
Proceedings of the BioNLP 2021 workshop, pages 143–154
June 11, 2021. ©2021 Association for Computational Linguistics

143

BioELECTRA:Pretrained Biomedical text Encoder using Discriminators

Kamal Raj Kanakarajan and Bhuvana Kundumani and Malaikannan Sankarasubbu
SAAMA AI Research Lab, Chennai, India

{kamal.raj, bhuvana.kundumani, malaikannan.sankarasubbu}@saama.com

Abstract

Recent advancements in pretraining strategies
in NLP have shown a significant improvement
in the performance of models on various text
mining tasks. In this paper, we introduce Bio-
ELECTRA, a biomedical domain-specific lan-
guage encoder model that adapts ELECTRA
(Clark et al., 2020) for the Biomedical domain.
BioELECTRA outperforms the previous mod-
els and achieves state of the art (SOTA) on
all the 13 datasets in BLURB benchmark and
on all the 4 Clinical datasets from BLUE
Benchmark across 7 NLP tasks. BioELEC-
TRA pretrained on PubMed and PMC full
text articles performs very well on Clinical
datasets as well. BioELECTRA achieves new
SOTA 86.34%(1.39% accuracy improvement)
on MedNLI and 64% (2.98% accuracy im-
provement) on PubMedQA dataset.

1 Introduction

Following the success of BERT (Devlin et al., 2018)
(Bidirectional Encoder Representations from Trans-
formers) in the general domain, the pretrain-and-
finetune approach has been used in the Biomedical
domain. With large scale free text available from
PubMed and PubMed central (millions of articles),
biomedical domain has large unlabelled domain-
specific corpus. However, the biomedical domain
has labelled datasets that are very small compared
to the general domain. Thus the transfer learning
approach is well suited for Biomedical domain.

In the biomedical domain, BioBERT (Lee et al.,
2020), BlueBERT (Peng et al., 2019) and Clinical-
BERT (Alsentzer et al., 2019) are the initial mod-
els based on BERT. These models follow contin-
ual pretraining approach where the model weights
are initialised with weights from BERT trained on
Wikipedia and Book Corpus and uses the same vo-
cabulary. Recent models SciBERT (Beltagy et al.,
2019), PubMedBERT (Gu et al., 2020) and Bio-
lm (Lewis et al., 2020) have shown that pretrain-

ing from scratch using domain specific corpora
along with domain specific vocabulary improves
the model performance significantly.

In this work, we adapt ELECTRA (Clark et al.,
2020), a recent and powerful general domain model
for the biomedical domain and we release Bio-
ELECTRA - a biomedical domain specific lan-
guage encoder model. We follow the domain spe-
cific pretraining approach where the ELECTRA
model is pretrained on PubMed and PubMed Cen-
tral (PMC) full text articles. ELECTRA outper-
forms BERT, ALBERT (Lan et al., 2019), XLNet
(Yang et al., 2020) and RoBERTa (Liu et al., 2019)
on the GLUE (Wang et al., 2019) Benchmark and
SQuAD (Rajpurkar et al., 2016a).

In particular, we make the following contribu-
tions.

1. We release BioELECTRA(P), BioELEC-
TRA(P + F), BioELECTRA(P + F) LT(Longer
Training of additional 1M steps) and Bio-
ELECTRA(W + P) pretrained from scratch
using Biomedical domain text. Pretrained
weights for all these models are publicly
released through huggingface transform-
ers(Wolf et al., 2020) model hub.

2. We evaluate our BioELECTRA models on all
the 13 datasets in the BLURB (Gu et al., 2020)
benchmark and on all the 4 clinical datasets
from BLUE (Peng et al., 2019) benchmark
across 7 NLP tasks.

3. BioELECTRA model achieves state-of-the-
art (SOTA) results on all the 13 datasets in
BLURB benchmark and achieves SOTA on all
the Clinical datasets from BLUE Benchmark.

4. We publicly release the code1 and parameters
to reproduce our research results.

1The code and models are available at
https://github.com/kamalkraj/BioELECTRA
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2 Related work

Pretrained word embeddings (Mikolov et al.,
2013), (Pennington et al., 2014) and contextualised
word embeddings (Peters et al., 2018) have helped
the deep learning algorithms to improve their per-
formance in NLP tasks. ULMFiT (Howard and
Ruder, 2018), introduces the transfer learning ap-
proach to Natural language processing and Ope-
nAI GPT (Radford et al., 2018), pretrains a trans-
former (Vaswani et al., 2017) for learning gen-
eral language representations. Similar to ULM-
FiT and OpenAI GPT, BERT (Devlin et al., 2018)
follows this fine tuning approach and introduces
a powerful bidirectional language representation
model using the transformer based model architec-
ture. BERT achieves SOTA on most NLP tasks
without any heavily-engineered task specific archi-
tectures. Following the success of BERT, XLNet
(Yang et al., 2020) with generalized autoregres-
sive pretraining and RoBERTa (Liu et al., 2019)
with robust pretraining techniques experiment with
different pretraining objectives. ALBERT (Lan
et al., 2019) uses weight sharing and embedding
factorisation to reduce memory consumption and
increase the training speed. ELECTRA (Clark
et al., 2020) introduces sample-efficient ’replaced
token detection’ pretraining technique. ELECTRA-
small, trained with very little compute outperforms
GPT and performs comparably with larger models
like RoBERTa and XLNet.

Recent works adapt BERT to scientific, biomed-
ical and clinical domains. BioBERT (Lee et al.,
2020) pretrains BERT with data from PubMed
and PubMed Central (PMC) articles. BlueBERT
(Peng et al., 2019) pretrains BERT on PubMed,
PMC and MIMIC III (Johnson et al., 2016) data.
ClinicalBERT (Alsentzer et al., 2019) initialises
with BioBERT weights and pretrains on data from
MIMIC III. SciBERT (Beltagy et al., 2019), Pub-
MedBERT (Gu et al., 2020) and Bio-lm (Lewis
et al., 2020) pretrain BERT based models from
scratch with domain specific data. SciBERT pre-
trains on 1.14M papers from Semantic Scholar
(Ammar et al., 2018), PubMedBERT on PubMed
and PMC data and Bio-lm (Lewis et al., 2020) on
data from PubMed, PMC and MIMIC III. Bench-
marks in biomedical NLP - BLUE (Biomedical
Language Understanding Evaluation) and BLURB
(Biomedical Language Understanding & Reason-
ing Benchmark) are released by BlueBERT and

PubMedBERT respectively.

3 Methods

3.1 Pretraining from scratch using domain
specific corpora

The pioneers in applying transfer learning to NLP,
pretrain Language Model(LM) on unlabelled large
corpora in the general domain like Wikipedia ar-
ticles, Web Text, Books corpus, Gigaword, web
crawl etc. Biomedical literature has specific con-
cepts and terms that are not part of the general do-
main. To enable the models to learn these features
very specific to the biomedical domain, BioNLP
models, BioBERT (Lee et al., 2020) and BlueBERT
(Peng et al., 2019) use the mixed-domain pretrain-
ing approach (Gu et al., 2020). In mixed-domain
approach, the model initialises with BERT weights
and vocabulary trained on general domain text and
the model is pretrained on the biomedical text.

Biomedical domain with its publicly available
literature which is growing exponentially by the
year makes it well suited for domain specific pre-
training from scratch. Using a general domain
vocabulary for biomedical text results in complex
and specific terms being split into numerous sub-
words, as they do not exist in the general domain
vocabulary. Hence a model trained on these word
pieces might not generalise well for the domain
specific downstream tasks. Recent work PubMed-
BERT (Gu et al., 2020) and Bio-lm (Lewis et al.,
2020) pretrain a language model from scratch on
PubMed abstracts and use the vocabulary that is
generated from PubMed abstracts. These models
outperform the BioBERT and BlueBERT models
on biomedical and clinical NLP tasks .

3.2 Data

We use data very similar to PubMedBERT for fair
comparison.
PubMed Abstracts We use text from 22 million
PubMed abstracts downloaded as of January 2021.
27 GB of cleaned text with approximately 4.2 bil-
lion words are used.
PubMed Central (PMC) We obtained full text
from 3.2 million PubMed Central (PMC) 2 articles
as of January 2021. After cleaning the data, we use
57GB of text with approximately 9.6 billion words.
Preprocessing We used pubmed_parser parser3 for

2https://www.ncbi.nlm.nih.gov/pmc/
3https://github.com/titipata/pubmed_parser
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Figure 1: Overview of ELECTRA-Base model Pretraining. Output shapes are mentioned in parenthesis after each
block.( B=Batch Size, MSL=Maximum Sequence Length, H=Hidden size )

extracting the abstracts and full text articles. We
used SciSpacy(Neumann et al., 2019) for sentence
tokenization.

3.3 ELECTRA
Architecture ELECTRA (Clark et al., 2020) pre-
training architecture consists of a Generator and a
Discriminator network. Each of them consists of
Encoder blocks of the transformer (Vaswani et al.,
2017) architecture. The generator size is chosen
smaller than the Discriminator to make ELECTRA
computationally efficient. The size of the Hidden
dimension (H) of the transformer encoder in Gen-
erator is reduced to 1/3 the size of the Discrimi-
nator. The Generator and Discriminator share the
weights of the Embedding layer, which is com-
posed of token embeddings, position embeddings
and type embeddings. An embedding projector is
added to Generator after the Embedding layer to
project the embedding dimension H to H/3. Figure
1 shows pretraining configuration of ELECTRA-
Base model. The Generator is trained with maxi-
mum likelihood as in ELECTRA paper and Gener-
ator is not given a noise input vector as in General
Adversarial Networks (GANs). The Discriminator
is trained very similar to a classifier with cross en-
tropy loss. After pretraining only the Discriminator

is used for all the finetuning.

Input/Output representations ELECTRA fol-
lows the Input/Output representations of BERT
(Devlin et al., 2018). The first token is always
the [CLS] token whose final hidden state is used
for finetuning sentence level tasks. For single sen-
tence tasks, the tokenized input sequence should
follow the [CLS] token and end with [SEP]. For
sentence pair tasks, the tokenized input sentences
should be separated by a [SEP] token. Type and
Position embeddings which indicate the sentence
that it belongs to (sentence1/sentence2) are added
to the input token embeddings. Final input rep-
resentation of a given token is the summation of
its token, position and type embeddings which are
learnt during the training.

Pretraining Task ELECTRA introduces re-
placed token prediction pretraining task where
the model is trained to distinguish real input to-
kens from synthetically generated tokens. Random
words are selected in the input text and replaced
with tokens generated by a small Generator net-
work. The Discriminator network then predicts
whether the input token is original or replaced. This
novel approach ensures that the model learns from
all the input tokens and not just from 15% of the
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Dataset Task Train Dev Test Evaluation Metrics

BC5-chem (Li et al., 2016) NER 5203 5347 5385 F1 entity-level
BC5-disease (Li et al., 2016) NER 4182 4244 4424 F1 entity-level
NCBI-disease (Doğan et al., 2014) NER 5134 787 960 F1 entity-level
BC2GM (Smith et al., 2008) NER 15197 3061 6325 F1 entity-level
JNLPBA (Collier and Kim, 2004) NER 46750 4551 8662 F1 entity-level
ShARe/CLEFE* (Suominen et al., 2013) NER 4628 1075 5195 F1 entity-level

EBM PICO(Nye et al., 2018) PICO 339167 85321 16364 Macro F1 word-level

ChemProt (Krallinger et al., 2017) Relation Extraction 18035 11268 15745 Micro F1
DDI (Herrero-Zazo et al., 2013) Relation Extraction 25296 2496 5716 Micro F1
GAD (Bravo et al., 2015) Relation Extraction 4261 535 534 Micro F1
i2b2-2010* (Uzuner et al., 2011) Relation Extraction 3110 11 6293 Micro F1

BIOSSES (Soğancıoğlu et al., 2017) Sentence Similarity 64 16 20 Pearson
ClinicalSTS** (Wang et al., 2020) Sentence Similarity 1312 329 412 Pearson

HoC (Baker et al., 2015) Document Classification 1295 186 371 Micro F1

MedNLI* (Romanov and Shivade, 2018) Inference 11232 1395 1422 Accuracy

PubMedQA (Jin et al., 2019) Question Answering 450 50 500 Accuracy
BioASQ (Nentidis et al., 2019) Question Answering 670 75 140 Accuracy

Table 1: Datasets from BLURB and BLUE benchmark. Number of instances in train, dev, and test set along with
the evaluation metrics used for each of the datasets is listed. * Clinical domain dataset from BLUE. ** Instead of
MedSTS from BLUE we used ClinicalSTS released by (Wang et al., 2020)

tokens in the input text as in BERT. This makes the
pretraining task computationally effective. As re-
cent work (Liu et al., 2019) (Yang et al., 2020) sug-
gests that using ’next sentence prediction’ does not
show consistent improvement in the scores, ELEC-
TRA does not use any such ’contrastive learning’
techniques for pretraining. Since ELECTRA does
not have a contrastive learning technique, there is
no pooling projection layer in ELECTRA.

4 Experiments

4.1 BioELECTRA pretraining

We pretrain ELECTRA from scratch with PubMed
abstracts and PMC full text articles mentioned in
Section 3.2. PubMedBERT (Gu et al., 2020) and
BioBERT (Lee et al., 2020) pretrained BERT-Base
models with biomedical domain specific corpus. In
this paper, we experiment only with ELECTRA-
Base architecture to ensure a fair comparison with
these models. Four ELECTRA-Base models are
trained - BioELECTRA (P) on PubMed abstracts,
BioELECTRA (P+F) on PubMed abstracts and
PMC full text articles, BioELECTRA (P+F) with
longer training (2M steps) and BioELECTRA
(W+P) on Wikipedia and PubMed abstracts. Bio-
ELECTRA(P) and BioELECTRA(P+F) models are
trained with 1M steps with a batch size of 512.
The number of training steps are chosen to make

our work comparable with BioBERT4 and Pub-
MedBERT.5 BioELECTRA(P+F) LT is trained like
BioELECTRA(P+F) with an additional 1M steps.
For BioELECTRA(W+F), a continual training ap-
proach is adopted where the model is initialised
with ELECTRA-BASE general domain weights.
It is pretrained further with PubMed abstracts for
100k, 200k and 400k steps. We publish our re-
sults of BioELECTRA(W+F) pretrained with 200k
steps as these results were comparable with Pub-
MedBERT BLURB (Gu et al., 2020) score.

SciBERT (Beltagy et al., 2019) shows that
models trained on uncased vocabularies perform
slightly better than the cased models in biomed-
ical domain even for NER tasks. Hence we use
the uncased biomedical domain-specific vocabu-
laries from PubMedBERT for all our experiments.
The optimization techniques and parameters from
ELECTRA paper are followed. All our models
are trained on Tensor Processing Unit(TPU) v3-8
instances. Refer Appendix A for complete model
and optimizer details.

4.2 Datasets
We finetune our ELECTRA-Base models on 17
NLP datasets - 13 biomedical datasets from the

4BioBERT was trained with a batch size of 256 with 1M
steps in pretraining and 1M steps in continual pretraining.

5PubMedBERT was trained with a batch size of 8,192 for
62,500 steps.
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BLURB (Gu et al., 2020) benchmark and 4 clinical
datasets from the BLUE (Peng et al., 2019) bench-
mark. We group our datasets based on the NLP
tasks. We do not discuss the datasets in detail due
to space constraints. Details on train, dev, test split,
benchmark they belong to, evaluation metric used
can be found in Table 1. Detailed description of
the datasets are available in the BLURB(Gu et al.,
2020) and BLUE(Peng et al., 2019) paper.

4.2.1 Named Entity Recognition (NER)
NER task aims at recognizing and predicting the
entities e.g (chemicals, diseases, genes, proteins)
in the given text. We use BC5-Chemical, BC5-
Disease, NCBI-Disease, BC2GM, JNLPBA biomed-
ical datasets from the BLURB benchmark. These
datasets have the same train, dev and test split as
released by (Crichton et al., 2017). In addition
to these, ShARe/CLEFE clinical dataset used by
BLUE benchmark which uses the train, dev and
test split released by (Suominen et al., 2013) is used
for NER task.

4.2.2 PICO extraction (PICO)
PICO task is very similar to NER, where the
model aims to predict the Participants, Interven-
tions, Comparisons and Outcomes entities in the
given text. EBM PICO (Nye et al., 2020) dataset
from the BLURB benchmark which has the same
train, test and dev split as the original dataset is
used for this task.

4.2.3 Relation Extraction (RE)
Relation Extraction task predicts relations and their
types between the two entities mentioned in the
given sentences (e.g, gene–disease relations, pro-
tein–chemical relations). We use DDI, ChemProt
and GAD datasets from the BLURB benchmark
and i2b2-2010 clinical dataset in the BLUE bench-
mark. GAD dataset in BLURB benchmark uses
train, dev and test split created by (Lee et al.,
2020). For DDI, BLURB uses the original dataset
by (Herrero-Zazo et al., 2013) and release their
own train, dev and test datasets. BLURB uses the
train, dev and test split from the original dataset
(Krallinger et al., 2017) for ChemProt. BLUE uses
the train, dev and test split released by (Uzuner
et al., 2011)

4.2.4 Sentence Similarity
Sentence Similarity task predicts the similarity
score based on how similar are the given pair of

sentences. BIOSSES dataset from BLURB bench-
mark and ClinicalSTS dataset instead of the Med-
STS dataset is chosen from BLUE benchmark.
BLURB uses the train, dev and split created by
(Peng et al., 2019). ClinicalSTS dataset is chosen
as that is the latest version provided by n2c2 2019
challenge(Wang et al., 2020). It has added 574
more samples for training and a new test set of 412
samples. As this dataset doesn’t have a public train
and dev split, we have split it into 80% train and
20% dev set and we use the original test set for
evaluation.

4.2.5 Document classification
Document classification task aims to predict the
multiple labels for the given text. Evaluation for
Document classification task is done at the docu-
ment level where we aggregate the labels over all
the sentences in a document. We use HoC dataset
from BLURB benchmark which uses the original
dataset by (Baker et al., 2015) to create their own
train, dev and test split.

4.2.6 Natural Language Inference (NLI)
Natural Language Inference task predicts whether
the relation between two sentences are entailment,
contradiction or neutrality. MedNLI (Romanov and
Shivade, 2018) dataset from the BLUE benchmark
which uses the original train, dev and test split is
used for this task.

4.2.7 Question Answering (QA)
Question Answering task aims to predict the an-
swers in the context when a question text is given
as the first sentence. The answers are either two-
way (yes/ no) or three-way (yes/ maybe/ no). Pub-
MedQA and BioASQ datasets from BLURB bench-
mark are used for our experiments. For both Pub-
MedQA (Jin et al., 2019) and BioASQ (Nentidis
et al., 2019), BLURB uses the original train, dev
and test split.

4.3 Fine tuning

ELECTRA (Clark et al., 2020) applies very min-
imal architectural changes for finetuning down-
stream tasks. We follow the same approach as
ELECTRA for finetuning BioELECTRA on the
various downstream tasks. BIO encoding scheme
is adopted for the NER tasks where B stands for
Beginning, I stands for Inside and O stands for
Outside. All the NER datasets in BLURB bench-
mark and ShARe/CLEFE in BLUE benchmark have
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BioBERT SciBERT ClinicalBERT BlueBERT PubMedBERT BioELECTRA
cased uncased cased cased uncased uncased
(P) (CS+F) (W+P+M) (W+P+M) (P) (P)

BC5-chem 92.85 92.49 90.80 91.19 93.33 93.60
BC5-disease. 84.70 84.54 83.04 83.69 85.62 85.84
NCBI-disease 89.13 88.10 86.32 88.04 87.82 89.38
BC2GM 83.82 83.36 81.71 81.87 84.52 84.69
JNLPBA 79.35 79.45 78.59 78.68 80.06 80.17
EBM PICO 73.18 73.12 72.06 72.54 73.38 74.26
ChemProt 76.14 75.24 72.04 71.46 77.24 78.20
DDI 80.88 81.06 78.20 77.78 82.36 82.76
GAD 80.94 80.90 78.40 77.24 82.34 83.70
BIOSSES 89.52 86.25 91.23 85.38 92.30 92.49
HoC 81.54 80.66 80.74 80.48 82.32 83.50
PubMedQA 60.24 57.38 49.08 48.44 55.84 64.02
BioASQ 84.14 78.86 68.50 68.71 87.56 88.57
BLURB score 80.29 78.80 77.19 76.19 81.10 82.47

Table 2: Comparison of pretrained BioNLP models on the BLURB (Gu et al., 2020) benchmark. The BLURB
score is the macro average of mean test results for each of the six tasks (NER, PICO, Relation Extraction, Sentence
Similarity, Document Classification, Question Answering). Refer Table 1 for the evaluation metric used for each
task. (P - PubMed abstracts, CS - Computer Science, F - PubMed Central full text articles, W - Wikipedia, M -
MIMIC III (Johnson et al., 2016))

a single entity. (e.g. Disease in BC5-disease).
PICO, a sequential tagging task is solved using
the NER task approach and Document classifica-
tion task for HoC dataset is solved as multi label
classification task. The datasets in NER, PICO
and Document classification tasks follow the sin-
gle sentence representation. As mentioned in sec-
tion 3.3, each tokenized input sequence follows the
[CLS] token and ends with the [SEP] token. Sen-
tence Similarity, Question Answering and Natural
Language Inference tasks all have sentence pairs
in their inputs. We process the sentence pairs as
[CLS]sentence1[SEP]sentence2[SEP] very similar
to BERT. In the Question Answering task, ’ques-
tion’ is treated as sentence1 and ’context’ is treated
as sentence2.

ELECTRA (Clark et al., 2020) uses the vector
representation of the [CLS] token to generate the
output for all the given NLP tasks except NER
and PICO. For NER and PICO, representations for
each token is used to classify the entities. A simple
linear layer is added to the output of ELECTRA
for finetuning. ELECTRA does not use LSTM
(Hochreiter and Schmidhuber, 1997), CRF (Laf-
ferty et al., 2001) layers for NER tasks. Figure 2 in
appendix B illustrates the finetuning architecture

for the NLP tasks. Mean-square error is used for
regression tasks and cross entropy loss is used for
classification tasks. Similar to BERT finetuning, all
the layers are fine-tuned together along with task
specific prediction layer. We use ’discriminative
finetuning’ similar to ELECTRA, where only the
final layer is trained with the original learning rate
and all other layers use a learning rate with a de-
cay factor. For finetuning, Adam (Kingma and Ba,
2017) optimizer with a slanted triangular learning
rate scheduler which linearly warms up (10% of
steps) followed by linear decay (90% of steps) is
used. We also use a dropout probability of 10%.
We experiment with the following hyper parame-
ters: learning rate [3e-5, 5e-5, 1e-4, 1.5e-4, 2e-4],
batch size [16, 32], layer-wise learning-rate decay
out of [0.9, 0.8, 0.7] and epochs [3,5]. BIOSSES
(Soğancıoğlu et al., 2017), PubMedQA (Jin et al.,
2019), BioASQ (Nentidis et al., 2019) and Clini-
calSTS (Wang et al., 2020) are finetuned for longer
epochs. For more details on the hyper parame-
ters, refer Appendix B. We ran 10 fine tuning runs
on BIOSSES, BioASQ and PubMedQA since the
datasets are relatively smaller and 5 runs on all the
other datasets. The average score is reported as the
final score for the evaluation metric.
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BioBERT ClinicalBERT BlueBERT PubMedBERT BioELECTRA
cased cased cased cased uncased uncased uncased uncased
(P) (W+P+M) (P) (P+M) (P) (P+F) (P) (P+F)

MedNLI 82.63 82.70 82.2 84 83.82 84.17 86.27 86.34
i2b2-2010 72.81 74.82 74.4 76.4 75.14 73.93 76.50 75.73
ShARe/CLEFE 80.73 82.15 75.4 77.1 74.45 74.77 83.71 83.15
ClinicalSTS 85.91 85.63 86.03 84.57 86.72 86.16 89.07 88.34

Table 3: Comparison of pretrained language models on the BLUE (Peng et al., 2019) benchmark. (P - PubMed
abstracts, F - PubMed Central full text articles, W - Wikipedia, M - MIMIC III (Johnson et al., 2016) )

5 Results

We finetune all of the four BioELECTRA models
mentioned in 4.1 for seven biomedical text mining
tasks (NER, PICO, Relation Extraction, Sentence
Similarity, Document Classification, Question An-
swering and Natural Language Inference) that are
part of the BLURB (Gu et al., 2020) and BLUE
(Peng et al., 2019) benchmark.
BLURB benchmark Out of the four BioELEC-
TRA models, BioELECTRA (P) model pretrained
from scratch on PubMed abstracts alone along with
biomedical domain specific vocabulary (from Pub-
MedBERT (Gu et al., 2020)) achieves new State-
of-the-Art (SOTA) results on all of the datasets in
BLURB benchmark. Our results on BioELECTRA
(P) along with the scores for BioBERT (Lee et al.,
2020), SciBERT (Beltagy et al., 2019), Clinical-
BERT (Alsentzer et al., 2019) , BlueBERT (Peng
et al., 2019) and PubMedBERT (Gu et al., 2020) for
all the tasks in the BLURB benchmark are shown
in table 2. The scores on these datasets for all
these models are taken from the BLURB bench-
mark. As we do not have details on train, test and
dev split of datasets used by Bio-lm (Lewis et al.,
2020) paper, we are not able to compare our re-
sults with their results. For NCBI-Disease, where
the train, test and dev split is publicly available,
our model (89.38%) performs better than the Bio-
lm Base (PM + Voc) model (88.2%). ELECTRA
performs significantly better than all other BERT
based models on the SQuAD (Rajpurkar et al.,
2016b) benchmark in the general domain. Sim-
ilarly, BioELECTRA (P) model has significantly
higher scores on the Question Answering tasks. It
achieves new SOTA of 64.02% (3.78% increase
over the previous SOTA) on PubMedQA and with
a new SOTA of 88.57% (1.01 % increase over the
previous SOTA) on BioASQ. Our overall BLURB
score (macro average of the average metric for each

of the six tasks) is 82.40% which is 1.3% higher
than PubMedBERT BLURB score of 81.10%.

BLUE benchmark We present results of Bio-
ELECTRA (P) pretrained on PubMed abstracts
alone and BioELECTRA (P+F) pretrained on both
PubMed abstracts and PubMed full text articles
on four of the clinical datasets in the BLUE bench-
mark in table3. We compare the performance of our
models with the results of BioBERT, ClinicalBERT,
BlueBERT and PubMedBERT. Since the scores on
the train, dev and test split of these clinical datasets
by BioBERT, ClinicalBERT, BlueBERT and Pub-
MedBERT are not available, we used their pre-
trained weights on these datasets and documented
the results. We do not have the results of SciBERT
model as it was trained on mixed domain data. Out
of the four datasets in the BLUE benchmark, we
have results of Biolm for i2b2-2010 and MedNLI.
Since we do not have the train, dev and test split
used by Biolm for i2b2-2010, we compare our re-
sults only for the MedNLI dataset. Score of our
BioELECTRA (P+F) model 86.34% is significantly
higher than Biolm Base model (PM + Voc) score of
83.2%. We also note that BioELECTRA performs
better than BERT based models trained on MIMIC
data. BioELECTRA (P) achieves new SOTA on
three of the datasets - i2b2-2010, ShARe/CLEFE
and ClinicalSTS. BioELECTRA (P+F)’s score of
86.34% on MedNLI task is marginally (0.07%)
higher than the score of BioELECTRA (P)’s score
of 86.27% and this is the new SOTA for MedNLI
dataset for models trained on PubMed abstracts and
PubMed Central full text articles.

Our models pretrained on domain specific text
along with domain specific vocabulary have con-
sistently shown that the pretraining from scratch
with domain specific data enables the model to cap-
ture the contextual representations of the language
better.
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BioELECTRA BioELECTRA BioELECTRA BioELECTRA
P P+F P+F (LT) W+P

Vocab PubMed PubMed PubMed General

BC5-chem 93.60 93.51 93.75 93.03
BC5-disease 85.84 85.55 85.32 84.66
NCBI-disease 89.38 88.43 88.73 88.45
BC2GM 84.69 84.61 84.68 83.90
JNLPBA 80.17 79.98 80.10 79.63
EBM PICO 74.26 73.88 73.86 73.33
ChemProt 78.20 77.76 76.76 77.06
DDI 82.76 83.53 82.34 79.68
GAD 83.70 84.18 85.67 83.16
BIOSSES 92.49 93.80 91.45 88.65
HoC 83.50 82.79 83.20 82.30
PubMedQA 64.02 63.80 62.21 61.20
BioASQ 88.57 91.42 91.50 90.01

BLURB Score 82.47 82.72 82.24 80.96

MedNLI 86.27 86.34 85.36 83.53
i2b2-2010 76.50 75.73 76.17 75.48
ShARe/CLEFE 83.71 83.15 83.52 83.02
ClinicalSTS 89.07 88.34 89.02 88.46

Table 4: Comparison of BioELECTRA models on BLURB (Gu et al., 2020) and BLUE (Peng et al., 2019) bench-
mark. (P - PubMed abstracts, F - PubMed Central full text articles, W - Wikipedia, LT - Longer Training )

Comparison of BioELECTRA models Table 4
shows the comparison of results of our models
BioELECTRA(P), BioELECTRA (P+F) and Bio-
ELECTRA (P+F) LT with longer training of addi-
tional 1 million steps and BioELECTRA (W+P).
BioELECTRA (W+P) is pretrained from scratch
on Wikipedia and PubMed abstracts along with a
general domain vocabulary (BERT (Devlin et al.,
2018) uncased vocabulary). We observe that Bio-
ELECTRA (P+F) LT with longer training of 2
million steps does not give substantial improve-
ments on all of the tasks. BioELECTRA (P+F) LT
model’s result is slightly better than BioELECTRA
(P) on BC5-chem dataset. BioELECTRA (P+F)
LT model’s result on GAD and BioASQ datasets
are marginally better than BioELECTRA (P+F).
BioELECTRA (P+F) performs slightly better than
BioELECTRA (P) on DDI and BIOSSES datasets.

The results clearly show that all BioELECTRA
models pretrained from scratch with biomedical do-
main text and domain specific vocabulary perform
better than the model pretrained on both general
and biomedical domain text with general domain
vocabulary. However it is interesting to note that

BioELECTRA (W+P) model has significantly bet-
ter results for i2b2-2010, ShARe/CLEFE and Clin-
icalSTS datasets than PubMedBERT. BioELEC-
TRA (W+P)’s score for MedNLI is comparable to
that of PubMedBERT (Gu et al., 2020).

6 Conclusion and Future Work

We release BioELECTRA-base models pretrained
from scratch on biomedical domain specific text
and evaluate the performance on seven different
biomedical NLP tasks with 17 datasets. We achieve
SOTA on all the datasets in the BLURB (Gu et al.,
2020) benchmark and all four clinical datasets in
the BLUE (Peng et al., 2019) benchmark. Our
results show that pretraining from scratch with
biomedical domain text helps the model to learn
better contextual representations. We release the
pretrained weights for all our models and the code
for reproducibility.

We plan to explore and experiment with our do-
main specific pretraining approach on ELECTRA-
LARGE models. We also intend to train
ELECTRA-BASE and ELECTRA-LARGE mod-
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els on MIMIC III (Johnson et al., 2016) clinical
notes and evaluate the performance of the models
on biomedical NLP tasks. As ELECTRA shows
a significant improvement on SQuAD (Rajpurkar
et al., 2016b), we want to focus on Biomedical QA
tasks (span prediction) and evaluate domain spe-
cific pretrained ELECTRA models performance.
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A Pretraining

Hyperparameter Discriminator/Generator

Number of layers 12
Hidden Size 768/256
FFN inner hidden size 3072/1024
Attention heads 12/4
Attention head size 64
Embedding Size 768
Mask percent 15
Learning Rate Decay Linear
Warmup steps 10000
Learning Rate 2e-4
Adam ε 1e-6
Adam β1 0.9
Adam β2 0.999
Attention Dropout 0.1
Dropout 0.1
Weight Decay 0.01
Batch Size 512
Train Steps 1M

Table 5: Pre-train hyperparameters.

All the BioELECTRA models are trained on
TPU v3-8 instances. Adopting bfloat166 training
helped us in improving the training speed. Very
similar to BERT, we train the model in 2 phases,
90% of steps with sequence length of 128 (phase1)
and 10% of steps with sequence length of 512
(phase2) to learn the positional embeddings. Model
training reached 1M steps in 5 days (phase1 - 4
days and phase2 - 1day). For pretraining, we use
the original ELECTRA code7 released by authors.
Refer table 5 for details regarding all the parame-
ters.

B Finetuning

Figure 2 shows different architecture schema of
different models.

• Single Sentence Classification : ChemProt,
DDI, GAD, i2b2-2010, HoC

• Entity Classification: BC5-chem, BC5-
disease, NCBI-Disease, BC2GM, JNLPBA,
ShARe/CLEFE, EBM PICO

6https://cloud.google.com/blog/products/ai-machine-
learning/bfloat16-the-secret-to-high-performance-on-cloud-
tpus

7https://github.com/google-research/electra
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Figure 2: Overview of BioELECTRA model finetuning.

Hyperparameter Value

Adam ε 1e-6
Adam β1 0.9
Adam β2 0.999
Layerwise LR decay 0.8
Learning rate decay Linear
Warmup fraction 0.1
Attention Dropout 0.1
Dropout 0.1
Weight Decay 0

Table 6: Common hyperparamters across tasks

• Sentence Pair Classification: BIOSSES, Clin-
icalSTS

• Question Answering: PubMedQA, BioASQ

’Discriminative finetuning’ is adopted where the
learning rate varies across the layers. The learning
rate decays across the layers from top to bottom
with a factor of 0.8 for all the NLP tasks. The
colour gradient in figure 2 represents this . For a
learning rate of 1e-4 , only the task specific pre-
diction layer (final layer) is finetuned at this rate.
With a decay factor of 0.8, the embedding layer

Dataset LR BS MSL EPOCHS

BC5-chem 2e-4 16 256 5
BC5-disease 2e-4 16 256 5
NCBI-disease 2e-4 32 128 5
BC2GM 2e-4 32 256 5
JNLPBA 2e-4 16 256 3
ShARe/CLEFE 2e-4 32 512 5
EBM PICO 2e-4 32 256 3
ChemProt 1e-4 32 256 5
DDI 2e-4 32 256 3
GAD 2e-4 32 128 5
i2b2-2010 2e-4 32 128 5
BIOSSES 1.5e-4 16 128 60
ClinicalSTS 5e-5 32 128 10
HoC 2e-4 32 128 5
MedNLI 1e-4 32 128 5
PubMedQA 2e-4 32 512 20
BioASQ 2e-4 32 512 20

Table 7: LR : Learning Rate, BS : Batch Size, MSL :
Maximum Sequence Length

for that particular task is finetuned at a learning
rate of 5.5e-6. Table 6 shows the common hyperpa-
rameters used across tasks, and table 7 shows task
specific hyperparameters.


