@inproceedings{wang-etal-2021-ji-yu-feng,
title = "基于风格化嵌入的中文文本风格迁移({C}hinese text style transfer based on stylized embedding)",
author = "Wang, Chenguang and
Lin, Hongfei and
Yang, Liang",
editor = "Li, Sheng and
Sun, Maosong and
Liu, Yang and
Wu, Hua and
Liu, Kang and
Che, Wanxiang and
He, Shizhu and
Rao, Gaoqi",
booktitle = "Proceedings of the 20th Chinese National Conference on Computational Linguistics",
month = aug,
year = "2021",
address = "Huhhot, China",
publisher = "Chinese Information Processing Society of China",
url = "https://preview.aclanthology.org/jlcl-multiple-ingestion/2021.ccl-1.26/",
pages = "269--279",
language = "zho",
abstract = "对话风格能够反映对话者的属性,例如情感、性别和教育背景等。在对话系统中,通过理解用户的对话风格,能够更好地对用户进行建模。同样的,面对不同背景的用户,对话机器人也应该使用不同的语言风格与之交流。语言表达风格是文本的内在属性,然而现有的大多数文本风格迁移研究,集中在英文领域,在中文领域则研究较少。本文构建了三个可用于中文文本风格迁移研究的数据集,并将多种已有的文本风格迁移方法应用于该数据集。同时,本文提出了基于DeepStyle算法与Transformer的风格迁移模型,通过预训练可以获得不同风格的隐层向量表示。并基于Transformer构建生成端模型,在解码阶段,通过重建源文本的方式,保留生成文本的内容信息,并且引入对立风格的嵌入表示,使得模型能够生成不同风格的文本。实验结果表明,本文提出的模型在构建的中文数据集上均优于现有模型。"
}