
Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pages 389–395
Online, November 11, 2021. ©2021 Association for Computational Linguistics

389

Learning Mathematical Properties of Integers

Maria Ryskina∗

Language Technologies Institute
Carnegie Mellon University
mryskina@cs.cmu.edu

Kevin Knight
DiDi Labs

kevinknight@didiglobal.com

Abstract

Embedding words in high-dimensional vector
spaces has proven valuable in many natural
language applications. In this work, we investi-
gate whether similarly-trained embeddings of
integers can capture concepts that are useful
for mathematical applications. We probe the
integer embeddings for mathematical knowl-
edge, apply them to a set of numerical reason-
ing tasks, and show that by learning the rep-
resentations from mathematical sequence data,
we can substantially improve over number em-
beddings learned from English text corpora.

1 Introduction

Word vector representations learned by neural mod-
els have been shown to capture linguistic knowl-
edge that can be useful for downstream NLP tasks
(Belinkov and Glass, 2019). In this work, we look
at whether similarly-trained integer embeddings
can represent useful mathematical knowledge. As
a simple example, a mathematician may look at a
few values of the function 2n − 1:

n 1 2 3 4 5 6 7 ...
2n − 1 1 3 7 15 31 63 127 ...

and notice patterns such as ‘if n is even, then 2n−1
is divisible by 3’. This type of reasoning is frequent
in the early stages of mathematical work. In order
for software to assist people in identifying such
patterns, it needs to have an internal representation
of the basic properties of integers. Just as learned
word representations can capture attributes like the
word’s part of speech or syntactic dependency label
(Köhn, 2015; Belinkov et al., 2017), we would
like to develop integer embeddings that capture
primality, divisibility by 3, etc.

In this paper, we learn integer embeddings from
mathematical resources and probe them for mathe-
matical knowledge. Unlike most natural-language
features, many number-theoretic properties are

∗Research performed at DiDi Labs.

[A000040]: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ... (primes)
[A000045]: 0, 1, 1, 2, 3, 5, 8, 13, 21, ... (Fibonacci)
[A000108]: 1, 1, 2, 5, 14, 42, 132, 429, ... (Catalan)
[A005132]: 0, 1, 3, 6, 2, 7, 13, 20, 12, 21, ... (Recamán)

Figure 1: Example sequences and their IDs in the On-
line Encyclopedia of Integer Sequences (OEIS).

highly regular and often may be easily determined
from the integer value itself (e.g. converting an in-
teger to its binary representation instantly reveals
whether it is a power of 2). However, our focus is
not on building classifiers to predict these proper-
ties, but rather on exploring whether this informa-
tion can be learned from the integer co-occurrence
statistics in mathematical data and how it is dis-
tributed across the vector’s dimensions.

Besides that, we are also interested in whether
the integer representations learned from context
can capture meaningful mathematical properties
without us having to define them explicitly. It is
not clear how one would probe for such unspecified
features, but we can instead estimate the usefulness
of the learned embeddings for downstream numeri-
cal reasoning tasks. In this work, we apply several
types of integer embeddings to a set of tasks built
around mathematical regularities, and show that
embeddings learned from integer sequences yield
better performance than the ones trained on text.

2 Data: OEIS

Our source of mathematical knowledge is the On-
line Encyclopedia of Integer Sequences (OEIS),
a well-known database of number sequences rep-
resenting properties that are of interest to mathe-
maticians (Sloane, 2003). Several samples from
OEIS are shown in Figure 1. While some OEIS se-
quences may be recognized by non-mathematicians
(e.g. the Fibonacci sequence [A000045]), others
are based on complex mathematical regularities
and would be extremely difficult for a layperson to
interpret (e.g. the greatest possible number of diag-



390

Method Corpus Tokens Types

Ours OEIS 14M 133,004

GloVe–840B–300D Common Crawl 840B 64,729
SkipGram–BoW–5 Wikipedia ∼2.5B 2,272
FastText–Wiki Wikipedia, UMBC, statmt.org 16B 12,037

Table 1: Training corpus details for
the integer embeddings used in this
work. OEIS types here only include
integers that occur 3 or more times;
all others are replaced by UNK.

Train Dev Test

Sequences 302,281 16,793 16,793
Integer tokens 12,979,924 719,808 719,237
Mean sequence length 43 43 43
Integer types 1,531,064 128,488 127,976
Singleton types 1,268,771 – –
Token OOV rate 0% 10.0% 9.8%

Table 2: Summary of the OEIS data splits used in this
work. The development split is used for model selec-
tion and the test split is used in the sequence comple-
tion experiments. Type statistics are reported without
minimum count filtering. Singleton types refer to the
integers that occur only once in the training set.

onals of a polyhedron with n faces [A279015]).
The sequential structure of OEIS allows us to

use it for training NLP models developed for tex-
tual data, such as recurrent neural network (RNN)
language models and co-occurrence-based word
embeddings. Of the 336K sequences in OEIS, we
allocate 90% for training and divide the rest into
development (used for hyperparameter tuning) and
test splits; split statistics are listed in Table 2. Of the
1.5M integer types in the vocabulary, 83% appear in
training only once. The sequences are represented
by their n first elements (n = 43 on average), so
the coverage of larger integers in OEIS is sparser,
and they make up most of the out-of-vocabulary
items in the development and test sets.1

3 Integer Embeddings

In our experiments, we compare the integer embed-
dings learned from OEIS with the representations
of integer tokens in the vocabulary of word embed-
ding models trained on English text. Table 1 details
the training corpus statistics for all embeddings.

3.1 Embeddings Learned from OEIS
Motivated by the distributional semantics paradigm,
we learn multi-dimensional embedding vectors
from the contexts in which integers occur in OEIS.
We use three training methods, well-known in NLP:
LSTM embeddings: we train a two-layer LSTM
language model on the 300K OEIS training se-

1For the OEIS data download details, see Appendix A.

quences and extract the 100-dimensional vectors
from the weight matrix of its embedding layer.2

LSA embeddings: Latent Semantic Analysis
(Hofmann, 1999) performs dimensionality reduc-
tion on a “document-term” matrix using truncated
singular value decomposition. The rows of the ma-
trix represent the integer sequences (as available in
OEIS), the columns stand for the integer types, and
the values in the cells are equal to the number of
occurrences of each integer in each sequence. The
resulting matrix is sparse, and its low rank yields
vectors with a maximum of 65 dimensions. This
method takes OEIS co-occurrences into account,
but not the ordering within the sequences.

FastText: we learn 100-dimensional FastText em-
beddings (Bojanowski et al., 2017), both with and
without the additional subword-level information.

3.2 Pre-trained Embeddings
Prior work has successfully employed word repre-
sentations that are pre-trained on large text corpora
for NLP applications. Naturally, these text corpora
include numerical data as well, and some proper-
ties of a number can be inferred from the textual
context (e.g., if an integer follows the phrase the
year, it most likely has four digits). While the train-
ing data for these embeddings is not designed to
encode integer properties, it may contain billions
of tokens, compared to only ∼13M in OEIS. It
has been shown that word embeddings retain some
knowledge of the integer properties (Naik et al.,
2019), so we exploit these resources as a baseline.

We use three sets of pre-trained embeddings:
GloVe (Pennington et al., 2014), SkipGram bag-
of-words (Levy and Goldberg, 2014), and Fast-
Text (Bojanowski et al., 2017). For all three models,
we select the versions that performed best in the
numerical knowledge tests of Naik et al. (2019).3

Thawani et al. (2021) provide a comprehensive
description of prior work on number representa-
tions learned from text. Prior work concentrates
on basic numeracy (counting, paraphrasing, rela-

2For implementation details, see Appendix C.
3Specific model versions and links to download them are

listed in Appendix B.



391

Embeddings Evenness Divisibility by 3 Divisibility by 4 Primality

Single All Single All Single All Single All

Random baseline 0.50 0.50 0.67 0.67 0.75 0.75 0.87 0.87

GloVe–840B–300D 0.51 0.76 0.67 0.47 0.75 0.71 0.87 0.84
SkipGram–BoW–5 0.50 0.52 0.67 0.67 0.75 0.75 0.87 0.87
FastText–Wiki 0.51 0.61 0.67 0.66 0.75 0.76 0.87 0.62

OEIS–LSTM 0.69 0.93 0.67 0.71 0.76 0.81 0.86 0.95
OEIS–LSA 0.80 0.62 0.67 0.67 0.75 0.75 0.87 0.87
OEIS–FastText (with subword units) 0.78 1.00 0.69 0.94 0.80 1.00 0.82 1.00
OEIS–FastText (no subword units) 0.59 1.00 0.68 0.98 0.77 0.98 0.86 1.00

Concatenate(OEIS–FastText, FastText–Wiki) 0.78 1.00 0.69 0.94 0.80 1.00 0.82 1.00

Table 3: Accuracies of the logistic regression probing classifiers for three binary properties. The classifiers are
trained on integers 1–1000, and results are reported on 1001–2000. “All” uses the entire integer embedding as
input, while “Single” uses only the most relevant component of the embedding, chosen by train (1–1000) accuracy.
Highest accuracy in each experiment is shown in bold, if it is exceeds the random choice baseline.

Embeddings Value (R2) Magnitude (R2)

Single All Single All

GloVe–840B–300D 0.82 1.00 0.65 0.99
SkipGram–BoW–5 0.79 0.99 0.70 0.97
FastText–Wiki 0.90 0.99 0.76 0.98

OEIS–LSTM 0.49 0.86 0.31 0.78
OEIS–LSA 0.08 0.55 0.13 0.53
OEIS–FastText (with subword units) 0.38 0.99 0.33 0.96
OEIS–FastText (no subword units) 0.49 0.99 0.39 0.95

Concatenate(OEIS–FastText, FastText–Wiki) 0.90 1.00 0.76 0.98

Table 4: Performance of the linear regression models trained to predict an integer’s value and order of magnitude
(number of digits). We fit the regression models to integers 1–2000 and evaluate the coefficient of determination
R2 of the fit on the same set (between 0 and 1, higher is better). Best results in each experiment shown in bold.

tive magnitude, word problems), while we focus on
integer properties relevant to mathematical fields
such as number theory.

4 What’s in an Integer Embedding?

For the learned vectors to be useful for mathemati-
cal applications, they need to contain the informa-
tion about the important integer properties, and this
information can be distributed over one or several
neurons. For example, in the LSTM embeddings
trained on OEIS, we quickly find an “evenness neu-
ron”: the 156th element of the embedding vector v
is generally positive for even numbers and negative
for odd numbers. This holds for integers from 1 to
50 with only a few exceptions, e.g.:

v156(1) = 0.15 v156(6) = 0.38

v156(2) = 0.29 v156(7) = −0.31
v156(3) = −0.04 v156(8) = 0.39

v156(4) = 0.26 v156(9) = −0.02
v156(5) = −0.08 v156(10) = 0.43

Probing classifiers. We use probing classifiers
to test whether the embeddings learn mathematical
properties. To avoid spurious correlations, we keep
our classifiers very simple. We start by probing
for three binary properties: divisibility by 2, 3, and
4, and primality. We train a logistic regression
classifier on integers from 1 to 1000 and evaluate
its predictions on integers from 1001 to 2000.

Table 3 shows the prediction accuracies for clas-
sifiers trained on each embedding type, using either
the entire vector or the single most predictive di-
mension. Generally speaking, the classifiers trained
on LSA vectors and pre-trained word embeddings
perform on par with the random baseline, providing
no evidence of containing the relevant information.
However, the OEIS-trained LSTM and FastText
vectors can be reliably used to predict mathemati-
cal properties of integers, strongly outperforming
the baseline in all cases.

Subword information (in our case, digits) is also
useful for inferring mathematical properties: e.g.,



392

Prompt Answer Explanation

0, 2, 4, 6, 8 an+1 = an + 2 (arithmetic progression)
0, 1, 1, 2, 3, 5, 8 an+2 = an + an+1 (Fibonacci numbers)
65536, 256, 16, 4 an+1 =

√
an

6, 28, 12, 14, 24, 7, 48 a2n+1 = 2 · a2n−1, a2n+2 = a2n/2 (alternating geometric progressions)
32, 35, 39, 44, 50 an+1 = an + n+ 2 (increments forming an arithmetic progression)

Table 5: Example numerical sequence completion problems used in our experiments, along with the rationales
behind the gold answers. All questions shown here are collected from the test preparation website Nibcode. In
our experimental setup, the language model encodes the prompt and needs to predict the most likely continuation.

a : b :: c : ? Incorrect answer options Explanation

5 : 36 :: 6 : 49 48 50 56 x : (x+ 1)2

42 : 56 :: 72 : 90 81 92 100 x(x+ 1) : (x+ 1)(x+ 2)
48 : 122 :: 168 : 290 215 225 292 (x2 − 1) : [(x+ 4)2 + 1]

210 : 380 :: 182 : 342 156 240 272 (x2 − x) : [(x+ 5)2 − (x+ 5)]
11529 : 7235 :: 152943 : 213549 62034 163044 203448 The sum of the digits in each pair is the same

Table 6: Sample mathematical analogy problems used in our experiments, along with the rationales behind the
gold answers; the questions shown here are collected from the test preparation website LearnFrenzy. All analogy
problems are of the form a:b :: c:?, and the task is to choose one of the 3–5 provided options that would most
appropriately fill in the blank. The column labeled “?” shows the expected correct answer, and the numbers shaded
in grey are the remaining answer options. In our experiments with integer embeddings, we use vector arithmetic
to find the projected vector of the answer and then select its nearest neighbor among the presented options.

divisibility by 4 can be determined from the last
two digits of a number. The subword-based version
of FastText averages vectors for all digit 3-grams
to 6-grams, plus the vector for the whole integer.
We get further improvements by training classifiers
on a concatenation of OEIS–FastText and FastText–
Wiki vectors, both trained with subword units.

We also probe for the number’s order of mag-
nitude (number of digits) and for the value of the
integer itself using a linear regression (Table 4): we
fit it on integers 1–2000 and evaluate the coefficient
of determination R2 of the fit. In this case, vectors
pre-trained on large text corpora perform well.

Completing integer sequences. The task of pre-
dicting the next integer in a given sequence has
long been used in aptitude testing as a measure of
inductive reasoning skills.4 We collect 57 sequence
completion problems from online test preparation
websites offering practice questions. Table 5 shows
five sample sequence completion problems from
our dataset, annotated with answer explanations.5

Most sequences test the subject’s ability to recog-
nize common patterns like arithmetic progression
(0, 2, 4, 6, ? → 8) or well-known sequences like Fi-

4We note the non-uniqueness of solutions is a persistent
criticism of these tests (Korossy, 1998).

5For the full list of sequence completion problems and
their sources, see https://github.com/ryskina/
integer-embedding-tests

bonacci numbers (0, 1, 1, 2, 3, 5, ? → 8), but some se-
quences feature additional distractor patterns such
as multiple distinct sequences alternating or the in-
crements themselves forming a sequence following
another pattern (32, 35, 39, 44, ? → 50).

Table 7 compares the performance of the LSTM
model trained on OEIS with two baselines:

Baseline 1: GPT-2. We predict the next token
using the OpenAI GPT-2 (Radford et al., 2019)
language model.6 GPT-2 can memorize sequences
very well, but it is not specifically trained for math-
ematical generalization. GPT-2 achieves slightly
higher accuracy (Precision@1) than our LSTM
model but substantially lower Precision@5.

Baseline 2: Search. We match the prompt di-
rectly against the OEIS database and return the
most frequent continuation. This is a strong base-
line: 56% of the test set questions occur somewhere
in OEIS followed by the gold answer at least once.

While human aptitude questions focus on a spe-
cific range of patterns that are relatively easy for
people to identify, we also want to test the pre-
dictive abilities on the OEIS test set sequences
which showcase more sophisticated phenomena.
The LSTM embeddings yield higher accuracy in
that case (lower half of Table 7). The search base-
line is not as effective for this task because the

6We use the AllenNLP prediction demo: https://
demo.allennlp.org/next-token-lm

https://www.nibcode.com/en/psychometric-training/test-of-numerical-sequence
https://learnfrenzy.com/reasoning/verbal-reasoning/verbal-analogy/number-analogy/
https://github.com/ryskina/integer-embedding-tests
https://github.com/ryskina/integer-embedding-tests
https://demo.allennlp.org/next-token-lm
https://demo.allennlp.org/next-token-lm


393

Test set Method P@1 P@5

Aptitude tests OEIS–LSTM 0.05 0.37
GPT-2 0.07 0.19
OEIS search 0.53 0.56

OEIS test set OEIS–LSTM 0.14 0.26
OEIS search (full) 0.02 0.02
OEIS search (last 5) 0.12 0.17

Table 7: Performance on the sequence completion task.
Precision@k measures how often the reference answer
is among the top k predicted continuations. For the
OEIS search baseline, we sort the possible next tokens
by frequency of occurring after the given sequence pre-
fix (using either the full prefix or its last five elements).

prompts are now much longer (42 tokens on aver-
age compared to 5). Limiting the search to only the
last 5 tokens of the prompt improves accuracy, but
it still does not outperform the OEIS–LSTM.

Mathematical analogies. A traditional bench-
mark for evaluating word representations is word
analogy, i.e. answering questions of the form “a
is to b as c is to ...” (Mikolov et al., 2013a). We
perform a similar mathematical analogy test, col-
lecting 79 questions from numerical aptitude prac-
tice tests. All questions are multiple-choice (3 to 5
answer options), to mitigate non-uniqueness of the
solution. Table 6 shows five sample analogy prob-
lems from our dataset, annotated with the intended
analogy explanations.7

Following Mikolov et al. (2013b), we use vec-
tor arithmetic to solve analogies: out of the given
options, for the task a:b :: c:? we choose the
number whose embedding has the highest cosine
similarity to the vector v(c)− v(a)+ v(b). Table 8
shows that only the FastText embeddings learned
from OEIS outperform the random choice baseline
on this task. We believe this is due to the linear
regularity encoded in the embeddings by design
(lacking in LSA and LSTM), and the training data
that highlights mathematical properties useful for
the task (as compared to FastText–Wiki).

Expanding integer seed sets. In mathematical
exploration, we often have a small set S of integers
that exhibit some behavior and aim to find other
integers that behave similarly. We test the models’
ability to expand a given set by finding the centroid
of the embeddings of S’s members and sorting
candidates by cosine distance to the centroid.

7Full list of mathematical analogy problems and
their sources can be found at https://github.com/
ryskina/integer-embedding-tests

Method Accuracy

Random choice baseline 0.28
OEIS–LSTM 0.25
OEIS–LSA 0.27
OEIS–FastText 0.34
FastText–Wiki 0.18

Table 8: Peformance on the multiple-choice numerical
analogy questions. The answer to a:b :: c:? is cho-
sen by highest cosine similarity to v(c) − v(a) + v(b).
OEIS–FastText is trained with subword information.

Seed set Vectors Candidate expansions

5 13 29 OEIS–FT 19, 7, 17, 3, 9, 23
FT–Wiki 26, 12, 28, 14, 27, 15

73 97 83 OEIS–FT 79, 71, 67, 89, 77, 103
FT–Wiki 82, 81, 78, 84, 76, 79

729 1024 243 OEIS–FT 2187, 81, 256, 64, 27, 512
FT–Wiki 768, 256, 640, 840, 384, 216

Table 9: Given a small seed set of integers, we pre-
dict other candidate members of the set, ranked by
the cosine similarity of their vectors to the centroid
of the seed set. Methods include OEIS–FastText and
FastText–Wiki, both trained with subword information.

Some qualitative examples are shown in Table 9.
Given the seed set 5 13 29, top results given by the
OEIS-trained FastText include small prime num-
bers, while for 73 97 83 we mostly get prime num-
bers of similar magnitude. The seed 729 1024 243
returns other powers of 2 and 3. By contrast, em-
beddings trained on non-OEIS texts mainly just
return additional numbers in the same range.

5 Conclusion

We introduce integer embeddings trained on the
Online Encyclopedia of Integer Sequences (OEIS)
and probe them for mathematical knowledge along
with the integer representations found in the vo-
cabulary of pre-trained English word embeddings.
We find the OEIS embeddings promising for math-
ematical applications, as they are able to capture
some meaningful mathematical regularities.

Acknowledgements

We thank the DiDi Labs NLP Group members for
helpful discussion, and the anonymous reviewers
for their valuable feedback.

https://github.com/ryskina/integer-embedding-tests
https://github.com/ryskina/integer-embedding-tests


394

References
Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Has-

san Sajjad, and James Glass. 2017. What do neu-
ral machine translation models learn about morphol-
ogy? In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 861–872, Vancouver,
Canada. Association for Computational Linguistics.

Yonatan Belinkov and James Glass. 2019. Analysis
methods in neural language processing: A survey.
Transactions of the Association for Computational
Linguistics, 7:49–72.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Thomas Hofmann. 1999. Probabilistic latent semantic
analysis. In Proceedings of the Fifteenth Conference
on Uncertainty in Artificial Intelligence.

OEIS Foundation Inc. The on-line encyclopedia of in-
teger sequences. Published electronically at http:
//oeis.org. Retrieved on 2020-07-22.

Arne Köhn. 2015. What’s in an embedding? Ana-
lyzing word embeddings through multilingual eval-
uation. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 2067–2073, Lisbon, Portugal. Association for
Computational Linguistics.

Klaus Korossy. 1998. Solvability and uniqueness of
linear-recursive number sequence tasks. Methods of
Psychological Research Online, 3(1):43–68.

Omer Levy and Yoav Goldberg. 2014. Dependency-
based word embeddings. In Proceedings of the
52nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers),
pages 302–308, Baltimore, Maryland. Association
for Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013b. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 746–751, Atlanta,
Georgia. Association for Computational Linguistics.

Aakanksha Naik, Abhilasha Ravichander, Carolyn
Rose, and Eduard Hovy. 2019. Exploring numeracy
in word embeddings. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 3374–3380, Florence, Italy. Asso-
ciation for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Neil J. A. Sloane. 2003. The on-line encyclopedia of
integer sequences. Notices of the American Mathe-
matical Society, 50(8).

Avijit Thawani, Jay Pujara, Filip Ilievski, and Pedro
Szekely. 2021. Representing numbers in NLP: a sur-
vey and a vision. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 644–656, Online. Asso-
ciation for Computational Linguistics.

Ronald J Williams and Jing Peng. 1990. An efficient
gradient-based algorithm for on-line training of re-
current network trajectories. Neural computation,
2(4):490–501.

A Data sources

OEIS sequence dump was downloaded from
the encyclopedia website: https://oeis.org/

stripped.gz (accessed on 2020-07-22).

Sequence completion problems were collected
from five test preparation websites: Nibcode,
Syvum, 12MinPrep, IQTestPrep, Hitbullseye.

Mathematical analogy problems were collected
from four test practice websites: LearnFrenzy,
Examsbook, toppr, AllIndiaExams.

B Pre-trained embeddings

Based on the empirical analysis of numeracy in
word embeddings conducted by Naik et al. (2019),
we choose three embedding models pre-trained on
English text corpora:

• GloVe–840B–300D: 300-dimensional GloVe
vectors trained on 840B tokens from the Com-
mon Crawl corpus. Downloaded from https:

//nlp.stanford.edu/projects/glove

• SkipGram–BoW–5: 300-dimensional
SkipGram bag-of-words embeddings with
window size 5. Downloaded from https:

//levyomer.wordpress.com/2014/04/25/

dependency-based-word-embeddings

https://doi.org/10.18653/v1/P17-1080
https://doi.org/10.18653/v1/P17-1080
https://doi.org/10.18653/v1/P17-1080
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00254/43503/Analysis-Methods-in-Neural-Language-Processing-A
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00254/43503/Analysis-Methods-in-Neural-Language-Processing-A
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://arxiv.org/abs/1301.6705
https://arxiv.org/abs/1301.6705
http://oeis.org
http://oeis.org
https://doi.org/10.18653/v1/D15-1246
https://doi.org/10.18653/v1/D15-1246
https://doi.org/10.18653/v1/D15-1246
https://doi.org/10.3115/v1/P14-2050
https://doi.org/10.3115/v1/P14-2050
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://aclanthology.org/N13-1090
https://aclanthology.org/N13-1090
https://doi.org/10.18653/v1/P19-1329
https://doi.org/10.18653/v1/P19-1329
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://www.ams.org/notices/200308/comm-sloane.pdf
https://www.ams.org/notices/200308/comm-sloane.pdf
https://doi.org/10.18653/v1/2021.naacl-main.53
https://doi.org/10.18653/v1/2021.naacl-main.53
https://oeis.org/stripped.gz
https://oeis.org/stripped.gz
https://www.nibcode.com/en/psychometric-training/test-of-numerical-sequence
https://www.syvum.com/cgi/online/serve.cgi/iq/ar_series3.html?question_hide
https://www.12minprep.com/knowledge-hub/number-series-practice/#sample-questions-horizontal
https://iqtestprep.com/number-sequence-test/
https://www.hitbullseye.com/Number-Series-Tricks.php
https://learnfrenzy.com/reasoning/verbal-reasoning/verbal-analogy/number-analogy/
https://www.examsbook.com/number-analogy-reasoning-questions
https://www.toppr.com/guides/reasoning-ability/analogy/number-analogy/
http://www.allindiaexams.in/reasoning/verbal-reasoning-questions-answers/number-analogies
https://nlp.stanford.edu/projects/glove
https://nlp.stanford.edu/projects/glove
https://levyomer.wordpress.com/2014/04/25/dependency-based-word-embeddings
https://levyomer.wordpress.com/2014/04/25/dependency-based-word-embeddings
https://levyomer.wordpress.com/2014/04/25/dependency-based-word-embeddings


395

• FastText–Wiki: 300-dimensional Fast-
Text vectors with subword informa-
tion, trained on the 16B tokens from
Wikipedia 2017, UMBC webbase corpus and
statmt.org news dataset. Downloaded
from https://fasttext.cc/docs/en/

english-vectors.html

C LSTM implementation details

We implement our two-layer LSTM language
model using the PyTorch toolkit. Our model uses
truncated BPTT (Williams and Peng, 1990) and
is trained for 40 epochs. Hyperparameters: hid-
den size 200, dynamically annealed learning rate
starting at 20, gradients clipped at 0.25.

https://fasttext.cc/docs/en/english-vectors.html
https://fasttext.cc/docs/en/english-vectors.html

