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Abstract
Recent work has raised concerns on the risk
of spurious correlations and unintended bi-
ases in statistical machine learning models that
threaten model robustness and fairness. In this
paper, we propose a simple and intuitive regu-
larization approach to integrate causal knowl-
edge during model training and build a robust
and fair model by emphasizing causal features
and de-emphasizing spurious features. Specif-
ically, we first manually identify causal and
spurious features with principles inspired from
the counterfactual framework of causal infer-
ence. Then, we propose a regularization ap-
proach to penalize causal and spurious features
separately. By adjusting the strength of the
penalty for each type of feature, we build a
predictive model that relies more on causal
features and less on non-causal features. We
conduct experiments to evaluate model robust-
ness and fairness on three datasets with mul-
tiple metrics. Empirical results show that the
new models built with causal awareness signif-
icantly improve model robustness with respect
to counterfactual texts and model fairness with
respect to sensitive attributes.

1 Introduction

Modern machine learning models are becoming
increasingly successful and are widely used in
high-stake applications such as filtering loan ap-
plicants (Hassani, 2020), determining school ad-
missions (Alvero et al., 2020), and medical diagno-
sis (Ahuja, 2019), etc. However, a big challenge
for statistical machine learning is that the mod-
els are data-driven and usually built on statistical
correlations that are sometimes spurious. For exam-
ple, a sentiment classifier trained on IMDB movie
reviews predicts “the film directed by Spielberg
is incredibly interesting” as positive. While the
prediction is correct, the model takes “Spielberg”
as a highly predictive feature, that is learned to
be strongly correlated with positive sentiment dur-
ing model training. This is a spurious correlation

the film directed by Spielberg is incredibly interesting .
0.712 0.576
0.290 0.874

Table 1: The motivating example: the traditional classi-
fier (1st row) learns spurious correlation between Spiel-
berg and positive sentiment and assigns a large weight
for the spurious feature. Our regularization approach
(2nd row) encourages the model to assign a smaller
weight for the spurious feature and a larger weight for
the causal feature (interesting).

since an annotator won’t label a review as positive
just because it mentions “Spielberg”. A classifier
built on this spurious correlation might perform
well when the testing data has the same distribu-
tion as training data (i.e., positive reviews talking
about “Spielberg”), however, it is very likely to
fail when there’s a distribution shift in testing data
(i.e., negative reviews talking about “Spielberg”).
For another example, a classifier trained on school
admission data learns the “gender” attribute to be
predictive of admission status. The classifier learns
this correlation because the “gender” attribute hap-
pens to correlate with admission in the training data
that might contain discrimination and societal bias.
Such a biased classifier will raise issues of discrim-
ination when deployed in the real world. In the
above examples, the spurious correlations are built
in the model because those features happen to cor-
relate with a specific class in the training data, but
model designers do not want such features to carry
predictive power in the model because that will
make the model suffer from robustness (e.g., fail on
different distributions), fairness (e.g., bias towards
specific groups), and trustworthiness (e.g., not con-
vincing when explaining model performance).

Existing works have investigated multiple ways
to deal with spurious correlations and improve
model robustness and fairness, such as feature
selection (Paul, 2017; Wang and Culotta, 2020),
data augmentation (Kaushik et al., 2020; Wang
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and Culotta, 2021), instance re-weighting (Zhang
et al., 2020), counterfactual logit pairing (Garg
et al., 2019), control for confounders (Landeiro
and Culotta, 2018), apply constraints to design
fair and robust objective functions (Dwork et al.,
2012; Zhao et al., 2021). Recent works also explore
causal inference for robust and fair models, such
as leveraging human commonsense of causal rea-
soning (Srivastava et al., 2020), adapting text em-
beddings for causal inference (Veitch et al., 2020),
and providing causal views on robustness of neural
networks (Zhang and Li, 2020). While effective,
most works only deal with either fairness or robust-
ness, some works require significant human efforts,
some have trade-offs between model robustness
and overall performance on test set, and some are
complex to deploy in real-world applications.

In this paper, we propose a simple and intuitive
regularization approach to integrate causal knowl-
edge in model training. We assign large regulariza-
tion penalties on spurious features and small penal-
ties on causal features (i.e., features that cause a
sample to get a label). By doing so, we encourage
the model to pay less attention to spurious features
and more to causal features. Table 1 demonstrates a
motivating example, where a traditional sentiment
classifier (such as Logistic Regression) assigns a
large weight for the spurious feature “Spielberg
(0.874)” and a small weight for the causal feature

“interesting (0.576)”. The new classifier built with
our regularization approach decreases the weight
of the spurious feature and increases the weight of
the causal feature.

Specifically, we first manually identify causal
and spurious features based on criteria motivated
by the counterfactual framework of causal infer-
ence. Then, we incorporate regularization compo-
nents to add different penalties for different types
of features. By adjusting the strength of the penalty
for each type of feature and optimizing the cus-
tomized loss function, we build a model that as-
signs larger weights to causal features and smaller
weights to non-causal features. Finally, we carry
out experiments to test whether our approach im-
proves model robustness and fairness. For model
robustness, we experiment with IMDB movie re-
views and Kindle book reviews text data. We eval-
uate the model performance on both the standard
test set as well as a counterfactual test set. Results
show that our models significantly improves robust-
ness on the counterfactual test set compared to the

traditional models (e.g., 12% increase in accuracy
for the best model). For model fairness, we exper-
iment with the law school admission dataset and
evaluate with two metrics (i.e, equal opportunity
and demographic parity). Our models show more
fair performance than the traditional model (e.g.,
females and males almost get equal opportunity
and demographic parity in the best model). With
this framing, the main contributions of this paper
are as follows:

Method: We propose a simple and novel reg-
ularization approach to integrate causality during
model training. By constructing and optimizing the
customized loss function that adjusts the penalty for
causal and spurious features, we build predictive
models that pay more attention to causal features
and less to non-causal features.

Evaluation: We evaluate our proposed models
on both robustness (with high-dimensional text
data) and fairness (with low-dimensional tabular
data). Our models outperform multiple baselines
in terms of robustness to counterfactual texts and
fairness to sensitive attributes, without sacrificing
model performance on test set.

2 Related Work

As the main causes for fairness and robustness is-
sues in ML, biases and spurious correlations can
be introduced from multiple sources such as cul-
ture, data, and algorithm perspectives. Examples
include societal discrimination and bias (Mehrabi
et al., 2021; Yapo and Weiss, 2018), data imbalance,
sampling bias, data poisoning (Zhao et al., 2018;
Kiritchenko and Mohammad, 2018; Chen et al.,
2017); covariate shift and confounders (Landeiro
and Culotta, 2018), over-parameterization (Sagawa
et al., 2020b,a).

Fairness in ML can be summarized as indi-
vidual fairness (Lahoti et al., 2019), group fair-
ness (Hardt et al., 2016), and max-min fairness (La-
hoti et al., 2020). Related research typically falls
into three categories based on the stage at which
fairness is applied: (1) pre-processing: modify
training data and revise sensitive attributes (Kami-
ran and Calders, 2011), generate balanced data,
increase data diversity (Xu et al., 2018), instance
reweighting (Zhang et al., 2020); (2) in-processing:
apply fairness constraints (regularizations) to de-
sign objective functions (Dwork et al., 2012; Zhao
et al., 2021), adversarially learn fair representa-
tions (Beutel et al., 2017); (3) post-processing: use
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active learning to collect feedbacks and correct pre-
dictions (Zaidan et al., 2007). Here we focus on
group fairness with respect to sensitive attributes.

Robustness in ML-based NLP models:
Ribeiro et al. (2020) propose CheckList to identify
critical model failures with diverse types of test
cases; Garg et al. (2019) introduce hard ablation,
blindness, and counterfactual logit pairing to im-
prove counterfactual token fairness. Kaushik et al.
(2020) do counterfactual data augmentmentation to
improve model robustness. Lu et al. (2020) create
gender-balanced dataset to learn embeddings
that mitigate gender stereotypes. Others explore
robust optimization, adversarial training, and
domain adaptation methods to improve model
robustness (Namkoong and Duchi, 2016; Beutel
et al., 2017; Ben-David et al., 2006).

Recent research draws connections between ro-
bustness and causal inference in text. Keith et al.
(2020) and Wood-Doughty et al. (2018) provide
detailed overviews. The works closely related to
this paper include: achieving robustness by lever-
aging human commonsense and counterfactual rea-
soning (Srivastava et al., 2020), adopting active
learning and feedback mechanism to highlight ra-
tionales (Zaidan et al., 2007), automatically gen-
erating counterfactuals with causal words (Wang
and Culotta, 2021), applying causal inference for
feature selection in text classification (Paul, 2017;
Wang and Culotta, 2020), controlling for con-
founders (Landeiro and Culotta, 2018). Additional
works integrate causal inference in text represen-
tation and deep learning, such as causal embed-
ding (Veitch et al., 2020) and causal view on ro-
bustness of neural networks (Zhang and Li, 2020).

Our proposed approach is inherently different
from the aforementioned approaches: (1) We pro-
pose a general regularization approach to achieve
robustness and fairness with causality. While pre-
vious works have shown the ability to improve
model fairness and robustness, most of them only
deal with either fairness (to sensitive attributes) or
robustness (to counterfactual examples); (2) Our
proposed regularization approach is effective (with
high prediction performance), efficient (requires
little human annotation), and explainable (larger
weights for causal features).

3 Problem Definition

Our primary task is given input x, where x is rep-
resented by a sequence of features [x1, x2, ..., xn],

to predict an outcome y. We consider the case of a
classifier f parameterized by w that produces a pre-
diction ŷ = fw(x). The parameters w are learned
during model training by optimizing (minimizing)
the loss denoted by the error between y and ŷ.

To clearly illustrate the problem addressed in
this paper, we first consider the simple approach
of logistic regression classifier fw(x) = 1

1+e−〈x,w〉

(§6.2 discusses applying other complex models).
We estimate the parameters w on labeled data X
and then examine the (partial) correlations between
features and labels by model coefficients (i.e., fea-
ture weights).

The goal is to train a model that performs well
on test set and generalizes well on data from dif-
ferent distributions, so that the model maintains
robustness to counterfactual data as well as fairness
to sensitive attributes (e.g., gender, race).

3.1 Robustness to Counterfactuals

We measure model robustness on counterfactual
samples. If a model is built on spurious correla-
tions, its performance might not drop on a test set
that has the same distribution as the training set,
but the performance will drop sharply on the coun-
terfactual set, which is created by editing samples
from the test set towards a counterfactual label.

Taking text classification as an example, for
a piece of text T , the corresponding counterfac-
tual sample is created by editing T with minimum
changes towards a counterfactual label (Kaushik
et al., 2020). For example, for the positive re-
view “the film directed by Spielberg is incredibly
interesting”, the counterfactual negative review is

“the film directed by Spielberg is incredibly boring”.
If the classifier is built on spurious correlations
such as the correlation between “Spielberg” and
positive sentiment, it is very likely to make wrong
predictions for the counterfactual sentences (e.g.,
negative reviews talking about “Spielberg”), which
makes the classifier suffer from robustness on coun-
terfactual data. However, if the classifier is built on
causal associations such as the association between

“interesting” and positive sentiment or “boring” and
negative sentiment, the model will make right pre-
dictions for the counterfactual sentences and for
datasets that have different distributions.

3.2 Fairness to Sensitive Attributes

Studies have shown that when there are patterns
of previous discrimination and societal bias in the
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training data, the trained model is very likely to in-
herit the bias (Mehrabi et al., 2021; Yapo and Weiss,
2018). In this paper, we study group fairness with
respect to sensitive attributes (e.g., gender, race).
The goal is to train a model that ensures members
of protected groups in the population (e.g., based
on sensitive demographic attributes like gender or
race) receive “fair share of beneficial outcomes”
during model prediction (Hardt et al., 2016).

Taking the law school admission data as an ex-
ample, we want to train a classifier that is fair to
populations of different identity groups defined by
sensitive attributes (e.g., gender, race). If the clas-
sifier is built on features such as test scores for the
admission decision, the model should make fair
predictions for applicants from different identity
groups. However, if the classifier is built on biased
correlations such as using “gender” as a predic-
tive feature for the admission decision, it could
potentially harm end-users who identify with those
groups and cause ethical concerns.

In this work, we study group fairness with the
low-dimensional law school admission data and
it’s possible to extend the proposed approach to
high-dimensional text data with additional text pro-
cessing. For example, in the task of toxicity predic-
tion of online comments, we can first categorize the
comments into different identity groups according
to the sensitive attributes they describe (e.g., race,
sexual orientation), and then improve classifier fair-
ness with respect to the protected groups using our
regularization approach. One big difference be-
tween studying fairness with low-dimensional tabu-
lar data (e.g., law school admission data) and high-
dimensional text data is that for low-dimensional
data, we directly identify the sensitive attributes
as spurious features, but for text data, we need to
identify keywords that are descriptive of sensitive
attributes as spurious features (e.g., “black” and
“white” are reflective of race, “gay” and “straight”
are reflective of sexual orientation). We will take
this as our future work.

4 Methods

To build a model that is robust to counterfactuals
and fair to sensitive attributes, we need to deal with
issues of spurious correlations and biases. Our so-
lution is a two-stage process. We first manually
identify causal and spurious features based on the
criteria motivated by the counterfactual framework
of causal inference. We then propose a regular-

ization approach to build a loss function that adds
small penalties for causal features and large penal-
ties for spurious features. By doing so, the model
is encouraged to rely more on meaningful causal
associations and less on spurious correlations.

4.1 Annotate Causal and Spurious Features

Consider an instance x represented by a sequence
of features [x1, x2, ..., xn] and having the label y.
We identify causal and spurious features by us-
ing the counterfactual framework of causal infer-
ence (Winship and Morgan, 1999): if feature xi
were replaced with some other feature xj , how
likely is it that the label y would change? In this pa-
per, we consider short texts (e.g., single sentences)
and low-dimensional tabular data as the unit of
analysis, and the following criteria is proposed for
this type of data.

A causal feature is a feature xi that causes the
sample x to receive the label y. All else being equal,
one would expect xi to be a determining factor in
assigning y to sample x. On the other hand, a
spurious feature is a feature xi that correlates with
the target class y in a specific dataset, but replacing
it with another feature xj would be unlikely to
change the instance label.

Taking a movie review sentence as an exam-
ple, “the film directed by Spielberg is incredibly
interesting” (pos), “interesting” is a causal feature
that is primarily responsible for the positive senti-
ment and replacing it with another word such as
“boring” will change the sentiment to be negative.
In contrast, “Spielberg” is a spurious feature as it
does not convey positive sentiment nor cause a re-
view to be positive, and replacing it with another
word such as “Kevin” will not change the senti-
ment. Although “Spielberg” might correlate with
positive sentiment due to its high frequency in pos-
itive movie reviews, this statistical correlation does
not imply causality.

With the proposed criteria, we manually annotate
causal and spurious features in §5.2. Table 2 shows
examples of those features identified for sentiment
classification and school admission tasks.

Prior works have explored methods that automat-
ically identify causal and spurious features. For
example, Wu et al. (2021) design Polyjuice as a
general-purpose counterfactual generator that al-
lows for control over multiple perturbation types
and the generated counterfactuals are application
agnostic. Wang and Culotta (2020) propose to fit a
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Causal Spurious

Sentiment Classification
interesting movie
boring story
wonderful Spielberg
inspiring definitely
enjoyed animated

School Admission LSAT Gender
GPA Race

Table 2: Examples of causal and spurious features

classifier for auto-prediction of causal and spurious
features using information such as word embed-
dings and individual treatment effects. Wang and
Culotta (2021) propose a closest opposite match-
ing approach for auto-identification of likely causal
features. While these methods work well in gen-
eral, each has its drawbacks. In this paper, we want
to focus on the regularization effect and isolate
the noises introduced by other procedures, so we
manually annotate causal and spurious features as
ground truth.

4.2 Regularization with Causal and Spurious
Features

Our goal is to train a model that performs well on
test data (that has the same distribution as train-
ing set) as well as maintains robustness to counter-
factuals and fairness to sensitive attributes. Prior
works (Kaushik et al., 2020; Wang and Culotta,
2021) have demonstrated the effectiveness of aug-
menting training data with counterfactuals to im-
prove model robustness. Wang and Culotta (2021)
conducted empirical analysis to compare the dif-
ference between a traditional model and a robust
model, finding that the robust model assigns larger
weights for causal features and smaller weights for
spurious features.

While previous works have explored the effec-
tiveness of adding L2/L1 penalty (regularization)
to prevent over-fitting (Ng, 2004), the penalty is ap-
plied on all features. In this paper, we design a cus-
tomized loss function that adds different penalties
for different types of features (e.g, causal, spurious,
and the remaining). The intuition is that when tun-
ing a classifier, we want it to pay more attention to
causal features (small penalty) and less attention to
spurious features (large penalty). Below we con-
sider three sets of features: causal (C), spurious
(S), and remain (R, i.e., features except for those
labeled as causal or spurious).

Let J be the loss function representing the er-
ror/difference between the truth and prediction. To

add different penalties for causal, spurious, and
remaining features separately, we design the loss
function as:∑

x∈X
J(f(x), y) +

λc
|C|

∑
c∈C

wc
2

+
λs
|S|

∑
s∈S

ws
2

+
λr
|R|

∑
r∈R

wr
2

(1)

where λc, λs, and λr refer to the strength of penalty
for causal, spurious, and remaining features; |C|,
|S|, and |R| refer to the size of corresponding fea-
ture set; wc, ws, and wr refer to the weights of
features from each set.

There are many variations of this loss function.
For example, we can set λc = 0 and λr = 0 to
only penalize spurious features. We can also set
λc = 0 to only penalize non-causal features (i.e., a
combination of spurious and remain features).

The primary advantage of this approach is that
it integrates causal knowledge into model training
and provides the flexibility to penalize and address
the importance of different types of features. By
optimizing the proposed loss function, we seek
to build classifiers that satisfy two desirable prop-
erties: (1) perform well on testing data and (2)
pay more attention to causal features and less to
spurious/non-causal features, which is the key to
make the model robust and fair on data from differ-
ent distributions.

5 Experiments

We conduct experiments with three datasets to
evaluate the effectiveness of the proposed method
from two aspects1: robustness to counterfactu-
als (evaluate on high-dimensional text data from
IMDB movie reviews and Kindle book reviews)
and fairness to sensitive attributes (evaluate on low-
dimensional tabular data of law school admission).

5.1 Data

IMDB movie reviews: This dataset is collected
and published by Kaushik et al. (2020). They first
randomly sampled 2.5K reviews with balanced
class distributions from the original large IMDB
movie reviews dataset (Pang and Lee, 2005) and
then instruct Amazon Mechanical Turk workers to

1Code and data available at: https://github.com/
tapilab/emnlp-2021-regularization

https://github.com/tapilab/emnlp-2021-regularization
https://github.com/tapilab/emnlp-2021-regularization
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edit each review with minimum changes towards a
counterfactual label. In the final dataset, every re-
view gets a corresponding counterfactual text. We
apply the data splitting criteria from the paper and
the train/validation/test sets contain 1,707/245/488
samples. The counterfactual test set is created by
counterfactually editing samples from the test set.

Kindle book reviews: This dataset2 contains
book reviews from the Amazon Kindle store (He
and McAuley, 2016) and each review is labeled
as positive or negative based on its rating (rat-
ings {4,5} as positive and ratings {1,2} as neg-
ative). To reduce noisy samples, we limit the re-
views to those contain 5 to 40 words and the final
dataset is split into train/validation/test sets con-
taining 7,500/2,500/500 samples. For the 500 test
samples, we manually edit each sample with mini-
mum changes towards a counterfactual label (i.e.,
the same criteria used in (Kaushik et al., 2020) to
edit counterfactuals for IMDB reviews above).

Law school admission data: This dataset con-
tains admission data of 25 US law schools over
2005-20073. Each sample is an admission record
for a student and is represented by seven features:
LSAT, GPA, resident, admission year, gender, race,
URM (under-represented minority), with a binary
label indicating the admission status. The dataset is
split into train/validation/test sets containing 50%,
20%, and 30% samples.

For the IMDB and Kindle datasets, each sample
x is a piece of text, represented by a binary, bag-of-
words representation x = [x1, x2, ..., xv], where
v is the vocabulary size and xi is a binary value
indicating the appearance of a word in the text.
Compared with the high-dimensional text data, the
law school admission data is low-dimension with
each sample represented by seven numerical or
categorical features. We process this dataset by
first applying one-hot encoding for categorical fea-
tures and then normalizing numerical features into
range 0-1. In the experiments below, we show
that our method works well on both high- and low-
dimensional data.

5.2 Causal and Spurious Features

With the criteria proposed in 4.1, we ask two
student annotators to manually label causal and
spurious features from each dataset. Specifically,

2https://jmcauley.ucsd.edu/data/
amazon/

3http://www.seaphe.org/databases.php

IMDB Kindle Admission
#Instances 2.5k 10.5k 65.3k
#Features 2,388 2,041 7
#Causal(top) 65 76 2
#Spurious(top) 166 118 1
#Causal(vocabulary) 362 293 2

Table 3: Data summary

for each dataset, we first train an initial classi-
fier and extract top coefficient features (e.g. co-
efficient magnitude > 1). For example, for logis-
tic regression model, we would extract features
with high magnitude coefficients. For more com-
plex models, other transparency algorithms may be
used (Martens and Provost, 2014).

For the IMDB and Kindle datasets, the anno-
tators identified two sets of causal and spurious
features: the first set is annotated from the top co-
efficient features and the second set is annotated
from the whole vocabulary (the first set is a subset
of the second set). While there is some subjectivity
during annotation, we did a round of training to
resolve disagreements prior to annotation and the
final agreement was generally high for the exper-
imental datasets (on average 96% raw agreement
by fraction of labels that agree).

For the law school admission dataset, there are
only seven features and the annotators directly iden-
tify “LSAT” and “GPA” as causal features and

“gender” as a spurious feature (i.e., sensitive at-
tribute). There are other spurious features such as

“race” and “URM”, but for this paper, we only focus
on model fairness with respect to gender (to have a
direct comparison with previous work), so we iden-
tify “gender” as a spurious feature and take other
potential spurious features as “remaining” features.

Table 3 summarizes the number of identified
causal and spurious features for each dataset.

5.3 Experimental Settings

Among the numerous works focused on improv-
ing model robustness to counterfactuals, the ones
most closely related to ours include: augmenting
training data with counterfactuals to train a robust
classifier (Kaushik et al., 2020; Wang and Culotta,
2021); a logit pairing strategy to penalize the norm
of difference in logits of training examples and
their counterfactuals (Garg et al., 2019); causal
inference for feature selection (Paul, 2017); a fea-
ture selection strategy to remove spurious features
and improve model robustness with respect to the
worst-case accuracy (Wang and Culotta, 2020).

https://jmcauley.ucsd.edu/data/amazon/
https://jmcauley.ucsd.edu/data/amazon/
http://www.seaphe.org/databases.php
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IMDB Kindle
Method Test CTF Test CTF
Feature selection 0.835 ± 0.005 0.633 ± 0.012 0.850 ± 0.002 0.510 ± 0.017
Data augmentation 0.818 0.869 0.752 0.720
L2 with BOW 0.845 ± 0.005 0.567 ± 0.009 0.853 ± 0.027 0.412 ± 0.048
L2 with Glove 0.824 ± 0.002 0.619 ± 0.006 0.820 ± 0.004 0.553 ± 0.027
Regularization (top) λc, λs, λr λc, λs, λr

causal+spurious (0,10,0) 0.836 ± 0.006 0.632 ± 0.005 (0,10,0) 0.857 ± 0.007 0.545 ± 0.013
causal+non-causal (0,100,100) 0.821 ± 0.011 0.658 ± 0.01 (0,10,10) 0.843 ± 0.003 0.557 ± 0.003
causal+spurious+remain (0,100,0.1) 0.841 ± 0.007 0.635 ± 0.006 (0,100,1) 0.847 ± 0.003 0.571 ± 0.008
Regularization (vocab)
causal+spurious (0,10,0) 0.838 ± 0.004 0.634 ± 0.007 (0,100,0) 0.857 ± 0.003 0.545 ± 0.01
causal+non-causal (0,100,100) 0.843 ± 0.005 0.700 ± 0.007 (0,10,10) 0.855 ± 0.005 0.641 ± 0.006
causal+spurious+remain (0.01,100,100) 0.840 ± 0.004 0.697 ± 0.008 (0.001,1,10) 0.848 ± 0.006 0.636 ± 0.003

Table 4: Robustness evaluation for tuned classifiers. Accuracy reported for test and Counterfactual (CTF) data
from IMDB and Kindle dataset. Results in 1st section are baseline and state-of-the-art methods, 2nd section
shows regularization approach using causal features identified from top coefficient terms and 3rd section shows
regularization approach using causal features identified from the whole vocabulary.

We compare our proposed regularization ap-
proach with the representative and state-of-the-art
prior works:

• Feature Selection (Wang and Culotta, 2020):
we explore whether directly removing spurious
features is more effective than penalizing spuri-
ous features with regularization approach.

• Data Augmentation (Wang and Culotta, 2021):
Augmenting original training data with corre-
sponding counterfactual data (either automat-
ically generated or manually edited). This
method combines counterfactuals as part of the
training data and changes data distribution and
data size. It usually requires significant human
efforts to generate/edit counterfactuals.

For our proposed regularization approach, we
experiment with the LogisticRegression classifier
and explore the following settings:

• L2-regularization: as representative of the tra-
ditional regularization approach.

• Feature representation for text: we explore
Bag-Of-Words (BOW) and pre-trained Glove
embedding (Pennington et al., 2014) representa-
tions to check whether complex representations
help improve robustness.

• The number of causal and spurious features:
we experiment with two sets of causal and spu-
rious features: (a) a small set identified from
top coefficient features and (b) a full set identi-
fied from the whole vocabulary. The goal is to
check whether providing more causal features
improves model robustness.

Hyper-parameter tuning: we use Bina-
ryCrossEntropy as the basic loss function in all

models and implement the regularization approach
by customizing the loss function with penalties
for causal, spurious, and remaining features as
discussed in §4.2. The penalty strengths (i.e.,
λc, λs, λr) are explored in the range [0, 0.0001,
0.001, 0.01, 0.1, 1, 10, 100, 1000] with the con-
straint that ls ≥ lr > lc. We use Adam optimizer
and set the initial learning rate to 0.001, and adjust
the learning rate according to different λ values
to avoid overshooting. We use early stopping cri-
teria on validation data to determine the epoch to
stop tuning (i.e., stop tuning if the validation loss
hasn’t decreased for 10 epochs). Among all the
tuned models, we select the best model based on its
performance on the counterfactual validation data.

After selecting the best model, we evaluate its
performance on the test set and counterfactual set.
We repeat the training process 10 times with differ-
ent random seeds and report the model performance
and corresponding hyper-parameter settings in Ta-
ble 4. All experiments are conducted on a 64-bit
machine with Nvidia GPU (Tesla V100, 1246MHz,
16 GB memory).

5.4 Robustness Evaluation

We evaluate model robustness on the counterfactual
texts from IMDB and Kindle datasets. We train
different models by optimizing the customized loss
functions suggested in §4.2 and evaluate model
performance on the test set and counterfactual set.
The best model parameter setting and performance
is reported in Table 4.

Results show that: (1) our proposed regulariza-
tion approach outperforms feature selection on the
counterfactual test set without sacrificing perfor-
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mance on the test set; data augmentation outper-
forms our regularization approach on the counter-
factual set but sacrifices performance on the test
set, which is expected because data augmentation
approach increased training data size and changed
training data distribution. And data augmentation
usually requires more human efforts than our reg-
ularization approach. (2) separately penalizing
causal, spurious, and remaining features is more
effective than L2 regularization in terms of model
robustness on counterfactual set. The best perfor-
mance is achieved by assigning no/small penalty
for causal features and large penalties for spuri-
ous and remaining features; (3) the more causal
features provided, the better robustness on coun-
terfactual set. For IMDB, the best model gives 9%
improvement with top causal features and 13.3%
with all causal features. For Kindle, the best model
gives 15.9% improvement with top causal features
and 22.9% with all causal features; (4) complex
text representation (e.g., embedding) has limited
improvements on model robustness.

Note that the results and parameter settings in
Table 4 are based on the exploration of penalty
strengths (i.e.,λc, λs, λr) in the range of [0, 0.0001,
0.001, 0.01, 0.1, 1, 10, 100, 1000]. The best pa-
rameter settings might change for different datasets
and larger search space. According to our explo-
ration about the effect of hyperparameter λ on
model performance in §6.1, we recommend to
set λc <= 0.01, λs >= 1, and λr >= 1 for exper-
iments on new datasets that don’t have counterfac-
tual validation set to decide the best hyperparam-
eter setting. As a reference, when we fix λc = 0,
λs = 100, and λr = 10 for all datasets, the accu-
racy is within 97% of the best found setting.

We also show the percentage of causal features
among top-n large coefficient features of each
model in Fig 1. Top features are features that are
most important and predictive of the classes, and a
high percentage of causal features means that the
model relies more on causal features and less on
others. We can see that models tuned from our
proposed loss functions have much higher percent-
age of causal features compared with the baselines
(L2 and feature selection). The model that only
considers causal and spurious features has a rel-
ative lower percentage compared with the other
two models that consider causal, spurious, and re-
maining features. Taking the model that separately
penalizes causal and non-causal features for an ex-
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Figure 1: Percentage of causal features among the top-
n features of each model. The three models tuned with
penalties for causal, spurious, and remain features refer
to the models shown in the last three lines in Table 4
(best viewed with color).

ample (IMDB), all features in the top-10 and top-30
are causal features, and about 93% of top-50 and
70% of top-100 are causal features. The difference
is even bigger for the Kindle dataset. However,
for the baseline models, the percentage is much
lower. The high percentage of causal features indi-
cates that our regularization approach successfully
makes the model rely more on causal features.

5.5 Fairness Evaluation

We experiment with law school admission dataset
and ask the question:“does a model trained on this
dataset makes fair admission predictions for fe-
male and male students?” We apply the same base-
line and training procedure described in §5.4 with

“LSAT” and “GPA” as causal features and “gender”
as spurious feature (i.e., sensitive attribute). Fol-
lowing existing work on fairness evaluation (Zhao
et al., 2021), we adopt two widely used evaluation
metrics, equal opportunity and demographic parity.

Equal opportunity evaluates whether a clas-
sifier gives similar results for different sensitive
groups in the positive class (Verma and Rubin,
2018; Hardt et al., 2016; Yan et al., 2020). We
calculate equal opportunity difference ∆EO to mea-
sure whether a classifier is fair for gender attribute:

∆EO = |Pr{ŷ = 1|S = i, y = 1}
−Pr{ŷ = 1|S = j, y = 1}|

(2)

where S is sensitive attribute, i and j are sensitive
attribute values defined by S (e.g, male and female
defined by gender), and y is the truth label.

In our experiment with law school admission
data, if a model is fair, then the probability of an
applicant being predicted to be admitted (ŷ = 1)
should be the same for both male (S = i) and
female (S = j) applicants that are actually being
admitted (y = 1).
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Penalty λc, λs, λr accuracy f1 ∆EO ∆DP

L2 (baseline) N/A 0.796 ± 0.001 0.650 ± 0.012 0.102 ± 0.003 0.028 ± 0.001
causal+spurious (0.0001,10,0) 0.795 ± 0.003 0.654 ± 0.011 0.023 ± 0.005 0.007 ± 0.001
causal + non-causal (0.0001,0.001,0.001) 0.796 ± 0.001 0.655 ± 0.012 0.100 ± 0.006 0.027 ± 0.001
causal+spurious+remain (0.0001,0.1,0.01) 0.794 ± 0.003 0.646 ± 0.01 0.028 ± 0.005 0.004 ± 0.002
FairRF (Zhao et al., 2021) N/A 0.796 ± 0.002 N/A 0.023 ± 0.008 0.007 ± 0.004

Table 5: Tuned classifier performance on law school admission test set and fairness evaluation
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Figure 2: Model performance change with lambda
(IMDB) (best viewed with color).

Demographic Parity measures non- discrimina-
tive performance of a classifier. We calculate demo-
graphic parity difference ∆DP to check whether a
classifier is fair for different sensitive groups:

∆DP = Pr{ŷ = 1|S = i}
−Pr{ŷ = 1|S = j}

(3)

We report the evaluation results from the best
model and corresponding model parameters in Ta-
ble 5. Results show that: (1) the model trained
with our regularization approach is more fair with
respect to the gender attribute and has comparable
performance with previous work using complex
models (Zhao et al., 2021); (2) model fairness is
achieved by assigning small/no penalties for causal
features and large penalties for non-causal features,
which is similar as achieving robustness.

6 Discussion

6.1 The Effect of Hyperparameter λ
To understand the effect of λc, λs, and λr on model
performance, we conduct experiments to first ini-
tialize λ to 0, and then change the value of each λ
(Fig 2). We observe that: (1) model performance
on test set is relatively stable with different λ pa-
rameters; (2) model performance on counterfactual
set is mainly affected by λc. By increasing λc,
we assign larger penalty on causal features and
the model performance drops. In contrast, by in-
creasing λs, we assign larger penalty on spurious
features and the model performance increases. Pe-
nalizing causal features affects model performance

more than penalizing spurious features, and penal-
izing remaining features has the least effect.

6.2 Extension in Deep Learning Framework
In the experiments, we use LogisticRegression as
our basic classifier because it’s intuitive to explain
feature weights and penalties. But our main idea is
to integrate causality in model training by adding
small penalties to causal features and large penal-
ties to non-causal features, and the loss function is
not limited to any specific model, so we do think
that our approach can be extended to more complex
models. For example, possible ways to apply the
idea to LSTM classifiers include: (1) assign differ-
ent attentions for causal, spurious, and remaining
features in the input; (2) specify different probabil-
ities to mask out or drop out spurious and causal
feature. We leave this part as our future work.

7 Conclusions

In this paper, we have introduced the idea of inte-
grating causal knowledge through a regularization
approach. We implement this by first identifying
causal and spurious features and then assigning
different penalties for causal and non-causal fea-
tures in the loss function. The resulting model as-
signs larger weights for causal features and smaller
weights for spurious features. Experiments have
demonstrated that the tuned model is effective to
improve robustness and fairness and it works well
for both low- and high- dimensional data. The
proposed idea is simple to implement, intuitive to
explain, has the potential to be easily deployed to
other frameworks and various tasks on model ro-
bustness and fairness. For future works, we will
design automatic methods to identify causal and
spurious features and extend the regularization ap-
proach to complex deep learning frameworks.
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