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Abstract

In recent years, the NLP community has
shown increasing interest in analysing how
deep learning models work. Given that large
models trained on complex tasks are difficult
to inspect, some of this work has focused on
controlled tasks that emulate specific aspects
of language. We propose a new set of such con-
trolled tasks to explore a crucial aspect of nat-
ural language processing that has not received
enough attention: the need to retrieve discrete
information from sequences.

We also study model behavior on the tasks
with simple instantiations of Transformers and
LSTMs. Our results highlight the beneficial
role of decoder attention and its sometimes
unexpected interaction with other components.
Moreover, we show that, for most of the tasks,
these simple models still show significant diffi-
culties. We hope that the community will take
up the analysis possibilities that our tasks af-
ford, and that a clearer understanding of model
behavior on the tasks will lead to better and
more transparent models.

1 Introduction

There has been a continuous increase in perfor-
mance in computational linguistics in recent years.
This development correlates with larger and more
complex models which are trained on ever big-
ger datasets. These new characteristics of mod-
elling made it harder to understand which model
components are relevant and how they work. This
has motivated the NLP community to develop new
methods for model analysis.

Given the difficulties analyzing large models,
some of this work (Hupkes et al., 2018; Lake and
Baroni, 2018; Hewitt and Liang, 2019; Chrupała
and Alishahi, 2019; White and Cotterell, 2021)
has focused on controlled tasks that emulate spe-
cific aspects of language. We propose a new set of
such controlled tasks to explore a crucial aspect of
natural language processing that has not received

enough attention: the need to retrieve discrete in-
formation from sequences. 1 Retrieving discrete
information from sequences is necessary for natu-
ral language processing for instance to track agree-
ment between different constituents of a sentence
and to establish coreference relationships (among
many other examples). The controlled tasks are
built using binary vectors as input in order to ex-
clude the possible inferences of linguistic patterns
that are not the focus of our analysis. In particular,
we design the tasks such that the models need to
emulate four abilities that are crucial for natural lan-
guage: incremental processing, indirect mappings,
contextualization, and order tracking.

We study model behavior on the proposed
tasks with simple instantiations of Transformers
(Vaswani et al., 2017) and LSTMs (Hochreiter and
Schmidhuber, 1997), and show that, for most of
the tasks, these models show significant difficul-
ties. Transformers are the state of the art in deep
learning for NLP, and LSTMs are a classical archi-
tecture that was designed for sequence processing.
In the analysis, we aim at understanding the role
of the different components of the models, focus-
ing on self-attention and positional encoding for
Transformers and decoder attention for LSTMs.

In the Transformer, self-attention turns out to
only have a clear beneficial role when the task re-
quires taking token order into account, with de-
coder attention performing most of the work in
other cases. Positional encoding plays a counterin-
tuitive role, helping in tasks that do not involve or-
der by providing beneficial noise, and harming per-
formance when it is redundant with self-attention.
The LSTM only compares favorably to the Trans-
former in short sequence lengths for simple tasks,
and decoder attention is highly beneficial for this
model.

1The associated dataset and code can be downloaded at:
https://github.com/sorodoc/DiscreteSeq

https://github.com/sorodoc/DiscreteSeq
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Figure 1: Schematic description of our tasks. Different
tasks require different interpretations of the query. The
answer is positive for all these instances.

2 Related Work

The current study belongs in the newly developed
area of interpretability and explainability of com-
putational linguistics, which seeks to understand
how models capture natural language phenomena
(Alishahi et al., 2019; Belinkov and Glass, 2019;
Rogers et al., 2021).

Much of this literature has focused on model be-
haviour in complex NLP tasks (Linzen et al., 2016;
Conneau et al., 2018; Voita et al., 2019; Abnar and
Zuidema, 2020; Sinha et al., 2021; Lakretz et al.,
2021). Some other work has used controlled tasks
to analyze neural networks regarding specific as-
pects, such as reasoning skills (Weston et al., 2015),
compositionality (Lake and Baroni, 2018; Hupkes
et al., 2020), PoS tagging (Hewitt and Liang, 2019),
inductive biases (White and Cotterell, 2021) or hi-
erarchical structure (Hupkes et al., 2018; Chrupała
and Alishahi, 2019). We follow this latter method-
ology, and design tasks that highlight one of the
core abilities that a model needs to possess in order
to process natural language, namely detecting one
or more features in a sequence of tokens, possibly
in a context- and/or order-sensitive way.

3 Description of the tasks

3.1 Task description

In all tasks, the goal is to perform feature detection,
that is, to provide a binary response about whether
a feature (or feature combination) is present in the
input sequence. The tasks are schematically illus-
trated in Figure 1. The model is always presented
with an input consisting in a sequence of tokens.
Each token is a 36-dimensional binary vector with
a variable number of dimensions (features) acti-
vated (set to 1). The model is also given a query,
which is a single 36-dimensional binary vector with
1 feature activated, except for Task 2 below, where

it has 2 activated features.
The tasks are meant to be incremental, in the

sense that, when processing the input sequence, the
model does not know what information it will need
to retrieve from it. Some uses of Transformers in
the NLP literature instead give access to all the in-
formation from the start, such as in BERT (Devlin
et al., 2019) and its variants. Arguably, incremen-
tality is necessary in most instances of language
understanding “in the wild”: For some applications,
like Machine Translation for documents, it is realis-
tic to give access to all the input at once, but as we
move towards real-time applications such as virtual
assistants, models will need to act incrementally.

T1: one-feature detection. T1 asks whether the
active feature of the query is present in some token
in the sequence. A linguistic example, relevant
for syntactic processing, would be: did the plural
feature occur in a span of tokens?

In the example in Figure 1, the second input
token has feature 2, which is the one the query asks
about, so the answer should be positive.

T2: two-feature detection. T2 asks whether two
features occur in the sequence, be it in the same or
in different tokens. This ability is required, for ex-
ample, to check agreement between two syntactic
units, or to answer a conjoint question.

In T1 and T2, query features and input features
coincide: if the query asks about feature 2, then
feature 2 needs to be active in some token for the
answer to be positive. In the rest of the tasks, the
relationship between query and input features is
instead indirect. For instance, as illustrated in Fig-
ure 1 for T3, a query with feature 2 may ask about
features 1 and 5 in the input. Models need to learn
this implicit mapping when they are trained. Trans-
lation is an example (among many) of an indirect
linguistic task, where words in the source language
map to different target-language words.

T3: set member detection. In T3, models need
to detect whether at least one out of two features is
present in the sequence, that is, the task checks for
feature disjunction (see Figure 1). This is akin to
set member detection because we ask for a positive
answer when at least one of the two features (set
members) is present.

For example, many question-answering setups
require retrieving an instance (Fido, Snoopy, . . . )
when prompted with the name of the class (dog).
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T4: contextualized 2-feature detection. T4
asks about a conjunction of two features, like T2
(but with the indirect mapping). A linguistic exam-
ple could involve a question requiring more than
one piece of information to answer (Who played
the 1982 World Cup Final? Italy and Germany).
In addition, we design the mapping such that each
feature is part of 2 queries; hence, it is associated
only with two other features. This dataset struc-
ture should encourage contextualization, because
a given feature is only ever relevant in the context
of one of the other two features it is associated
with.

Contextualization is crucial for natural language,
where the same feature (e.g., a word) requires dif-
ferent responses depending on other features occur-
ring in the context. A natural hypothesis is that the
Transformer is naturally good for contextualization
(this should be the strength of self-attention), but
as we will see our results are mixed.

T5: contextualized set member detection.
Like T3, the task concerns disjunction with indi-
rect mapping, but it consists in checking whether
at least one out of two pairs of features is present
in the input (e.g., (1 ∧ 5) ∨ (2 ∧ 7); see Figure
1). Again, in each pair, one feature is only a hit in
the context of the other, so this task also requires
contextualization.

A linguistic example would be a coreference task
where toy might refer to rubber lion or plastic truck,
but not to lion or truck in other contexts.

T6: ordered feature detection. T6 adds order
to T4: it asks about a conjunction of two features
with the indirect mapping, where the features must
be in a specific order. This has many linguistic
counterparts, e.g., parsing words in the correct or-
der to determine their syntactic relation.

T7: contextualized ordered set member detec-
tion. Finally, T7 adds order to T5: It asks models
to check whether at least one out of two pairs of
features is present in the input, but now order of
context matters (e.g., (1 before 5) ∨ (2 before 7)).
An example would be semantic role identification,
where cow is typically an agent if it precedes eats,
but not if it follows it.

3.2 Dataset construction

All datasets contain 100k training, 10k validation,
and 10k test examples. For each datapoint, we
sample uniformly at random whether the answer

Nr. of distinct
queries

Nr. of queries
containing each

feature
T1 36 1
T2 630 36

T3, T4, T6 36 2
T5, T7 36 4

Table 1: Description of the query space.

is positive or negative. For each task, we create
datasets with sequence lengths 5, 10, 15, 20, 25,
and 30. Also, for each datapoint, we exclude be-
tween 1 and 6 randomly chosen attributes. We
apply this restriction because otherwise, for longer
sequences, nearly all positive datapoints would con-
tain all features, whereas negative datapoints must,
by construction, miss at least one feature. This
would allow models to develop a degenerate guess-
ing strategy (“datapoint is positive if it contains all
features”).

T1. For each datapoint, we choose a random
feature as a query. If the answer is positive, the fea-
ture will appear in the sequence. All other features
are randomly set to active with p = 0.2. During
training, the queried feature can appear multiple
times (following the 0.2 probability), but it appears
only once at test time for 2 main reasons: to facil-
itate analysis and to avoid having the number of
appearances of the queried feature in the sequence
as an informative variable.

T2. The 2 queried features are randomly cho-
sen. This is the only task where we have 2 query
activations, instead of 1. As is highlighted in Table
1, the query space is much larger for this task, in
comparison with all the other tasks (630 possible
queries, vs. 36 possible queries for the others). For
positive datapoints, we randomly choose whether
the features are in the same token. For negative
datapoints, we randomly choose whether one of
the features appears in the sequence.

For T3-7, we use predefined mappings between
query and input features (these mappings will not
be accessible to the models, but will need to be
learned as part of carrying out the task). The input
feature pairs in these tasks consist of a feature be-
tween 1 and 18 and one between 19 and 36. Also,
we aim for an equal representation of features in
the query space, so each feature appears twice in
T3, T4 and T6 and four times in T5 and T7 in the
input-query mapping (see Table 1).
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Figure 2: Diagram of the models.

T3. First, we choose a random feature to acti-
vate in the query. We then check which are the 2
features associated with the chosen query feature
in the predefined mapping. Then, for positive dat-
apoints, we choose randomly whether one or 2 of
these features appear in the sequence. If 2 features
appear, we randomly choose whether they appear
in the same token. For negative datapoints, we
ensure that none of these 2 features appear in the
input sequence.

T4. The pipeline is similar to T2, the difference
being that we randomly choose 1 query and we use
its associated features.

T5. We choose one of the 2 pairs of features that
are associated with one query. We then apply the
same pipeline as in T2 while ensuring that at least
1 feature from the other pair doesn’t appear in the
sequence.

T6. For positive cases, we randomly choose 2
positions in the sequence and put the 2 tokens on
these positions in the correct order. For negative
cases, we randomly choose whether the datapoint
contains both features in the wrong order or con-
tains at most one of the features.

T7. We choose one of the 2 pairs of features
that are associated with one query. We then apply
the same procedure as in T6, while ensuring that at
least 1 feature from the other pair doesn’t appear
in the sequence.

4 Models

The general structure of the models is presented in
Figure 2. Model equations and training details are
provided in the appendix.2

Transformer. The Transformer architecture con-
sists of a sequence encoder and a decoder adapted
to our tasks. We choose the most basic architecture
for interpretability: a single-head, single-layer ar-
chitecture. To enable incremental processing, the
encoder self-attention only looks into the past, as
in standard “causal” architectures such as the one
of Dai et al. (2019).

The input vectors are mapped to a 100-
dimensional space and combined with sine-based
positional embeddings, as in Vaswani et al. (2017).
Each input token vector then goes through a trans-
former encoder cell with one attention head and one
layer. The query vector is also mapped onto a 100-
dimensional space, through a separate embedding
matrix. Decoding works as a dot-product-based
attention between the query embedding and each
token representation (Bahdanau et al., 2015).

The concatenation of the query embedding and
the decoded sequence representation is then passed
through a multi-layer perceptron (MLP) to generate
the answer, a number in the range of [0,1] obtained
via the Sigmoid function. The model is optimized
with a binary cross-entropy loss. At test time, a re-
sult larger than 0.5 is considered a positive answer,
as is standard.

We ablate the full Transformer architecture by
removing self-attention and skipping positional en-
coding when embedding the input. The variants
solely based on decoder attention are akin to Mem-
ory Networks (Sukhbaatar et al., 2015).

LSTM. In order to have a fair comparison with
the Transformer model, we do minimal changes to
the architecture in the LSTM model, only substi-
tuting the transformer self attention block with the
LSTM cell.

We experiment with two variants of LSTM:

• (basic) LSTM: the input goes through the
LSTM and the output of the last time step
is considered the representation of the input
and is concatenated with the query embedding
to be sent to the MLP.

2The models were implemented using the framework Py-
torch (Paszke et al., 2019).
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Tasks↓ Models→ T-Pos-Att T+Pos-Att T-Pos+Att T+Pos+Att
T1 1 feature 91.3±2.8 96.1±2.9 96.5±1.7 98.7±1.1

T2 2 features 83.4±0.2 84.7±0.5 83.2±0.2 84.9±1.5

T3 set member 98.7±1.2 100 99.4±0.9 100
T4 context. 2 features 86.2±0.6 87.7±0.3 86.4±0.6 87.7±0.2

T5 context. set member 77.4±0.4 77.7±1.2 78.8±2.5 77.8±1.1

T6 ordered feature 56.6±1 80.2±0.4 92.1±0.3 90.7±1.9

T7 ord. context. set member 57.5±0.4 65.8±0.8 78.6±0.6 67.6±0.6

Table 2: Results for sequence length 10. Results are averaged over 5 random seeds, with s.d. Best results bold-
faced. Models are coded as follows: +/-Pos marks absence (-) vs. presence (+) of positional encoding, +/-Att
marks absence (-) vs. presence (+) of self-attention. The full Transformer is model T+Pos+Att.

• attention LSTM: similarly to the Transformer
model, there is an attention mechanism that
compares the query embedding to the output
from each time step (again using dot product).
The input representation that will be concate-
nated to the query representation is then the
weighted sum of the outputs.

5 Results

5.1 Transformer

Since the Transformer surpasses the LSTM in most
cases, and the Transformer patterns are quite simi-
lar across sequence lengths, we first take a detailed
look at the behavior of the Transformer on the tasks
for sequence length 10. Table 2 summarizes the
results for this sequence length. Recall that data-
points are always uniformly distributed between
negative and positive answers, such that a random
baseline always averages 50% accuracy.

Task 1 All the models succeed at T1 (single fea-
ture detection) with accuracy over 90%. As could
be expected, there is a high correlation between the
accuracy and the degree of decoder attention on
the correct token: This attention is at an average of
0.82 when the answer is correct, vs. 0.17 when it is
wrong.

Surprisingly, while this task doesn’t involve con-
textualization nor order, both self-attention and po-
sitional encoding bring a boost in performance,
from 91.3% accuracy for the base model (T-Pos-
Att) to over 96% for the models T+Pos-Att and
T-Pos+Att (which add positional encoding and self-
attention, respectively). We conjecture that posi-
tional embeddings act as a beneficial noising mech-
anism, akin to regularization: altering a token’s
embedding depending on the position helps the
model not to overfit.

We also find that self-attention triggers an in-
verse recency effect on accuracy: performance is
better when the target feature is towards the be-
ginning of the sequence. Indeed, there is a highly
significant Pearson correlation of -0.51 between po-
sition and accuracy for models with self-attention
vs. no significant correlation for models without it.
This recency effect is probably due to the fact that
self-attention can copy a feature through the fol-
lowing hidden states, so an earlier feature will tend
be more prominent in the weighted sum, and thus
easier to detect. We find that this copying mech-
anism improves results for earlier tokens without
significantly harming performance in later tokens.

Thus, the first take-home message from our ex-
periments is that the presence of a component in
a Transformer architecture does not imply that the
model will learn to use it as expected in a task, even
if it puts it to a use that improves performance. In
T1, self-attention preserves information and posi-
tional encoding possibly adds noise, and both have
a serendipitous positive effect. This underscores
the need for model analysis.

Task 2 When moving to two-feature detection
(T2), there is a predictable drop in accuracy. The
models have problems when the queried features
are in different tokens (false negatives), with a 25%
accuracy drop, and when only one target feature
occurs in the sequence (false positives), with a 40%
drop. The main reason why features in different
tokens are missed is that decoder attention fails to
operate distributively, i.e., to focus on two different
input tokens at once: On average, the difference
between the decoder attention weight of the most
attended token and the second most attended to-
ken is of 0.6-0.7 across the models, showing that
decoder attention indeed focuses on a single token.

Given that the feature combinations are random,
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it is not clear how self-attention could help, and in-
deed using self-attention does not improve results.

Task 3 The T3 results show that all model vari-
ants can easily learn to detect a class instance, or
feature disjunction, even when using an indirect
mapping. Decoder attention suffices, as the models
learn to associate a query with both features of its
class, and trigger high attention values when either
of them is present in a token (average attention on
target token between 0.6-0.7 for all variants). Here,
model behavior is as expected.

Contextualization Self-attention should help
with contextualized feature detection (T4 and T5),
by highlighting a specific feature only when it is
preceded by one of the other features it is associ-
ated with. However, models settle for a degenerate
strategy instead, and thus we detect no competitive
advantage for models with self-attention (compare
models T-Pos-Att and T-Pos+Att in Table 2). In T4,
they answer ‘yes’ if one specific feature is present
in the sequence (always the same feature for each
query): Average attention for the more attended
feature in each query is around 0.9, while the aver-
age attention on the other relevant feature is around
0.05. The maximum accuracy for this strategy is
87.5%, which is about what the best models reach
in T4.

Thus, the need to contextualize by itself is not
enough for models to profit from self-attention;
instead, as we will see next, the need to track order
does trigger a productive use of self-attention.

Ordered feature detection. In T6 and T7, using
self-attention brings accuracy from near chance to
92.1% and 78.6%, respectively (compare models T-
Pos-Att and T-Pos+Att in Table 2). We find strong
evidence that the models with self-attention use it to
record the presence of the first feature in the hidden
state of the token containing the second, as we
predicted it should do already for tasks requiring
contextualization: In both T6 and T7, model T-
Pos+Att puts most of the decoder attention on the
second feature-carrying token in the sequence, as
we show next.

We report in Table 3 the difference between the
average decoder attention on the second vs. first
feature-carrying token for T6, T7, and T5, which
is the unordered version of T7. In models that use
self-attention as predicted, this difference will be
large and positive. We see in the first column of the
table that for T5, where order does not matter, the

T-Pos+Att T+Pos+Att
T5 0.03±0.02 0.01±0.01

T6 0.79±0.005 -0.14±0.55

T7 0.46±0.03 0.16±0.18

Table 3: Average decoder attention difference (and s.d.)
between second and first feature-carrying tokens for
the two models with self-attention in the contextualized
tasks (T6 and T7), together with T5 for comparison.

difference is very low, while it is much larger for T6
and T7. This confirms that there has been a change
in strategy, with self-attention being productively
used in the order-sensitive tasks.

Positional encoding is an alternative mechanism
to track order, and for T6 and T7 it also improves
results substantially with respect to the base mod-
els (compare models T-Pos-Att and T+Pos-Att),
though much less than self-attention.

However, using both mechanisms actually harms
performance (see results for T+Pos+Att). Self-
attention and positional encoding seem to get in
the way of each other, making it harder, when com-
bined, for the model to converge on a single strat-
egy to track order. We see evidence for this in
Table 3, where the full Transformer (T+Pos+Att)
has a much smaller difference for T7 compared
to model T-Pos+Att, and a negative difference for
T6 (meaning that it puts more attention on the first
feature-carrying token). Moreover, the full Trans-
formers exhibit a large standard deviation in both
order-sensitive tasks, which means that different
runs converge on different strategies. In contrast,
the models with self-attention show a really low
standard deviation; they always converge on the
expected strategy.

Impact of sequence length Figure 3 presents av-
erage accuracies for sequence lengths from 5 to 30
(in steps of 5; error bars represent standard devi-
ations across 5 random seed initializations). The
patterns discussed for length 10 are generally con-
firmed at other sequence lengths. We further no-
tice that longer sequences are beneficial for “easy”
tasks, such as T1 and T3 (perhaps they help models
avoiding trivial guessing strategies). On the other
hand, when the complexity of the task is higher
(Tasks 5, 6 and 7), longer sequences are detrimen-
tal to model performance. Accuracies for tasks
for which degenerate solutions were found for se-
quence length 10 (T2 and T4) do not change across
sequence length, indicating that the strategy does
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Figure 3: Model performance on multiple sequence lengths for all tasks
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not change either. Also note that for the most diffi-
cult tasks (T5-T7), model T-Pos+Att is consistently
better in longer sequences. Thus, the “getting in
the way” effect observed above holds for the three
tasks.

5.2 LSTM

In general, the performance of LSTM models on
our tasks is markedly worse than that of the Trans-
former, and they are impacted by sequence length
to a much larger extent (see Figure 3). This could
be expected given general results on the two ar-
chitectures (Transformers outperform LSTMs in
most computational linguistics tasks, and LSTMs
have been shown to have issues with long-distance
dependencies). There are two notable exceptions
to these general trends.

First, the accuracy of the LSTM with attention
in Task 1 shows a characteristic V-shape, dropping
at first and recovering for longer sequences (cf.
orange solid line in Figure 3).3 The result is that its
performance is on par with that of the Transformer
models in sequences of length 5 and 30.

We find that the LSTM changes its behaviour,
from a simple recurrent LSTM to an actual
attention-based LSTM. Indeed, for short sequences,
it does not use decoder attention to identify the
target feature (and still performs optimally): for
instance, for sequence length 5, the attention is dis-
tributed uniformly, with attention values of around
0.2 on all the input tokens. Instead, for long se-
quences it does use the attention mechanism: the
attention values spike on the position of the input
that contains the queried feature (e.g., with an aver-
age of 0.85 for sequence length 30). This ability to
switch behaviours could theoretically help also for
other tasks, but it seems that the complexity of the
tasks prevents the model from doing so.

Second, the LSTM with attention surpasses all
Transformer variants for short sequences in Tasks 2
and 4. Recall that the Transformer models reached
a degenerate solution for these tasks (with a maxi-
mum accuracy of 87.5%), in which only one of the
two relevant features was attended to; instead, the
LSTM solves the task correctly, because the infor-
mation about the previous tokens flows through the
recurrent steps in the token representations.

As for the differences between the two model
variants of the LSTM, the model enhanced with

3Instead, the basic LSTM model degrades quickly and
monotonically with sequence length; see dashed orange line.

the decoder attention is consistently better than
the classic, basic model. This suggests that the
decoder attention mechanism (also present in all the
Transformer models) is beneficial independently of
the base architecture.

6 Conclusion

Our tasks shed light on how the main model com-
ponents act and interact regarding the retrieval of
discrete information from sequences, uncovering
behaviours that would be difficult to detect when
the architectures are applied to complex NLP tasks.

A take-home message from our experiments is
that the presence of a component in an architecture
does not imply that the model will learn to use it
as expected in a task. In particular, we found that
only the need to track ordered information led the
architecture to use self-attention in the predicted
way, and that decoder attention can be difficult for
LSTMs to use correctly.

On the other hand, the components can assume
unexpected functions. Self-attention in transform-
ers can simply serve to blindly propagate informa-
tion across time, leading to more robust represen-
tations of features contained in earlier tokens, that
are copied over and over. Also, surprisingly, posi-
tional embeddings provide a small but consistent
benefit in tasks that do not require order tracking.
This suggests that they might have a serendipitous
function, possibly adding helpful noise to the rep-
resentations. Moreover, as both self-attention and
positional embeddings can learn to keep track of
order, the two mechanisms get in the way of each
other, making it harder, when combined, for the
Transformer models to converge on a single strat-
egy to track order.

Regarding LSTM, the sequence length is a very
big factor. The model has a steep loss in perfor-
mance when the sequence gets longer. On the
simplest task, the model enhanced with decoder
attention develops the ability to switch between
strategies, but this doesn’t generalize to longer se-
quences.

To conclude, we hope to have shown that the pro-
posed tasks constitute a useful probing mechanism
for the ability of models to detect discrete infor-
mation in sequences, testing in particular four key
abilities: incremental processing (in the sense that
the query is not known at input processing time),
indirect mappings, context-dependence and order
tracking. We have shown that most of the tasks are



476

difficult for models even for short sequences; and
they can be easily extended to more dimensions
and even longer sequences.

Future work should go in two different direc-
tions: 1) examining how behavior changes when
the probed models are scaled by increasing the
number of layers and attention heads, and 2) mod-
ify the models to solve some of the problems that
we encounter in the current experiments. We hope
that the community will take up the analysis pos-
sibilities that our tasks afford, and that a clearer
understanding of model behavior on the tasks will
lead to better and more transparent models.
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Appendix

Transformer implementation
Each datapoint has n 36-dimension binary vectors
as input in and a 36-dimension binary vector as

query q. All these vectors are embedded to 100
dimensions using the matrices Win and Wq. Then
we apply a sinusoidal positional encoding on the
input embeddings and the ReLU function on top of
the query embedding:

embini = PosEnc(ini ∗Win)

embq = ReLU(q ∗Wq)

with PosEnc defined for each input position pos
and for each token dimension i similarly to the
method used in the main Transformer architecture
(Vaswani et al., 2017):

PosEnc(pos, 2i) = sin(pos/100002i/dmodel)

PosEnc(pos, 2i+1) = cos(pos/100002i/dmodel)

Then, each input embedding goes through the
TransformerEncoder cell which has 1 attention
head and 1 layer:

hi = TransfEnc(embini)

as defined in Vaswani et al. (2017), TransfEnc is a
scaled dot product attention where d is the dimen-
sionality of the input vectors. The dot product is
scaled in order to not have regions with very slow
gradients.

TransfEnc(X) = softmax(
X ∗XT

√
d

) ∗X

In order to decode relevant information based on
the query we use a dot product attention. αi rep-
resents the attention value that we put on token
embedding hi relative to the query embedding. We
then calculate the vector c which is the sum of the
token embeddings weighted by α.

αi =
exp(hi ∗ embq)∑n

k=1 exp(hk ∗ embq)

c =

n∑
i=1

αihi

We then use a multi-layer perceptron to generate
the answer. Firstly, we apply a dimensionality re-
duction using Wo1 from 200 to 100 dimensions
with ReLU as nonlinearity on top of it. Then the
hidden state hido is mapped from 100 to 1 dimen-
sion. Using the Sigmoid function, we get our result
as a number in the range of [0,1]. At test time, if
o ≥ 0.5, then we consider the answer to be posi-
tive.

hido = ReLU((c||embq) ∗Wo1)

o = Sigmoid(hido ∗Wo2)

The loss is calculated using binary cross entropy.

https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580


478

LSTM implementation
In order to have a fair comparison with the Trans-
former model, we do minimal changes to the ar-
chitecture, only substituting the transformer self
attention block and the positional encoding with an
LSTM cell.

Learning procedure
All the experiments are optimized with Adam and
learning rate 0.0001. We apply 0.2 dropout and
gradient clipping at 0.5. We run 100 epochs with
batch size 10 and save the model at the epoch with
the highest validation accuracy. We experimented
with different hyperparameters, but we found the
ones we just reported to give the most stable results.


