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Abstract

Adversarial attacks curated against NLP mod-
els are increasingly becoming practical threats.
Although various methods have been devel-
oped to detect adversarial attacks, securing
learning-based NLP systems in practice would
require more than identifying and evading per-
turbed instances. To address these issues,
we propose a new set of adversary identifi-
cation tasks, Attacker Attribute Classification
via Textual Analysis (AACTA), that attempts
to obtain more detailed information about the
attackers from adversarial texts. Specifically,
given a piece of adversarial text, we hope to
accomplish tasks such as localizing perturbed
tokens, identifying the attacker’s access level
to the target model, determining the evasion
mechanism imposed, and specifying the per-
turbation type employed by the attacking al-
gorithm. Our contributions are as follows:
we formalize the task of classifying attacker
attributes, and create a benchmark on vari-
ous target models from sentiment classifica-
tion and abuse detection domains. We show
that signals from BERT models and target
models can be used to train classifiers that re-
veal the properties of the attacking algorithms.
We demonstrate that adversarial attacks leave
interpretable traces in the feature space of
both of pre-trained language models and target
models, making AACTA a promising direction
towards more trustworthy NLP systems.

1 Introduction

Accompanying the success of deep learning in Nat-
ural Language Processing, there has been a preva-
lence of adversarial attacks in text. Attackers mod-
ify input sequences to NLP models such as text
classifiers and machine translation models slightly
so that the prediction of the target model will de-
viate from its original output (Zhang et al., 2020).
These attacks are known to be generalizable across
models (Yuan et al., 2021), and can hurt the perfor-
mance of NLP models that are used in real-world

Figure 1: Illustration of AACTA compared to attack
detection.

tasks, such as commercial sentiment classification
APIs (Garg and Ramakrishnan, 2020) and Google
Translate (Wallace et al., 2020).

To address the potential threat of adversarial at-
tacks in text, various defense methods have been
proposed, such as training classifiers to determine
whether a piece of text is perturbed by potential
attackers (Zhou et al., 2019) and hiding the gradi-
ent of the model via prediction poisoning (Wallace
et al., 2020; Orekondy et al., 2019). However, it
is easier to defend against a threat when we know
more about the attacker. For example, commer-
cial model owners may need to take actions if the
attackers have access to protected model weights.
Similarly, model users may want to receive alerts
when the system is attacked by elaborate attackers
that employ language models with GPU resources.
As an attempt to address this issue, previous work
has shown that fine-grained analysis of adversarial
images can reveal information about the attackers,
such as the target labels of the attacks on image clas-
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sifiers (Pang et al., 2020a). However, this method
requires access to all queries from the attacker and
a known target model.

In this work, we take the next step to-
wards understanding attackers through a task we
call Attacker Attribute Classification via Textual
Analysis (AACTA). AACTA includes a number of
subtasks, including (1) attacker access level estima-
tion, to determine what level of access the attacker
has to the model being attacked; (2) perturbation
type analysis, to determine the type of perturbation
imposed by the attackers; (3) evasion mechanism
determination, to determine whether the attackers
used any constraints on generating imperceptible
perturbations; and (4) attack localization, to deter-
mine which words or characters were changed.

To achieve these identification tasks, we ex-
ploit the fact that adversarial examples must make
changes to the input text and thus the feature space
of the target model. We draw signals from these
traces as inputs to our classifiers, and formulate
the task above as a series of classification sub-
tasks. We conduct classification and localization
over adversarial examples generated against multi-
ple target text classifiers from various datasets. For
classification sub-tasks, our method yields 74% ac-
curacy on determining whether the access level of
the attack is black-box or white-box, 75% accuracy
on determining whether the attacking algorithm’s
perturbation type is word or character-level, and
78% accuracy on inferring whether the attackers
attempt to construct evasion method by imposing
linguistic constraints during attack construction.
For attack localization, our model achieved 0.74
class-averaged f1 on flagging perturbed tokens1.

2 Attacker Attribute Classification

2.1 Problem Statement

Consider an input space X and an NLP model
parameterized by θ that maps the input space to an
output space, i.e. fθ(X)→ Y . We refer to models
under adversarial attacks as target models. The
attacker’s goal is to modify the output of the target
model by making minor modifications to the input.
For a given input x ∈ X , we define adversarial
perturbations as samples xadv that are close to x
but with a different output from the target model:

{∆(x, xadv) ≤ r, fθ(x) 6= fθ(xadv)}
1Accuracy and f1 scores reported above are averaged

scores across datasets.

Note that there can be various definitions of “close-
ness”, corresponding to different distance met-
rics ∆. An adversarial attack g : X → X maps
each input to an adversarial perturbation or to it-
self if no valid perturbation is found. Different
attacking algorithms may use different constraints
for “closeness” and different searching methods for
generating perturbations.

In the context of AACTA, we aim to step be-
yond flagging adversarial samples from unper-
turbed texts. Specifically, we formulate AACTA
as a series of classification and localization sub-
tasks. For classification tasks, our goal is to in-
fer whether the adversarial algorithm used to con-
struct a sample xadv belongs to a set of functions
Aproperty, where property is a human-interpretable
characteristic that is informative about the attack-
ers. We accomplish this objective by training a
classifier h(Xadv) → yproperty. For attack local-
ization, the goal is to determine how the adversarial
instance xadv relates to the unseen source exam-
ple x, namely, which token(s) in the sequence are
modified by the attackers.

2.2 Classification Tasks

To perform sequence-level classification, we train
logistic regression classifiers over two types of rep-
resentations: a standard BERT sentence representa-
tion and a new target model representation, consist-
ing of the layer-wise mean and variance of the node
activations in each layer of the model. We show
that the latter representation performs significantly
better than the BERT representation in classifying
the following properties:

1. Target Model Access Level: In this setup, the
attacks are partitioned by the level of access to
the target model (e.g. model weights and predic-
tion probabilities). We formulate this sub-task
as black-box vs. white-box classification. We
consider an attack black-box if the attacker does
not have any information about the target model;
otherwise we consider the attack white-box. In
some setups, adversarial attacks that require pre-
dicted probabilities of target models are con-
sidered grey-box attacks. Here we treat these
attacks as white-box to ensure a wide enough
range of attack algorithms populate both classes.

2. Perturbation Type: In this setup, we partition
the attacks by perturbation type. This could
include the level of perturbations (character or
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Figure 2: LIME explanation for a sentence-level classi-
fier. The importance scores for the tokens could be used
to localize perturbed tokens (see Algorithm 1). The lo-
calization algorithm does not fully depend on the clas-
sifier’s ability to make correct predictions.

word level), or more fine-grained classes of ad-
versarial edits such as in-word shuffling, intrude,
and character deletion (Eger and Benz, 2020).
In our experiments, we separate attacks into two
groups: word-level and character-level perturba-
tions. The attacks are recognized as character-
level attacks if the attacks impose perturbations
on both character and token levels.

3. Evasion Mechanism: In this setup, the attacks
are partitioned by the constraints used by attack-
ers in order to generate more indistinguishable
attacks. Such constraints could be making visu-
ally imperceptible (Eger et al., 2019) and gram-
matically coherent (Zhao et al., 2018) adversar-
ial attacks, or simply constraining the number of
perturbations allowed per sentence.

In our experiment, we label the adversarial in-
stances by whether the attackers impose linguis-
tic constraints on ensuring the coherency of per-
turbed sentences. For example, such constraints
could involve language models on word or sen-
tence level, distance metrics in word embedding
space, and other constraints such as sememe.
Upon training and evaluating our detection clas-
sifiers, adversarial attacks that impose any of
the linguistic constraints are treated as one class,
and attacks that do not consider coherency of
perturbed sentences are treated as the other class.

2.3 Attack Localization

For attack localization, we incorporate signals from
a target model and an external language model with
two different approaches.

For classifiers using an external language model
signal, we first obtain contextualized word em-
beddings for each token in a sequence, and then
train a binary perturbed-vs-clean token-level logis-

1: Input: Binary sequence classifier f , Interpretation
framework LIME, Decision threshold ε ∈ [0, 1],
Perturbed sequence xadv

2: TokenScore← GetImportance(f ,xadv, LIME)
3: Sort tokens by their importance score
4: i← 0
5: for ;, i < NumTokens, i++ do
6: if ImportanceOf(i) ≤ ImportanceOf(i-1)×ε then
7: break
8: end if
9: end for

10: PerturbedTokens = SortedTokens[:i]
11: return PerturbedTokens

Algorithm 1: Algorithm for Locating Perturbed Token
with Binary Adversarial-or-Not Classifier

tic regression classifier to determine if a token is
perturbed or not. As BERT contextualized repre-
sentation works on sub-word level, the detector
model using BERT representation as input makes
predictions on sub-word level as well. To evaluate
BERT-based localizers in a more realistic setup, we
applied a hierarchical tokenization scheme at infer-
ence time. Specifically, for each space-separated
token in a potentially perturbed sequence, we flag
the token as malicious if our binary classifier de-
tects any of the subwords contained in the token to
be perturbed.

Since the target model activation signal is ob-
tained with respect to the whole sequence, there is
no way to directly train an activation-based classi-
fier that makes token-level predictions. Thus, we
cast attack localization as interpreting a sequence
level classifier, i.e. identifying tokens that are im-
portant to the classifier’s decision that some sen-
tence is adversarial. Specifically, we train a bi-
nary sequence-level clean-vs-perturbed classifier
that aims at flagging perturbed sentences, then we
apply LIME (Ribeiro et al., 2016) to obtain an im-
portance score for each token with respect to the
adversarial class. The exact heuristic used to iden-
tify perturbed token(s) with LIME is described in
Algorithm 1. When obtaining token importance
via LIME, we always consider important tokens
that skew the detection model’s prediction to the
adversarial class. Thus, the localization algorithm
could identify perturbed tokens even when the de-
tection model makes an inaccurate prediction on
the sequence level. Meanwhile, such an interpre-
tation approach could be applied to any general
binary-sequence-level classifier.
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Acc. Lvl Evasion Mec. Perturb. Type

BAE bb yes word
DeepWordBug bb no char
FasterGenetic bb yes word
Genetic bb yes word
Hotflip wb yes char
IgaWang bb yes word
Pruthi bb no word
Pso bb yes word
Textbugger wb yes word
Textfooler bb yes word
Viper bb no char

Table 1: Adversarial attacks included. From left
to right: access level (black-box vs. white-box, de-
noted by bb/wb in the table), evasion mechanism
(with/without linguistic constrains), and perturbation
type (word vs. character-level).

3 Experiment Setup

Datasets We generate adversarial text instances
against the target models with open-source adver-
sarial evaluation codebases, OpenAttack (Zeng
et al., 2020) and TextAttack (Morris et al.,
2020). The incorporated attacks are DeepWord-
Bug (Gao et al., 2018), FasterGenetic (Jia et al.,
2019), Genetic (Alzantot et al., 2018), Hot-
Flip (Ebrahimi et al., 2018), IGA (Wang et al.,
2019), Pruthi (Pruthi et al., 2019), PSO (Zang et al.,
2020), TextBugger (Li et al., 2018), TextFooler (Jin
et al., 2019), and Viper (Eger et al., 2019). Table 1
details the attack partitioning.

Target Models The adversarial samples are con-
structed against BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019) and XLNet models
(Yang et al., 2019) over two tasks: abuse detec-
tion and sentiment classification. For abuse de-
tection, the models are trained on Hatebase, Civil
Comments2, and Wikipedia (Wulczyn et al., 2017;
Dixon et al., 2018) datasets; for sentiment analysis,
the models are trained on SST (Socher et al., 2013)
and Twitter Climate Change Sentiment3 datasets.

Evaluation Metrics We evaluate our localizers
on f1 scores, and all classification models (includ-
ing classification models trained for BERT local-
izers) by class-balanced accuracy scores. For lo-
calizers specifically, all predictions are truncated
to space-separated token level (as described in Sec-

2https://www.kaggle.com/c/jigsaw-
unintended-bias-in-toxicity-
classification

3https://www.kaggle.com/edqian/
twitter-climate-change-sentiment-dataset

tion 2.3).

Hyper-parameters For the LIME-based local-
izer, we set the decision threshold ε to 0.1 for all
experiments (see Algorithm 1). For all classifi-
cation tasks, we train logistic regression models
with standard scaled data, and tune the model’s
hyper-parameters using grid search with 3-fold
cross-validation.

4 Localization Results

We cover empirical and qualitative results of our
localization models in this section, and provide
case studies of localized adversarial instances by
both BERT and LIME-based localizers.

4.1 Empirical Performance

In our localization experiments, both types of local-
izers using BERT contextualized embeddings and
target model activations outperform the random
baseline significantly. Namely, our BERT-based
and LIME-based localizers achieve 74% and 63%
class-balanced f1-score on localizing perturbed to-
kens, while the random baseline is 53%. This
shows that information of perturbed tokens could
be retrieved from either external language models
and target models. Meanwhile, although LIME-
based localizers have a lower general f1 score than
BERT-based localizers, LIME localizers achieve
better accuracy at identifying the perturbed to-
kens. This is because the optimization objective of
sequence-level classifiers only requires the model
to identify at least one of the perturbed tokens in a
sequence. Consequently, the classifier tends to give
accurate but conservative decisions when flagging
perturbed tokens. On the other hand, BERT-based
localizer is directly trained on binary classification
and thus has better-balanced performance.

For LIME-based localizers specifically, the per-
formance trade-off between clean and adversar-
ial classes of the inference process could be ad-
justed by tuning the threshold hyper-parameter as
described in the previous section. For our experi-
ment, all localizers were set to conduct inference
with a threshold of 0.1.

4.2 Qualitative Analysis

BERT-based Localizer In practice, BERT-
based localizers tend to flag regions of perturbed
text instead of individual tokens, potentially due to
the usage of contextualized embeddings as input.

https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/edqian/twitter-climate-change-sentiment-dataset
https://www.kaggle.com/edqian/twitter-climate-change-sentiment-dataset
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Original Texts Perturbed Texts Bert Localizer Outputs Actv Localizer Outputs

1 Vile and tacky are the two
best adjectives to describe
Ghost Ship .

Hateful and dorky are the
two best adjectives to de-
scribe ghost ship.

Hateful and dorky are the
two best adjectives to de-
scribe ghost ship.

Hateful and dorky are the
two best adjectives to de-
scribe ghost ship.

2 Its gorg out! RT
@@anggxo: This
bitch thinks its june
or something @BriiiXO
http://t.co/mFVCmym

Its gorg outside! Ti @@
anggxo : this blackguard
thinks its june or something
@ briiixo http :// t. Co /
mfvcmym

Its gorg outside! Ti @@
anggxo : this blackguard
thinks its june or something
@ briiixo http :// t. Co /
mfvcmym

Its gorg outside! Ti @@
anggxo : this blackguard
thinks its june or something
@ briiixo http :// t. Co /
mfvcmym

3 It ’s difficult to say whether
The Tuxedo is more boring
or embarrassing – I ’m pre-
pared to call it a draw .

Iẗ ’ŝ diffîcul, ẗ to sây whetheř
Ťhê Ťǔxeḑô îs moře borîng
or embârrâsŝîňg – I ’ḿ
prêṕ’ařêḑ tô cal,l, iẗ a dřâw .

Iẗ ’ŝ diffîcul, ẗ to sây whetheř
Ťhê Ťǔxeḑô îs moře borîng
or embârrâsŝîňg – I ’ḿ
prêṕ’ařêḑ tô cal,l, iẗ a dřâw .

Iẗ ’ŝ diffîcul, ẗ to sây whetheř
Ťhê Ťǔxeḑô îs moře borîng
or embârrâsŝîňg – I ’ḿ
prêṕ’ařêḑ tô cal,l, iẗ a dřâw .

4 Wake up bitches Following up fairies Following up fairies Following up fairies

Table 2: Selected examples of localizer predictions. Dark red denotes perturbed or correctly flagged tokens, blue
denotes false negative predictions, and green denotes false positive predictions.

Figure 3: Average adversarial class f1 score over all
datasets and target model combinations. Leftmost bars
colored in blue denotes performance of a random token-
level classifier.

For example (Table 2: instance 1), BERT local-
izer identified "Hateful and dorky" as consecutive
perturbed tokens, although the word "and" is not
perturbed. Similarly, in the perturbed phrase "Iẗ

’ŝ diffîcul, ẗ to sây" in instance 3, BERT localizer
flagged the word "to" as perturbed.

On the other hand, the auto-correction scheme
utilized by the off-the-shelf BERT tokenizer some-
times hinders the performance of the localizer. For
example, BERT tokenizer will convert the visu-
ally attacked token "îs" to the regular token "is";
this makes it challenging for the BERT-embedding-
based classifier to pick up such perturbed tokens.

In general, BERT-based localizers tend to give
more aggressive predictions regarding perturbed to-
kens, thus yielding more false positives, as demon-
strated in instance 1. However, the localizer strug-
gles for instances where the original text contains
many low-frequency tokens. For example, in in-
stance 2, the only correctly identified perturbed

token is a character level perturbation on the word
"blackguard." Perturbations on user ids and URLs
are all overlooked.

LIME-based Localizer In contrast to the BERT-
based localizer, the activation-based localizer
achieves higher accuracy detecting perturbed to-
kens, as demonstrated empirically in Section 4.1.
For example, in instance 1 of Table 2, the activation-
based localizer did not yield false-positive labels on
the phrase "Hateful and dorky." However, the more
conservative decision made by the LIME-based
localizer makes it more likely to miss perturbed to-
kens. In instance 4, the localizer failed to recognize
"fairies" as a perturbed token.

For both localizers, conducting classification on
noisy inputs becomes a challenging task. Instance 2
in Table 2 shows an example where the input text
contains user ids and hyperlinks. In this case, both
localizers struggle to identify the perturbed tokens,
while BERT-based localizers have the least accu-
rate predictions. This may be explained by the
failure of the pre-trained language model to cap-
ture the text properties corresponding to specific
datasets, while target models are adapted to each
of the datasets during training. We provide further
discussion on this phenomena in Section 6.2.

5 Attack Attribute Classification

We evaluate the performance of our classification
task by class-balanced accuracy scores. The results
for classification tasks are shown in Figure 4 and
Figure 5. For almost all target models and datasets,
classifiers using target model activation as input
signals consistently outperform classifiers using
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Figure 4: Accuracy score of each of the three classification task over all datasets. Blue bars denotes performance
of BERT representation, orange bars denotes performance with target model activation. The three property being
detected are access level, evasion mechanism and perturbation type.

Figure 5: Average accuracy for different tasks across
all datasets and target model combinations. The
blue and orange bars denote BERT and activation-
representation performance, respectively.

BERT sentence representations.

Target Model Access Level On determining
whether an adversarial attack is constructed with
access to the target model, target model internal
activation representations outperform BERT repre-
sentations the most among the three tasks, demon-
strating white and black box attacks will form dif-
ferent distributions in the representation space of
target models. Interestingly, target model represen-
tation as a proxy to separate black and white-box
attacks consistently achieve better performance in
sentiment classification tasks (datasets) than abuse
detection datasets.

Perturbation Type In classifying whether the at-
tack algorithm operates on word or character-level,
BERT and target model representation has the least
significant performance gap among the three tasks.
This shows pre-trained language models and tar-
get models capture information on the token level
of perturbed texts to a similar extent. However,
activation-based localizer still outperforms BERT-
based localizer in all experiment setups, which

wikipedia sst hatebase climate. civil.

civil. 57.4 59.0 54.1 58.5 na
climate. 57.2 57.6 55.3 na 60.1
hatebase 59.7 57.7 na 58.1 56.7
sst 58.4 na 55.1 62.5 60.6
wikipedia na 58.2 61.0 59.8 62.8

Table 3: Averaged out-of-domain (dataset) generaliza-
tion detection accuracy scores across all models for
BERT-based classifiers.

could be explained by the phenomenon where gen-
eral pre-trained language models fail to capture the
nuances of specific datasets, as described in the
previous section.

Evasion Mechanism We observe the highest ac-
curacy for the task of determining whether attack-
ers impose any linguistic constraints when curating
adversarial samples. Similar to detecting black and
white box attacks, detection models on sentiment
classification datasets achieve higher scores in gen-
eral than abuse detection datasets.

6 Discussion

This section is organized as follows: we first dis-
cuss out-of-domain performance of classifiers and
localizers, then provide an analysis on the perfor-
mance of BERT representations.

6.1 Out-of-Domain Generalization
We test our model’s ability to generalize across tar-
get models and datasets by evaluating trained clas-
sifiers on (1) adversarial text instances targeted at
different target models trained on the same dataset,
(2) adversarial text instances targeted at the same
target model trained on different datasets.

Generalization of BERT-based Classifiers Our
results show BERT-representation-based classi-
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wikipedia sst hatebase climate. civil.

civil. 52.6 51.8 51.2 53.2 na
climate. 51.7 53.0 52.7 na 54.4
hatebase 51.4 50.9 na 52.4 51.5
sst 51.0 na 53.1 52.7 50.4
wikipedia na 52.0 54.0 55.4 53.0

Table 4: Averaged out-of-domain (dataset) generaliza-
tion accuracy scores across all models for activation-
based classifiers

fiers demonstrate abilities to generalize to adver-
saries targeting different target models or datasets.
Meanwhile, there is no significant difference be-
tween BERT-based classifiers’ generalization per-
formance to datasets for the same task and different
tasks (i.e., abuse detection and sentiment classifica-
tion).

Generalization of Activation-based Classifiers
Compared to BERT-representation-based classi-
fiers, classifiers that operate on target-model
activation-representations do not generalize well
to other datasets. In almost all cases, perfor-
mance metrics for the classifier dropped to near-
random performance on out-of-distribution data.
This shows that although activation representations
provide richer information about the attackers for
in-distribution data, they are less dataset-agnostic
than language-model representations.

Generalization of Localizers Similar to classi-
fiers using two types of signals, BERT-based lo-
calizers outperform LIME (activation)-based local-
izers when given out-of-distribution data. When
averaging over all out-of-domain datasets, the class-
weighted f1 score of BERT-based localizer drops
to 0.69, while performance of the LIME-based lo-
calizer drops to 0.28. This is consistent with the
observations of classifiers using the two types of
representations in previous sections: BERT repre-
sentations tend to have better generalization ability
across datasets, while signals from target models
are highly dependent on specific domains.

6.2 BERT Feature Performance and
Adversarial Token Frequencies

In sequence classification experiments, our pro-
posed feature from target model activation statistics
outperforms BERT representations. Similarly, pre-
vious works show that BERT does not work well in
discriminating character-level attacks (Zhou et al.,
2019). In this section, we demonstrate this might

Figure 6: Frequency distribution of adversarial and
clean tokens with respect to external corpus for all ad-
versarial instances.

be due to perturbed tokens that are usually rare in
natural texts; thus, pre-trained language models do
not have enough signal to fully capture the feature
of perturbed tokens.

To test the plausibility of this hypothesis, we ap-
ply an off-the-shelf word-frequency lookup library
(Speer et al., 2018) to check the frequency of each
token with respect to several external corpora4, and
show the distribution of token frequency with ker-
nel density estimation. The plotted distribution of
clean and adversarial tokens is shown in Figure 6.
This gives some intuition on why target model ac-
tivation achieves better results. Namely, tokens
perturbed by attackers tend to have low occurrence
in natural text, and thus forms out-of-distribution
data to pre-trained language models. Thus, there
might be more fine-grained signals that are lost dur-
ing the encoding phase of BERT language model.

7 Related Work

This section is organized as follows: we first cover
related literature in detecting and defending against
adversarial input for deep neural networks. Then,
we cover some closely connected lines of works
and highlight their similarities and differences to
our approach.

Adversarial Attacks for Deep Neural Networks
Deep learning has achieved promising results in a
wide range of domains such as CV and NLP. How-
ever, neural-network-based models are usually vul-
nerable to adversarial attacks. Although adversarial
training could help, such a method is known to hurt
the generalization ability and performance of the
resulting models (Raghunathan et al., 2019) and

4Wikipedia, Google Books, Twitter and other commonly
used corpora from various domains, see https://github.
com/LuminosoInsight/wordfreq

https://github.com/LuminosoInsight/wordfreq
https://github.com/LuminosoInsight/wordfreq
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requires additional data curation and training proce-
dures. Exploiting the fact that adversarial examples
are usually scattered in a different distribution than
innocent inputs (Gong et al., 2017), people have
achieved successful binary detection performance
using external classifiers that directly operate on in-
put data (Metzen et al., 2017; Feinman et al., 2017).
Meanwhile, other works have shown that adver-
sarial examples leave recognizable traces in latent
spaces of the attacked models, enabling defensive
methods that utilize model internals, such as using
KNN on model states (Carrara et al., 2019).

Attack Detection in Text Different from detect-
ing adversarial attacks in images, capturing text
adversaries requires approaches that take into ac-
count the featurization of discrete text tokens. Pre-
vious works have shown that linear models that
use BERT representation of each token as inputs
could achieve good performance for word-level at-
tacks and achieve competitive general detection
accuracy over adversaries when combined with a
spell checker (Zhou et al., 2019).

Obtaining Information about Attackers Via Ad-
versarial Samples It is possible to learn even
more about the attackers via analyzing a batch of
adversarial exmaples, such as what class label the
attacker interested in (Pang et al., 2020b). How-
ever, this method might not work for attacks that
are only aimed at lowering the accuracy of target
models. Additionally, our method could help in ob-
taining information about the attackers from more
dimensions.

Deriving Interpretable Information From La-
tent Representations Previous studies have
shown that interpretable linguistic information
could be retrieved from representations of deep
learning models, such as word embeddings and ac-
tivation status of internal neurons (Belinkov, 2021).
Our work borrows the general methodology from
this literature but instead derives properties that
are informative about the attackers from textural
adversaries .

8 Conclusion

In this work, we introduce a new task, Attacker
Attribute Classification via Textual Analysis
(AACTA), that aims at deriving interpretable in-
formation about adversarial attack algorithms that
are informative about the attackers. We demon-
strate that characteristics of attacking algorithms

leave traces in feature space of language models
and target models, and that such information could
be retrieved by training classifiers over latent repre-
sentations.
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