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Abstract

This paper describes our contribution for the
MEDIQA-2021 Task 1 question summariza-
tion competition. We model the task as con-
ditional generation problem. Our concrete
pipeline performs a finetuning of the large
pretrained generative transformers PEGA-
SUS (Zhang et al., 2020a) and BART (Lewis
et al., 2020). We used the resulting mod-
els as strong baselines and experimented with
(i) integrating structured knowledge via entity
embeddings, (ii) ensembling multiple genera-
tive models with the generator-discriminator
framework and (iii) disentangling summariza-
tion and interrogative prediction to achieve
further improvements. Our best perform-
ing model, a fine-tuned vanilla PEGASUS,
reached the second place in the competition
with an ROUGE-2-F1 score of 15.99. We
observed that all of our additional measures
hurt performance (up to 5.2 pp) on the offi-
cial test set. In course of a post-hoc exper-
imental analysis which uses a larger valida-
tion set results indicate slight performance im-
provements through the proposed extensions.
However, further analysis is need to provide
stronger evidence.

1 Introduction

The internet provides a wealth of information on
health topics through specialised websites, forums,
blogs and social networks. Increasingly, consumers
are using these information sources to answer their
medical and health-related questions. In the course
of this development, also the consumers’ expecta-
tions regarding search engine functionalities have
become much more demanding. Instead of reading
through a list of relevant articles returned by a clas-
sical search engine, short and precise passages are
now expected to answer questions. This transfor-
mation also has an impact on the technologies used

∗ These authors contributed equally. Author order was
determined by coin flip.

to fulfill the user’s information needs. In particular,
approaches for automatic questions answering as
well as automatic summarization and simplification
of (long) articles has received a lot of attention by
researchers in recent years (Allahyari et al., 2017;
Kwiatkowski et al., 2019; Narayan et al., 2018b;
See et al., 2017; Weber et al., 2019). This trend
is also addressed by Task 1 of the MEDIQA 2021
shared task (Ben Abacha et al., 2021) through in-
vestigating consumer health-questions asked on the
(experimental) medical question answering system
CHiQA1. As we participated only in this task, we
refer to it as Shared Task (ST) in the following.

The goal of Task 1 was to foster the development
of new summarization approaches, specifically de-
signed for the challenges of long and potentially
complex consumer health questions. One major
challenge of CHiQA is the extraction of the user’s
main concern from the question text. The given
questions are often lengthy and contain a lot of pe-
ripheral information, which makes automatic pro-
cessing and answering (much more) difficult. Re-
cent studies highlight that expert-based summariza-
tions of such questions can lead to significant en-
hancements of the overall QA process (Ben Abacha
and Demner-Fushman, 2019). Effective automatic
summarization methods could therefore play a key
role for improving medical question answering.

We contribute to this task by first building a base-
line using the general conditional generation frame-
work and then investigating three modifications to
summarize the consumer health questions. Our
baseline relies on finetuning the large pretrained
generative transformers PEGASUS (Zhang et al.,
2020a) and BART (Lewis et al., 2020). We ex-
plore three different strategies to improve the per-
formance of these baseline models, i.e. (i) integrat-
ing structured knowledge via entity embeddings,
(ii) ensembling multiple generative models with
the generator-discriminator framework and (iii) dis-

1https://chiqa.nlm.nih.gov/

https://chiqa.nlm.nih.gov/
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entangling summarization and question word pre-
diction. Our best performing model, a fine-tuned
vanilla PEGASUS, reached the second place in the
competition. We observed that all measures hurt
performance (up to 5.2 pp) on the evaluation set.
However, a post-hoc experimental analysis (see
Section 3), using a larger validation set, indicates
slight improvements through the model extensions.

The remainder of the paper is organized as fol-
lows: the next section introduces our baseline and
the three extension strategies in detail. Section 3
highlights and discusses the experiments and re-
sults we obtained in our own evaluation as well
as in the official assessment. The paper concludes
which a summary of the main findings.

2 Methods

2.1 Data & Baselines

The shared task provides only an official validation
and test set as data. For training data, we follow the
tasks’ organizers suggestion to use the MeQSum
corpus which consists of 1,000 consumer health
questions and their summaries.

We model the summarization task as conditional
generation, in which a model is prompted with
the original question and then generates the sum-
mary in an autoregressive fashion. We base our
implementation2 on the huggingface transformers
library (Wolf et al., 2020) and experiment with the
included pretrained generative transformers bart-
base3, bart-large4, pegasus-large5 and pegasus-
xsum6. pegasus-xsum is a version of PEGASUS
that was already finetuned for summarization on
the Xsum dataset (Narayan et al., 2018a). For all
models, we use a learning rate of 3e− 5 and train
for 10 epochs. We use beam search for decoding
and tune the search parameters on the validation set.
We independently evaluated {1, 10} as the number
of beams and the {0.7, 0.8, 0.9, 1.0} for the length
penalty and found 10 and 0.8 to be optimal.

2Our code is publicly available under https://
github.com/leonweber/bionlp21_summarize

3https://huggingface.co/facebook/
bart-base

4https://huggingface.co/facebook/
bart-large

5https://huggingface.co/google/
pegasus-large

6https://huggingface.co/google/
pegasus-xsum

2.2 Integration of structured knowledge via
entity embeddings

In initial analyses, we noticed that most question
summaries revolve around a few central entities
such as specific diseases or medications which are
almost always mentioned in the source text. Fur-
thermore, all of the generative transformers that
we used were trained on texts from the general do-
main, in which such entities presumably are rare.
We conjectured that it could be beneficial to explic-
itly provide entity information to the model. We
approach this by first applying a domain-specific
NER model to the source text and then enriching
the input embeddings of the transformer with the
found entities. Formally, we extend the computa-
tion of the i’th input embedding in the transformer
to:

ei = wi + pi + si + ni, (1)

where wi, pi, si are the standard subword, position
and sequence type embeddings which are initial-
ized with the weights of the pretrained transformer.
ni is a randomly initialized embedding, which rep-
resents the type of the named entity to which the to-
ken i belongs (including None) and has the same di-
mensionality as the other transformer embeddings.
Note, that si is set to zero for transformers which do
not use sequence type embeddings such as BART.

We experiment with two different NER models:
(i) HunFlair (Weber et al., 2021), a state-of-the-
art BioNER tagger and (ii) a custom Flair (Ak-
bik et al., 2019) model trained on the CHQA cor-
pus (Kilicoglu et al., 2018) consisting of manual
annotations for the central entities of consumer
health questions. Specifically, we use the Dis-
ease and Chemical models of HunFlair and the
PC-harmonization of the CHQA corpus.

2.3 Ensembling multiple generative
transformers

In preliminary experiments, we found that ensem-
bling generative transformers by simply averaging
the logits of different models hurt performance.
Thus, we investigate a different strategy for en-
sembling generative models. We first use each
model m of the ensemble to generate n summaries
{sm1, . . . , smn} conditioned on the original ques-
tion q and then use a discriminative model to select
the question-summary pair with the highest prob-
ability. The n different summaries are generated
by simply taking the final generations of the top-n

https://github.com/leonweber/bionlp21_summarize
https://github.com/leonweber/bionlp21_summarize
https://huggingface.co/facebook/bart-base
https://huggingface.co/facebook/bart-base
https://huggingface.co/facebook/bart-large
https://huggingface.co/facebook/bart-large
https://huggingface.co/google/pegasus-large
https://huggingface.co/google/pegasus-large
https://huggingface.co/google/pegasus-xsum
https://huggingface.co/google/pegasus-xsum
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scoring beams. We implement the discriminator as
a BERT (Devlin et al., 2019) model that receives
both the original question q and a question sum-
mary s produced by one of the ensembled models
and predicts the ROUGE-L-F1 score between both
ROUGE-L-F1(s, q) using a tanh output layer. The
model is trained via an L2-loss. More formally,

h = BERT[CLS](s, q) (2)

o = 0.5 · tanh(W · h + b) (3)

L = ‖ROUGE-L-F1(s, q)− o‖2, (4)

where BERT[CLS] is the BERT-embedding of
the special [CLS] token, W and b are trainable
parameters and L is the loss value.

For training the discriminator, we require gen-
erated summaries that are close to the generated
summaries on the test data. We cannot simply use
the training data of the generators to create the
training data for the discriminator, because we ex-
pect the distributions of the generated summaries
for seen and unseen data to be significantly differ-
ent. Thus, we split MeQSum training data in a
75% / 25% fashion and use the first chunk for train-
ing the generators and the combination of both to
train the discriminators. The full training process
is illustrated in Figure 1a.

2.4 Disentangling summarization and
interrogative prediction

We observed that the consumer questions cover
different categories of health-related issues in the
ST data, e.g. possible side-effects of certain drugs,
suitable treatments for specific diseases or food-
related questions. We conjectured that providing
the putative category of the question to the summa-
rization model could guide the generator towards a
better summary. Moreover, we recognized that the
different categories are aligned to some extent with
the interrogative of the target questions summaries.
Based on these two observations, we designed a
third modification by creating a separate model to
predict the putative interrogative, which acts as a
surrogate for the different question categories.

To this end, we implement a BERT-based classi-
fication model which gets the original user question
as input and predicts the interrogative of the target
question summary. We combine the classification
model with the output of our baseline method us-
ing a three-step approach: (i) we generate m ques-
tion summaries using a generative transformer, (ii)

we predict the interrogative given the original user
question based on the trained classification model
and (iii) selected the highest ranked candidate ques-
tions which starts with the predicted interrogative
as target summary. The process is illustrated in
Figure 1b. To train the classification models we
use the data from the MeQSum corpus but just take
the first word of the summaries as goldstandard
interrogative. Because in this model there is no
dependency between generative and classification
models (as opposed to our generator-discriminator
framework), the classification model can be trained
on the complete training data.

3 Results

3.1 Evaluation setting

We evaluate our models in two different settings.

Setting 1 For our ten submissions to the shared
task, we typically use some combination of MeQ-
Sum and the validation data for training. For model
selection and evaluation of our modifications, we
use the official validation set of the shared task. Fi-
nally, we report scores of our models on the shared
tasks’ hidden test set.

Setting 2 While preparing our runs, we noticed
that the variance of the results on the validation
and test set is rather high, which probably has to do
with the small amount of validation and test data
(50 and 100 questions respectively). To evaluate
the performance impact of our modifications in a
more stable manner, we devised a second evalua-
tion setting after the ST submissions were closed.
For this, we combine the MeQSum data and the
shared task validation data in a single dataset and
then split it into a train and validation set, reserv-
ing 200 questions for validation, which leaves 850
questions for training. We ensure that for each split
the ratio of original MeQSum and validation data is
equal. For each result, we compute three different
runs with different random seeds and report the
average and standard deviation.

Table 1 highlights the used splits of the two dif-
ferent data settings and provides basic statistics for
them. The results for both settings differ signifi-
cantly and thus, we report results for both settings
in the following sections. In the official evalua-
tion of the shared task, the approaches were ranked
according to the achieved ROUGE-2-F1 score.
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Figure 1: (a) Training an ensemble of multiple generators together with a discriminator. Resources are depicted as
yellow rectangles and trained models as green ellipses. (b) Predicting summaries with the interrogative predictor.
Resources are drawn as yellow rectangles and models as green ellipses.

Setting Split Questions
Tokens / Question Tokens / Summary

Mean Min Max Mean Min Max

Setting 1 Training (MeQSum) 1000 60.78 5 378 10.04 3 26
Validation 50 64.16 9 234 9.34 4 19

Setting 2 Training 850 59.60 8 348 9.70 3 26
Validation 200 66.64 5 378 10.18 3 26

Table 1: Overview about the data sets and splits used for training and evaluation in Setting 1 and 2. For Setting 2,
we use all instances from the official training data (MeQSum) and validation data and randomly assign them to the
two splits. We ensure that for each split the ratio of original training and validation data is equal.
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3.2 Final evaluation results

Our best performing model achieved a ROUGE-2-
F1 score of 15.99% on the hidden test set, leading
to a second place in the competition. However, all
top-5 models achieve results that are very close,
and ranks change when different metrics are used.
The top five of the official leaderboard is repro-
duced in Table 2. This best performing model is
one of our baselines based on pegasus-large fine-
tuned on the combination of MeQSum and the ST
validation set. The results of our ten runs on the
official hidden test set together with a description
of each run can be found in Table 5.

3.3 Baseline results

In preliminary experiments on the ST validation set,
we found that pegasus-large works better than bart-
large when the model is fine-tuned on MeQSum
and evaluated on the ST validation set (ROUGE-
L-F1 of 33.32 vs. 32.82). Based on this result, we
opted to select pegasus-large as baseline model for
our submissions (refer to Section 3.7 for a discus-
sion of challenges in model selection). In the offi-
cial evaluation (i.e. Setting 1) the vanilla pegasus-
large model achieves the best performance of all
our submitted runs with an ROUGE-2-F1 score of
15.99 (see Run 1 in Table 5). In a post-hoc anal-
ysis, we noticed that in the consumer questions
spelling errors for crucial pieces of information
such as diseases are common and that the models
tend to copy those spelling errors into the summary
of the question. Thus, our approach probably could
have benefited from incorporating a spell-checking
tool that corrects the spelling errors in the health
questions.

Setting 2 uses the same basic models, but re-
lies on a different training setup. Table 3 shows
the performance scores. The best performance is
achieved by bart-large with ROUGE-1-, ROUGE-
2 and ROUGE-L-F1 scores of 52.91, 34.06 and
49.88. This represents an improvement of 0.55pp
concerning ROUGE-2-F1 to the next best model
(bart-base). In this setting, the BART-based models
achieve better results than the PEGASUS models.

3.4 Entity embedding results

We evaluate the addition of entity embeddings to a
generative transformer using bart-base. For detect-
ing entities, we experiment with the two different
NER models HunFlair and a custom Flair model
trained on the PC-harmonization (Passonneau and

Carpenter, 2014) of the CHQA corpus. The results
for Setting 2 can be found in Table 3. Adding entity
embeddings to the input representation improves
results consistently, leading to a gain of 0.3pp and
1.01pp in ROUGE-2-F1 over our bart-base base-
line. However, we did not observe any gains in our
preliminary experiments on the ST validation set
and thus did not evaluate the models with entity
embeddings in Setting 1. The submission of new
runs was not possible at the time of writing.

3.5 Ensemble results

All results for the generator-discriminator ensem-
bles in Setting 1 (on the hidden test set) can be
found in Table 5, where each row with Type ’GD’
corresponds to one configuration of a generator-
discriminator ensemble. Considering ROUGE-2-
F1, the best generator-discriminator result (run 7)
still performs 1.4 pp worse than our best baseline
model. This run used only one generator based
on pegasus-large to produce ten candidates per
question and a bert-large discriminator to select
the most promising summary. The only setting
in which a generator-discriminator model outper-
forms our strongest baseline on the hidden test set
is run 8 which gains 0.2 pp under the BERTScore
metric (Zhang et al., 2020b), making it the overall
top ranking run of the ST under this metric. This
run uses a single pegasus-large generator proposing
ten candidate summaries per question and an en-
semble of three different bert-large discriminators.

In Setting 2, we observed considerable gains by
using an ensemble of bart-base, bart-large, pegasus-
large and pegasus-xsum, while using a single bert-
base as the discriminator, using only the most prob-
able output sequence per model as candidate. Com-
pared to pegasus-large, this configuration leads to
an improvement of 2.16pp in ROUGE-1-F1, 1.46pp
in ROUGE-2-F1 and 2.27pp in ROUGE-L-F1.

We also investigated the performance ceiling for
our ensembling approach by evaluating the ensem-
ble under a perfect discriminator, which always
selects the summary yielding the highest Rouge-L-
F1 score. Under this setting, our ensemble achieved
a Rouge-2-F1 score of 44.87 which is an improve-
ment of 10.9 pp. This shows the promise of our en-
sembling approach and suggests that a worthwhile
path to obtain better results would be to improve
the discriminator.
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Rank Team name ROUGE-1-F1 ROUGE-2-F1 ROUGE-L-F1 HOLMS BERTScore-F1

1 damo_nlp (summc) 35.14 16.08 31.31 56.77 68.98
2 WBI 33.40 15.99 31.49 57.67 69.96
3 NCUEE-NLP 33.52 15.97 30.90 57.87 69.60
4 yamr 32.80 15.25 30.38 57.86 68.77
5 Saama 33.33 15.18 29.50 57.72 69.38

Table 2: Top five of the official results for subtask one (ranked by ROUGE-2-F1). All scores are given in percent.
In total 23 teams participated in this subtask. Our contribution is displayed in bold. These numbers correspond to
our evaluation Setting 2.

Model type Gen. model(s) Add-on ROUGE-1-F1 ROUGE-2-F1 ROUGE-L-F1

Baseline bart-large - 52.91 (± 0.91) 34.06 (± 1.01) 49.88 (± 0.66)
bart-base - 52.17 (± 0.14) 33.49 (± 0.84) 49.36 (± 0.32)

pegasus-large - 51.06 (± 0.78) 32.51 (± 0.72) 48.28 (± 0.68)
pegasus-xsum - 51.47 (± 0.28) 32.65 (± 0.58) 48.90 (± 0.30)

Entity bart-base HunFlair 52.16 (± 0.45) 33.79 (± 0.46) 49.24 (± 0.27)
embeddings bart-base CHQA flair model 53.17 (± 1.58) 34.5 (± 1.30) 50.22 (± 1.43)

Generator-
discriminator

bart-base
bart-large

pegasus-large
pegasus-xsum

bert-base 53.22 (± 1.81) 33.97 (± 1.40) 50.55 (± 1.75)

Interrogative pegasus-large bert-base 52.11 (± 0.36) 33.71 (± 0.85) 49.21 (± 0.66)
prediction pegasus-large bio-bert 52.22 (± 0.60) 33.42 (± 0.70) 49.26 (± 0.53)

pegasus-large biomed-roberta 52.66 (± 0.67) 33.71 (± 0.81) 49.58 (± 0.85)

pegasus-large
bio-bert

biomed-roberta
52.28 (± 0.58) 33.47 (± 0.69) 49.40 (± 0.67)

Table 3: Overview of Setting 2 evaluation results. For each experiment, we list the used generative transformer(s)
and (if applicable) utilized complementary models (Add-on). For entity embeddings add-on models are named
entity recognition models. In case of the generator-discriminator framework it’s the discriminator model and
regarding interrogative prediction it defines the applied classification model(s). For each experiment, we compute
three different runs with different random seeds and report the average and standard deviation.
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3.6 Interrogative-predictor results

For evaluating our interrogative prediction ap-
proach we experimented with different transformer-
based models, pre-trained on either general
domain or biomedical data, for classification:
BERT7, BioBERT (Lee et al., 2020)8, BioMed-
RoBERTa (Gururangan et al., 2020)9 and multiple
of these models arranged in an ensemble. All mod-
els are learned on the training portion (for each
evaluation setting). For all models we use pegasus-
large as generative model and produce 10 candidate
summaries per user question.

As shown in Table 3 we observe clear perfor-
mance improvements of this approach compared to
the baseline when evaluated in Setting 2. Here,
the best results are achieved with the BioMed-
RoBERTa model. In this configuration, the model
achieves a ROUGE-2-F1 score of 33.71 which rep-
resents an increase of 1.20 pp compared to the
vanilla pegasus-large result. Again, the results
achieved in the official evaluation (Setting 1) show
a different picture. In this setting, the usage of an
ensemble of three interrogative classification mod-
els lowers the performance by 2.6 pp (see Run 3 in
Table 5).

We also investigated the accuracy of the inter-
rogative prediction models. Table 4 highlights the
achieved accuracy and macro F1-scores of the
three models. All models predict the correct in-
terrogative for only half of the consumer questions.
An analysis of the predictions showed that all mod-
els are biased towards the majority classes, i.e. in-
terrogatives with a high support in the training data.

Like in the generative ensemble setting, we fur-
ther checked the potential performance gains of
the interrogative prediction using a perfect classi-
fier. For this, we took the gold standard interroga-
tive and use the first generated summary candidate
which starts with this interrogative as prediction. If
no generated summary starts with the gold interrog-
ative we use the highest ranked candidate. Using
this selection scheme we reached an ROUGE-2-F1
score of 39.72 in Setting 2 which represents an in-
crease by 7.21 pp over the baseline pegasus-large
model. Again, this accentuates the suitability of
the proposed approach.

7https://huggingface.co/
bert-base-cased

8https://huggingface.co/dmis-lab/
biobert-v1.1

9https://huggingface.co/allenai/
biomed_roberta_base

Model Accuracy F1

bert-base 0.530 0.103
bio-bert 0.525 0.095
biomed-roberta 0.555 0.228

Table 4: Overview of the performance of the three in-
terrogative classification models. For each model we
report accuracy and macro F1 score. Bold figures high-
light the highest value per column.

3.7 Discussion of result differences between
Setting 1 and Setting 2

Tables 2 and 3 reveal enormous performance dif-
ferences between Setting 1 (the official evaluation
results) and Setting 2 (our post-hoc experimental
analysis). In Setting 1, none of our proposed exten-
sions leads to consistent quantitative improvements
of the results and the best performance is achieved
by an vanilla generative transformer. In contrast in
Setting 2, we see (at least) slight benefits from all
three strategies.

Explaining these results and differences is diffi-
cult for several reasons. Concerning Setting 2, the
high variance of the results (see Table 3) prevents
a clear conclusion. Results of the methods vary
with different random initializations and are also
quite sensitive to hyperparameter settings. Often
the differences of the methods lie within the range
of the standard deviation making it unclear whether
the findings would hold up in further analysis or
other contexts.

Regarding Setting 1, the small size of the eval-
uation data (only 100 instances) puts any conclu-
sions about the quality of the proposed methods
into question. In Setting 2, we tried to mitigate the
problem of small test data by increasing the num-
ber of test instances, however the results remain
unstable. Furthermore, weaknesses of the ROUGE
metric, e.g. handling of synonyms, abbreviations
or enumerations, must be taken into account in the
result interpretation (Schluter, 2017; Kané et al.,
2019). The automatic evaluation of generated sum-
maries remains a research field in itself (Zhang
et al., 2020b). In summary, we neither believe that
the results from Setting 1 provide strong evidence
of the extension’s inappropriateness, nor that the
results from Setting 2 allow a convincing statement
about their positive effects. To this end, further in-
vestigation is necessary in order to draw definitive
conclusions about our proposed modifications.

https://huggingface.co/bert-base-cased
https://huggingface.co/bert-base-cased
https://huggingface.co/dmis-lab/biobert-v1.1
https://huggingface.co/dmis-lab/biobert-v1.1
https://huggingface.co/allenai/biomed_roberta_base
https://huggingface.co/allenai/biomed_roberta_base
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Run Type Description ROUGE-2 HOLMS BERTScore-F1

1 B pegasus-large finetuned on MeQSum and validation
data

16.0 57.7 70.0

2 B pegasus-large first finetuned on MeQSum and then on
validation data

12.4 55.5 69.3

3 IP pegasus-large finetuned on MeQSum and validation
data with ensemble of interrogative predictors consist-
ing of two biobert and one biomed-roberta model

13.4 56.4 69.0

4 GD Generator ensemble of bart-base, bart-large, pegasus-
large and pegasus-xsum with one candidate summary
per model and bert-base as discriminator

11.8 55.5 68.4

5 B pegasus-xsum finetuned on MeQSum and validation
data

12.4 55.5 68.7

6 GD Same configuration as in run 4 but with an ensemble of
discriminators consisting of bert-base, roberta-base and
biobert

11.4 55.4 68.2

7 GD pegasus-large trained on MeQSum with ten candidate
summaries and a bert-large discriminator trained on
MeQSum to select the best one

14.6 57.3 69.8

8 GD Same configuration as in run 7 but with an ensemble
of three different bert-large discriminators trained on
MeQSum

14.2 57.0 70.2

9 GD Same configuration as in run 7 but the bert-large dis-
criminator is trained on MeQSum and validation data

12.0 55.4 68.9

10 GD Same configuration as in run 8 but the the discriminators
are trained on MeQSum and validation data

12.0 55.4 69.5

Table 5: Official results for our submitted runs for subtask one. In total we submitted 10 runs. The runs can
be categorized according to their type into baseline models (B), models using interrogative prediction (IP) or the
generator-discriminator framework (GD). The highest value per metric is highlighted in bold. This corresponds to
our evaluation Setting 1.
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4 Conclusion

In this work we investigate the large-scale pre-
trained generative transformers PEGASUS and
BART for the task of health-related consumer ques-
tion summarization in the context of the MEDIQA
2021 shared task (Task 1). We propose and evalu-
ate three different strategies, i.e. integrating struc-
tured knowledge via entity embeddings, utilizing
a generator-discriminator framework and apply-
ing interrogative prediction, to extend these strong
baseline models. Our best performing model, a
fine-tuned pegasus-large transformer, reaches an
ROUGE-2-F1 score of 15.99 and is ranked second
place in the competition. Experimental results for
our proposed extensions show a mixed picture and
further analysis is needed to assess the quality of
these extensions.
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