables, which appears both in the predicted and final
summaries, is a new word that does not appear in the input text. The appearance of new
words in the final summaries indicates that the system not only copies content from
the input text but also is capable of generating new words or phrases, following the
meaning of the input text. The sense vegetable.n.01 also appears in the system summary
of the NEG-LG strategy, where, in post-processing, this sense has been replaced by the
word food because the algorithm tries to select the most relevant word from the input
text. Similarly, in the example of the NEG strategy of document level summarization
(Table 14), the named entities in the system summary have been replaced by the appro-
priate words of the original text, in order to generate the final summary. Finally, in the
case of the NEG-LG strategy, it becomes apparent that we have a combination of both
the NEG and LG methods, as illustrated in the present examples.

848

Kouris, Alexandridis, and Stafylopatis Abstractive Text Summarization

9. Discussion

Overall, the experimental procedure aims at examining various aspects of the proposed
methodology. Initially, the effect of taxonomy depth in generalization is discussed
(Section 9.1), followed by that of concept frequency (Section 9.2). Then, the influence of
WSD (Section 4.1) and POS (Section 9.4) are also assessed. Finally, Section 9.5 overviews
the obtained results on the NTR metric, Section 9.7 discusses factual consistency of gen-
erated summaries, Section 9.8 overviews the perspective of enhancing seq2seq models,
while in Section 9.9, some concluding remarks concerning the framework as a whole,
are made.

9.1 The Effect of the Taxonomy Depth

In principle, LG-based strategies are able to generalize concepts ranging from very
general (low taxonomy depth) to more specific (high taxonomy depth). Figure 6 dis-
plays the ROUGE scores for varying levels of generalization (θd ∈ {3, 4, 5, 6, 7}). The
optimum taxonomy depth is 5; when θd < 5, the performance decreases as these levels
of generalization lead to very general concepts. For θd > 5, the ROUGE scores fall again,
because the grater taxonomy depth restricts generalization, as fewer concepts can be
generalized.

9.2 The Effect of Concept Frequency

As has already been discussed in Section 4.2, the proposed frameworks deals with the
problem of OOV or rare words by imposing a minimum frequency (θf) below which
they need to be generalized. In the experiments, four different frequency thresholds
have been considered (θf ∈ {100, 200, 500, 1,000}) for all generalization strategies.

LG and W-LG achieve their best performance for lower thresholds (100 and 200, re-
spectively) on data sets. For instance, when only noun generalization is considered, LG-
f100-d5-n and W-LG-f100-d5-n (Tables 5 and 6) maximize their efficiency for θf = 100
in terms of ROUGE-1 or for θf = 200 in terms of ROUGE-L. This is also the case of LG-
f100-d5-nv and W-LG-f100-d5-nv (Tables 7 and 8); that is, when both nouns and verbs
are taken into account. However, in LG, the generalization of rare words maximizes
performance, while the generalization of more frequent concepts (e.g., when θf = 500
or θf = 1,000) reduces the ROUGE scores.

In the case of the NEG strategy (Table 5), the models tend to exhibit high perfor-
mance even if they generalize frequent concepts. In particular, NEG-f500 (θf = 500)
achieves the highest ROUGE scores on three data sets. This is attributed to the fact that
named entities have a similar function in language. Additionally, the post-processing
task is capable of matching a named entity identifier to its particular concept, even
if concepts of high frequency have been generalized. On the other, W-NEG models
(Table 6) achieve their best results for θf = 100, as they are based on the disambiguated
text, which increases the vocabulary size. NEG-LG and W-NEG-LG obtain their best
output mainly for θf = 200 or θf = 500, because they actually combine both strategies
(NEG and LG). Those thresholds may be viewed as a trade-off between NEG, which
boosts generalization of frequent words and LG, which is more efficient when rare
concepts are generalized.

It is obvious that the choice of an appropriate frequency threshold (θf) greatly affects
the accuracy of the produced summaries. The obtained results reveal that LG works bet-
ter when rare words are generalized, NEG prefers the generalization of more frequent

849

Computational Linguistics Volume 47, Number 4

words, and NEG-LG seeks a trade-off between the two. Additionally, all approaches
exhibit poorer performance when very frequent words (θf = 1,000) are generalized. In
the latter case, the high threshold value results in over-generalization, grouping several
words to the same sense. Therefore, the reduced number of synonyms (or words of
close meaning) restricts the capability of predicting an appropriate term for a particular
context and makes it difficult for the post-processing task to match the general entities
to specific concepts.

9.3 The Effect of WSD

WSD is used to identify the different concepts in the text, generalizing them to an
appropriate sense. Table 5 presents the results for noun-only generalization, while in
Table 7 both noun and verb generalization is considered, with the respective systems
outperforming the state-of-the-art (Table 3), with respect to ROUGE scores. The positive
experimental results, especially in LG and NEG strategies, are due to the fact that WSD
aims at performing an accurate content generalization in the pre-processing phase.
Additionally, in the post-processing phase, the WSD identifiers are used for achieving
an efficient concept matching (i.e., replacing the general concepts with specific ones by
giving priority to particular concepts, or weighting the concepts that belong to the same
hyponym or hypernym semantic paths with the general ones).

Even though WSD is efficient for text generalization, the conversion of the original
text to a disambiguated version fails to bring about any further improvement. This is
evident in Tables 6 and 8, where the WSD-based models exhibit worse performance,
compared with the non-WSD-based ones (Tables 5 and 7). The WSD-based models
fail to attain satisfactory performance because the universally disambiguated text in-
creases the vocabulary of the data set while simultaneously decreasing the number of
occurrences of each sense in the text, thereby affecting the ability of a machine learning
model to be trained sufficiently. Moreover the post-processing phase is not capable of
replacing a vast amount of senses, represented by WSD identifiers, with the appropriate
words of the original text. Nevertheless, comparing WSD-based noun generalization
(Table 6) and its noun and verb counterpart (Table 8) with their baselines (WSD-n and
WSD-nv, respectively), it becomes evident that the utilized generalization strategies
result in increased ROUGE scores. This is attributed to the fact that the generalization
methodology reduces the vocabulary size, thereby increasing word frequency in text.
This constitutes an indication that the proposed framework improves the performance
of text summarization, even though the utilized data set is a disambiguated version of
the original corpus.

It should be noted that in the case of the Gigaword data set, the numerical digits
have been replaced by the number sign (#) (Rush, Chopra, and Weston 2015). Because
the knowledge-based WSD method proposed in our work does not identify numbers,
the said replacement does not affect system performance. Unlike WSD, NER is capable
of recognizing tokens of numerical digits of the respective named entities (e.g., DATE,
TIME, PERCENT, MONEY, QUANTITY).

9.4 The Effect of POS

LG-based strategies can generalize nouns, verbs, or both. Verb-only generalization is
absent from the experiments because of the low frequency of this lexical category in text
(Table 1). In contrast, noun generalization brings a considerable performance improve-
ment because of the high frequency of this lexical category in text. When both are con-

850

Kouris, Alexandridis, and Stafylopatis Abstractive Text Summarization

sidered, system efficiency is slightly enhanced in terms of the ROUGE scores (Tables 5
and 7). The same conclusion cannot be drawn for WSD-based models (Tables 6 and
8), as they fail to exhibit satisfactory performance. In conclusion, LG models that gen-
eralize both low frequency nouns and verbs are those with the highest ROUGE scores.

9.5 NTR in Generated Summaries

NTR quantifies the level of abstraction the proposed frameworks achieves, as it captures
the percentage of tokens in the generated summary that do not appear in input text. The
obtained NTR results of our models are in line with the Words-lvt2k-1sent and Model #8
state-of-the-art approaches (Table 3). More specifically, on Table 5, where the baseline
approach exhibits the best performance in terms of NTR, new tokens constitute one in
every four words in a summary. In WSD-based models, NTR drops to one new word for
every five words in the summary, because of the specific meaning of each token in data,
which prohibits the deep learning model from learning the particular function of each
term. Generally, models that have several words with similar meaning (i.e., synonyms),
like the baseline model, witness increased NTR. In contrast, models with few synonyms
(e.g., WSD-based) have a reduced NTR. NTR levels may also be related to the extent
of alternative options a model has to generate a word. In particular, if a context can be
described by many words or there exist a lot of synonyms in text (i.e., in training set),
then higher values of NTR may be observed. On the other hand, a limited number of
synonyms result in a reduction of new tokens in a generated summary.

9.6 Greedy and Optimal Concept Matching

The slight differences among the greedy and optimal concept matching (Table 9) are
due to the fact that these approaches are aided by the computation of text similarity
(Algorithms 4 and 5). In particular, these algorithms weigh the candidate concepts
according to their ontology semantic paths (for LG-based strategies) or the specified
named entity (for the NEG-based strategies). Therefore, the methodology of concept
matching tries to resolve conflicts between two or more concepts that are candidates for
replacing the same generalized concept. Because these conflicts appear more often in
larger texts (e.g., in CNN/DailyMail), the differences between the greedy and optimal
concept matching become more apparent there, but still, they remain insignificant as
the experimental results show (Table 9). Finally, greedy concept matching is an efficient
and simple method that could be used as an alternative to the optimal one, especially in
those cases where an efficient solver for integer linear programming is not provided, or
a huge amount of documents needs to be summarized.

9.7 Factual Consistency

To examine the factual consistency of the generated summaries, their factual accu-
racy is measured, as described in Section 7.2. According to the obtained results
(Tables 11 and 12) presented in Section 8.3, the generated summaries for the
CNN/DailyMail data set exhibit greater factual accuracy than those of the other two
data sets (Gigaword and DUC). This is attributed to the fact that in document-level
TS, the produced summaries cover more facts of the original text, while in short-
document TS, the short summaries are not capable of reflecting the facts of the original
text sufficiently. This is particularly evident in the obtained results for the LG, NEG,
and NEG-LG strategies on document level TS. Another observation is that, while the

851

Computational Linguistics Volume 47, Number 4

summaries of the CNN/DailyMail data set contain more concepts than those of the
other data sets (i.e., concepts for performing concept matching in the post-processing
phase), the factual accuracy in document level TS is not decreased. Consequently, the
factual consistency of the produced summaries is not affected by increasing the number
of concepts for concept matching or by increasing the summary length. On the contrary,
the longer summaries (i.e., in CNN/DailyMail data set) seem to achieve higher factual
accuracy than the shorter ones (e.g., in Gigaword).

In a similar manner to ROUGE scores, the factual accuracy of the LG strategy reaches
its maximum for θf = 100 (i.e., generalizing rare concepts), while the NEG strategy
tends to achieve higher scores for generalizing frequent concepts (e.g., the NEG-f1000-n
model exhibiting the highest score in CNN/DailyMail data set). Comparing the factual
accuracy of noun generalization (Table 11) with that of both noun and verb general-
ization (Table 12), we conclude that the addition of verbs in the content generalization
phase creates slight differences in LG, NEG, and NEG-LG models, without any consid-
erable improvement. On the other hand, noun and verb generalization in WSD-based
models (W-LG, W-NEG, and W-NEG-LG) affect negatively the factual consistency. In
most cases, WSD-based models fail to produce factual consistent summaries for the
same reasons that they fail to achieve satisfactory ROUGE scores mentioned above.

Moreover, the factual accuracy of our framework is improved when compared with
that of the baseline models and the reference summaries. This does not necessarily
imply that the generated summaries are better than the human-written ones, but rather
highlight the fact that authors are able to produce summaries with rephrased content. In
machine-produced summaries on the other hand, the system tends to copy facts from
the source text (e.g., NTR = 24.97% in LG-f100-d5-n model of Table 5), allowing the
factual accuracy (which measures the coverage of facts between a summary and the
respective source text) to achieve high scores. Therefore, the lower score of the reference
summaries is not an indication that they are poorly written. On the contrary, the high
scores, especially in the case of document level TS (CNN/DailyMail data set), constitute
a strong indication that our framework produces factually consistent summaries.

9.8 Enhancing Sequence-to-Sequence Models

The main purpose of this work is to provide a framework capable of enhancing the
performance of seq2seq deep learning models in abstractive TS. In this direction,
the proposed framework deals with two fundamental issues in machine learning ap-
proaches; (i) providing a sufficient number of usage examples in the training phase for
achieving accurate predictions, and (ii) adapting new, unseen instances to the specifics
of the model. The extensive experimental procedure (Section 7), based on the attentive
seq2seq model (Section 5.2.1), demonstrates that the proposed framework is capable of
improving performance. Additionally, the use of four additional seq2seq deep learning
architectures, the pointer-generator network (Section 5.2.2), the reinforcement learning
model (Section 5.2.3), the transformer, and the pretrained encoder transformer architec-
tures (Section 5.2.4) further bolster the versatility of the proposed method.

9.9 Summarizing the Results

The analysis presented so far indicates that the presented framework is an efficient
solution for abstractive TS, outperforming baselines and other state-of-the-art sys-
tems, especially in the case of the advanced models such as reinforcement learning or
transformer-based approaches (Table 10). It has been demonstrated that the level of

852

Kouris, Alexandridis, and Stafylopatis Abstractive Text Summarization

generalization affects the obtained results and that setting the correct threshold for
concept frequency (to be considered for generalization) improves system performance.

WSD-based models’ suboptimal performance is attributed to the following reasons:
(i) the deep learning system fails to predict the appropriate words, because of the
large number of distinct tokens (i.e. tokens with specific meaning), and (ii) the post-
processing task fails to match the WSD identifiers to appropriate words, because of
the large number of required matches in the predicted summary. Moreover, models
based on noun-only generalization exhibit an increased performance, with further im-
provement, in terms of ROUGE scores, being possible when both verbs and nouns are
considered. Furthermore, NTR is reduced when synonyms in text are limited (e.g., in
WSD-based models), while this metric is maximized for baseline models that have not
applied any generalization strategy that might reduce the number of words with similar
meaning. Finally, in assessing the factual consistency, the document level TS achieves
higher factual accuracy than that of short document TS.

10. Conclusion and Future Work

In this work, a novel framework for abstractive TS that combines deep learning tech-
niques with knowledge-based methodologies has been proposed. The framework is
based on a well-defined theoretical model for generating abstractive summaries. In
particular, its components include knowledge resources in ontological representations,
WSD, NER, content generalization, word embeddings, deep learning predictions, text
similarity, and concept matching. Overall, the methodology aims at improving the
performance of a sequence-to-sequence deep learning model.

The performance of the proposed approach has been thoroughly evaluated by an
extensive experimental procedure that examined various aspects of the framework
on popular data sets (Gigaword, DUC 2004, and CNN/DailyMail). The obtained results
have been promising, as they were better than those of the baseline and of other state-
of-the-art systems. This is attributed to the appropriate data transformations, model
optimization, as well as the ability of the system to deal with OOV or rare words.

Even though this framework already exhibits a satisfactory performance, it could
be further enhanced, especially with regard to hyperparameter estimation. In-depth
knowledge of those aspects that affect the performance of the framework, as well as
a theoretical model for estimating the optimal values of hyperparameters, are expected
to yield even better results.

Acknowledgments
This work was supported by computational
time granted from the National
Infrastructures for Research and
Technology S.A. (GRNET S.A.) in the
National HPC facility - ARIS - under project
ID pa181003-ISLAB-Med.

References
Allahyari, Mehdi, Seyedamin Pouriyeh,

Mehdi Assefi, Saeid Safaei,
Elizabeth D. Trippe, Juan B. Gutierrez,
and Krys Kochut. 2017. Text

summarization techniques: A brief
survey. arXiv preprint arXiv:1707.02268.
https://doi.org/10.14569/IJACSA
.2017.081052

Alshaina, S., Ansamma John, and Aneesh G.
Nath. 2017. Multi-document abstractive
summarization based on predicate
argument structure. In Signal Processing,
Informatics, Communication and Energy
Systems (SPICES), 2017 IEEE International
Conference on, pages 1–6. https://doi
.org/10.1109/SPICES.2017.8091339

Andor, Daniel, Chris Alberti, David Weiss,
Aliaksei Severyn, Alessandro Presta,
Kuzman Ganchev, Slav Petrov, and

853

https://doi.org/10.14569/IJACSA.2017.081052
https://doi.org/10.14569/IJACSA.2017.081052
https://doi.org/10.1109/SPICES.2017.8091339
https://doi.org/10.1109/SPICES.2017.8091339

Computational Linguistics Volume 47, Number 4

Michael Collins. 2016. Globally normalized
transition-based neural networks. arXiv
preprint arXiv:1603.06042. https://doi
.org/10.18653/v1/P16-1231

Angeli, Gabor, Melvin Jose Johnson
Premkumar, and Christopher D. Manning.
2015. Leveraging linguistic structure for
open domain information extraction. In
Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and
the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long
Papers), pages 344–354. https://doi.org
/10.3115/v1/P15-1034

Bahdanau, Dzmitry, Kyunghyun Cho, and
Yoshua Bengio. 2014. Neural machine
translation by jointly learning to align and
translate. arXiv preprint arXiv:1409.0473.

Banerjee, Satanjeev and Ted Pedersen. 2002.
An adapted lesk algorithm for word sense
disambiguation using WordNet. In
International Conference on Intelligent Text
Processing and Computational Linguistics,
pages 136–145. Springer. https://doi
.org/10.1007/3-540-45715-1 11

Banerjee, Satanjeev and Ted Pedersen. 2003.
Extended gloss overlaps as a measure of
semantic relatedness. In IJCAI, volume 3,
pages 805–810.

Baralis, Elena, Luca Cagliero, Saima Jabeen,
Alessandro Fiori, and Sajid Shah. 2013.
Multi-document summarization based on
the Yago ontology. Expert Systems with
Applications, 40(17):6976–6984. https://
doi.org/10.1016/j.eswa.2013.06.047

Barzilay, Regina and Kathleen R. McKeown.
2005. Sentence fusion for multidocument
news summarization. Computational
Linguistics, 31(3):297–328. https://doi
.org/10.1162/089120105774321091

Bertsekas, Dimitri P. 1998. Network
Optimization: Continuous and Discrete
Models. Belmont: Athena Scientific.

Bizer, Christian, Jens Lehmann, Georgi
Kobilarov, Sören Auer, Christian Becker,
Richard Cyganiak, and Sebastian
Hellmann. 2009. DBpedia - a
crystallization point for the Web of Data.
Web Semantics: Science, Services and Agents
on the World Wide Web, 7(3):154–165.
https://doi.org/10.1016/j.websem
.2009.07.002

Bojanowski, Piotr, Edouard Grave, Armand
Joulin, and Tomas Mikolov. 2017.
Enriching word vectors with subword
information. Transactions of the Association
for Computational Linguistics, 5:135–146.
https://doi.org/10.1162/tacl a
00051

Borah, Pranjal Protim, Gitimoni Talukdar,
and Arup Baruah. 2014. Approaches for
word sense disambiguation—A survey.
International Journal of Recent Technology
and Engineering, 3(1):35–38.

Boulanger-Lewandowski, Nicolas, Yoshua
Bengio, and Pascal Vincent. 2013. Audio
chord recognition with recurrent neural
networks. In ISMIR, pages 335–340,
Citeseer.

Brunsch, Tobias, Kamiel Cornelissen, Bodo
Manthey, and Heiko Röglin. 2013.
Smoothed analysis of belief propagation
for minimum-cost flow and matching. In
International Workshop on Algorithms and
Computation, pages 182–193, Springer.
https://doi.org/10.1007/978-3-642
-36065-7 18

Celikyilmaz, Asli, Antoine Bosselut,
Xiaodong He, and Yejin Choi. 2018. Deep
communicating agents for abstractive
summarization. arXiv preprint
arXiv:1803.10357. https://doi.org
/10.18653/v1/N18-1150

Chaplot, Devendra Singh and Ruslan
Salakhutdinov. 2018. Knowledge-based
word sense disambiguation using topic
models. In Thirty-Second AAAI Conference
on Artificial Intelligence.

Chen, Yen-Chun and Mohit Bansal. 2018.
Fast abstractive summarization with
reinforce-selected sentence rewriting.
arXiv preprint arXiv:1805.11080.

Choi, Jinho D., Joel Tetreault, and Amanda
Stent. 2015. It depends: Dependency parser
comparison using a web-based evaluation
tool. In Proceedings of the 53rd Annual
Meeting of the Association for Computational
Linguistics and the 7th International Joint
Conference on Natural Language Processing
(Volume 1: Long Papers), pages 387–396.
https://doi.org/10.3115/v1/P15
-1038

Chopra, Sumit, Michael Auli, and Alexander
M. Rush. 2016. Abstractive sentence
summarization with attentive recurrent
neural networks. In Proceedings of the 2016
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, pages 93–98.
https://doi.org/10.18653/v1/N16-1012

Cohan, Arman, Franck Dernoncourt, Doo
Soon Kim, Trung Bui, Seokhwan Kim,
Walter Chang, and Nazli Goharian. 2018.
A discourse-aware attention model for
abstractive summarization of long
documents. arXiv preprint
arXiv:1804.05685. https://doi.org
/10.18653/v1/N18-2097

854

https://doi.org/10.18653/v1/P16-1231
https://doi.org/10.18653/v1/P16-1231
https://doi.org/10.3115/v1/P15-1034
https://doi.org/10.3115/v1/P15-1034
https://doi.org/10.1007/3-540-45715-1_11
https://doi.org/10.1007/3-540-45715-1_11
https://doi.org/10.1016/j.eswa.2013.06.047
https://doi.org/10.1016/j.eswa.2013.06.047
https://doi.org/10.1162/089120105774321091
https://doi.org/10.1162/089120105774321091
https://doi.org/10.1016/j.websem.2009.07.002
https://doi.org/10.1016/j.websem.2009.07.002
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1007/978-3-642-36065-7_18
https://doi.org/10.1007/978-3-642-36065-7_18
https://doi.org/10.18653/v1/N18-1150
https://doi.org/10.18653/v1/N18-1150
https://doi.org/10.3115/v1/P15-1038
https://doi.org/10.3115/v1/P15-1038
https://doi.org/10.18653/v1/N16-1012
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N18-2097

Kouris, Alexandridis, and Stafylopatis Abstractive Text Summarization

Cohn, Trevor and Mirella Lapata. 2008.
Sentence compression beyond word
deletion. In Proceedings of the 22nd
International Conference on Computational
Linguistics-Volume 1, pages 137–144.
https://doi.org/10.3115
/1599081.1599099

Dasgupta, Sanjoy, Christos H.
Papadimitriou, and Umesh V. Vazirani.
2008. Algorithms. McGraw-Hill.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee,
and Kristina Toutanova. 2018. BERT:
Pre-training of deep bidirectional
transformers for language understanding.
arXiv preprint arXiv:1810.04805.

Edmundson, Harold P. 1969. New methods
in automatic extracting. Journal of the ACM
(JACM), 16(2):264–285. https://doi.org
/10.1145/321510.321519

Fellbaum, Christiane. 1998. WordNet: An
Electronic Lexical Database. MIT Press.
https://doi.org/10.7551/mitpress
/7287.001.0001

Filippova, Katja. 2010. Multi-sentence
compression: Finding shortest paths in
word graphs. In Proceedings of the 23rd
International Conference on Computational
Linguistics, pages 322–330.

Filippova, Katja and Michael Strube. 2008.
Sentence fusion via dependency graph
compression. In Proceedings of the
Conference on Empirical Methods in Natural
Language Processing, pages 177–185.
https://doi.org/10.3115/1613715
.1613741

Gambhir, Mahak and Vishal Gupta. 2017.
Recent automatic text summarization
techniques: A survey. Artificial Intelligence
Review, 47(1):1–66. https://doi.org/10
.1007/s10462-016-9475-9

Gao, Yang, Yang Wang, Luyang Liu, Yidi
Guo, and Heyan Huang. 2020. Neural
abstractive summarization fusing by
global generative topics. Neural Computing
and Applications, 32(9):5049–5058.

Gehrmann, Sebastian, Yuntian Deng, and
Alexander M. Rush. 2018. Bottom-up
abstractive summarization. arXiv preprint
arXiv:1808.10792. https://doi.org/10
.18653/v1/D18-1443

Genest, Pierre Etienne and Guy Lapalme.
2011. Framework for abstractive
summarization using text-to-text
generation. In Proceedings of the Workshop
on Monolingual Text-To-Text Generation,
pages 64–73.

Golik, Pavel, Patrick Doetsch, and Hermann
Ney. 2013. Cross-entropy vs. squared error
training: A theoretical and experimental

comparison. In Interspeech, 13:1756–1760.
https://doi.org/10.21437
/Interspeech.2013-436

Goodrich, Ben, Vinay Rao, Peter J. Liu, and
Mohammad Saleh. 2019. Assessing the
factual accuracy of generated text. In
Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge
Discovery & Data Mining, pages 166–175.
https://doi.org/10.1145/3292500
.3330955

Graves, Alex. 2012. Sequence transduction
with recurrent neural networks. arXiv
preprint arXiv:1211.3711. https://doi
.org/10.1007/978-3-642-24797-2 3

Graves, Alex, Navdeep Jaitly, and
Abdel-rahman Mohamed. 2013. Hybrid
speech recognition with deep bidirectional
LSTM. In Automatic Speech Recognition and
Understanding (ASRU), 2013 IEEE Workshop
on, pages 273–278. https://doi.org/10
.1109/ASRU.2013.6707742

Gupta, Som and S. K. Gupta. 2019.
Abstractive summarization: An overview
of the state of the art. Expert Systems with
Applications, 121:49–65. https://doi.org
/10.1016/j.eswa.2018.12.011

Hansen, Ben B. and Stephanie Olsen Klopfer.
2006. Optimal full matching and related
designs via network flows. Journal of
Computational and Graphical Statistics,
15(3):609–627. https://doi.org/10
.1198/106186006X137047

Hennig, Leonhard, Winfried Umbrath, and
Robert Wetzker. 2008. An ontology-based
approach to text summarization. In 2008
IEEE/WIC/ACM International Conference on
Web Intelligence and Intelligent Agent
Technology, volume 3, pages 291–294.
https://doi.org/10.1109/WIIAT
.2008.175

Hermann, Karl Moritz, Tomas Kocisky,
Edward Grefenstette, Lasse Espeholt,
Will Kay, Mustafa Suleyman, and Phil
Blunsom. 2015. Teaching machines to
read and comprehend. In Advances in
Neural Information Processing Systems,
pages 1693–1701.

Hı́pola, Pedro, José A. Senso, Amed
Leiva-Mederos, and Sandor
Domı́nguez-Velasco. 2014. Ontology-based
text summarization. The case of texminer.
Library Hi Tech, 32(2):229–248. https://
doi.org/10.1108/LHT-01-2014-0005

Honnibal, Matthew and Mark Johnson. 2015.
An improved non-monotonic transition
system for dependency parsing. In
Proceedings of the 2015 Conference on
Empirical Methods in Natural Language

855

https://doi.org/10.3115/1599081.1599099
https://doi.org/10.3115/1599081.1599099
https://doi.org/10.1145/321510.321519
https://doi.org/10.1145/321510.321519
https://doi.org/10.7551/mitpress/7287.001.0001
https://doi.org/10.7551/mitpress/7287.001.0001
https://doi.org/10.3115/1613715.1613741
https://doi.org/10.3115/1613715.1613741
https://doi.org/10.1007/s10462-016-9475-9
https://doi.org/10.1007/s10462-016-9475-9
https://doi.org/10.18653/v1/D18-1443
https://doi.org/10.18653/v1/D18-1443
https://doi.org/10.21437/Interspeech.2013-436
https://doi.org/10.21437/Interspeech.2013-436
https://doi.org/10.1145/3292500.3330955
https://doi.org/10.1145/3292500.3330955
https://doi.org/10.1007/978-3-642-24797-2_3
https://doi.org/10.1007/978-3-642-24797-2_3
https://doi.org/10.1109/ASRU.2013.6707742
https://doi.org/10.1109/ASRU.2013.6707742
https://doi.org/10.1016/j.eswa.2018.12.011
https://doi.org/10.1016/j.eswa.2018.12.011
https://doi.org/10.1198/106186006X137047
https://doi.org/10.1198/106186006X137047
https://doi.org/10.1109/WIIAT.2008.175
https://doi.org/10.1109/WIIAT.2008.175
https://doi.org/10.1108/LHT-01-2014-0005
https://doi.org/10.1108/LHT-01-2014-0005

Computational Linguistics Volume 47, Number 4

Processing, pages 1373–1378.
https://doi.org/10.18653/v1/D15
-1162

Joshi, Akanksha, E. F. Fernández, and E.
Alegre. 2018. Deep learning based text
summarization: Approaches databases
and evaluation measures. In International
Conference of Applications of Intelligent
Systems.

Joshi, Monika, Hui Wang, and Sally
McClean. 2018. Dense semantic graph and
its application in single document
summarisation. In Emerging Ideas on
Information Filtering and Retrieval. Springer,
pages 55–67. https://doi.org/10.1007
/978-3-319-68392-8 4

Keneshloo, Y., T. Shi, N. Ramakrishnan, and
C. K. Reddy. 2020. Deep reinforcement
learning for sequence-to-sequence
models. IEEE Transactions on Neural
Networks and Learning Systems,
31(7):2469–2489.

Khan, Atif, Naomie Salim, Haleem Farman,
Murad Khan, Bilal Jan, Awais Ahmad,
Imran Ahmed, and Anand Paul. 2018.
Abstractive text summarization based on
improved semantic graph approach.
International Journal of Parallel
Programming, pages 1–25. https://doi
.org/10.1007/s10766-018-0560-3

Kingma, Diederik P. and Jimmy Ba. 2014.
Adam: A method for stochastic
optimization. arXiv preprint
arXiv:1412.6980.

Knight, Kevin and Daniel Marcu. 2002.
Summarization beyond sentence
extraction: A probabilistic approach to
sentence compression. Artificial Intelligence,
139(1):91–107. https://doi.org/10
.1016/S0004-3702(02)00222-9

Kouris, Panagiotis, Georgios Alexandridis,
and Andreas Stafylopatis. 2019.
Abstractive text summarization based on
deep learning and semantic content
generalization. In Proceedings of the 57th
Annual Meeting of the Association for
Computational Linguistics, pages 5082–5092,
Florence. https://doi.org/10.18653/v1
/P19-1501

Kovács, Péter. 2015. Minimum-cost flow
algorithms: An experimental evaluation.
Optimization Methods and Software,
30(1):94–127. https://doi.org/10.1080
/10556788.2014.895828

Kryściński, Wojciech, Bryan McCann,
Caiming Xiong, and Richard Socher. 2019.
Evaluating the factual consistency of
abstractive text summarization. arXiv
preprint arXiv:1910.12840.

Kusner, Matt, Yu Sun, Nicholas Kolkin, and
Kilian Weinberger. 2015. From word
embeddings to document distances. In
International Conference on Machine
Learning, pages 957–966.

Lee, Chang Shing, Zhi-Wei Jian, and Lin-Kai
Huang. 2005. A fuzzy ontology and its
application to news summarization. IEEE
Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics),
35(5):859–880. https://doi.org/10
.1109/TSMCB.2005.845032, PubMed:
16240764

Li, Yang and Tao Yang. 2018. Word Embedding
for Understanding Natural Language: A
Survey. Springer International Publishing,
Cham. https://doi.org/10.1007/978
-3-319-53817-4 4

Li, Yuxi. 2018. Deep reinforcement learning.
arXiv preprint arXiv:1810.06339.

Lin, Chin-Yew. 2004. ROUGE: A package for
automatic evaluation of summaries. Text
Summarization Branches Out.

Lin, Hui and Vincent Ng. 2019. Abstractive
summarization: A survey of the state of
the art. In Proceedings of the AAAI
Conference on Artificial Intelligence,
volume 33, pages 9815–9822.
https://doi.org/10.1609/aaai
.v33i01.33019815

Lin, Junyang, Xu Sun, Shuming Ma,
and Qi Su. 2018. Global encoding for
abstractive summarization. arXiv preprint
arXiv:1805.03989. https://doi.org/10
.18653/v1/P18-2027

Lipton, Zachary C., John Berkowitz, and
Charles Elkan. 2015. A critical review of
recurrent neural networks for sequence
learning. arXiv preprint arXiv:1506.00019.

Liu, Yang and Mirella Lapata. 2019. Text
summarization with pretrained encoders.
arXiv preprint arXiv:1908.08345.
https://doi.org/10.18653/v1/D19-1387

Luhn, Hans Peter. 1958. The automatic
creation of literature abstracts. IBM
Journal of Research and Development,
2(2):159–165. https://doi.org/10.1147
/rd.22.0159

Luong, Minh Thang, Hieu Pham, and
Christopher D. Manning. 2015. Effective
approaches to attention-based neural
machine translation. arXiv preprint
arXiv:1508.04025. https://doi.org/10
.18653/v1/D15-1166

Marsi, Erwin and Emiel Krahmer. 2005.
Explorations in sentence fusion. In
Proceedings of the Tenth European Workshop
on Natural Language Generation (ENLG-05).

856

https://doi.org/10.18653/v1/D15-1162
https://doi.org/10.18653/v1/D15-1162
https://doi.org/10.1007/978-3-319-68392-8_4
https://doi.org/10.1007/978-3-319-68392-8_4
https://doi.org/10.1007/s10766-018-0560-3
https://doi.org/10.1007/s10766-018-0560-3
https://doi.org/10.1016/S0004-3702(02)00222-9
https://doi.org/10.1016/S0004-3702(02)00222-9
https://doi.org/10.18653/v1/P19-1501
https://doi.org/10.18653/v1/P19-1501
https://doi.org/10.1080/10556788.2014.895828
https://doi.org/10.1080/10556788.2014.895828
https://doi.org/10.1109/TSMCB.2005.845032
https://doi.org/10.1109/TSMCB.2005.845032
https://pubmed.ncbi.nlm.nih.gov/16240764
https://doi.org/10.1007/978-3-319-53817-4_4
https://doi.org/10.1007/978-3-319-53817-4_4
https://doi.org/10.1609/aaai.v33i01.33019815
https://doi.org/10.1609/aaai.v33i01.33019815
https://doi.org/10.18653/v1/P18-2027
https://doi.org/10.18653/v1/P18-2027
https://doi.org/10.18653/v1/D19-1387
https://doi.org/10.1147/rd.22.0159
https://doi.org/10.1147/rd.22.0159
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1166

Kouris, Alexandridis, and Stafylopatis Abstractive Text Summarization

Matousek, Jiri and Bernd Gärtner. 2007.
Understanding and Using Linear
Programming. Springer Science &
Business Media.

Mikolov, Tomas, Kai Chen, Greg Corrado,
and Jeffrey Dean. 2013. Efficient estimation
of word representations in vector space.
arXiv preprint arXiv:1301.3781.

Mikolov, Tomas, Edouard Grave, Piotr
Bojanowski, Christian Puhrsch, and
Armand Joulin. 2017. Advances in
pre-training distributed word
representations. arXiv preprint
arXiv:1712.09405.

Miller, George A. 1995. WordNet: A lexical
database for English. Communications
of the ACM, 38(11):39–41. https://
doi.org/10.1145/219717.219748

Mishra, Aditya Dev and Deepak Garg. 2008.
Selection of best sorting algorithm.
International Journal of intelligent information
Processing, 2(2):363–368.

Moawad, Ibrahim F. and Mostafa Aref. 2012.
Semantic graph reduction approach for
abstractive text summarization. In
Computer Engineering & Systems (ICCES),
2012 Seventh International Conference on,
pages 132–138. https://doi.org/10
.1109/ICCES.2012.6408498

Mohan, M. Jishma, C. Sunitha, Amal Ganesh,
and A. Jaya. 2016. A study on ontology
based abstractive summarization. Procedia
Computer Science, 87:32–37. https://
doi.org/10.1016/j.procs.2016
.05.122

Moratanch, N. and S. Chitrakala. 2016. A
survey on abstractive text summarization.
In Circuit, Power and Computing Technologies
(ICCPCT), 2016 International Conference on,
pages 1–7. https://doi.org/10.1109
/ICCPCT.2016.7530193

Nallapati, Ramesh, Bing Xiang, and Bowen
Zhou. 2016. Sequence-to-sequence RNNs
for text summarization. CoRR,
abs/1602.06023.

Nallapati, Ramesh, Bowen Zhou, Cicero dos
Santos, Caglar Gulcehre, and Bing Xiang.
2016. Abstractive text summarization
using sequence-to-sequence RNNs and
beyond. In Proceedings of the 20th SIGNLL
Conference on Computational Natural
Language Learning, pages 280–290, Berlin.
https://doi.org/10.18653/v1/K16-1028

Napoles, Courtney, Matthew Gormley, and
Benjamin Van Durme. 2012. Annotated
Gigaword. In Proceedings of the Joint
Workshop on Automatic Knowledge Base
Construction and Web-scale Knowledge
Extraction, pages 95–100.

Navigli, Roberto. 2009. Word sense
disambiguation: A survey. ACM
Computing Surveys (CSUR), 41(2):10.
https://doi.org/10.1145/1459352
.1459355

Navigli, Roberto. 2012. A quick tour of word
sense disambiguation, induction and
related approaches. In International
Conference on Current Trends in Theory and
Practice of Computer Science, pages 115–129.
https://doi.org/10.1007/978-3
-642-27660-6 10

Nenkova, Ani and Kathleen McKeown. 2012.
A survey of text summarization
techniques. In Mining Text Data. Springer,
pages 43–76. https://doi.org/10.1007
/978-1-4614-3223-4 3

Over, Paul, Hoa Dang, and Donna Harman.
2007. DUC in context. Information Processing
& Management, 43(6):1506–1520. https://
doi.org/10.1016/j.ipm.2007.01.019

Pascanu, Razvan, Tomas Mikolov, and
Yoshua Bengio. 2013. On the difficulty of
training recurrent neural networks. In
International Conference on Machine
Learning, pages 1310–1318.

Pasunuru, Ramakanth and Mohit Bansal.
2018. Multi-reward reinforced
summarization with saliency and
entailment. arXiv preprint arXiv:1804.06451.
https://doi.org/10.18653/v1/N18
-2102

Paulus, Romain, Caiming Xiong, and
Richard Socher. 2018. A deep reinforced
model for abstractive summarization. In
International Conference on Learning
Representations.

Pennington, Jeffrey, Richard Socher, and
Christopher Manning. 2014. GloVe: Global
vectors for word representation. In
Proceedings of the 2014 Conference on
Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543.
https://doi.org/10.3115/v1/D14-1162

Pilault, Jonathan, Raymond Li, Sandeep
Subramanian, and Christopher Pal. 2020.
On extractive and abstractive neural
document summarization with
transformer language models. In
Proceedings of the 2020 Conference on
Empirical Methods in Natural Language
Processing (EMNLP), pages 9308–9319.
https://doi.org/10.18653/v1/2020
.emnlp-main.748

Raganato, Alessandro, Jose
Camacho-Collados, and Roberto Navigli.
2017. Word sense disambiguation: A
unified evaluation framework and
empirical comparison. In Proceedings of the

857

https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://doi.org/10.1109/ICCES.2012.6408498
https://doi.org/10.1109/ICCES.2012.6408498
https://doi.org/10.1016/j.procs.2016.05.122
https://doi.org/10.1016/j.procs.2016.05.122
https://doi.org/10.1016/j.procs.2016.05.122
https://doi.org/10.1109/ICCPCT.2016.7530193
https://doi.org/10.1109/ICCPCT.2016.7530193
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.1145/1459352.1459355
https://doi.org/10.1145/1459352.1459355
https://doi.org/10.1007/978-3-642-27660-6_10
https://doi.org/10.1007/978-3-642-27660-6_10
https://doi.org/10.1007/978-1-4614-3223-4_3
https://doi.org/10.1007/978-1-4614-3223-4_3
https://doi.org/10.1016/j.ipm.2007.01.019
https://doi.org/10.1016/j.ipm.2007.01.019
https://doi.org/10.18653/v1/N18-2102
https://doi.org/10.18653/v1/N18-2102
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/2020.emnlp-main.748
https://doi.org/10.18653/v1/2020.emnlp-main.748

Computational Linguistics Volume 47, Number 4

15th Conference of the European Chapter of the
Association for Computational Linguistics:
Volume 1, Long Papers, pages 99–110.
https://doi.org/10.18653/v1/E17
-1010

Rennie, Steven J., Etienne Marcheret, Youssef
Mroueh, Jerret Ross, and Vaibhava Goel.
2017. Self-critical sequence training for
image captioning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition, pages 7008–7024. https://
doi.org/10.1109/CVPR.2017.131

Rong, Xin. 2014. word2vec parameter
learning explained. arXiv preprint
arXiv:1411.2738.

Rush, Alexander M., Sumit Chopra, and
Jason Weston. 2015. A neural attention
model for abstractive sentence
summarization. arXiv preprint
arXiv:1509.00685.

Sakai, Tetsuya. 2016. Two sample t-tests for
IR evaluation: Student or Welch? In
Proceedings of the 39th International ACM
SIGIR Conference on Research and
Development in Information Retrieval,
pages 1045–1048. https://doi.org/10
.1145/2911451.2914684

See, Abigail, Peter J. Liu, and Christopher D.
Manning. 2017. Get to the point:
Summarization with pointer-generator
networks. arXiv preprint arXiv:1704.04368.
https://doi.org/10.18653/v1/P17-1099

Sharma, Eva, Luyang Huang, Zhe Hu, and
Lu Wang. 2019. An entity-driven
framework for abstractive summarization.
arXiv preprint arXiv:1909.02059. https://
doi.org/10.18653/v1/D19-1323

Shi, Tian, Yaser Keneshloo, Naren
Ramakrishnan, and Chandan K. Reddy.
2018. Neural abstractive text
summarization with sequence-to-sequence
models. arXiv preprint arXiv:1812.02303.

Song, Kaiqiang, Bingqing Wang, Zhe Feng,
Liu Ren, and Fei Liu. 2020. Controlling the
amount of verbatim copying in abstractive
summarization. In Proceedings of the AAAI
Conference on Artificial Intelligence.
https://doi.org/10.1609/aaai
.v34i05.6420

Song, Shengli, Haitao Huang, and Tongxiao
Ruan. 2018. Abstractive text
summarization using LSTM-CNN based
deep learning. Multimedia Tools and
Applications, pages 1–19. https://doi
.org/10.1007/s11042-018-5749-3

Srivastava, Nitish, Geoffrey Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A simple
way to prevent neural networks from

overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Sutskever, I., O. Vinyals, and Q. V. Le. 2014.
Sequence to sequence learning with neural
networks. Advances in NIPS.

Vaswani, Ashish, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and
Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural
Information Processing Systems,
pages 5998–6008.

Watt, Nathan and Mathys C. du Plessis. 2018.
Dropout algorithms for recurrent neural
networks. In Proceedings of the Annual
Conference of the South African Institute of
Computer Scientists and Information
Technologists, pages 72–78. https://
doi.org/10.1145/3278681
.3278691

Weischedel, Ralph, Martha Palmer, Mitchell
Marcus, Eduard Hovy, Sameer Pradhan,
Lance Ramshaw, Nianwen Xue, Ann
Taylor, Jeff Kaufman, Michelle Franchini,
et al. 2013. Ontonotes release 5.0
ldc2013t19. Linguistic Data Consortium,
Philadelphia, PA, 23.

Wolf, Thomas, Julien Chaumond, Lysandre
Debut, Victor Sanh, Clement Delangue,
Anthony Moi, Pierric Cistac, Morgan
Funtowicz, Joe Davison, Sam Shleifer, et al.
2020. Transformers: State-of-the-art
natural language processing. In Proceedings
of the 2020 Conference on Empirical Methods
in Natural Language Processing: System
Demonstrations, pages 38–45. https://
doi.org/10.18653/v1/2020.emnlp
-demos.6

Xu, Song, Haoran Li, Peng Yuan, Youzheng
Wu, Xiaodong He, and Bowen Zhou. 2020.
Self-attention guided copy mechanism
for abstractive summarization. In
Proceedings of the 58th Annual Meeting
of the Association for Computational
Linguistics, pages 1355–1362. https://
doi.org/10.18653/v1/2020.acl-main
.125

Yan, Yu, Weizhen Qi, Yeyun Gong,
Dayiheng Liu, Nan Duan, Jiusheng Chen,
Ruofei Zhang, and Ming Zhou. 2020.
ProphetNet: Predicting future n-gram for
sequence-to-sequence pre-training. arXiv
preprint arXiv:2001.04063.

Yao, Jin-ge, Xiaojun Wan, and Jianguo Xiao.
2017. Recent advances in document
summarization. Knowledge and
Information Systems, 53(2):297–336.
https://doi.org/10.1007/s10115-017
-1042-4

858

https://doi.org/10.18653/v1/E17-1010
https://doi.org/10.18653/v1/E17-1010
https://doi.org/10.1109/CVPR.2017.131
https://doi.org/10.1109/CVPR.2017.131
https://doi.org/10.1145/2911451.2914684
https://doi.org/10.1145/2911451.2914684
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/D19-1323
https://doi.org/10.18653/v1/D19-1323
https://doi.org/10.1609/aaai.v34i05.6420
https://doi.org/10.1609/aaai.v34i05.6420
https://doi.org/10.1007/s11042-018-5749-3
https://doi.org/10.1007/s11042-018-5749-3
https://doi.org/10.1145/3278681.3278691
https://doi.org/10.1145/3278681.3278691
https://doi.org/10.1145/3278681.3278691
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.acl-main.125
https://doi.org/10.18653/v1/2020.acl-main.125
https://doi.org/10.18653/v1/2020.acl-main.125
https://doi.org/10.1007/s10115-017-1042-4
https://doi.org/10.1007/s10115-017-1042-4

Kouris, Alexandridis, and Stafylopatis Abstractive Text Summarization

You, Yongjian, Weijia Jia, Tianyi Liu, and
Wenmian Yang. 2019. Improving
abstractive document summarization
with salient information modeling. In
Proceedings of the 57th Annual Meeting
of the Association for Computational
Linguistics, pages 2132–2141.
https://doi.org/10.18653/v1/P19
-1205

Yujian, Li and Liu Bo. 2007. A normalized
Levenshtein distance metric. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 29(6):1091–1095. https://
doi.org/10.1109/TPAMI.2007.1078,
PubMed: 17431306

Zaremba, Wojciech, Ilya Sutskever, and Oriol
Vinyals. 2014. Recurrent neural network
regularization. arXiv preprint arXiv:1409.2329.

Zhang, Haoyu, Jianjun Xu, and Ji Wang.
2019. Pretraining-based natural language
generation for text summarization.
arXiv preprint arXiv:1902.09243.
https://doi.org/10.18653/v1/K19
-1074

Zhang, Jiajun, Yu Zhou, and Chengqing
Zong. 2016. Abstractive cross-language
summarization via translation model
enhanced predicate argument structure
fusing. IEEE/ACM Transactions
on Audio, Speech, and Language
Processing, 24(10):1842–1853.
https://doi.org.1109/TASLP
.2016.2586608

Zhang, Yuhui. 2019. Evaluating the factual
correctness for abstractive summarization.
CS230 Project.

859

https://doi.org/10.18653/v1/P19-1205
https://doi.org/10.18653/v1/P19-1205
https://doi.org/10.1109/TPAMI.2007.1078
https://doi.org/10.1109/TPAMI.2007.1078
https://pubmed.ncbi.nlm.nih.gov/17431306
https://doi.org/10.18653/v1/K19-1074
https://doi.org/10.18653/v1/K19-1074
https://doi.org/10.1109/TASLP.2016.2586608
https://doi.org/10.1109/TASLP.2016.2586608

	Introduction
	Related Work
	Framework Overview
	Pre-processing Phase
	Word Sense Disambiguation
	The Theoretical Model of Content Generalization
	Generalization Strategies

	Machine Learning
	Word Representation
	Deep Learning Model

	Post Processing
	Text Similarity
	Concept Matching
	Computational Complexity

	Experiments
	Data Sets
	Evaluation Metrics
	Experimental Procedure and Parameter Tuning
	Baseline Approaches

	Results
	Greedy Concept Matching ROUGE Scores
	Results on the PG, RL, TR, and PETR models
	Factual Accuracy Results
	Case Study

	Discussion
	The Effect of the Taxonomy Depth
	The Effect of Concept Frequency
	The Effect of WSD
	The Effect of POS
	NTR in Generated Summaries
	Greedy and Optimal Concept Matching
	Factual Consistency
	Enhancing Sequence-to-Sequence Models
	Summarizing the Results

	Conclusion and Future Work

